An Analytic Inequality and Higher Multifractal Moments

Kenneth Falconer

University of St Andrews, Scotland

Calculations in Fractal Geometry often fall into two parts: a geometric part and an analytic part.

The geometric part may involve expressing geometric or metric aspects of a problem in mathematical terms.

The analytic part may involve estimating the integrals, sums, etc. so obtained.

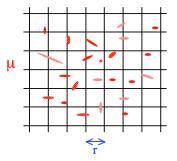
For the analytic part, there are methods may be applied to a range of apparently different fractal geometric problems - e.g. covering or potential theoretic methods for estimating dimensions.

We will look at an analytic technique which extends the potential theoretic method and give several applications.

Moment sums and L^q -dimensions

Let \mathcal{M}_r be the mesh of side r. Define the q-th power moment sum of a measure μ on \mathbb{R}^n by

$$M_r(q) = \sum_{C \in \mathcal{M}_r} \mu(C)^q.$$
 (1)



Then the L^q-dimension or generalised q dimension of μ is given by

$$D_q(\mu)=rac{1}{q-1}\lim_{r
ightarrow 0}rac{\log M_r(q)}{\log r}\qquad (q>0).$$

(or lim inf, lim sup). Equivalently we may replace (1) by a moment integral

$$M_r(q) = \int \mu(B(x,r))^{q-1} d\mu(x) \qquad (q>0).$$

Images of measures

Now let x_{ω} : Metric space $\rightarrow \mathbb{R}^n$ for a parameterised family of mappings x_{ω} ($\omega \in \Omega$) [e.g. projections, random functions, etc.]

Let μ be a measure on the Metric Space and let μ_{ω} be its image measure on \mathbb{R}^n under x_{ω} , i.e.

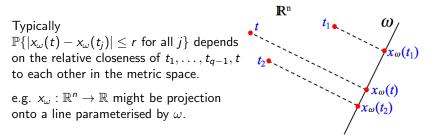
$$\mu_{\omega}(A) = \mu(x_{\omega}^{-1}(A)) \text{ or } \int f(x)d\mu_{\omega}(x) = \int f(x_{\omega}(t))d\mu(t).$$

One way to get lower estimates for L^q -dimensions of μ_{ω} for a.a. ω is to bound the average moment integrals over ω . For $q \ge 2$ an integer:

$$\begin{split} &\mathbb{E}\int \mu_{\omega}(B(x,r))^{q-1}d\mu_{\omega}(x)\\ &=\mathbb{E}\int \mu_{\omega}\{y_{1}:|x-y_{1}|\leq r\}\dots\mu_{\omega}\{y_{q-1}:|x-y_{q-1}|\leq r\}d\mu_{\omega}(x)\\ &=\mathbb{E}\int \mu\{t_{1}:|x_{\omega}(t)-x_{\omega}(t_{1})|\leq r\}\dots\mu\{t_{q-1}:|x_{\omega}(t)-x_{\omega}(t_{q-1})|\leq r\}d\mu(t)\\ &=\int\dots\int\mathbb{P}\{|x_{\omega}(t)-x_{\omega}(t_{j})|\leq r \text{ for all } j\}d\mu(t_{1})\dots d\mu(t_{q-1})d\mu(t). \end{split}$$

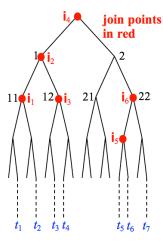
$$\mathbb{E} \int \mu_{\omega}(B(x,r))^{q-1} d\mu_{\omega}(x)$$

= $\int \cdots \int \mathbb{P}\{|x_{\omega}(t) - x_{\omega}(t_j)| \le r \text{ for all } j\} d\mu(t_1) \dots d\mu(t_{q-1}) d\mu(t) \quad (\ddagger)$



We may use the geometry of the situation to estimate $\mathbb{P}\{|x_{\omega}(t) - x_{\omega}(t_j)| \le r \text{ for all } j\}$ and then use analytic methods to estimate the resulting integral (‡). In particular, bounding (‡) by const. $r^{s(q-1)}$ will give an a.s lower bound

of s for the L^q -dimensions of μ_{ω} .



