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Mandelbrot martingales

Let ¥ = {0,1}"+ and for n > 1, ¥, = {0,1}".
W: positive rv. with EW =1/2. {W(w)},¢y _, =, independent rv's
equidistributed with W. -
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Yo = Z W(o|1)W(ol2)--- W(o|,) is a positive martingale
o€eY,
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Mandelbrot martingales

Let Y =lim,_ o Y,. Writing
Yori= > W()x Y W(-och)W(-ala)---W(i-oln)
je{o,1} ocEY,
= W(O) Yn(O) + W(l) Yn(l)
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Mandelbrot martingales

Let Y =lim,_ o Y,. Writing

Yor= Y W()x > W(-ol)W(-ola)-- W(-ol)

je{o,1} ocEY,
= W(O) Yn(O) + W(l) Yn(l)

yields
Y = W(0) Y(0) + W(1) Y(1),

where {W(j), Y(j)}jeqo,1} are independent, W(j) ~ W, Y(j) ~ Y.
Moreover, P(Y > 0) € {0,1}.
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Mandelbrot martingales

Let Y =lim,_ o Y,. Writing

Yor= Y W()x > W(-ol)W(-ola)-- W(-ol)

je{o,1} ocEY,
= W(O) Yn(O) + W(l) Yn(l)

yields
Y = W(0) Y(0) + W(1) Y(1),

where {W(j), Y(j)}jeqo,1} are independent, W(j) ~ W, Y(j) ~ Y.
Moreover, P(Y > 0) € {0,1}.

Using this recursively yields the Mandelbrot random measure on [0, 1]

u(ls) = W(alr) W(olz) - W(als)) Y (o).
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Mandelbrot martingales

Let Y =lim,_ o Y,. Writing

Yor= Y W()x > W(-ol)W(-ola)-- W(-ol)

je{o,1} ocEY,
= W(O) Y,,(O) + W(l) Yn(l)

yields
Y = W(0) Y(0) + W(1) Y(1),

where {W(j), Y(j)}jeqo,1} are independent, W(j) ~ W, Y(j) ~ Y.
Moreover, P(Y > 0) € {0,1}.

Using this recursively yields the Mandelbrot random measure on [0, 1]

u(ls) = W(alr) W(olz) - W(als)) Y (o).

Theorem (Kahane (1976))

The following assertions are equivalent: (1) P(Y > 0) =1, (2) (Yk)k>1
is uniformly integrable; (3) E W log W < 0.
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Mandelbrot martingales. Normalization and related

equation

Natural questions arise:

@ (Mandelbrot, 1974) When E W log W > 0, does there exist A, > 0
such that (Y, /A,) converges to a non-trivial limit Z, at least in
distribution?

If so A,/An+1 converges to A, 0 < A < 0o, and the limit satisfies

Z < AW(0) Z(0) + 1 W(1) Z(1)
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Mandelbrot martingales. Normalization and related

equation

Natural questions arise:

@ (Mandelbrot, 1974) When E W log W > 0, does there exist A, > 0
such that (Y, /A,) converges to a non-trivial limit Z, at least in
distribution?

If so A,/An+1 converges to A, 0 < A < 0o, and the limit satisfies

Z < AW(0) Z(0) + 1 W(1) Z(1)

@ (Durrett and Liggett, 1983) In general, what are the non-trivial
solutions to

(E) 22 wW(0)Z(0) + W(1)Z(1) ?
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Mandelbrot martingales. Normalization and related

equation

Natural questions arise:

@ (Mandelbrot, 1974) When E W log W > 0, does there exist A, > 0
such that (Y, /A,) converges to a non-trivial limit Z, at least in
distribution?

If so A,/An+1 converges to A, 0 < A < 0o, and the limit satisfies

Z < AW(0) Z(0) + 1 W(1) Z(1)

@ (Durrett and Liggett, 1983) In general, what are the non-trivial
solutions to

(E) 22 wW(0)Z(0) + W(1)Z(1) ?

@ Are there natural multifractal measures associated with solutions
of (E)?
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The derivative martingale in the critical case.

Suppose that E W log W = 0.
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The derivative martingale in the critical case.

Suppose that E W log W = 0. For all 3 € [0,1), set

wh

B EW;s=1/2,
Wo=2Ews

It satisfies
E Wglog W3 <0
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The derivative martingale in the critical case.

