On the dynamics of strongly tridiagonal competitive-cooperative system

Chun Fang

University of Helsinki International Conference on Advances on Fractals and Related Topics, Hong Kong

December 14, 2012

# Setting

Consider the nonautonomous tridiagonal system

$$\begin{aligned} \dot{x}_1 &= f_1(t, x_1, x_2), \\ \dot{x}_i &= f_i(t, x_{i-1}, x_i, x_{i+1}), \quad 2 \le i \le n-1 \\ \dot{x}_n &= f_n(t, x_{n-1}, x_n) \end{aligned} \tag{1}$$

where  $f = (f_1, f_2, \cdots, f_n) : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$  satisfies following conditions.

# Setting

Consider the nonautonomous tridiagonal system

$$\begin{aligned} \dot{x}_1 &= f_1(t, x_1, x_2), \\ \dot{x}_i &= f_i(t, x_{i-1}, x_i, x_{i+1}), \quad 2 \le i \le n-1 \\ \dot{x}_n &= f_n(t, x_{n-1}, x_n) \end{aligned} \tag{1}$$

where  $f = (f_1, f_2, \cdots, f_n) : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$  satisfies following conditions.

(A1) f is  $C^1$ -admissible, i.e. f together with  $\frac{\partial f}{\partial x}$  are bounded and uniformly continuous on  $\mathbb{R} \times K$  for any compact set  $K \subset \mathbb{R}^n$ .

# Setting

Consider the nonautonomous tridiagonal system

$$\begin{split} \dot{x}_1 &= f_1(t, x_1, x_2), \\ \dot{x}_i &= f_i(t, x_{i-1}, x_i, x_{i+1}), \quad 2 \le i \le n-1 \\ \dot{x}_n &= f_n(t, x_{n-1}, x_n) \end{split}$$

where  $f = (f_1, f_2, \cdots, f_n) : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$  satisfies following conditions.

- (A1) f is  $C^1$ -admissible, i.e. f together with  $\frac{\partial f}{\partial x}$  are bounded and uniformly continuous on  $\mathbb{R} \times K$  for any compact set  $K \subset \mathbb{R}^n$ .
- (A2) There are  $\varepsilon_0 > 0$  such that for all  $(t, x) \in \mathbb{R} \times \mathbb{R}^n$ ,

$$rac{\partial f_i}{\partial x_{i+1}}(t,x) \geq arepsilon_0, \ rac{\partial f_{i+1}}{\partial x_i}(t,x) \geq arepsilon_0 \quad 1 \leq i \leq n-1.$$

for all  $(t, x) \in \mathbb{R} \times \mathbb{R}^n$ .

#### Question

Let  $x(t, x_0, f)$  be a bounded solution of (1). What does its asymptotic behavior looks like? Can we characterize the structure of its  $\omega$ -limit set  $\omega(x_0, f)$ ?

#### Question

Let  $x(t, x_0, f)$  be a bounded solution of (1). What does its asymptotic behavior looks like? Can we characterize the structure of its  $\omega$ -limit set  $\omega(x_0, f)$ ?

 $\dot{x} = f(t, x)$ 

#### Question

Let  $x(t, x_0, f)$  be a bounded solution of (1). What does its asymptotic behavior looks like? Can we characterize the structure of its  $\omega$ -limit set  $\omega(x_0, f)$ ?

 $\dot{x} = f(t, x)$ 

$$H(f) = \overline{\{g: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n \mid \exists \tau \in \mathbb{R}, \text{ s.t. } g(t, x) = f(\tau + t, x)\}}$$

#### Question

Let  $x(t, x_0, f)$  be a bounded solution of (1). What does its asymptotic behavior looks like? Can we characterize the structure of its  $\omega$ -limit set  $\omega(x_0, f)$ ?

 $\dot{x} = f(t, x)$ 

$$H(f) = \overline{\{g: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n \mid \exists \tau \in \mathbb{R}, \text{ s.t. } g(t,x) = f(\tau + t,x)\}}$$

For convenience, we assume the hull H(f) is minimal under the shift action defined by  $f \cdot \tau \triangleq f(\tau + \cdot, \cdot)$ . It is reasonable to characterize the structure of  $\omega(x_0, f)$  in terms of H(f).