So (‡) becomes

We can often regard t_1, t_2, \ldots, t_q as points on an ultrametric space, say as points of $\{1,2\}^{\mathbb{N}}$, which we can identify with a binary tree.

Let $\mathbf{i}_1, \ldots, \mathbf{i}_{q-1}$ be the q-1 join points of t_1, \ldots, t_q .

A generalised transversality argument may lead to an estimate

$$\mathbb{P}\{|x_{\omega}(t_q) - x_{\omega}(t_j)| \le r \text{ for all } j\} \\ \le F(t_1, t_2, \dots, t_q)$$

where F is a product over the join points $F(t_1, t_2, ..., t_q) = f(\mathbf{i}_1)f(\mathbf{i}_2) \dots f(\mathbf{i}_{q-1})$ for some f : vertices of the tree $\rightarrow \mathbb{R}^+$

$$\mathbb{E}\int \mu_{\omega}(B(x,r))^{q-1}d\mu_{\omega}(x)$$

$$\leq \int \cdots \int F(t_1,t_2,\ldots,t_q)d\mu(t_1)\ldots d\mu(t_{q-1})d\mu(t_q).$$

Estimation of the integrals

Special case: q = 3

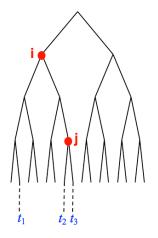
$$\int \int \int F(t_1, t_2, t_3) d\mu(t_1) d\mu(t_2) d\mu(t_3) \leq \left(\sum_{k=0}^{\infty} \left[\sum_{|i|=k} f(\mathbf{i})^2 \mu(C_{\mathbf{i}})^3\right]^{1/2}\right)^2$$

Sketch of proof:

Splitting this integral into a sum over possible pairs of join points:

$$\begin{split} \int & \iint F(t_1, t_2, t_3) d\mu(t_1) d\mu(t_2) d\mu(t_3) \\ & \leq \sum_{\mathbf{i} \in \mathcal{T}} \sum_{\mathbf{j} \in \mathcal{T}, \mathbf{j} \succ \mathbf{i}} f(\mathbf{i}) f(\mathbf{j}) \mu(C_{\mathbf{i}}) \mu(C_{\mathbf{j}})^2 \end{split}$$

where $C_{\mathbf{i}}$ denotes the cylinder consisting of points with address starting with \mathbf{i} . We first estimate this sum over vertices T of the tree at levels $|\mathbf{i}| = k$ and $|\mathbf{j}| = l > k$.