Suppose that E W log W = 0. For all 3 € [0,1), set

wh

B EW;s=1/2,
Wo=2Ews

It satisfies
E Wglog W3 <0

Define

Ya(B) = D Ws(ol)Ws(ol2)--- Ws(ola)

o€y,

This yields a.s. on [0, 1] the “critical” measure
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The derivative martingale in the critical case.
Suppose that E W log W = 0. For all 3 € [0,1), set

wh . JEWs=1/2,
3 = ————. It satisfies
2E W#8 E Wglog Wz <0

Define

Va(8) = 3 Walolt)Wa(ola) -+ Wa(ol,) and Y, = —%vnw).

Theorem (Biggins-Kyprianou (1997), Liu (2000))

IfE W*€ < oo for some € > 0, then (Y)) converges almost surely to Y,
Y'=W(0)Y'(0)+ W(1) Y'(1), EY' = co.

This yields a.s. on [0, 1] the “critical” measure

W(ol) W(ol2)- - W(ala) Y'(0).
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Other solutions to (E): Z = W/(0) Z(0) + W(1) Z(1)

Suppose that E W€ < oo for some € > 0.

o IfEWlog W <0 (resp. EW log W = 0), Durrett and Liggett prove
that up to multiplicative positive constant the unique solution to

(E)is Y = [lp|l (resp. Y" = [[u/]]).
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Other solutions to (E): Z = W/(0) Z(0) + W(1) Z(1)

Suppose that E W€ < oo for some € > 0.

o IfEWlog W <0 (resp. EW log W = 0), Durrett and Liggett prove
that up to multiplicative positive constant the unique solution to

(E)is Y = [lp|l (resp. Y" = [[u/]]).
o If the distribution of log(W) is non-lattice and E W log W > 0,

J. Barral Recent advances in Mandelbrot martingales theory



Other solutions to (E): Z = W/(0) Z(0) + W(1) Z(1)

Suppose that E W€ < oo for some € > 0.

o IfEWlog W <0 (resp. EW log W = 0), Durrett and Liggett prove
that up to multiplicative positive constant the unique solution to
(E)is Y = [lp|l (resp. Y" = [[u/]]).

e If the distribution of log(W) is non-lattice and E W log W > 0, let
be the unique solution of E W# =1/2in (0,1).
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Other solutions to (E): Z = W(0) Z(0) + W(1) Z(1)

Suppose that E W€ < oo for some € > 0.

o IfEWlog W <0 (resp. EW log W = 0), Durrett and Liggett prove
that up to multiplicative positive constant the unique solution to
(E)is Y = |lull (resp. Y" = [[p/]])-

e If the distribution of log(W) is non-lattice and E W log W > 0, let
be the unique solution of E Wh = 1/2in (0,1).

Setting W = W¥, we have E W log W > 0. This yields a
non-degenerate Mandelbrot measure 1. Durrett and Liggett prove
that the unique solutions to the functional equation (E) : are, up to
a positive constant, of the form Lg(||zz]|), where L is a stable Lévy
subordinator of index f5.
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Other solutions to (E): Z = W(0) Z(0) + W(1) Z(1)

Suppose that E W€ < oo for some € > 0.

o IfEWlog W <0 (resp. EW log W = 0), Durrett and Liggett prove
that up to multiplicative positive constant the unique solution to
(E)is Y = [lp|l (resp. Y" = [[u/]]).

e If the distribution of log(W) is non-lattice and E W log W > 0, let
be the unique solution of E Wh = 1/2in (0,1).

Setting W = W¥, we have E W log W > 0. This yields a
non-degenerate Mandelbrot measure 1. Durrett and Liggett prove
that the unique solutions to the functional equation (E) : are, up to
a positive constant, of the form Lg(||zz]|), where L is a stable Lévy
subordinator of index f5.

o If the distribution of log(W) is non-lattice and E W log W > 0, but
E W # 1/2, then other kind of solutions appear, all reducible to the
form Lg(||Z'||), where ||/|| is a critical Mandelbrot measure
independent of Lg.
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Random measures associated with (E):

Z < W(0) Z(0) + W(1) Z(1)

There are 4 kind of natural measures associated with (E), each providing
a nice candidate to illustrate the multifractal formalism. Each satisfies for
alln>1

(W(lo)oes, £ (W(al)W(al2) - W(oln) Z(0)), . -

e Mandelbrot measures p (studied by many authors: Holley-Waymire
(1992), Falconer (1996), Molchan (1996), B. (2000))
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Random measures associated with (E):

Z < W(0) Z(0) + W(1) Z(1)