### Question

Let  $x(t, x_0, f)$  be a bounded solution of (1). What does its asymptotic behavior looks like? Can we characterize the structure of its  $\omega$ -limit set  $\omega(x_0, f)$ ?

 $\dot{x} = f(t, x)$ 

 $H(f) = \overline{\{g: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n \mid \exists \tau \in \mathbb{R}, \text{ s.t. } g(t,x) = f(\tau + t,x)\}}$ 

For convenience, we assume the hull H(f) is minimal under the shift action defined by  $f \cdot \tau \triangleq f(\tau + \cdot, \cdot)$ . It is reasonable to characterize the structure of  $\omega(x_0, f)$  in terms of H(f).

- 1. Biologically, it describes the relationship between the environment and the variety of number of species;
- 2. Mathematically, it covert the complexity of  $\omega(x_0, f)$  to the one of H(f).

(1) can generates a skew-product semiflow  $\pi$  on  $\mathbb{R}^n \times H(f)$ , by

$$\pi(t, x_0, g) \triangleq (x_0, g) \cdot t \triangleq (x(t, x_0, g), g \cdot t), \tag{2}$$

where  $x(t, x_0, g)$  is the solution of initial value problem

$$\dot{x}_1 = g(t, x),$$
$$x(0) = x_0$$

(1) can generates a skew-product semiflow  $\pi$  on  $\mathbb{R}^n \times H(f)$ , by

$$\pi(t, x_0, g) \triangleq (x_0, g) \cdot t \triangleq (x(t, x_0, g), g \cdot t),$$
(2)

where  $x(t, x_0, g)$  is the solution of initial value problem

$$\dot{x}_1 = g(t, x),$$
$$x(0) = x_0$$

An omega limit set of system (1) corresponds to an omega limit set of system (2) (see George R. Sell [1]).

### Hyperbolic Case

### Theorem (F.-Gyllenberg-Wang)

Let  $\pi(t, x_0, g_0)$  be a positively bounded motion of system (2). If  $\omega(x_0, g_0)$  is hyperbolic, then  $\omega(x_0, g_0)$  is 1-cover of H(f).

### Hyperbolic Case

### Theorem (F.-Gyllenberg-Wang)

Let  $\pi(t, x_0, g_0)$  be a positively bounded motion of system (2). If  $\omega(x_0, g_0)$  is hyperbolic, then  $\omega(x_0, g_0)$  is 1-cover of H(f).

**Definition:** A set  $Y \subset \mathbb{R}^n \times H(f)$  is said to be an *1-cover* of H(f) if  $\#(Y \cap P^{-1}(g)) = 1$  for all  $g \in H(f)$ , where  $P : \mathbb{R}^n \times H(f) \to H(f), P(x,g) = g$  is the natural projection.

### Hyperbolic Case

**Definition:** Let  $Y \subset \mathbb{R}^n \times H(f)$  be a compact invariant set of (2). For each  $y = (x, g) \in Y$ , the linearized equation of (2) along  $y \cdot t = (x, g) \cdot t$  reads:

$$\dot{x} = A(y \cdot t)x.$$
 (3)

Y is hyperbolic if the system (3) admits an exponential dichotomy over Y, i.e. there is a projector  $Q : \mathbb{R}^n \times H(f) \to \mathbb{R}^n \times H(f)$  and positive constants K and  $\alpha$  such that

(i) 
$$\Phi(t,y)Q(y) = Q(y \cdot t)\Phi(t,y), \quad t \in \mathbb{R},$$
  
(ii)  $|\Phi(t,y)(1-Q(y))| \le Ke^{-\alpha t}, \quad t \in \mathbb{R}^+,$   
 $|\Phi(t,y)Q(y)| \le Ke^{\alpha t}, \quad t \in \mathbb{R}^-,$ 

for all  $y \in H(f)$ .