$$\begin{split} \sum_{|\mathbf{i}|=k} \sum_{|\mathbf{j}|=l, \mathbf{j}\succ \mathbf{i}} f(\mathbf{i})f(\mathbf{j})\mu(C_{\mathbf{i}})\mu(C_{\mathbf{j}})^{2} \\ &\leq \sum_{|\mathbf{i}|=k} \left[f(\mathbf{i})\mu(C_{\mathbf{i}}) \right] \left[\sum_{|\mathbf{j}|=l, \mathbf{j}\succ \mathbf{i}} (f(\mathbf{j})\mu(C_{\mathbf{j}})^{3/2})\mu(C_{\mathbf{j}})^{1/2} \right] \\ &\leq \sum_{|\mathbf{i}|=k} \left[f(\mathbf{i})\mu(C_{\mathbf{i}}) \right] \left[\left(\sum_{|\mathbf{j}|=l, \mathbf{j}\succ \mathbf{i}} f(\mathbf{j})^{2}\mu(C_{\mathbf{j}})^{3} \right)^{1/2} \left(\sum_{|\mathbf{j}|=l, \mathbf{j}\succ \mathbf{i}} \mu(C_{\mathbf{j}}) \right)^{1/2} \right] \quad (C-S) \\ &\leq \sum_{|\mathbf{i}|=k} \left[f(\mathbf{i})\mu(C_{\mathbf{i}})^{3/2} \right] \left[\sum_{|\mathbf{j}|=l, \mathbf{j}\succ \mathbf{i}} f(\mathbf{j})^{2}\mu(C_{\mathbf{j}})^{3} \right]^{1/2} \\ &\leq \left[\sum_{|\mathbf{i}|=k} f(\mathbf{i})^{2}\mu(C_{\mathbf{i}})^{3} \right]^{1/2} \left[\sum_{|\mathbf{i}|=k} \sum_{|\mathbf{j}|=l, \mathbf{j}\succ \mathbf{i}} f(\mathbf{j})^{2}\mu(C_{\mathbf{j}})^{3} \right]^{1/2} \quad (C-S) \\ &\leq \left[\sum_{|\mathbf{i}|=k} f(\mathbf{i})^{2}\mu(C_{\mathbf{i}})^{3} \right]^{1/2} \left[\sum_{|\mathbf{j}|=l} f(\mathbf{j})^{2}\mu(C_{\mathbf{j}})^{3} \right]^{1/2} \end{split}$$

Summing over levels $k \ge 0, l > k$ gives the desired inequality.

Thus

$$\int\!\!\int\!\!\int F(t_1, t_2, t_3) d\mu(t_1) d\mu(t_2) d\mu(t_3) \leq \bigg(\sum_{k=0}^{\infty} \bigg[\sum_{|\mathbf{i}|=k} f(\mathbf{i})^2 \mu(C_{\mathbf{i}})^3\bigg]^{1/2}\bigg)^2.$$

More generally, for integers $q \ge 2$,

$$\int \cdots \int F(t_1,\ldots,t_q) d\mu(t_1)\ldots d\mu(t_q) \leq \left(\sum_{k=0}^{\infty} p(k) \left[\sum_{|\mathbf{i}|=k} f(\mathbf{i})^{q-1} \mu(C_{\mathbf{i}})^q\right]^{\frac{1}{q-1}}\right)^{q-1}(\star)$$

where p is a polynomial.

Notes:

- when q = 2 this is close to the usual potential theoretic estimate

- the tree can be *m*-ary rather than just binary

- such estimates can be extended to non-integral q > 1.

In applications $f(\mathbf{i}) \equiv f_s(\mathbf{i})$ typically depends on a parameter s such that

$$\sum_{|\mathbf{i}|=k} f_s(\mathbf{i})^{q-1} \mu(C_{\mathbf{i}})^q \asymp (\lambda_s)^k$$

where $\lambda_s > 0$. Then:

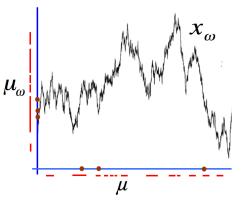
$$\mathbb{E}\int \mu_{\omega}(B(x,r))^{q-1}d\mu_{\omega}(x)\leq c\Big(\sum_{k=0}^{\infty}p(k)(\lambda_s)^{k/(q-1)}\Big)^{q-1}.$$

The value of s such that $\lambda_s = 1$ is critical for convergence.

Images of measures under Gaussian processes

Let $\{x_{\omega} : [0,1] \to \mathbb{R}, \omega \in \Omega\}$ be index- α fractional Brownian motion on a probability space Ω . Let μ be a (finite) measure on [0,1]and let μ_{ω} be the measure induced by x_{ω} on \mathbb{R} .

What is the relationship between the L^q -dimensions $D_q(\mu_{\omega})$ and $D_q(\mu)$ (assumed to exist)?



