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Self-affine sets

Given an iterated function system (IFS) consisting of contracting affine
maps, {Ai + ti}mi=1, where the Ai are linear contractions and the ti are
translation vectors, it is well-known that there exists a unique non-empty
compact set F satisfying

F =
m⋃
i=1

Si (F )

which is termed the self-affine attractor of the IFS.
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The singular value function

The singular values of a linear map, A : Rn → Rn, are the positive square
roots of the eigenvalues of ATA. For s ∈ [0, n] define the singular value
function φs(A) by

φs(A) = α1α2 . . . αdse−1α
s−dse+1
dse

where α1 > . . . > αn are the singular values of A.

Returning to our IFS, let Ik denote the set of all sequences (i1, . . . , ik),
where each ij ∈ {1, . . . ,m}, and let d(A1, . . . ,Am) = s be the solution of

lim
k→∞

(∑
Ik

φs(Ai1 ◦ · · · ◦ Aik )

)1/k

= 1.

This number is called the affinity dimension of the attractor, F .
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Falconer’s theorem

Theorem
Let A1, . . . ,Am be contracting linear self-maps on Rn with Lipschitz
constants strictly less than 1/2. Then, for

(∏m
i=1 Ln

)
-almost all

(t1, . . . , tm) ∈ ×m
i=1Rn, the unique non-empty compact set F satisfying

F =
m⋃
i=1

(Ai + ti )(F )

has
dimB F = dimP F = dimH F = min

{
n, d

(
A1, . . . ,Am

)}
.

In fact, the initial proof required that the Lipschitz constants be strictly
less than 1/3 but this was relaxed to 1/2 by Solomyak who also observed
that 1/2 is the optimal constant.
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Box-like self-affine sets

We call a self-affine set box-like if it is the attractor of an IFS consisting
of contracting affine self-maps on [0, 1]2, each of which maps [0, 1]2 to a
rectangle with sides parallel to the axes.

The affine maps which make up such an IFS are necessarily of the form
S = T ◦ L + t, where T is a contracting linear map of the form

T =

(
a 0
0 b

)
for some a, b ∈ (0, 1); L is an isometry of [0, 1]2 (i.e., a member of D4);

and t ∈ R2 is a translation vector.
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Box-like self-affine sets

Let π1, π2 : R2 → R be defined by π1(x , y) = x and π2(x , y) = y .

(1) π1(F ) and π2(F ) are either self-similar sets or they are a pair of
graph-directed self-similar sets. This shows that the box dimensions
of π1(F ) and π2(F ) always exist and are equal in the graph-directed
case.

Let
s1 = dimB π1(F ) and s2 = dimB π2(F ).

(2) We can compute the exact value of s1 and s2 in many cases.

(3) Compositions of maps in our IFS also map [0, 1]2 to a rectangle, and
the singular values are just the lengths of the sides of the rectangle.
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Modified singular value functions

For i ∈ Ik let s(i) be the box dimension of the projection of Si(F ) onto
the longest side of the rectangle Si

(
[0, 1]2

)
and note that this is always

equal to either s1 or s2.

For s > 0 and i ∈ I∗, we define the modified singular value function, ψs ,
of Si by

ψs
(
Si

)
= α1(i)s(i) α2(i)s−s(i),

and for s > 0 and k ∈ N, we define a number Ψs
k by

Ψs
k =

∑
i∈Ik

ψs(Si)
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Properites of ψs and Ψs
k

For s > 0 and i, j ∈ I∗ we have

(1) If s < s1 + s2, then ψs(Si ◦ Sj) 6 ψs(Si)ψ
s(Sj)

(2) If s = s1 + s2, then ψs(Si ◦ Sj) = ψs(Si)ψ
s(Sj)

(3) If s > s1 + s2, then ψs(Si ◦ Sj) > ψs(Si)ψ
s(Sj)

For s > 0 and k, l ∈ N we have

(4) If s < s1 + s2, then Ψs
k+l 6 Ψs

k Ψs
l

(5) If s = s1 + s2, then Ψs
k+l = Ψs

k Ψs
l

(6) If s > s1 + s2, then Ψs
k+l > Ψs

k Ψs
l

It follows by standard properties of sub- and super-multiplicative
sequences that we may define a function P : [0,∞)→ [0,∞) by:

P(s) = lim
k→∞

(Ψs
k)1/k
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Properties of our ‘pressure’ function P

P is the exponential of the function

P∗(s) = lim
k→∞

1
k log Ψs

k

which one might call the topological pressure of the system.

(1) For all s, t > 0 we have

αs
minP(t) 6 P(s + t) 6 αs

maxP(t)

(2) P is continuous and strictly decreasing on [0,∞)

(3) There is a unique value s > 0 for which P(s) = 1
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Dimension result

Definition
An IFS {Si}mi=1 satisfies the rectangular open set condition (ROSC) if
there exists a non-empty open rectangle, R = (a, b)× (c , d) ⊂ R2, such
that {Si (R)}mi=1 are pairwise disjoint subsets of R.

Theorem
Let F be a box-like self-affine set. Then dimP F = dimBF 6 s where
s > 0 is the unique solution of P(s) = 1. Furthermore, if the ROSC is
satisfied, then dimP F = dimB F = s.
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Some discussion

(1) If s1 = s2 = 1, then the singular value function and our modified
singular value function coincide and therefore and the solution of
P(s) = 1 is the affinity dimension.

(2) The converse of (1) is clearly not true.

(3) We have extended the class of self-affine sets for which it is known
that the box dimension exists.

Question: Does the box dimension always exist for self-affine sets?

(4) Hausdorff dimension for box-like sets. In the Gatzouras-Lalley and
Barański cases, the Hausdorff dimension is equal to the supremum
of the Hausdorff dimensions of the Bernoulli measures supported on
the attractor. Perhaps the same is true for box-like sets? Or
perhaps one can compute the Hausdorff dimension via a function
based on singular values analogous to our P?
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Thank you!
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