### Hyperbolic Case - Perturbation Theory

Consider a perturbed system of (1)

$$\dot{x} = f(t, x) + h(t, x).$$

Assume the perturbation item h and its Jacobi matrix with respect to x are uniformly continuous and there exist  $0 < \delta < 1$  such that

$$|h(t,x)| < \delta, \quad |\partial h(t,x)/\partial x| < \delta$$
 (4)

for all  $t \in \mathbb{R}$  and  $x \in \mathbb{R}^n$ .

### Hyperbolic Case - Perturbation Theory

Consider a perturbed system of (1)

$$\dot{x} = f(t, x) + h(t, x).$$

Assume the perturbation item h and its Jacobi matrix with respect to x are uniformly continuous and there exist 0  $<\delta<1$  such that

$$|h(t,x)| < \delta, \quad |\partial h(t,x)/\partial x| < \delta$$
 (4)

for all  $t \in \mathbb{R}$  and  $x \in \mathbb{R}^n$ .

#### Theorem (F.-Gyllenberg-Wang)

Suppose the skew-product flow (2) generated by  $\dot{x} = f(t, x)$  admits a hyperbolic  $\omega$ -limit set  $\omega(x_0, f)$ . Then there exist a  $C^1$  neighborhood  $\mathcal{F}$  of f in the sense of (4) and a neighborhood U of  $\omega(x_0, f)$  such that for any  $g \in \mathcal{F}$ , there exist an  $\omega$ -limit set  $\omega(x'_0, g) \subset \mathbb{R}^n \times H(g) \cap U$ , moreover, it is 1-cover of H(g).

### Question

How about the structural of a general  $\omega$ -limit set of (1) or (2)?

#### Question

How about the structural of a general  $\omega$ -limit set of (1) or (2)?

### Lemma (F.-Gyllenberg-Wang)

For any  $\pi$ -invariant set  $Y \subset \mathbb{R}^n \times H(f)$  of (2), the linearized system (3):  $\dot{x} = A(y \cdot t)x$  admits an  $(1, \dots, 1)$ -dominated splitting.

#### Question

How about the structural of a general  $\omega$ -limit set of (1) or (2)?

### Lemma (F.-Gyllenberg-Wang)

For any  $\pi$ -invariant set  $Y \subset \mathbb{R}^n \times H(f)$  of (2), the linearized system (3):  $\dot{x} = A(y \cdot t)x$  admits an  $(1, \dots, 1)$ -dominated splitting.

Definition: System (3) is said to admit a  $(n_1, n_2)$ -dominated splitting if there exists  $\pi$ -invariant splitting  $X_1(Y) \oplus X_2(Y)$  of  $\mathbb{R}^n \times Y$  such that there exist positive numbers K and  $\nu$  satisfies

$$\frac{|\Phi(t,y)x_2|}{|\Phi(t,y)x_1|} \leq K e^{-\nu t}, \quad t \geq 0,$$

for all  $y \in Y$  and  $x_1 \in X_1(y)$ ,  $x_2 \in X_2(y)$  with  $|x_1| = |x_2| = 1$ .

Next theorem shows that after a suitable functional distortion, dominated splitting becomes to hyperbolicity.

### Theorem (F.-Gyllenberg-Liu)

Let  $f : M \to M$  be a diffeomorphism on a closed manifold M and  $\Lambda \subset M$ be any compact f-invariant set. A splitting  $T_{\Lambda}M = E_1 \oplus \cdots \oplus E_k$  of tangent bundle over  $\Lambda$  is  $(n_1, \cdots, n_k)$ -dominated if and only if there exist continuous real functions  $p_i : \Lambda \to \mathbb{R}^+$ ,  $i = 1, \cdots, k$ , with  $\log p_1, \cdots, \log p_k$  are summably separated with respect to f, such that for  $i = 1, \cdots, k$  the linear cocycle  $(f, p_iDf)$  admits a hyperbolicity over  $\Lambda$ with stable subspace of dimension  $n_1 + \cdots + n_i$ .

For any given  $\lambda \in \mathbb{R}$ , consider

$$\dot{x} = (A(y \cdot t) - \lambda \operatorname{Id})x, \quad y \in Y,$$
(5)

Definition:  $\sum(Y) = \{\lambda \in \mathbb{R}^1 \mid (5) \text{ has no exponential dichotomy on } Y\}$  is called the *Sacker-Sell spectrum of* (3).

