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Mandelbrot martingales

Let Σ = {0, 1}N+ and for n ≥ 1, Σn = {0, 1}n.
W : positive rv. with EW = 1/2. {W (w)}σ∈⋃n≥1 Σn

independent rv’s

equidistributed with W .

Yn =
∑
σ∈Σn

W (σ|1)W (σ|2) · · ·W (σ|n) is a positive martingale
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Mandelbrot martingales

Let Y = limn→∞ Yn. Writing

Yn+1 =
∑

j∈{0,1}

W (j)×
∑
σ∈Σn

W (j · σ|1)W (j · σ|2) · · ·W (j · σ|n)

= W (0)Yn(0) + W (1)Yn(1)

yields
Y = W (0)Y (0) + W (1)Y (1),

where {W (j),Y (j)}j∈{0,1} are independent, W (j) ∼W , Y (j) ∼ Y .
Moreover, P(Y > 0) ∈ {0, 1}.

Using this recursively yields the Mandelbrot random measure on [0, 1]

µ(Iσ) = W (σ|1)W (σ|2) · · ·W (σ||σ|)Y (σ).

Theorem (Kahane (1976))

The following assertions are equivalent: (1) P(Y > 0) = 1; (2) (Yk)k≥1

is uniformly integrable; (3) EW logW < 0.
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Mandelbrot martingales. Normalization and related
equation

Natural questions arise:

1 (Mandelbrot, 1974) When EW logW ≥ 0, does there exist An > 0
such that (Yn/An) converges to a non-trivial limit Z , at least in
distribution?

If so An/An+1 converges to A, 0 < A <∞, and the limit satisfies

Z
d
= AW (0)Z (0) + 1W (1)Z (1)

2 (Durrett and Liggett, 1983) In general, what are the non-trivial
solutions to

(E ) Z
d
= W (0)Z (0) + W (1)Z (1) ?

3 Are there natural multifractal measures associated with solutions
of (E )?
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The derivative martingale in the critical case.

Suppose that EW logW = 0. For all β ∈ [0, 1), set

Wβ =
W β

2EW β
. It satisfies

{
EWβ = 1/2,

EWβ logWβ < 0
.

Define

Yn(β) =
∑
σ∈Σn

Wβ(σ|1)Wβ(σ|2) · · ·Wβ(σ|n) and Y ′n = − d

dβ
Yn(β).

Theorem (Biggins-Kyprianou (1997), Liu (2000))

If EW 1+ε <∞ for some ε > 0, then (Y ′n) converges almost surely to Y ′,
Y ′ = W (0)Y ′(0) + W (1)Y ′(1), EY ′ =∞.

This yields a.s. on [0, 1] the “critical” measure

µ′(Iσ) = W (σ|1)W (σ|2) · · ·W (σ||σ|)Y ′(σ).
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Other solutions to (E): Z
d
= W (0)Z (0) + W (1)Z (1)

Suppose that EW 1+ε <∞ for some ε > 0.

If EW logW < 0 (resp. EW logW = 0), Durrett and Liggett prove
that up to multiplicative positive constant the unique solution to
(E ) is Y = ‖µ‖ (resp. Y ′ = ‖µ′‖).

If the distribution of log(W ) is non-lattice and EW logW > 0, let β
be the unique solution of EW β = 1/2 in (0, 1).

Setting W̃ = W β , we have E W̃ log W̃ > 0. This yields a
non-degenerate Mandelbrot measure µ̃. Durrett and Liggett prove
that the unique solutions to the functional equation (E ) : are, up to
a positive constant, of the form Lβ(‖µ̃‖), where Lβ is a stable Lévy
subordinator of index β.

If the distribution of log(W ) is non-lattice and EW logW > 0, but
EW 6= 1/2, then other kind of solutions appear, all reducible to the
form Lβ(‖µ̃′‖), where ‖µ̃′‖ is a critical Mandelbrot measure
independent of Lβ .
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Random measures associated with (E ):

Z
d
= W (0)Z (0) + W (1)Z (1)

There are 4 kind of natural measures associated with (E ), each providing
a nice candidate to illustrate the multifractal formalism. Each satisfies for
all n ≥ 1

(ν(Iσ))σ∈Σn

d
=
(
W (σ|1)W (σ|2) · · ·W (σ|n)Z (σ)

)
σ∈Σn

.

Mandelbrot measures µ (studied by many authors: Holley-Waymire
(1992), Falconer (1996), Molchan (1996), B. (2000))

Critical Mandelbrot measures µ′ (studied by B. (2000)), with the
question of existence of atoms left opened.

L′β,µ: the derivative of the Lévy process Lβ in multifractal
Mandelbrot time µ([0, t]) (studied by Jaffard (1999) when µ is the
Lebesgue mesure, and in general by B.-Seuret (2007)).

