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Abstract

In this talk, we will discuss some spectra properties
associated with some fractal measures. In particular, we will
consider spectral property of the Bernoulli convolution and
the Cantor type measure, the tree structure of the maximal
orthogonal set and spectrum, and the sparsity of the spectrum.
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I. Self-similar set and measure: Cantor type
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I. Self-similar set and measure: Cantor type

• Cantor sets

Figure 1: E = τ(E) ∪ τ1(E)
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I. Self-similar set and measure: Cantor type

• Cantor sets

Figure 1: E = τ(E) ∪ τ1(E)

• 1/4-Cantor measure:

µ1/4 =
1

2
µ1/4(4·) +

1

2
µ1/4(4 · −2).
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• Cantor type measure:

µρ,n =
1

n

n−1∑
k=0

µρ,n
(
ρ−1 · −k

)
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• Cantor type measure:

µρ,n =
1

n

n−1∑
k=0

µρ,n
(
ρ−1 · −k

)
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• Cantor type measure:

µρ,n =
1

n

n−1∑
k=0

µρ,n
(
ρ−1 · −k

)

• Bernoulli convolution: density function µ for the random
walk

∑∞
j=0±ρj, ρ ∈ (0, 1).

µρ =
1

2
µρ
(
ρ−1·
)

+
1

2
µρ
(
ρ−1 · −1

)
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BTY: An Erdös problem consider when ρ ∈ (1
2
, 1) the

regularity of µρ.

– Typeset by FoilTEX – The Chinese University of Hong Kong, 2012



Xinrong Dai Sun Yat-sen University

BTY: An Erdös problem consider when ρ ∈ (1
2
, 1) the

regularity of µρ.

P. Erdös, Amer. J. Math. 1939, 1940;
A. M. Garsia, Trans. Amer. Math. Soc. 1962.
J.-P. Kahane, Mem. Soc. Math. France 1969, 1971;
B. Solomyak, Ann. of Math.(2) 1995;
X.-R. Dai, D.-J. Feng and Y. Wang, J. Funct. Anal. 2007.)
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BTY: An Erdös problem consider when ρ ∈ (1
2
, 1) the

regularity of µρ.

P. Erdös, Amer. J. Math. 1939, 1940;
A. M. Garsia, Trans. Amer. Math. Soc. 1962.
J.-P. Kahane, Mem. Soc. Math. France 1969, 1971;
B. Solomyak, Ann. of Math.(2) 1995;
X.-R. Dai, D.-J. Feng and Y. Wang, J. Funct. Anal. 2007.)
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II. Spectral set and spectral measure
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II. Spectral set and spectral measure

• Spectrum: The set Λ such that {e2πiλx}λ∈Λ is an orthogonal
basis for L2(µ).
(µ: spectral measure; E: spectral set, if dµ = χEdx)
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II. Spectral set and spectral measure

• Spectrum: The set Λ such that {e2πiλx}λ∈Λ is an orthogonal
basis for L2(µ).
(µ: spectral measure; E: spectral set, if dµ = χEdx)

cf. Classical Fourier series: {e2πinx}n∈Z is an orthogonal basis
for L2([0, 1]).
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II. Spectral set and spectral measure

• Spectrum: The set Λ such that {e2πiλx}λ∈Λ is an orthogonal
basis for L2(µ).
(µ: spectral measure; E: spectral set, if dµ = χEdx)

cf. Classical Fourier series: {e2πinx}n∈Z is an orthogonal basis
for L2([0, 1]).

• Spectral set conjecture (B. Fuglede 1974): A measurable
set is a spectral set iff it tiles the whole Euclidean space.
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II. Spectral set and spectral measure

• Spectrum: The set Λ such that {e2πiλx}λ∈Λ is an orthogonal
basis for L2(µ).
(µ: spectral measure; E: spectral set, if dµ = χEdx)

cf. Classical Fourier series: {e2πinx}n∈Z is an orthogonal basis
for L2([0, 1]).