There are 4 kind of natural measures associated with (E), each providing
a nice candidate to illustrate the multifractal formalism. Each satisfies for
alln>1

(W(lo)oes, £ (W(al)W(al2) - W(oln) Z(0)), . -

e Mandelbrot measures p (studied by many authors: Holley-Waymire
(1992), Falconer (1996), Molchan (1996), B. (2000))

o Critical Mandelbrot measures p’ (studied by B. (2000)), with the
question of existence of atoms left opened.
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Random measures associated with (E):

Z < W(0) Z(0) + W(1) Z(1)

There are 4 kind of natural measures associated with (E), each providing
a nice candidate to illustrate the multifractal formalism. Each satisfies for
alln>1

(W(lo)oes, £ (W(al)W(al2) - W(oln) Z(0)), . -

e Mandelbrot measures p (studied by many authors: Holley-Waymire
(1992), Falconer (1996), Molchan (1996), B. (2000))

o Critical Mandelbrot measures p’ (studied by B. (2000)), with the
question of existence of atoms left opened.

° L’ : the derivative of the Lévy process Lz in multifractal
Mandelbrot time ([0, t]) (studied by Jaffard (1999) when p is the
Lebesgue mesure, and in general by B.-Seuret (2007)).
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Random measures associated with (E):

Z < W(0) Z(0) + W(1) Z(1)

There are 4 kind of natural measures associated with (E), each providing
a nice candidate to illustrate the multifractal formalism. Each satisfies for
alln>1

(v(l5))oes, 4 (W(0|1)W(U‘2) - W(aln) Z(”»gezn'

e Mandelbrot measures p (studied by many authors: Holley-Waymire
(1992), Falconer (1996), Molchan (1996), B. (2000))

o Critical Mandelbrot measures p’ (studied by B. (2000)), with the
question of existence of atoms left opened.

° L’ : the derivative of the Lévy process Lz in multifractal
Mandelbrot time ([0, t]) (studied by Jaffard (1999) when p is the
Lebesgue mesure, and in general by B.-Seuret (2007)).

° L' /. the derivative of the Lévy process Lg in multifractal critical
Mandelbrot time £/([0, t]).
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Normalization: the critical case

Theorem (Aidekon and Shi, Webb (log-gaussian case), (2011))

Suppose that EW log W = 0 and E W't < co for some € > 0. Then,
there exists ¢ > 0 such that

cn'/?y, Loy,

n— 00
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Normalization of Mandelbrot measures: the supercritical

case

Suppose that E W log W > 0. The normalization problem is closely
related to the critical case.
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Normalization of Mandelbrot measures: the supercritical

case

Suppose that E W log W > 0. The normalization problem is closely
related to the critical case. Once again for all 5 € [0, 1], set

whe
Ws = SEwWs"
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Normalization of Mandelbrot measures: the supercritical

case

Suppose that E W log W > 0. The normalization problem is closely
related to the critical case. Once again for all 5 € [0, 1], set

5 EW; = 1/2,

Ws = SEWE It satisfies
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Normalization of Mandelbrot measures: the supercritical

case

Suppose that E W log W > 0. The normalization problem is closely
related to the critical case. Once again for all 5 € [0, 1], set

EWs =1/2,
It satisfies { 7(8) = E W;glog W; is increasing,

B
Ws = SEwWs"

J. Barral Recent advances in Mandelbrot martingales theory



Normalization of Mandelbrot measures: the supercritical

case

Suppose that E W log W > 0. The normalization problem is closely
related to the critical case. Once again for all 5 € [0, 1], set

EWs =1/2,
It satisfies { 7(8) = E W;glog W; is increasing,
f(0) = —log(2)/2 <0, f(1) =EWlog W >0

B
Ws = SEwWs"
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Normalization of Mandelbrot measures: the supercritical

case

Suppose that E W log W > 0. The normalization problem is closely
related to the critical case. Once again for all 5 € [0, 1], set

EWs =1/2,
It satisfies { 7(8) = E W;glog W; is increasing,
f(0) = —log(2)/2 <0, f(1) =EWlog W >0

B
Ws = SEwWs"

There is a unique Sy € (0,1) such that E Wj, log W3, = 0.

Theorem (Madaule, Webb (log-gaussian case) (2011))

Suppose that EW log W > 0, E W€ < 0o for some e > 0, and the
distribution of log W is non-lattice. Then

v
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Normalization of Mandelbrot measures: the supercritical

case

Suppose that E W log W > 0. The normalization problem is closely
related to the critical case. Once again for all 5 € [0, 1], set

EWs =1/2,
It satisfies { 7(8) = E W;glog W; is increasing,
f(0) = —log(2)/2 <0, f(1) =EWlog W >0

B
Ws = SEwWs"

There is a unique Sy € (0,1) such that E Wj, log W3, = 0.