For any given  $\lambda \in \mathbb{R}$ , consider

$$\dot{x} = (A(y \cdot t) - \lambda \mathrm{Id})x, \quad y \in Y,$$
 (5)

Definition:  $\sum(Y) = \{\lambda \in \mathbb{R}^1 \mid (5) \text{ has no exponential dichotomy on } Y\}$  is called the *Sacker-Sell spectrum of* (3).

#### Remark

- 1.  $\sum(Y) = \bigcup_{i=1}^{k} I_i$ , where  $I_i = [a_i, b_i]$  and  $\{I_i\}$  is ordered from right to left. Denote the invariant subbundle associated with  $I_i$  is  $X_i(Y)$ , then  $X_1(Y) \oplus \cdots \oplus X_k(Y) = \mathbb{R}^n \times Y$ .
- 2. If Y is hyperbolic,  $0 \notin \sum(Y)$ .

**Definition**: We say Y is of *central dimension one*, if  $0 \in I_i$  for some *i* and dim  $X_i(Y) = 1$ .

**Definition**: We say Y is of *central dimension one*, if  $0 \in I_i$  for some *i* and dim  $X_i(Y) = 1$ .

#### Theorem (F.-Wang)

Suppose  $Y \subset \mathbb{R}^n \times H(f)$  is a minimal set and is of central dimension one. Then the flow  $(Y, \cdot)$  is topologically conjugated to a scalar skew-product subflow of  $(\mathbb{R}^1 \times H(f), \cdot)$ .

**Definition**: We say Y is of *central dimension one*, if  $0 \in I_i$  for some *i* and dim  $X_i(Y) = 1$ .

#### Theorem (F.-Wang)

Suppose  $Y \subset \mathbb{R}^n \times H(f)$  is a minimal set and is of central dimension one. Then the flow  $(Y, \cdot)$  is topologically conjugated to a scalar skew-product subflow of  $(\mathbb{R}^1 \times H(f), \cdot)$ .

#### Corollary

Suppose f is almost periodic in t and let  $Y \subset \mathbb{R}^n \times H(f)$  be a minimal set and unique ergodic. Then  $(Y, \cdot)$  is topologically conjugated to a scalar skew-product subflow of  $(\mathbb{R}^1 \times H(f), \cdot)$ .

### Future Research

#### Question

How about the case that the central dimension is bigger than one, for example two?

### Thank you for your attention!

### References



### G. R. Sell (1971)

Topological dynamics and ordinary differential equations.

Van Nostrand-Reinhold.

### H. L. Smith (1991)

Periodic tridiagonal competitive and cooperative systems of differential equations. *SIAM J. MATH. ANAL.* 22(4), 1102 – 1109.

#### V. M. Millionshchikov (1968)

A criterion for a small change in the direction of the solutions of a linear system of differential equations as the result of small disturbances in the coefficients of the system.

Mat. Zametki 4(2), 173 – 180.



I. U. Bronshtein and V. F. Chernii (1978)

Linear extensions satisfying Perron's condition. I.

Differential Equations 14, 1234 - 1243.

### J. Smillie (1984)

Competitive and cooperative tridiagonal sytems of differential equations.

SIAM J. MATH. ANAL. 15, 530 - 534.

### References



Y. Wang (2007)

Dynamics of nonautonomous tridiagonal competitive-cooperative systems of differential equations.

*Nonlinearity* 20, 831 – 843.



S.-N Chow, X.-B. Lin and K. Lu (1991)

Smooth invariant foliations in infinite dimensional spaces.

J. Diff. Eq. 94, 266 - 291.



D. Henry (1981)

Geometric Theory of Semilinear Parabolic Equations.

Lecture Notes in Mathematics Vol.840.

Y. Yi (1993)

Stability of integral manifold and orbital attraction of quasi-periodic motions.

J. Diff. Eq. 102(2), 287 – 322.

#### W. Shen and Y. Yi (1995)

Dynamics of almost periodic scalar parabolic equations.

J. Diff. Eq. 122, 114 – 136.