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The connection with fractals is NOT direct, but is rather at the level of
heuristics.

M a complete, non-compact, connected metric measure space endowed with
a local and regular Dirichlet form £ with domain F. Denote by A the
associated operator.

We will or will not assume that there is a proper distance compatible with the
gradient built out of £ (see Sturm, Gyrya-Saloff-Coste).

Two models : Riemannian manifolds, fractals.
Fractal manifolds.



Heat kernel
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Let p; be the heat kernel of M, that is the smallest positive fundamental
solution of the heat equation:
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— +Au=0
6‘t+ u ,

or the kernel of the heat semigroup e~ 4 :

e 12 f(x) = /M P YY) du(y), f e L2(M.p), - ae x e M.

Measurable, non-negative.
In a general metric space setting, continuity is an issue.
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On-diagonal bounds: the uniform case

Want to estimate

sup pr(x,y) = sup pr(x, x)
x,yeM xeM

as a function of ¢t — +oo.

(S9) Ifllp < (1QDIVAllp, YQ T M, ¥ € Lip(<2).

p = 1: isoperimetry, p = oo: volume lower bound
p = 2 (Coulhon-Grigor'yan): L2 isoperimetric profile, sup,y, pt(x, x) ~ m(t),

where )
m dv
= [ S (1)
0

Go down in the scale: Pseudo-Poincaré inequalities:
[f = fillp < CrllIVHllp, VfeC5 (M), r>0,

where f.(x) = ﬁ fB(X’r) f(y) du(y). Groups, covering manifolds



Polynomial volume growth

°
V(x,r) > crP
o
|8Q\ c
Q= |Q|1/D
°

c
M(Q) > —— < suppi(x, x) < Ct~P/2
1) 2 fapro <SP <

Exponential volume growth

’ V(x,r) > cexp(cr)

|6§2| c
Q= oglal

M(Q) > & sup pr(x, x) < Cexp(—ct'’®)

~ (log|Q[)? IQI) xeM
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Off-diagonal bounds

There is a nice connection between the geometry of a metric measure space
and the on-diagonal estimates of the heat kernel, but to do analysis, one
needs much more, namely pointwise estimates of the heat kernel, that is
estimates of p:(x, y) depending on x, y.

From above, from below, oscillation.

Typically, depends on the volume on balls around x and y with a radius
depending on t.
Gaussian:

1 d?(x y))
X, y)~ ——exp | — ’ , fory-a.e. x,y e M, vVt > 0.
pi(X. y) Vv P ( " I y

Sub-Gaussian, for w > 2 (fractals!):

,
1 av(x, w1
pi(x,y) ~ W exp <— <(ty)) > , forp-a.e. x,y e M, vVt >0.
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Conditions on the volume growth of balls

B(x, r) open ball of center x € M and radius r > 0.
V(x,r) == p(B(x,r)).

Polynomial volume growth of exponent D > 0:
de, C > 0 such that

e <vix,ry<crP, vr>0, xeM.

Very restrictive: ex. Heisenberg group but also...

Volume doubling condition :
3C > 0 such that

V(x,2r) < CV(x,r), Vr >0, x € M. (D)

Examples: manifolds with non-negative Ricci curvature, but also...
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Consequences of the volume doubling condition

3 C,v > 0 such that
r v
V(x,r) < C (g) V(x,s), Vr>s>0, xcM. (D,)

Less well-known: if M is connected and non-compact, reverse doubling, that
is 3¢, > 0 such that

C(f)”' < V(x,r)

— > : ¥
= Vix,s)' Vr>s>0,xeM (RD,/)

S
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Heat kernel estimates 1

Assume doubling.
On-diagonal upper estimate:

(DUE) pi(x, x) < ,VxeM,t>0.

_C
V(x,V1)

Comment on the non-continuous case: recall pi(x, y) < /p:(x, x)p:(y, y).
Full Gaussian upper estimate

c a?(x y))
UE x,y) < exp | —c d ,Vx,ye M, t>0.
(UE)  pi(x.y) < Vx VD p( 7 y
On-diagonal lower Gaussian estimate
c
DLE X, X)> —, Vxe M, t>0.
(DLE) pxX) 2 o

Full Gaussian lower estimate

c d?(x,
(LE) p:(x,y)zMexp(C (t y)),vX,yeM,t>0



Heat kernel estimates 2

Gradient upper estimate

C
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Heat kernel estimates 2

Gradient upper estimate

(G) [Vapr(X, ¥)| <

VtV(y, V1)

Connection with the LP-boundedness of the Riesz transform

,VXx,y e M, t>0.

Theorem

Let M be a complete non-compact Riemannian manifold satisfying (D) and
(G). Then the equivalence

(Rp) 1V fLllp = |AY2f|lp, Vf € C5o(M),

holds for1 < p < cc.

[Auscher, Coulhon, Duong, Hofmann, Ann. Sc. E.N.S. 2004]



(DUE) < (UE) = (DLE) % (LE)
(G) = (LE) = (DUE)

(LE) 7 (G)

Explain: Davies-Gaffney [Coulhon-Sikora, Proc. London Math. Soc. 2008 and

Collog. Math. 2010]
[Grigory’an-Hu-Lau, CPAM, 2008, Boutayeb, Thilissi Math. J. 2009]

Three levels: (G), (LY), (UE)



Davies-Gaffney

Heuristics of
(DUE) < (UE)

(Coulhon-Sikora’s approach). For simplicity, consider the polynomial case
pi(x,x) < Ct P2 vt>0
can be reformulated as
‘ < exp(—zL)f1 Lo > | < K(RGZ)_D/2||I(1 ||1 ||f2||1, Vze (C+, fi,he L1(M, d,u)

Interpolate with the Davies-Gaffney estimate, namely

r2
(exp(—tL)h, )| < exp (M) T

forallt >0, fi,f € L2(M,du), supported respectively in Uy, Uz, with
r= C/( U1, U2)

Finite propagation speed for the wave equation.

