An Analytic Inequality and Higher Multifractal Moments

Kenneth Falconer

University of St Andrews, Scotland

A General Approach

Calculations in Fractal Geometry often fall into two parts: a geometric part and an analytic part.

The geometric part may involve expressing geometric or metric aspects of a problem in mathematical terms.

The analytic part may involve estimating the integrals, sums, etc. so obtained.

For the analytic part, there are methods may be applied to a range of apparently different fractal geometric problems - e.g. covering or potential theoretic methods for estimating dimensions.
We will look at an analytic technique which extends the potential theoretic method and give several applications.

Moment sums and L^{q}-dimensions

Let \mathcal{M}_{r} be the mesh of side r. Define the q-th power moment sum of a measure μ on \mathbb{R}^{n} by

$$
\begin{equation*}
M_{r}(q)=\sum_{C \in \mathcal{M}_{r}} \mu(C)^{q} \tag{1}
\end{equation*}
$$

Then the L^{q}-dimension or generalised q dimension of μ is given by

$$
D_{q}(\mu)=\frac{1}{q-1} \lim _{r \rightarrow 0} \frac{\log M_{r}(q)}{\log r} \quad(q>0)
$$

(or lim inf, lim sup). Equivalently we may replace (1) by a moment integral

$$
M_{r}(q)=\int \mu(B(x, r))^{q-1} d \mu(x) \quad(q>0)
$$

Images of measures

Now let x_{ω} : Metric space $\rightarrow \mathbb{R}^{n}$ for a parameterised family of mappings $x_{\omega}(\omega \in \Omega)$ [e.g. projections, random functions, etc.]
Let μ be a measure on the Metric Space and let μ_{ω} be its image measure on \mathbb{R}^{n} under x_{ω}, i.e.

$$
\mu_{\omega}(A)=\mu\left(x_{\omega}^{-1}(A)\right) \text { or } \int f(x) d \mu_{\omega}(x)=\int f\left(x_{\omega}(t)\right) d \mu(t) .
$$

One way to get lower estimates for L^{q}-dimensions of μ_{ω} for a.a. ω is to bound the average moment integrals over ω. For $q \geq 2$ an integer:

$$
\begin{aligned}
& \mathbb{E} \int \mu_{\omega}(B(x, r))^{q-1} d \mu_{\omega}(x) \\
& =\mathbb{E} \int \mu_{\omega}\left\{y_{1}:\left|x-y_{1}\right| \leq r\right\} \ldots \mu_{\omega}\left\{y_{q-1}:\left|x-y_{q-1}\right| \leq r\right\} d \mu_{\omega}(x) \\
& =\mathbb{E} \int \mu\left\{t_{1}:\left|x_{\omega}(t)-x_{\omega}\left(t_{1}\right)\right| \leq r\right\} \ldots \mu\left\{t_{q-1}:\left|x_{\omega}(t)-x_{\omega}\left(t_{q-1}\right)\right| \leq r\right\} d \mu(t) \\
& =\int \cdots \int \mathbb{P}\left\{\left|x_{\omega}(t)-x_{\omega}\left(t_{j}\right)\right| \leq r \text { for all } j\right\} d \mu\left(t_{1}\right) \ldots d \mu\left(t_{q-1}\right) d \mu(t) .
\end{aligned}
$$

$$
\begin{align*}
& \mathbb{E} \int \mu_{\omega}(B(x, r))^{q-1} d \mu_{\omega}(x) \\
& =\int \cdots \int \mathbb{P}\left\{\left|x_{\omega}(t)-x_{\omega}\left(t_{j}\right)\right| \leq r \text { for all } j\right\} d \mu\left(t_{1}\right) \ldots d \mu\left(t_{q-1}\right) d \mu(t)
\end{align*}
$$

Typically $\mathbb{P}\left\{\left|x_{\omega}(t)-x_{\omega}\left(t_{j}\right)\right| \leq r\right.$ for all $\left.j\right\}$ depends on the relative closeness of $t_{1}, \ldots, t_{q-1}, t$ to each other in the metric space.
e.g. $x_{\omega}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ might be projection onto a line parameterised by ω.