Theorem (Madaule, Webb (log-gaussian case) (2011))

Suppose that EW log W > 0, E W€ < 0o for some e > 0, and the
distribution of log W is non-lattice. Then

3 d
n% c"Y, — Z >0,

n— o0

where ¢ = (2E W5)~1/% and 7 £ ¢ W(0) Z(0) + ¢ W(1) Z(1).

<
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Normalization of Y,

We summarize.

Theorem (Aidekon and Shi (2011), Webb (2011))

Suppose that E W log W = 0 and E W't < oo for some € > 0. Then,
there exists a cyy > 0 such that

cnt?y, By oy,

n—o0

Theorem (Webb (log-gaussian case), Madaule (2011))

Suppose that EW log W > 0, E W€ < 0o for some € >0, and the
distribution of log W is non-lattice. Then there exists a unique (5 € (0, 1)
such that

n% "y, -4 Z >0,
n— oo
where ¢ = (2E W#)~Y/8 and Z < W(0) Z(0) + c W(1) Z(1) (recall
that f3 is the unique solution of E Wslog W3 =0 in (0,1)).

v
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Identification of the limit for the associated measures

Recall: let

pn(ls) = W(al) W(al2)--- W(als) foro e X,.
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Identification of the limit for the associated measures

Recall: let

pn(ls) = W(al) W(al2)--- W(als) foro e X,.

If EW log W > 0 then almost surely the martingale i, weaky u =20 as
n— oo.
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Identification of the limit for the associated measures

pn(ls) = W(al) W(al2)--- W(als) foro e X,

Suppose that E W log W > 0, E Wt < oo for some e >0, and the
distribution of log W is non-lattice.
@ (Johnson and Waymire, 2011) If E W log W = 0 then,
1/2 weakly inP

cn'fu,  —  W.
n— 00
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Identification of the limit for the associated measures

pn(ls) = W(al) W(al2)--- W(als) foro e X,

Suppose that E W log W > 0, E Wt < oo for some e >0, and the
distribution of log W is non-lattice.

@ (Johnson and Waymire, 2011) If E W log W = 0 then,

weakly inP
cnt /P, L
n— o0

@ (B., Rhodes and Vargas, 2012) IfE W log W > 0, let 5 € (0,1)
such that E W log Ws = 0, where Wy = 5% Let uly the
associate critical measure.

v
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Identification of the limit for the associated measures

pn(ls) = W(al) W(al2)--- W(als) foro e X,

Theorem

Suppose that E W log W > 0, E Wt < oo for some e >0, and the
distribution of log W is non-lattice.

@ (Johnson and Waymire, 2011) If E W log W = 0 then,

weakly inP
cnt /P, L
n— o0

@ (B., Rhodes and Vargas, 2012) IfE W log W > 0, let 5 € (0,1)
such that E Wj log W = 0, where Wz = ;W Let 41/, the
associate critical measure. We have

n weakly ind , ,

3
n2e ¢, —
n— o0

Bug
v
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Another natural normalization

pn(ls) = W(al) W(al2)--- W(als) foro e X,.

Corollary

Suppose that E W log W > 0, E Wt < 0o for some e > 0.
@ (Johnson and Waymire, 2011) If E W log W = 0 then,

Mn WEEMH]P ,U: )
l[nll - oo flu/]l
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Another natural normalization

pn(ls) = W(al) W(al2)--- W(als) foro e X,.

Corollary

Suppose that E W log W > 0, E Wt < 0o for some e > 0.
@ (Johnson and Waymire, 2011) If E W log W = 0 then,

Mn WEEMH]P ,M: )
l[nll - oo flu/]l

@ (B., Rhodes, Vargas, 2012) IfE W log W > 0 and the distribution
of log W is non-lattice, then

!/
In Weai}yind L:S Mg
lpall - n=ee[Lg |
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The random energy model point of view

Assume that W is normalized to E W log W = 0. Write
W(o) = e, W(al)W(ol2)--- W(a)s) = € Z&(OI

Define the partition function
B>0m Z,(B)= ) €
o€s,
and for each 8 > 0 consider the sequence of Gibbs measures
eBX(0)

Z,(B)

,“'ﬂ:"(lff) -
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The random energy model point of view

Suppose that E e1t9¢ < o for some ¢ > 0.