Theorem (with Yimin Xiao)

For q > 1,

$$D_q(\mu_\omega) = \min\left\{1, rac{D_q(\mu)}{lpha}
ight\}$$

almost surely, where α is the index of the fractional Brownian motion x_{ω} .

Proof ' \leq ': Follows since index- α fBm is a.s. $\alpha - \epsilon$ Hölder.

' \geq ': Using local non-determinism of fBm (roughly that the variance of $x_{\omega}(t_1)$ conditional on $x_{\omega}(t_2), \ldots, x_{\omega}(t_q)$ is controlled by the variance of $x_{\omega}(t_1) - x_{\omega}(t_j)$ such that $|t_1 - t_j|$ is least) we get

$$\mathbb{E} \int \mu_{\omega} (B(x,r))^{q-1} d\mu_{\omega}(x)$$

$$\leq cr^{s(q-1)} \int \cdots \int m^{-|\mathbf{i}_{1}|\alpha s} m^{-|\mathbf{i}_{m}|\alpha s} \cdots m^{-|\mathbf{i}_{q-1}|\alpha s} d\mu(t_{1}) \dots d\mu(t_{q})$$

where Euclidean distance on [0, 1] has been replaced by an *m*-ary ultrametric $d(t_1, t_2) = m^{-|t_1 \wedge t_2|}$ and $\mathbf{i}_1, \ldots, \mathbf{i}_{q-1}$ are the q-1 join points of t_1, \ldots, t_q . Taking $f(\mathbf{i}) = m^{-|\mathbf{i}| \alpha s}$ in (\star) ,

$$\leq cr^{s(q-1)} \Big(\sum_{k=0}^{\infty} p(k) \Big[\sum_{|\mathbf{i}|=k} \lambda_{s,k}\Big]^{1/(q-1)}\Big)^{q-1} \qquad (\star\star)$$

where

$$\lambda_{s,k} \equiv \sum_{|\mathbf{i}|=k} f(\mathbf{i})^{q-1} \mu(C_{\mathbf{i}})^q = m^{-|\mathbf{i}| \alpha s(q-1)} \sum_{|\mathbf{i}|=k} \mu(C_{\mathbf{i}})^q.$$

The sum in $(\star\star)$ is finite if $\limsup_{k\to\infty} \lambda_{s,k} < 1$, that is if $\alpha s > D_q(\mu)$. \Box

Measures on almost self-affine sets

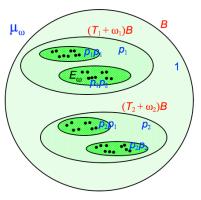
For j = 1, ..., m let T_i be linear contractions on \mathbb{R}^n and let ω_i be translation vectors. The iterated function system $\{T_i(x) + \omega_i\}$ has an attractor E satisfying $E = \bigcup_{i=1}^{m} (T_i(E) + \omega_i)$ which is a self-affine set. The attractor E may be characterised in terms of m-ary sequences: $E_\omega = igcup_t x_\omega(t)$ where $x_\omega: \{1,\ldots,m\}^{\mathbb{N}} o \mathbb{R}^n$ is given by $x_{\omega}(t) \equiv x_{\omega}(t_1, t_2, \ldots) = \bigcap (T_{t_1} + \omega_{t_1})(T_{t_2} + \omega_{t_2}) \cdots (T_{t_k} + \omega_{t_k})(B)$ $(T_1 + \omega_1)B$ $(T_1 + \omega_1)(T_2 + \omega_2)B$ **x**_ω(1,2,2,...) $(T_2 + \omega_2)B$ $(T_2 + \omega_2)(T_1 + \omega_1)B$

Let p_1, \ldots, p_m be probabilities (so $0 < p_i < 1$ and $\sum p_i = 1$). Let μ be the Bernoulli probability measure on $\{1, \ldots, m\}^{\mathbb{N}}$ defined by

$$\mu(C_{\mathbf{i}}) = p_{i_1}p_{i_2}\ldots p_{i_k}$$

where $\mathbf{i} = (i_1, \dots, i_k)$ and $C_{\mathbf{i}}$ is the corresponding cylinder.