L′β,µ′ : the derivative of the Lévy process Lβ in multifractal critical
Mandelbrot time µ′([0, t]).
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Normalization: the critical case

Theorem (Aidekon and Shi, Webb (log-gaussian case), (2011))

Suppose that EW logW = 0 and EW 1+ε <∞ for some ε > 0. Then,
there exists c > 0 such that

c n1/2Yn
P−→

n→∞
Y ′.
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Normalization of Mandelbrot measures: the supercritical
case

Suppose that EW logW > 0. The normalization problem is closely
related to the critical case. Once again for all β ∈ [0, 1], set

Wβ =
W β

2EW β
. It satisfies


EWβ = 1/2,

f (β) = EWβ logWβ is increasing,

f (0) = − log(2)/2 < 0, f (1) = EW logW > 0

.

There is a unique β0 ∈ (0, 1) such that EWβ0 logWβ0 = 0.

Theorem (Madaule, Webb (log-gaussian case) (2011))

Suppose that EW logW > 0, EW 1+ε <∞ for some ε > 0, and the
distribution of logW is non-lattice. Then

n
3

2β0 cn Yn
d−→

n→∞
Z > 0,

where c = (2EW β0 )−1/β0 and Z
d
= c W (0)Z (0) + c W (1)Z (1).
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related to the critical case. Once again for all β ∈ [0, 1], set

Wβ =
W β

2EW β
. It satisfies


EWβ = 1/2,

f (β) = EWβ logWβ is increasing,

f (0) = − log(2)/2 < 0, f (1) = EW logW > 0

.

There is a unique β0 ∈ (0, 1) such that EWβ0 logWβ0 = 0.

Theorem (Madaule, Webb (log-gaussian case) (2011))

Suppose that EW logW > 0, EW 1+ε <∞ for some ε > 0, and the
distribution of logW is non-lattice. Then

n
3

2β0 cn Yn
d−→

n→∞
Z > 0,

where c = (2EW β0 )−1/β0 and Z
d
= c W (0)Z (0) + c W (1)Z (1).
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Normalization of Yn

We summarize.

Theorem (Aidekon and Shi (2011), Webb (2011))

Suppose that EW logW = 0 and EW 1+ε <∞ for some ε > 0. Then,
there exists a cW > 0 such that

c n1/2Yn
P−→

n→∞
Y ′.

Theorem (Webb (log-gaussian case), Madaule (2011))

Suppose that EW logW > 0, EW 1+ε <∞ for some ε > 0, and the
distribution of logW is non-lattice. Then there exists a unique β ∈ (0, 1)
such that

n
3

2β cn Yn
d−→

n→∞
Z > 0,

where c = (2EW β)−1/β and Z
d
= c W (0)Z (0) + c W (1)Z (1) (recall

that β is the unique solution of EWβ logWβ = 0 in (0, 1)).
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Identification of the limit for the associated measures

Recall: let

µn(Iσ) = W (σ|1)W (σ|2) · · ·W (σ||σ|) for σ ∈ Σn.

If EW logW ≥ 0 then almost surely the martingale µn
weakly−→ µ = 0 as

n→∞.
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Identification of the limit for the associated measures

µn(Iσ) = W (σ|1)W (σ|2) · · ·W (σ||σ|) for σ ∈ Σn.

Theorem

Suppose that EW logW ≥ 0, EW 1+ε <∞ for some ε > 0, and the
distribution of logW is non-lattice.

1 (Johnson and Waymire, 2011) If EW logW = 0 then,

c n1/2µn
weakly in P−→

n→∞
µ′.

2 (B., Rhodes and Vargas, 2012) If EW logW > 0, let β ∈ (0, 1)

such that EWβ logWβ = 0, where Wβ = Wβ

2 EWβ . Let µ
′
β the

associate critical measure. We have

n
3

2β cn µn
weakly in d−→

n→∞
L′β,µ′β

.
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Another natural normalization

µn(Iσ) = W (σ|1)W (σ|2) · · ·W (σ||σ|) for σ ∈ Σn.

Corollary

Suppose that EW logW ≥ 0, EW 1+ε <∞ for some ε > 0.

1 (Johnson and Waymire, 2011) If EW logW = 0 then,

µn

‖µn‖
weakly in P−→

n→∞

µ′

‖µ′‖
.

2 (B., Rhodes, Vargas, 2012) If EW logW > 0 and the distribution
of logW is non-lattice, then

µn

‖µn‖
weakly in d−→

n→∞

L′β,µ′β
‖L′β,µ′β‖

.
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The random energy model point of view

Assume that W is normalized to EW logW = 0. Write

W (σ) = eξ(σ), W (σ|1)W (σ|2) · · ·W (σ|σ|) = eX (σ), X (σ) =
n∑

i=1

ξ(σ|k).

Define the partition function

β ≥ 0 7→ Zn(β) =
∑
σ∈Σn

eβX (σ)

and for each β ≥ 0 consider the sequence of Gibbs measures

µβ,n(Iσ) =
eβX (σ)

Zn(β)
.