We may use the geometry of the situation to estimate $\mathbb{P}\left\{\left|x_{\omega}(t)-x_{\omega}\left(t_{j}\right)\right| \leq r\right.$ for all $\left.j\right\}$ and then use analytic methods to estimate the resulting integral (\ddagger).
In particular, bounding (\ddagger) by const. $r^{s(q-1)}$ will give an a.s lower bound of s for the L^{q}-dimensions of μ_{ω}.

We can often regard $t_{1}, t_{2}, \ldots, t_{q}$ as points on an ultrametric space, say as points of $\{1,2\}^{\mathbb{N}}$, which we can identify with a binary tree.
Let $\mathbf{i}_{1}, \ldots, \mathbf{i}_{q-1}$ be the $q-1$ join points of t_{1}, \ldots, t_{q}.
A generalised transversality argument may lead to an estimate

$$
\begin{aligned}
\mathbb{P}\left\{\left|x_{\omega}\left(t_{q}\right)-x_{\omega}\left(t_{j}\right)\right|\right. & \leq r \text { for all } j\} \\
& \leq F\left(t_{1}, t_{2}, \ldots, t_{q}\right)
\end{aligned}
$$

where F is a product over the join points

$$
F\left(t_{1}, t_{2}, \ldots, t_{q}\right)=f\left(\mathbf{i}_{1}\right) f\left(\mathbf{i}_{2}\right) \ldots f\left(\mathbf{i}_{q-1}\right)
$$

for some f : vertices of the tree $\rightarrow \mathbb{R}^{+}$
So (\ddagger) becomes

$$
\begin{aligned}
& \mathbb{E} \int \mu_{\omega}(B(x, r))^{q-1} d \mu_{\omega}(x) \\
& \quad \leq \int \cdots \int F\left(t_{1}, t_{2}, \ldots, t_{q}\right) d \mu\left(t_{1}\right) \ldots d \mu\left(t_{q-1}\right) d \mu\left(t_{q}\right)
\end{aligned}
$$

Estimation of the integrals

Special case: $q=3$

$$
\iiint F\left(t_{1}, t_{2}, t_{3}\right) d \mu\left(t_{1}\right) d \mu\left(t_{2}\right) d \mu\left(t_{3}\right) \leq\left(\sum_{k=0}^{\infty}\left[\sum_{|i|=k} f(\mathbf{i})^{2} \mu\left(C_{\mathbf{i}}\right)^{3}\right]^{1 / 2}\right)^{2}
$$

Sketch of proof:

Splitting this integral into a sum over possible pairs of join points:

$$
\begin{aligned}
& \iiint F\left(t_{1}, t_{2}, t_{3}\right) d \mu\left(t_{1}\right) d \mu\left(t_{2}\right) d \mu\left(t_{3}\right) \\
& \quad \leq \sum_{\mathbf{i} \in T} \sum_{\mathbf{j} \in T, \mathbf{j}>\mathbf{i}} f(\mathbf{i}) f(\mathbf{j}) \mu\left(C_{\mathbf{i}}\right) \mu\left(C_{\mathbf{j}}\right)^{2}
\end{aligned}
$$

where C_{i} denotes the cylinder consisting of points with address starting with \mathbf{i}.
We first estimate this sum over vertices T of the tree at levels $|\mathbf{i}|=k$ and $|\mathbf{j}|=I>k$.