Let μ_{ω} be the image measure of μ under x_{ω} , which is supported by E_{ω} .



Thus
$$\mu_{\omega}((T_{t_1}+\omega_{t_1})\cdots(T_{t_k}+\omega_{t_k})(B))=p_{i_1}p_{i_2}\dots p_{i_k}$$
.

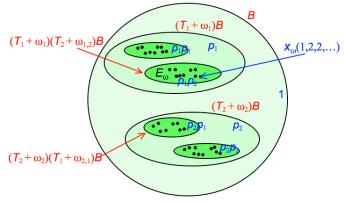
We would like to find $D_q(\mu_{\omega})$, at least for a.a. translation vectors $\omega = (\omega_1, \ldots, \omega_m)$. This can be done for $1 < q \leq 2$, but for q > 2 there is 'not enough transversality' for the required estimates.

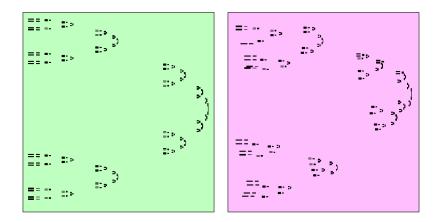
So we introduce more randomness by allowing the translation components to vary at each stage of the construction, by taking:

$$x_{\omega}(t) = \bigcap_{k=1}^{\infty} (T_{t_1} + \omega_{t_1}) (T_{t_2} + \omega_{t_1,t_2}) (T_{t_3} + \omega_{t_1,t_2,t_3}) \cdots (T_{t_k} + \omega_{t_1,t_2,\dots,t_k}) (B)$$

for $t = (t_1, t_2, ...)$, where $\omega = \{\omega_{t_1, t_2, ..., t_k}\}$ is a family of i.i.d random variables. We call $E_{\omega} = \bigcup_t x_{\omega}(t)$ an almost self-affine set (Jordan, Pollicott & Simon 2007).

Again let μ_{ω} be the image of the Bernoulli measure μ under x_{ω} .



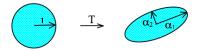


A self-affine set and an almost self-affine set with the same linear components in the defining mappings.

Write $\phi^s(T)$ for the singular value function of a linear mapping T (e.g. for $T : \mathbb{R}^2 \to \mathbb{R}^2$

$$\phi^s(\mathcal{T}) = \left\{ egin{array}{cc} lpha_1^s & (0 \leq s \leq 1) \ lpha_1 lpha_2^{s-1} & (1 \leq s \leq 2) \end{array}
ight.$$

where α_1, α_2 are the semi-axis lengths of T(unit ball):



[if T is a similarity then $\phi^{s}(T)$ is just the (scaling ratio of T)^s]. Let

$$\Phi_q^s = \lim_{k \to \infty} \left(\sum_{i_1 \dots i_k} \phi^s (T_{i_1} \circ T_{i_2} \circ \dots \circ T_{i_k})^{1-q} (p_{i_1} p_{i_2} \dots p_{i_k})^q \right)^{1/k}$$

Theorem

For q > 1 let s_q satisfy $\Phi_q^{s_q} = 1$. Then for almost all $\omega = \{\omega_{t_1, t_2, ..., t_k}\}$ the L^q -dimensions of the image measure μ_{ω} on the almost self-affine set E_{ω} are given by

$$D_q(\mu_\omega) = \min\{s_q, n\}.$$

Theorem

For q > 1 let s_q satisfy $\Phi_q^{s_q} = 1$. Then for almost all $\omega = \{\omega_{t_1, t_2, ..., t_k}\}$ the L^q -dimensions of the image measure μ_{ω} on the almost self-affine set E_{ω} are given by

