On the dynamics of strongly tridiagonal competitive-cooperative system

Chun Fang
University of Helsinki
International Conference on Advances on Fractals and Related Topics, Hong Kong

December 14, 2012

Setting

Consider the nonautonomous tridiagonal system

$$
\begin{aligned}
& \dot{x}_{1}=f_{1}\left(t, x_{1}, x_{2}\right), \\
& \dot{x}_{i}=f_{i}\left(t, x_{i-1}, x_{i}, x_{i+1}\right), \quad 2 \leq i \leq n-1 \\
& \dot{x}_{n}=f_{n}\left(t, x_{n-1}, x_{n}\right)
\end{aligned}
$$

where $f=\left(f_{1}, f_{2}, \cdots, f_{n}\right): \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ satisfies following conditions.

Setting

Consider the nonautonomous tridiagonal system

$$
\begin{align*}
& \dot{x}_{1}=f_{1}\left(t, x_{1}, x_{2}\right), \\
& \dot{x}_{i}=f_{i}\left(t, x_{i-1}, x_{i}, x_{i+1}\right), \quad 2 \leq i \leq n-1 \tag{1}\\
& \dot{x}_{n}=f_{n}\left(t, x_{n-1}, x_{n}\right)
\end{align*}
$$

where $f=\left(f_{1}, f_{2}, \cdots, f_{n}\right): \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ satisfies following conditions.
(A1) f is C^{1}-admissible, i.e. f together with $\frac{\partial f}{\partial x}$ are bounded and uniformly continuous on $\mathbb{R} \times K$ for any compact set $K \subset \mathbb{R}^{n}$.

Setting

Consider the nonautonomous tridiagonal system

$$
\begin{align*}
& \dot{x}_{1}=f_{1}\left(t, x_{1}, x_{2}\right), \\
& \dot{x}_{i}=f_{i}\left(t, x_{i-1}, x_{i}, x_{i+1}\right), \quad 2 \leq i \leq n-1 \tag{1}\\
& \dot{x}_{n}=f_{n}\left(t, x_{n-1}, x_{n}\right)
\end{align*}
$$

where $f=\left(f_{1}, f_{2}, \cdots, f_{n}\right): \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ satisfies following conditions.
(A1) f is C^{1}-admissible, i.e. f together with $\frac{\partial f}{\partial x}$ are bounded and uniformly continuous on $\mathbb{R} \times K$ for any compact set $K \subset \mathbb{R}^{n}$.
(A2) There are $\varepsilon_{0}>0$ such that for all $(t, x) \in \mathbb{R} \times \mathbb{R}^{n}$,

$$
\frac{\partial f_{i}}{\partial x_{i+1}}(t, x) \geq \varepsilon_{0}, \frac{\partial f_{i+1}}{\partial x_{i}}(t, x) \geq \varepsilon_{0} \quad 1 \leq i \leq n-1
$$

for all $(t, x) \in \mathbb{R} \times \mathbb{R}^{n}$.

Question and Idea

Question

Let $x\left(t, x_{0}, f\right)$ be a bounded solution of (1). What does its asymptotic behavior looks like? Can we characterize the structure of its ω-limit set $\omega\left(x_{0}, f\right)$?

Question and Idea

Question

Let $x\left(t, x_{0}, f\right)$ be a bounded solution of (1). What does its asymptotic behavior looks like? Can we characterize the structure of its ω-limit set $\omega\left(x_{0}, f\right)$?

$$
\dot{x}=f(t, x)
$$

Question and Idea

Question

Let $x\left(t, x_{0}, f\right)$ be a bounded solution of (1). What does its asymptotic behavior looks like? Can we characterize the structure of its ω-limit set $\omega\left(x_{0}, f\right)$?

$$
\begin{aligned}
& \dot{x}=f(t, x) \\
& H(f)=\overline{\left\{g: \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \mid \exists \tau \in \mathbb{R}, \text { s.t. } g(t, x)=f(\tau+t, x)\right\}}
\end{aligned}
$$

Question and Idea

Question

Let $x\left(t, x_{0}, f\right)$ be a bounded solution of (1). What does its asymptotic behavior looks like? Can we characterize the structure of its ω-limit set $\omega\left(x_{0}, f\right)$?
$\dot{x}=f(t, x)$
$H(f)=\overline{\left\{g: \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \mid \exists \tau \in \mathbb{R} \text {, s.t. } g(t, x)=f(\tau+t, x)\right\}}$
For convenience, we assume the hull $H(f)$ is minimal under the shift action defined by $f \cdot \tau \triangleq f(\tau+\cdot, \cdot)$. It is reasonable to characterize the structure of $\omega\left(x_{0}, f\right)$ in terms of $H(f)$.