$$
\begin{align*}
\sum_{|\mathbf{i}|=k} & \sum_{|\mathbf{j}|=l, \mathbf{j} \succ \mathbf{i}} f(\mathbf{i}) f(\mathbf{j}) \mu\left(C_{\mathbf{i}}\right) \mu\left(C_{\mathbf{j}}\right)^{2} \\
& \left.\leq \sum_{|\mathbf{i}|=k}\left[f(\mathbf{i}) \mu\left(C_{\mathbf{i}}\right)\right]\left[\sum_{|\mathbf{j}|=l, \mathbf{j} \succ \mathbf{i}} f(\mathbf{j}) \mu\left(C_{\mathbf{j}}\right)^{3 / 2}\right) \mu\left(C_{\mathbf{j}}\right)^{1 / 2}\right] \\
& \leq \sum_{|\mathbf{i}|=k}\left[f(\mathbf{i}) \mu\left(C_{\mathbf{i}}\right)\right]\left[\left(\sum_{|\mathbf{j}|=l, \mathbf{j} \succ \mathbf{i}} f(\mathbf{j})^{2} \mu\left(C_{\mathbf{j}}\right)^{3}\right)^{1 / 2}\left(\sum_{|\mathbf{j}|=l, \mathbf{j} \succ \mathbf{i}} \mu\left(C_{\mathbf{j}}\right)\right)^{1 / 2}\right] \tag{C-S}\\
& \leq \sum_{|\mathbf{i}|=k}\left[f(\mathbf{i}) \mu\left(C_{\mathbf{i}}\right)^{3 / 2}\right]\left[\sum_{|\mathbf{j}|=l, \mathbf{j} \succ \mathbf{i}} f(\mathbf{j})^{2} \mu\left(C_{\mathbf{j}}\right)^{3}\right]^{1 / 2} \\
& \leq\left[\sum_{|\mathbf{i}|=k} f(\mathbf{i})^{2} \mu\left(C_{\mathbf{i}}\right)^{3}\right]^{1 / 2}\left[\sum_{|\mathbf{i}|=k|\mathbf{j}|=l, \mathbf{j} \succ \mathbf{i}} \sum_{\mid \mathbf{i}} f(\mathbf{j})^{2} \mu\left(C_{\mathbf{j}}\right)^{3}\right]^{1 / 2} \quad(\mathrm{C}-\mathrm{S}) \tag{C-S}\\
& \leq\left[\sum_{|\mathbf{i}|=k} f(\mathbf{i})^{2} \mu\left(C_{\mathbf{i}}\right)^{3}\right]^{1 / 2}\left[\sum_{|\mathbf{j}|=l} f(\mathbf{j})^{2} \mu\left(C_{\mathbf{j}}\right)^{3}\right]^{1 / 2}
\end{align*}
$$

Summing over levels $k \geq 0, I>k$ gives the desired inequality.

Thus

$$
\iiint F\left(t_{1}, t_{2}, t_{3}\right) d \mu\left(t_{1}\right) d \mu\left(t_{2}\right) d \mu\left(t_{3}\right) \leq\left(\sum_{k=0}^{\infty}\left[\sum_{|\mathbf{i}|=k} f(\mathbf{i})^{2} \mu\left(C_{\mathbf{i}}\right)^{3}\right]^{1 / 2}\right)^{2}
$$

More generally, for integers $q \geq 2$,
$\int . . \int_{\text {where }} p$ is a polynomial.
Notes:

- when $q=2$ this is close to the usual potential theoretic estimate
- the tree can be m-ary rather than just binary
- such estimates can be extended to non-integral $q>1$.

In applications $f(\mathbf{i}) \equiv f_{s}(\mathbf{i})$ typically depends on a parameter s such that
where $\lambda_{s}>0$. Then:

$$
\sum_{|\mathbf{i}|=k} f_{s}(\mathbf{i})^{q-1} \mu\left(C_{\mathbf{i}}\right)^{q} \asymp\left(\lambda_{s}\right)^{k}
$$

$$
\mathbb{E} \int \mu_{\omega}(B(x, r))^{q-1} d \mu_{\omega}(x) \leq c\left(\sum_{k=0}^{\infty} p(k)\left(\lambda_{s}\right)^{k /(q-1)}\right)^{q-1}
$$

The value of s such that $\lambda_{s}=1$ is critical for convergence.

Images of measures under Gaussian processes

Let $\left\{x_{\omega}:[0,1] \rightarrow \mathbb{R}, \omega \in \Omega\right\}$ be index- α fractional
Brownian motion on a probability space Ω. Let μ be a (finite) measure on $[0,1]$ and let μ_{ω} be the measure induced by x_{ω} on \mathbb{R}.