$$D_q(\mu_\omega) = \min\{s_q, n\}.$$

Proof

' \leq ': Covering argument. ' \geq ': (Case of $q \geq 2$ an integer) Using the geometry and randomness

$$\mathbb{E}\int \mu_{\omega}(B(x,r))^{q-1}d\mu_{\omega}(x)$$

$$\leq cr^{s(q-1)}\int\cdots\int \phi^{s}(\mathcal{T}_{\mathbf{i}_{1}})^{-1}\phi^{s}(\mathcal{T}_{\mathbf{i}_{2}})^{-1}\dots\phi^{s}(\mathcal{T}_{\mathbf{i}_{q-1}})^{-1}d\mu(t_{1})\dots d\mu(t_{q})$$

where $\mathbf{i}_1, \ldots, \mathbf{i}_{q-1}$ are the join points of t_1, \ldots, t_q . Then taking $f(\mathbf{i}) = \phi^s(T_{\mathbf{i}})^{-1}$ in inequality (*), and using the definition of Φ_q^s , this is finite if $\Phi_q^s < 1$. \Box

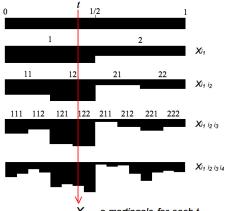
Random multiplicative cascade measures

Let W_i be independent positive random variables indexed by $\mathbf{i} \in \bigcup_{k=0}^{\infty} \{1,2\}^k \equiv T$, which may be identified with a binary subdivision of [0,1].

Let $X_{i} = W_{i_1}W_{i_1i_2}\cdots W_{i_1i_2\dots i_k}$ where $\mathbf{i} = (i_1, i_2, \dots, i_k)$.

Assume that $\mathbb{E}(W_i) = 1$ for all $i \in T$.

Then $X_{t|k}$ is a martingale for each $t \in \{1,2\}^{\mathbb{N}}$.



 $X_{t|k}$ - a martingale for each t

These martingales were introduced and studied in the 1970s by Mandelbrot, Kahane, Peyrière, in particular for self-similar random multiplicative measures, i.e. when the W_i are identically distributed.

Let μ be a probability measure on $\{1,2\}^{\mathbb{N}}$, and let q > 1.

Theorem

lf

$$\limsup_{k \to \infty} \left(\sum_{|\mathbf{i}|=k} \mathbb{E} \left(\left(X_{\mathbf{i}} \, \mu(C_{\mathbf{i}}) \right)^q \right) \right)^{1/k} < 1$$

then

$$\limsup_{k\to\infty} \mathbb{E}\Big(\Big(\sum_{|\mathbf{i}|=k} X_{\mathbf{i}}\,\mu(C_{\mathbf{i}})\Big)^q\Big) < \infty$$

and $\int X_{t|k} d\mu(t)$ converges a.s. and in L^q .

Note that we do not require the W_i to be identically distributed. Results of this type were obtained by Kahane & Peyrière in the i.i.d. case for all q > 1 and Barrel in the general case for $1 < q \leq 2$. Proof A variant of inequality (*) holds using the independence of the W_i , taking

$$F(t_1, t_2, \dots, t_q) = \mathbb{E}(X_{i_1} X_{i_1} \cdots X_{i_{q-1}}) \mu(C_{i_1}) \mu(C_{i_2}) \cdots \mu(C_{i_{q-1}})$$

where $\mathbf{i}_1, \ldots, \mathbf{i}_{q-1}$ are the join points of t_1, \ldots, t_q . \Box

We have considered a particular method of estimating higher moments of fractal measures and seen some examples. There are other situations where a similar approach is possible.

On the other hand, there are certainly other methods for addressing moment problems.

* * * * * * *

Fractal geometry has developed beyond recognition since I was first attracted to the subject in the 1980s.

As this conference shows, there is more interest, more activity and more open problems than ever, and I am sure the area has a great future.