• Spectral set conjecture (B. Fuglede 1974): A measurable
set is a spectral set iff it tiles the whole Euclidean space.

False:
(1) 5 and higher dimension, (T. Tao, 2004);
(2) 3 and higher dimension, (M. N. Kolountzakis and M.

Matolcsi, 2006).
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• Fourier basis and frame:

J. Ortega-Cerdà and K. Seip, (2002 Ann. Math.)

Yu. I. Lyubarskii and K. Seip, (2002 J. Amer. Math. Soc.)

etc.
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• Fourier basis and frame:

J. Ortega-Cerdà and K. Seip, (2002 Ann. Math.)

Yu. I. Lyubarskii and K. Seip, (2002 J. Amer. Math. Soc.)

etc.

• Singular measure: µ1/4 is spectral measures, and

Λ =

{ n∑
j=0

εj4
j : n ≥ 0, εj ∈ {0, 1}

}
= {0, 1, 4, 5, 16, 17, 20, 21, 32, 33, 36, 37, 48, 47, 52, 53, · · · }

is a spectrum of µ1/4.
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III. Spectra property of Bernoulli convolutions
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III. Spectra property of Bernoulli convolutions

• Bernoulli convolution:

µρ =
1

2
µρ
(
ρ−1·
)

+
1

2
µρ
(
ρ−1 · −1

)
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III. Spectra property of Bernoulli convolutions

• Bernoulli convolution:

µρ =
1

2
µρ
(
ρ−1·
)

+
1

2
µρ
(
ρ−1 · −1

)

• The Fourier transform of µρ:

µ̂ρ(ξ) =

∞∏
j=1

cos
(
2πρjξ

)
.
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• µρ is a spectral measure when ρ = 1
2n

. (Jorgensen and
Pedersen, J. Anal. Math. 1998 );
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• µρ is a spectral measure when ρ = 1
2n

. (Jorgensen and
Pedersen, J. Anal. Math. 1998 );

• ρ = (p/q)1/r, q ∈ 2Z if spectrum exists. (T.-Y. Hu and K.-S.
Lau, Adv. Math. 2008).
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• µρ is a spectral measure when ρ = 1
2n

. (Jorgensen and
Pedersen, J. Anal. Math. 1998 );

• ρ = (p/q)1/r, q ∈ 2Z if spectrum exists. (T.-Y. Hu and K.-S.
Lau, Adv. Math. 2008).
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• µρ is a spectral measure when ρ = 1
2n

. (Jorgensen and
Pedersen, J. Anal. Math. 1998 );

• ρ = (p/q)1/r, q ∈ 2Z if spectrum exists. (T.-Y. Hu and K.-S.
Lau, Adv. Math. 2008).

• How about ρ = 3
8
? (2003 or earlier.)
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Theorem 1. (X.-R. Dai, Adv. Math. 2012) µρ is a spectral
measure if and only if ρ = 1

2n
for some natural number n.
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Theorem 1. (X.-R. Dai, Adv. Math. 2012) µρ is a spectral
measure if and only if ρ = 1

2n
for some natural number n.
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Theorem 1. (X.-R. Dai, Adv. Math. 2012) µρ is a spectral
measure if and only if ρ = 1

2n
for some natural number n.

1. Tree structure of the maximal orthogonal set.
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Theorem 1. (X.-R. Dai, Adv. Math. 2012) µρ is a spectral
measure if and only if ρ = 1

2n
for some natural number n.

1. Tree structure of the maximal orthogonal set.

2. Weak-regularity of Bernoulli convolution.
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IV. Structure of spectrum: Tree structure
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IV. Structure of spectrum: Tree structure

• Cantor type measures:

µρ,n =
1

n

n−1∑
k=0

µρ,n
(
ρ−1 · −k

)
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IV. Structure of spectrum: Tree structure

• Cantor type measures:

µρ,n =
1

n

n−1∑
k=0

µρ,n
(
ρ−1 · −k

)

(1) n|ρ−1, µρ,n is a spectral measure.
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IV. Structure of spectrum: Tree structure

• Cantor type measures:

µρ,n =
1

n

n−1∑
k=0

µρ,n
(
ρ−1 · −k

)

(1) n|ρ−1, µρ,n is a spectral measure.