Question and Idea

Question

Let $x\left(t, x_{0}, f\right)$ be a bounded solution of (1). What does its asymptotic behavior looks like? Can we characterize the structure of its ω-limit set $\omega\left(x_{0}, f\right)$?
$\dot{x}=f(t, x)$
$H(f)=\overline{\left\{g: \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \mid \exists \tau \in \mathbb{R} \text {, s.t. } g(t, x)=f(\tau+t, x)\right\}}$
For convenience, we assume the hull $H(f)$ is minimal under the shift action defined by $f \cdot \tau \triangleq f(\tau+\cdot, \cdot)$. It is reasonable to characterize the structure of $\omega\left(x_{0}, f\right)$ in terms of $H(f)$.

1. Biologically, it describes the relationship between the environment and the variety of number of species;
2. Mathematically, it covert the complexity of $\omega\left(x_{0}, f\right)$ to the one of $H(f)$.
(1) can generates a skew-product semiflow π on $\mathbb{R}^{n} \times H(f)$, by

$$
\begin{equation*}
\pi\left(t, x_{0}, g\right) \triangleq\left(x_{0}, g\right) \cdot t \triangleq\left(x\left(t, x_{0}, g\right), g \cdot t\right) \tag{2}
\end{equation*}
$$

where $x\left(t, x_{0}, g\right)$ is the solution of initial value problem

$$
\begin{aligned}
& \dot{x}_{1}=g(t, x), \\
& x(0)=x_{0}
\end{aligned}
$$

(1) can generates a skew-product semiflow π on $\mathbb{R}^{n} \times H(f)$, by

$$
\begin{equation*}
\pi\left(t, x_{0}, g\right) \triangleq\left(x_{0}, g\right) \cdot t \triangleq\left(x\left(t, x_{0}, g\right), g \cdot t\right) \tag{2}
\end{equation*}
$$

where $x\left(t, x_{0}, g\right)$ is the solution of initial value problem

$$
\begin{aligned}
& \dot{x}_{1}=g(t, x), \\
& x(0)=x_{0}
\end{aligned}
$$

An omega limit set of system (1) corresponds to an omega limit set of system (2) (see George R. Sell [1]).

Hyperbolic Case

Theorem (F.-Gyllenberg-Wang)
Let $\pi\left(t, x_{0}, g_{0}\right)$ be a positively bounded motion of system (2). If $\omega\left(x_{0}, g_{0}\right)$ is hyperbolic, then $\omega\left(x_{0}, g_{0}\right)$ is 1-cover of $H(f)$.

Hyperbolic Case

Theorem (F.-Gyllenberg-Wang)
Let $\pi\left(t, x_{0}, g_{0}\right)$ be a positively bounded motion of system (2). If $\omega\left(x_{0}, g_{0}\right)$ is hyperbolic, then $\omega\left(x_{0}, g_{0}\right)$ is 1-cover of $H(f)$.

Definition: A set $Y \subset \mathbb{R}^{n} \times H(f)$ is said to be an 1-cover of $H(f)$ if $\#\left(Y \cap P^{-1}(g)\right)=1$ for all $g \in H(f)$, where $P: \mathbb{R}^{n} \times H(f) \rightarrow H(f), P(x, g)=g$ is the natural projection.

Hyperbolic Case

Definition: Let $Y \subset \mathbb{R}^{n} \times H(f)$ be a compact invariant set of (2).
For each $y=(x, g) \in Y$, the linearized equation of (2) along $y \cdot t=(x, g) \cdot t$ reads:

$$
\begin{equation*}
\dot{x}=A(y \cdot t) x \tag{3}
\end{equation*}
$$

Y is hyperbolic if the system (3) admits an exponential dichotomy over Y, i.e. there is a projector $Q: \mathbb{R}^{n} \times H(f) \rightarrow \mathbb{R}^{n} \times H(f)$ and positive constants K and α such that
(i) $\Phi(t, y) Q(y)=Q(y \cdot t) \Phi(t, y), \quad t \in \mathbb{R}$,
(ii) $|\Phi(t, y)(1-Q(y))| \leq K e^{-\alpha t}, \quad t \in \mathbb{R}^{+}$,
$|\Phi(t, y) Q(y)| \leq K e^{\alpha t}, \quad t \in \mathbb{R}^{-}$,
for all $y \in H(f)$.