J. Barral Recent advances in Mandelbrot martingales theory



The random energy model point of view

Suppose that E e(1+ε)ξ <∞ for some ε > 0.

Theorem (Collet and Koukiou (1992), Waymire-Williams (1994), ...)

With probability 1,

1

n
logZn(β) −→

n→∞

{
log(2E eβξ) if β ∈ [0, 1),

0 if β ≥ 1
.
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The random energy model point of view

Suppose that E e(1+ε)ξ <∞ for some ε > 0. Let µ′ be the critical
Mandelbrot measure. Suppose that the law of ξ is non-lattice.

Theorem

1 if β ∈ [0, 1) then a.s., a non trivial Mandelbrot measure µβ is

associated with Wβ ,
Zn(β)

(2E eβξ)n
−→
n→∞

‖µβ‖, µβ,n
weakly−→
n→∞

µβ
‖µβ‖

.

2 If β = 1, c n1/2Zn(1)
P−→

n→∞
‖µ′‖, µ1,n

‖µ1,n‖
weakly in P−→

n→∞

µ′

‖µ′‖
.

3 If β > 1, n
3β
2 Zn(β)

d−→
n→∞

‖L′1/β,µ′‖, µβ,n
weakly in d−→

n→∞

L′1/β,µ′

‖L′1/β,µ′‖
.

Theorem (Aidekon (2010), Webb (in the log-Gaussian case, 2011))

P(n3/2 max
σ∈Σn

eXσ ≤ z)−→
n→∞

E exp(−c‖µ′‖/z).
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Continuity of the critical Mandelbrot measure

Here we also assume that EW−ε <∞ for some ε > 0.

Theorem (B., Kupiainen, Nikula, Saksman, Webb (2012))

For any γ ∈ [0, 1/2) we have

nγ max
σ∈Σn

µ′(Iσ)
P−→ 0 as n→∞,

and for any γ ∈ (1/2,∞) we have

nγ max
σ∈Σn

µ′(Iσ)
P−→∞ as n→∞.

Corollary

Almost surely the limit measure µ′ has no atoms.
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Modulus of continuity of the critical measure

Theorem (B., Kupiainen, Nikula, Saksman, Webb (2012))

For any γ ∈ (0, 1/2), with probability 1, there exists C (ω) ∈ R∗+ such that

µ′(I ) ≤ C (ω)

(
log

(
1 +

1

|I |

))−γ
for all subintervals I of [0, 1]. Moreover, one cannot take γ > 1/2 in the
above statement.

J. Barral Recent advances in Mandelbrot martingales theory



Application to the modulus of continuity of the subcritical
measure

Here we suppose that EW q <∞ for all q > 0. Set

ϕ(q) = 1 + log2 EW q.

Notice that 0 < ϕ(q) < 1 over (0, 1) and ϕ(0) = 0.
Recall that for β ∈ (0, 1), µβ is the Mandelbrot measure defined as

µβ(Iσ) = eβX (σ)Yβ(σ).

Theorem (B., Kupiainen, Nikula, Saksman, Webb (2012))

Let β ∈ (0, 1) and γ ∈ (0, 1/2). With probability 1, there exists
C (ω) ∈ R∗+ such that

µβ(I ) ≤ C (ω)|I |ϕ(β)

(
log

(
1 +

1

|I |

))−γβ
for all subintervals I of [0, 1].
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Lq-spectrum of the critical measure

For β ≥ 0 set

Z̃n(β) =
∑
σ∈Σn

µ′(Iσ)β =
∑
σ∈Σn

eβX (σ)Y ′(σ)β (recall that Zn(β) =
∑
σ∈Σn

eβX (σ)).

Theorem (Collet and Koukiou (1992), Waymire-Williams (1994), ...)

With probability 1,

1

n
log2 Z̃n(β) −→

n→∞

{
1 + log2(E eβξ) if β ∈ [0, 1),

0 if β ≥ 1
.
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Lq-spectrum of the critical measure

Z̃n(β) =
∑
σ∈Σn

µ′(Iσ)β .

Theorem

1 (deduced from Ossiander-Waymire (2000)) If β ∈ [0, 1) then a.s., a
non trivial Mandelbrot measure µβ is associated with Wβ ,

Z̃n(β)

(2E eβξ)n
−→
n→∞

E(‖µ′‖β)‖µβ‖.

2 (B., Kupiainen, Nikula, Saksman, Webb (2012), log-gaussian case)

If β = 1, c n1/2Z̃n(1)
d−→

n→∞
‖µ′‖.

3 (B., Kupiainen, Nikula, Saksman, Webb (2012), log-gaussian case)

If β > 1, c nβ/2Z̃n(β)
d−→

n→∞
L1/β(‖µ′‖).
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