Not on fractals !!



Upper bounds and Faber-Krahn inequality

A fundamental characterization of (UE) or (DUE) was found by Grigor’yan.
One says that M admits the relative Faber-Krahn inequality if there exists
¢ > 0 such that, for any ball B(x, r) in M and any open set Q C B(x, r):

c (V(x,r)\"
n@= 5 (R0 (FK)

where ¢ and a are some positive constants and \(Q) is the smallest Dirichlet
eigenvalue of A in Q. Grigor'yan proves that (FK) is equivalent to the upper
bound (DUE) together with (D). The proof of this fact is difficult (Moser
iteration).
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Upper bounds: back to the uniform case

Assume V(x,r) ~ rP. Then (DUE) reads
(%) pr(x,x) < Ct™P2 vit>0, xeM,

(x) is equivalent to:
- the Sobolev inequality:

1fllan/(D-ap) < CIAY3f|p,  Vf € C5*(M),

for p > 1and 0 < ap < D [Varopoulos 1984, Coulhon 1990 ].
- the Nash inequality:

IF15742 < c|f|}/Pe(r), vfe C&(M).

[Carlen-Kusuoka-Stroock 1987]
-the Gagliardo-Nirenberg type inequalities, for instance

1113 < il TPy, i e (M),

for ¢ > 2 such that D < 1 [Coulhon 1992].
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Denote
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Introduce
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One-parameter weighted Sobolev inequalities 1

Denote
Vi(x):=V(x,r), r>0,xeM.

Introduce

I3 < C(IfV, V3|12 + r2e(f)), VYr>0, VYfeF.

(equivalent to Nash if V(x, r) ~ rP) and for g > 2,

1_1
IV 215 < CUIFIE + r?E(f)), Vr>0, VfeF,

(equivalent to Gagliardo-Nirenberg if V(x, r) ~ rP)
Then

Assume that M satisfies (D) and Davies-Gaffney. Then (DUE) is equivalent to
(N), and to (GNy) ifv is as in (D,) and q > 2 is such that ‘72—;21/ <1.

[Boutayeb-Coulhon-Sikora, in preparation]



One-parameter weighted Sobolev inequalities 2

Kigami, local inequalities a la Saloff-Coste, Faber-Krahn: all equivalent
Nash inequality:

I£13 < C(Ifv, V2|2 + r2&(f), Vr>0, feF. (N)

Kigami-Nash inequality:

inf  V(x
xesupp(f)

2
Wﬁ<c(|W1YH%m),VDWJe%. (KN)

Localised Nash inequalities: there exists «, C > 0 such that for every ball
B = B(x,r), forevery f € F NCo(B),

c
Vi (x)

L 20 2 2
1l < 15 (IIlI5 + reE(f)) - (LN)



One-parameter weighted Sobolev inequalities 3

Sketch of the proof of (GN;) < (DUE)
(GNy) is equivalent to

sup |M 1-1€ tL||2—>q<+OO (VEz,q)
t>0 v ?
(DUE) is equivalent to
sup M 5 e "|am00 < +o0 (VE2,)
t>0 Ve

Extrapolation; commutation: again, finite speed propagation of the associated
wave equation.

One gets a characterization of (DUE) that does not use any kind of Moser
iteration.

One can replace the volume V(x, r) by a more general doubling function
v(x, r) (except in the equivalence with Faber-Krahn).



Heat kernel estimates: the sub-Gaussian case 1

Sub-Gaussian upper estimate

1
C a“(x, @t
(UE*) Pt(Xd’)SWeXp <—C< (t y)> >7VX7y€Mat>0-

On-diagonal lower sub-Gaussian estimate

(DLE®) pe(X, X) VYxeM, t>0.

c
>___ <7
= V(x, t1/)

Full sub-Gaussian lower estimate

exp (—C(d (;(’y))w> ,YX,yeM, t>0

Relations remain, but one needs an exit time estimate. No more
Davies-Gaffney !

(LE®)  pe(x,y) >

c
V(x, V1)



The sub-Gaussian case 2

Theorem

Let & be a regular, local and conservat/ve Dirichlet form on L2(M, 11) with
domain F. Let q > 2 such that =21 < w, where v > 0 is as in (D,). Assume
the exit time estimate:
cr? < Ex(1g,x)) < Cr”, fora.e. x € M, all r >0,
Then the following conditions are equivalent: (UE®)
1V 15 < CUIFIZ + re€(f)), Vr >0, f e F,
171 < CIFV; 215 + re(), ¥r>0,feF,
c (V(x,r) w/v
>
)\1 (Q) = rw < |Q| ) )

for every ball B(x,r) C M and every open setQ C B(x,r).




Questions

@ Doubling case, Gaussian

Get a more handy characterization of (LE), get a characterization of (G).
@ Sub-Gaussian ?

We do use Grigory’an-Telcs, Grigor'yan-Hu-Lau