What is the relationship between the L^{q}-dimensions $D_{q}\left(\mu_{\omega}\right)$ and $D_{q}(\mu)$ (assumed to exist)?

Theorem (with Yimin Xiao)

For $q>1$,

$$
D_{q}\left(\mu_{\omega}\right)=\min \left\{1, \frac{D_{q}(\mu)}{\alpha}\right\}
$$

almost surely, where α is the index of the fractional Brownian motion x_{ω}.

Proof ' \leq ': Follows since index $-\alpha \mathrm{fBm}$ is a.s. $\alpha-\epsilon$ Hölder.
' \geq ': Using local non-determinism of fBm (roughly that the variance of $x_{\omega}\left(t_{1}\right)$ conditional on $x_{\omega}\left(t_{2}\right), \ldots, x_{\omega}\left(t_{q}\right)$ is controlled by the variance of $x_{\omega}\left(t_{1}\right)-x_{\omega}\left(t_{j}\right)$ such that $\left|t_{1}-t_{j}\right|$ is least) we get

$$
\begin{aligned}
& \mathbb{E} \int \mu_{\omega}(B(x, r))^{q-1} d \mu_{\omega}(x) \\
& \quad \leq c r^{s(q-1)} \int \cdots \int m^{-\left|\mathbf{i}_{1}\right| \alpha s} m^{-\left|\mathbf{i}_{m}\right| \alpha s} \ldots m^{-\left|\mathbf{i}_{q-1}\right| \alpha s} d \mu\left(t_{1}\right) \ldots d \mu\left(t_{q}\right)
\end{aligned}
$$

where Euclidean distance on $[0,1]$ has been replaced by an m-ary ultrametric $d\left(t_{1}, t_{2}\right)=m^{-\left|t_{1} \wedge t_{2}\right|}$ and $\mathbf{i}_{1}, \ldots, \mathbf{i}_{q-1}$ are the $q-1$ join points of t_{1}, \ldots, t_{q}. Taking $f(\mathbf{i})=m^{-|i| \alpha s}$ in (\star),

$$
\leq c r^{s(q-1)}\left(\sum_{k=0}^{\infty} p(k)\left[\sum_{|\mathrm{i}|=k} \lambda_{s, k}\right]^{1 /(q-1)}\right)^{q-1}
$$

where

$$
\lambda_{s, k} \equiv \sum_{|\mathbf{i}|=k} f(\mathbf{i})^{q-1} \mu\left(C_{\mathbf{i}}\right)^{q}=m^{-|\mathbf{i}| \alpha s(q-1)} \sum_{|\mathbf{i}|=k} \mu\left(C_{\mathbf{i}}\right)^{q}
$$

The sum in ($(\star \star)$ is finite if $\lim \sup _{k \rightarrow \infty} \lambda_{s, k}<1$, that is if $\alpha s>D_{q}(\mu) . \square$

Measures on almost self-affine sets

For $j=1, \ldots, m$ let T_{j} be linear contractions on \mathbb{R}^{n} and let ω_{j} be translation vectors. The iterated function system $\left\{T_{j}(x)+\omega_{j}\right\}$ has an attractor E satisfying $E=\cup_{j=1}^{m}\left(T_{j}(E)+\omega_{j}\right)$ which is a self-affine set. The attractor E may be characterised in terms of m-ary sequences: $E_{\omega}=\bigcup_{t} x_{\omega}(t)$ where $x_{\omega}:\{1, \ldots, m\}^{\mathbb{N}} \rightarrow \mathbb{R}^{n}$ is given by

$$
x_{\omega}(t) \equiv x_{\omega}\left(t_{1}, t_{2}, \ldots\right)=\bigcap_{k=1}^{\infty}\left(T_{t_{1}}+\omega_{t_{1}}\right)\left(T_{t_{2}}+\omega_{t_{2}}\right) \cdots\left(T_{t_{k}}+\omega_{t_{k}}\right)(B)
$$

Let p_{1}, \ldots, p_{m} be probabilities (so $0<p_{i}<1$ and $\sum p_{i}=1$). Let μ be the Bernoulli probability measure on $\{1, \ldots, m\}^{\mathbb{N}}$ defined by

$$
\mu\left(C_{\mathbf{i}}\right)=p_{i_{1}} p_{i_{2}} \ldots p_{i_{k}}
$$

where $\mathbf{i}=\left(i_{1}, \ldots, i_{k}\right)$ and $C_{\mathbf{i}}$ is the corresponding cylinder.