(2) A spectral measure has different many spectrums.
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IV. Structure of spectrum: Tree structure

• Cantor type measures:

µρ,n =
1

n

n−1∑
k=0

µρ,n
(
ρ−1 · −k

)

(1) n|ρ−1, µρ,n is a spectral measure.

(2) A spectral measure has different many spectrums.

• Can we characterizing the structure of the spectrums of
these µρ,n ?
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• Example (Jorgensen and Pedersen, 1998):

Λ =

{ n∑
j=0

εj4
j : n ≥ 0, εj ∈ {0, 1}

}
= {0, 1, 4, 5, 16, 17, 20, 21, 32, 33, 36, 37, 48, 47, 52, 53, · · · }

is a spectrum of µ1/4.
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• Example (Jorgensen and Pedersen, 1998):

Λ =

{ n∑
j=0

εj4
j : n ≥ 0, εj ∈ {0, 1}

}
= {0, 1, 4, 5, 16, 17, 20, 21, 32, 33, 36, 37, 48, 47, 52, 53, · · · }

is a spectrum of µ1/4.

{0, 1}
4 + {0, 1}

16 + {0, 1}+ 4{0, 1}
32 + {0, 1}+ (4 + {0, 1}) + (16 + {0, 1}+ 4{0, 1})

...
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• (Dutkay, Han and Sun, Adv. Math. 2009)
Λ ⊂ R with 0 ∈ Λ to be a maximal orthogonal set of µ1/4

iff there exists a spectral labeling L of the binary tree such
that Λ = Λ(L).
(1) One edge labeled by 0 or 2, and another by 1 or 3;
(2) Each vertex has a path ended by 0̇ or 3̇.
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• (Dutkay, Han and Sun, Adv. Math. 2009)
Λ ⊂ R with 0 ∈ Λ to be a maximal orthogonal set of µ1/4

iff there exists a spectral labeling L of the binary tree such
that Λ = Λ(L).
(1) One edge labeled by 0 or 2, and another by 1 or 3;
(2) Each vertex has a path ended by 0̇ or 3̇.
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• (Dutkay, Han and Sun, Adv. Math. 2009)
Λ ⊂ R with 0 ∈ Λ to be a maximal orthogonal set of µ1/4

iff there exists a spectral labeling L of the binary tree such
that Λ = Λ(L).
(1) One edge labeled by 0 or 2, and another by 1 or 3;
(2) Each vertex has a path ended by 0̇ or 3̇.

• Tree structure of maximal orthogonal set of µ1/4:
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Theorem 2. (Dai, He and Lai, 2012)
Λ ⊂ R with 0 ∈ Λ to be a maximal orthogonal set of µq−1,n

iff there exists a spectral labeling L of the n-adic tree such
that Λ = Λ(L).
(1) Each edge labeled by digit syatem {−1, 0, 1, . . . , q − 2};
(2) The label of k-th edge of each vertex ≡ k mod n;
(3) Each vertex has a path ended by 0̇.
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Theorem 2. (Dai, He and Lai, 2012)
Λ ⊂ R with 0 ∈ Λ to be a maximal orthogonal set of µq−1,n

iff there exists a spectral labeling L of the n-adic tree such
that Λ = Λ(L).
(1) Each edge labeled by digit syatem {−1, 0, 1, . . . , q − 2};
(2) The label of k-th edge of each vertex ≡ k mod n;
(3) Each vertex has a path ended by 0̇.
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Theorem 2. (Dai, He and Lai, 2012)
Λ ⊂ R with 0 ∈ Λ to be a maximal orthogonal set of µq−1,n

iff there exists a spectral labeling L of the n-adic tree such
that Λ = Λ(L).
(1) Each edge labeled by digit syatem {−1, 0, 1, . . . , q − 2};
(2) The label of k-th edge of each vertex ≡ k mod n;
(3) Each vertex has a path ended by 0̇.