Hyperbolic Case - Perturbation Theory

Consider a perturbed system of (1)

$$
\dot{x}=f(t, x)+h(t, x) .
$$

Assume the perturbation item h and its Jacobi matrix with respect to x are uniformly continuous and there exist $0<\delta<1$ such that

$$
\begin{equation*}
|h(t, x)|<\delta, \quad|\partial h(t, x) / \partial x|<\delta \tag{4}
\end{equation*}
$$

for all $t \in \mathbb{R}$ and $x \in \mathbb{R}^{n}$.

Hyperbolic Case - Perturbation Theory

Consider a perturbed system of (1)

$$
\dot{x}=f(t, x)+h(t, x) .
$$

Assume the perturbation item h and its Jacobi matrix with respect to x are uniformly continuous and there exist $0<\delta<1$ such that

$$
\begin{equation*}
|h(t, x)|<\delta, \quad|\partial h(t, x) / \partial x|<\delta \tag{4}
\end{equation*}
$$

for all $t \in \mathbb{R}$ and $x \in \mathbb{R}^{n}$.

Theorem (F.-Gyllenberg-Wang)

Suppose the skew-product flow (2) generated by $\dot{x}=f(t, x)$ admits a hyperbolic ω-limit set $\omega\left(x_{0}, f\right)$. Then there exist a C^{1} neighborhood \mathcal{F} of f in the sense of (4) and a neighborhood U of $\omega\left(x_{0}, f\right)$ such that for any $g \in \mathcal{F}$, there exist an ω-limit set $\omega\left(x_{0}^{\prime}, g\right) \subset \mathbb{R}^{n} \times H(g) \cap U$, moreover, it is 1 -cover of $H(g)$.

General Case

Question

How about the structural of a general ω-limit set of (1) or (2)?

General Case

Question

How about the structural of a general ω-limit set of (1) or (2)?

Lemma (F.-Gyllenberg-Wang)

For any π-invariant set $Y \subset \mathbb{R}^{n} \times H(f)$ of (2), the linearized system (3): $\dot{x}=A(y \cdot t) x$ admits an $(1, \cdots, 1)$-dominated splitting.

General Case

Question

How about the structural of a general ω-limit set of (1) or (2)?

Lemma (F.-Gyllenberg-Wang)

For any π-invariant set $Y \subset \mathbb{R}^{n} \times H(f)$ of (2), the linearized system (3): $\dot{x}=A(y \cdot t) x$ admits an $(1, \cdots, 1)$-dominated splitting.

Definition: System (3) is said to admit a $\left(n_{1}, n_{2}\right)$-dominated splitting if there exists π-invariant splitting $X_{1}(Y) \oplus X_{2}(Y)$ of $\mathbb{R}^{n} \times Y$ such that there exist positive numbers K and ν satisfies

$$
\frac{\left|\Phi(t, y) x_{2}\right|}{\left|\Phi(t, y) x_{1}\right|} \leq K e^{-\nu t}, \quad t \geq 0
$$

for all $y \in Y$ and $x_{1} \in X_{1}(y), x_{2} \in X_{2}(y)$ with $\left|x_{1}\right|=\left|x_{2}\right|=1$.

General Case

Next theorem shows that after a suitable functional distortion, dominated splitting becomes to hyperbolicity.

Theorem (F.-Gyllenberg-Liu)

Let $f: M \rightarrow M$ be a diffeomorphism on a closed manifold M and $\Lambda \subset M$ be any compact f-invariant set. A splitting $T_{\Lambda} M=E_{1} \oplus \cdots \oplus E_{k}$ of tangent bundle over Λ is $\left(n_{1}, \cdots, n_{k}\right)$-dominated if and only if there exist continuous real functions $p_{i}: \Lambda \rightarrow \mathbb{R}^{+}, i=1, \cdots, k$, with $\log p_{1}, \cdots, \log p_{k}$ are summably separated with respect to f, such that for $i=1, \cdots, k$ the linear cocycle ($f, p_{i} D f$) admits a hyperbolicity over Λ with stable subspace of dimension $n_{1}+\cdots+n_{i}$.