Let μ_{ω} be the image measure of μ under x_{ω}, which is supported by E_{ω}.

Thus $\mu_{\omega}\left(\left(T_{t_{1}}+\omega_{t_{1}}\right) \cdots\left(T_{t_{k}}+\omega_{t_{k}}\right)(B)\right)=p_{i_{1}} p_{i_{2}} \ldots p_{i_{k}}$.
We would like to find $D_{q}\left(\mu_{\omega}\right)$, at least for a.a. translation vectors $\omega=\left(\omega_{1}, \ldots, \omega_{m}\right)$. This can be done for $1<q \leq 2$, but for $q>2$ there is 'not enough transversality' for the required estimates.

So we introduce more randomness by allowing the translation components to vary at each stage of the construction, by taking:
$x_{\omega}(t)=\bigcap_{k=1}^{\infty}\left(T_{t_{1}}+\omega_{t_{1}}\right)\left(T_{t_{2}}+\omega_{t_{1}, t_{2}}\right)\left(T_{t_{3}}+\omega_{t_{1}, t_{2}, t_{3}}\right) \cdots\left(T_{t_{k}}+\omega_{t_{1}, t_{2}, \ldots t_{k}}\right)(B)$
for $t=\left(t_{1}, t_{2}, \ldots\right)$, where $\omega=\left\{\omega_{t_{1}, t_{2}, \ldots, t_{k}}\right\}$ is a family of i.i.d random variables. We call $E_{\omega}=\bigcup_{t} x_{\omega}(t)$ an almost self-affine set (Jordan, Pollicott \& Simon 2007).
Again let μ_{ω} be the image of the Bernoulli measure μ under x_{ω}.

A self-affine set and an almost self-affine set with the same linear components in the defining mappings.

Write $\phi^{s}(T)$ for the singular value function of a linear mapping T (e.g. for $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

$$
\phi^{s}(T)= \begin{cases}\alpha_{1}^{s} & (0 \leq s \leq 1) \\ \alpha_{1} \alpha_{2}^{s-1} & (1 \leq s \leq 2)\end{cases}
$$

where α_{1}, α_{2} are the semi-axis lengths of T (unit ball):

[if T is a similarity then $\phi^{s}(T)$ is just the (scaling ratio of $\left.T\right)^{s}$]. Let

$$
\Phi_{q}^{s}=\lim _{k \rightarrow \infty}\left(\sum_{i_{1} \ldots i_{k}} \phi^{s}\left(T_{i_{1}} \circ T_{i_{2}} \circ \ldots \circ T_{i_{k}}\right)^{1-q}\left(p_{i_{1}} p_{i_{2}} \ldots p_{i_{k}}\right)^{q}\right)^{1 / k} .
$$

Theorem

For $q>1$ let s_{q} satisfy $\Phi_{q}^{s_{q}}=1$. Then for almost all $\omega=\left\{\omega_{t_{1}, t_{2}, \ldots, t_{k}}\right\}$ the L^{q}-dimensions of the image measure μ_{ω} on the almost self-affine set E_{ω} are given by

$$
D_{q}\left(\mu_{\omega}\right)=\min \left\{s_{q}, n\right\} .
$$

Theorem

For $q>1$ let s_{q} satisfy $\Phi_{q}^{s_{q}}=1$. Then for almost all $\omega=\left\{\omega_{t_{1}, t_{2}, \ldots, t_{k}}\right\}$ the L^{q}-dimensions of the image measure μ_{ω} on the almost self-affine set E_{ω} are given by

$$
D_{q}\left(\mu_{\omega}\right)=\min \left\{s_{q}, n\right\} .
$$

Proof

' \leq ': Covering argument.
' \geq ': (Case of $q \geq 2$ an integer) Using the geometry and randomness