• Tree structure for a spectrum of µρ,n:
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• τ(i1i2i . . . ik) ∈ {−1, 0, 1, . . . , q−2} and τ(i1i2i . . . ik) ≡ ik mod n
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Theorem 3. (Dai, He and Lai, 2012)
Suppose Λ is a regular,
(1) If there exists M such that N∗K < M for all K ∈ N, then
Λ is a spectrum of L2(µρ,n);

(2) If
∑∞

K=1C
N∗K
0 <∞, then Λ is not a spectrum of L2(µ).
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Theorem 3. (Dai, He and Lai, 2012)
Suppose Λ is a regular,
(1) If there exists M such that N∗K < M for all K ∈ N, then
Λ is a spectrum of L2(µρ,n);

(2) If
∑∞

K=1C
N∗K
0 <∞, then Λ is not a spectrum of L2(µ).

Regular: The bottom path of each vertex end by 0̇.
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Theorem 3. (Dai, He and Lai, 2012)
Suppose Λ is a regular,
(1) If there exists M such that N∗K < M for all K ∈ N, then
Λ is a spectrum of L2(µρ,n);

(2) If
∑∞

K=1C
N∗K
0 <∞, then Λ is not a spectrum of L2(µ).

Regular: The bottom path of each vertex end by 0̇.

N∗K: Cardinality of non-zero elements in the bottom path
of vertex τK.
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V. Sparsity of the spectrum: Beurling density

Example The spectrum of µ1/4:

Λ = {
n∑
j=0

εj4
j : n ≥ 0, εj ∈ {0, 1}}

= {0, 1, 4, 5, 16, 17, 20, 21, 32, 33, 36, 37, 48, 47, 52, 53, · · · }
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Elements of spectrum Λ contained in the interval [0, 4n) are
{
∑n−1

j=0 εj4
j; ε ∈ {0, 1}}. Hence the cardinality is 2n. Therefore

lim
n→∞

#(E ∩ [0, 4n))

(4n)log4 2
= 1.

In fact,

0 < lim inf
N→∞

#(E ∩ [0, N))

N log4 2
≤ lim

N→∞

#(E ∩ [0, N))

N log4 2
<∞

Observe that log4 2 is the fractal dimension of the Cantor set.
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Beurling density :

D−(Λ) = lim inf
h→∞

#(Λ ∩ [x− h, x+ h)

2h

and

D+(Λ) = lim sup
h→∞

#(Λ ∩ [x− h, x+ h)

2h
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Beurling density :

D−(Λ) = lim inf
h→∞

#(Λ ∩ [x− h, x+ h)

2h

and

D+(Λ) = lim sup
h→∞

#(Λ ∩ [x− h, x+ h)

2h

Dutkey, Han, Sun and Weber, 2011, Adv. math.

K.Seip, etc. 2002, JAMS, Ann. MAth.

R.Strichartz, 2006, J. Anal. Math
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Theorem 4. (Dai, HE and Lai, 2012) Let µ = µq,b
be a Cantor type self-similar measure (especially, Bernoulli
convolution). Then given any increasing non-negative
function g on [0,∞), there exists a spectrum Λ of L2(µ) such
that

lim
h→∞

sup
x∈R

#(Λ ∩ [x− h, x+ h))

g(h)
= 0.
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[12] J. Ortega-Cerdà and K. Seip, Fourier frames, Ann. of
Math.(2), 155(2002), 789-806.

[13] Yu. I. Lyubarskii and K. Seip, Weighted Paley-Wiener
spaces, J. Amer. Math. Soc., 15(2002), 979-1006.

[14] T. Tao, Fuglede’s conjecture is false in 5 or higher
dimensions, Math. Res. Lett., 11(2004), 251-258.

– Typeset by FoilTEX – The Chinese University of Hong Kong, 2012



Xinrong Dai Sun Yat-sen University

THANK YOU !
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