General Case - Central Dimension One

For any given $\lambda \in \mathbb{R}$, consider

$$
\begin{equation*}
\dot{x}=(A(y \cdot t)-\lambda I d) x, \quad y \in Y \tag{5}
\end{equation*}
$$

Definition: $\sum(Y)=\left\{\lambda \in \mathbb{R}^{1} \mid(5)\right.$ has no exponential dichotomy on $\left.Y\right\}$ is called the Sacker-Sell spectrum of (3).

General Case - Central Dimension One

For any given $\lambda \in \mathbb{R}$, consider

$$
\begin{equation*}
\dot{x}=(A(y \cdot t)-\lambda I d) x, \quad y \in Y \tag{5}
\end{equation*}
$$

Definition: $\sum(Y)=\left\{\lambda \in \mathbb{R}^{1} \mid(5)\right.$ has no exponential dichotomy on $\left.Y\right\}$ is called the Sacker-Sell spectrum of (3).

Remark

1. $\sum(Y)=\cup_{i=1}^{k} I_{i}$, where $I_{i}=\left[a_{i}, b_{i}\right]$ and $\left\{I_{i}\right\}$ is ordered from right to left. Denote the invariant subbundle associated with I_{i} is $X_{i}(Y)$, then $X_{1}(Y) \oplus \cdots \oplus X_{k}(Y)=\mathbb{R}^{n} \times Y$.
2. If Y is hyperbolic, $0 \notin \sum(Y)$.

General Case - Central Dimension One

Definition: We say Y is of central dimension one, if $0 \in I_{i}$ for some i and $\operatorname{dim} X_{i}(Y)=1$.

General Case - Central Dimension One

Definition: We say Y is of central dimension one, if $0 \in I_{i}$ for some i and $\operatorname{dim} X_{i}(Y)=1$.

Theorem (F.-Wang)
Suppose $Y \subset \mathbb{R}^{n} \times H(f)$ is a minimal set and is of central dimension one. Then the flow (Y, \cdot) is topologically conjugated to a scalar skew-product subflow of $\left(\mathbb{R}^{1} \times H(f), \cdot\right)$.

General Case - Central Dimension One

Definition: We say Y is of central dimension one, if $0 \in I_{i}$ for some i and $\operatorname{dim} X_{i}(Y)=1$.

Theorem (F.-Wang)
Suppose $Y \subset \mathbb{R}^{n} \times H(f)$ is a minimal set and is of central dimension one. Then the flow (Y, \cdot) is topologically conjugated to a scalar skew-product subflow of $\left(\mathbb{R}^{1} \times H(f), \cdot\right)$.

Corollary

Suppose f is almost periodic in t and let $Y \subset \mathbb{R}^{n} \times H(f)$ be a minimal set and unique ergodic. Then (Y, \cdot) is topologically conjugated to a scalar skew-product subflow of $\left(\mathbb{R}^{1} \times H(f), \cdot\right)$.

Future Research

Question

How about the case that the central dimension is bigger than one, for example two?

Thank you for your attention!

References

固 G. R. Sell (1971)
Topological dynamics and ordinary differential equations.
Van Nostrand-Reinhold.
H. L. Smith (1991)

Periodic tridiagonal competitive and cooperative systems of differential equations.
SIAM J. MATH. ANAL. 22(4), 1102 - 1109.
國 V. M. Millionshchikov (1968)
A criterion for a small change in the direction of the solutions of a linear system of differential equations as the result of small disturbances in the coefficients of the system.
Mat. Zametki 4(2), 173 - 180.
R I. U. Bronshtein and V. F. Chernii (1978)
Linear extensions satisfying Perron's condition. I.
Differential Equations 14, 1234 - 1243.
T. J. Smillie (1984)

Competitive and cooperative tridiagonal sytems of differential equations.
SIAM J. MATH. ANAL. 15, 530-534.

References

围 Y．Wang（2007）
Dynamics of nonautonomous tridiagonal competitive－cooperative systems of differential equations．
Nonlinearity 20， 831 － 843.
围 S．－N Chow，X．－B．Lin and K．Lu（1991）
Smooth invariant foliations in infinite dimensional spaces．
J．Diff．Eq．94， 266 － 291.
D．Henry（1981）
Geometric Theory of Semilinear Parabolic Equations．
Lecture Notes in Mathematics Vol． 840.
國 Y．Yi（1993）
Stability of integral manifold and orbital attraction of quasi－periodic motions．
J．Diff．Eq．102（2）， 287 － 322.
目 W．Shen and Y．Yi（1995）
Dynamics of almost periodic scalar parabolic equations．
J．Diff．Eq．122， 114 － 136.