$$
\begin{aligned}
& \mathbb{E} \int \mu_{\omega}(B(x, r))^{q-1} d \mu_{\omega}(x) \\
& \quad \leq c r^{s(q-1)} \int \cdots \int \phi^{s}\left(T_{\mathbf{i}_{1}}\right)^{-1} \phi^{s}\left(T_{\mathbf{i}_{2}}\right)^{-1} \ldots \phi^{s}\left(T_{\mathbf{i}_{q-1}}\right)^{-1} d \mu\left(t_{1}\right) \ldots d \mu\left(t_{q}\right)
\end{aligned}
$$

where $\mathbf{i}_{1}, \ldots, \mathbf{i}_{q-1}$ are the join points of t_{1}, \ldots, t_{q}.
Then taking $f(\mathbf{i})=\phi^{s}\left(T_{\mathbf{i}}\right)^{-1}$ in inequality (\star), and using the definition of Φ_{q}^{s}, this is finite if $\Phi_{q}^{s}<1 . \square$

Random multiplicative cascade measures

Let W_{i} be independent positive random variables indexed by $\mathbf{i} \in \cup_{k=0}^{\infty}\{1,2\}^{k} \equiv T$, which may be identified with a binary subdivision of $[0,1]$.
Let $X_{i}=W_{i_{1}} W_{i_{1} i_{2}} \cdots W_{i_{1} i_{2} \ldots i_{k}}$ where $\mathbf{i}=\left(i_{1}, i_{2}, \ldots, i_{k}\right)$.

Assume that $\mathbb{E}\left(W_{\mathrm{i}}\right)=1$ for all $\mathbf{i} \in T$.

Then $X_{t \mid k}$ is a martingale for each $t \in\{1,2\}^{\mathbb{N}}$.

These martingales were introduced and studied in the 1970s by Mandelbrot, Kahane, Peyrière, in particular for self-similar random multiplicative measures, i.e. when the W_{i} are identically distributed.

Let μ be a probability measure on $\{1,2\}^{\mathbb{N}}$, and let $q>1$.

Theorem

If

$$
\limsup _{k \rightarrow \infty}\left(\sum_{|\mathbf{i}|=k} \mathbb{E}\left(\left(X_{\mathbf{i}} \mu\left(C_{\mathbf{i}}\right)\right)^{q}\right)\right)^{1 / k}<1
$$

then

$$
\limsup _{k \rightarrow \infty} \mathbb{E}\left(\left(\sum_{|\mathbf{i}|=k} X_{\mathbf{i}} \mu\left(C_{\mathbf{i}}\right)\right)^{q}\right)<\infty
$$

and $\int X_{t \mid k} d \mu(t)$ converges a.s. and in L^{q}.
Note that we do not require the W_{i} to be identically distributed. Results of this type were obtained by Kahane \& Peyrière in the i.i.d. case for all $q>1$ and Barrel in the general case for $1<q \leq 2$.

Proof A variant of inequality (\star) holds using the independence of the W_{i}, taking

$$
\begin{aligned}
& F\left(t_{1}, t_{2}, \ldots, t_{q}\right) \\
& \quad=\mathbb{E}\left(X_{\mathbf{i}_{1}} X_{\mathbf{i}_{1}} \cdots X_{\mathbf{i}_{q-1}}\right) \mu\left(C_{\mathbf{i}_{1}}\right) \mu\left(C_{\mathbf{i}_{2}}\right) \cdots \mu\left(C_{\mathbf{i}_{q-1}}\right)
\end{aligned}
$$

where $\mathbf{i}_{1}, \ldots, \mathbf{i}_{q-1}$ are the join points of $t_{1}, \ldots, t_{q} . \square$

Conclusion

We have considered a particular method of estimating higher moments of fractal measures and seen some examples. There are other situations where a similar approach is possible.

On the other hand, there are certainly other methods for addressing moment problems.

```
*******
```

Fractal geometry has developed beyond recognition since I was first attracted to the subject in the 1980s.
As this conference shows, there is more interest, more activity and more open problems than ever, and I am sure the area has a great future.