Theorem (Collet and Koukiou (1992), Waymire-Williams (1994), ...)

With probability 1,

log(2E e%) if B € [0,1),

1
—log Z, —
~log Zy(B) — {0 i8> 1
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The random energy model point of view

Suppose that E e(1T€)¢ < oo for some € > 0. Let 1/ be the critical
Mandelbrot measure. Suppose that the law of £ is non-lattice.

Q@ B €10,1) then a.s., a non trivial Mandelbrot measure pg is

. . Zn(/j) weakly  [Lj
associated with Wﬁ, m njo ||ﬂﬁ“, HKB,n njo m
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The random energy model point of view
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Mandelbrot measure. Suppose that the law of £ is non-lattice.
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The random energy model point of view

Suppose that E e(1T€)¢ < oo for some € > 0. Let 1/ be the critical
Mandelbrot measure. Suppose that the law of £ is non-lattice.

Q@ B €10,1) then a.s., a non trivial Mandelbrot measure pg is

. . Zn(/j) weakly  [Lj
associated with Wﬁ, m njo ||ﬂﬁ“, HKB,n njo m

M1,n  weakly in]P /LI
lpsaall - n=oe I

@ Ifg=1,cn'?Z,(1) = |l
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The random energy model point of view

Suppose that E e(1T€)¢ < oo for some € > 0. Let 1/ be the critical
Mandelbrot measure. Suppose that the law of £ is non-lattice.

Q@ B €10,1) then a.s., a non trivial Mandelbrot measure pg is

. . Zn(/j) weakly  [Lj
associated with Wﬁ, m n:>o ||ﬂﬁ“, HKB,n n;}o m

M1,n  weakly in]P /LI
lpsaall - n=oe I

oo Uypr
noo | Ll/ﬁvu' I

@ Ifg=1,cn'?Z,(1) = |l

B, o d
Q IfB>1,n2Z,(B) v ”L,l/[i./L’Hv HB,n
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The random energy model point of view

Suppose that E e(1T€)¢ < oo for some € > 0. Let 1/ be the critical
Mandelbrot measure. Suppose that the law of £ is non-lattice.

Q@ ifB €[0,1) then a.s., a non trivial Mandelbrot measure s is
B
(d) weakly  [Lj
% —_—
(2E ) n—sco o luslls s, n—oo || gl
M1,n  weakly in]P /LI
lpanll  nmee /|7
. ] L
38 ) ki d 1/8,u"
© IfB>1,n% Zy(B) =5 |ILiypull, mon "l TP

— .
n~oe byl

associated with Wjg,

@ If8=1,cn'?Z,1) jo Il

Theorem (Aidekon (2010), Webb (in the log-Gaussian case, 2011))

P(n3/2 max e % < z) — Eexp(—c|l/]/2).
oc
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Continuity of the critical Mandelbrot measure

Here we also assume that E W ¢ < oo for some ¢ > 0.

Theorem (B., Kupiainen, Nikula, Saksman, Webb (2012))
For any v € [0,1/2) we have

P
n’ max p'(l,) — 0 as n— oo,
oEY,

and for any vy € (1/2,00) we have

2 / LS
n” max yu'(l,) —> oo as n— oc.
oEY,

Almost surely the limit measure 1/ has no atoms.
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Modulus of continuity of the critical measure

Theorem (B., Kupiainen, Nikula, Saksman, Webb (2012))
For any ~ € (0,1/2), with probability 1, there exists C(w) € R* such that

W < € (log (1+ 1))

for all subintervals | of [0,1]. Moreover, one cannot take v > 1/2 in the
above statement.
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Application to the modulus of continuity of the subcritical

measure

Here we suppose that E W9 < oo for all g > 0. Set
©(q) =1+ log, E WY,

Notice that 0 < ¢(q) < 1 over (0,1) and ¢(0) = 0.
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Application to the modulus of continuity of the subcritical

measure

Here we suppose that E W9 < oo for all g > 0. Set
¢(q) =1+ log, EWT.

Notice that 0 < ¢(q) < 1 over (0,1) and ¢(0) = 0.
Recall that for 5 € (0,1), g is the Mandelbrot measure defined as

/lﬁ(la) = eﬁX(ﬂ) Yf(”)

Theorem (B., Kupiainen, Nikula, Saksman, Webb (2012))

Let 5 € (0,1) and v € (0,1/2). With probability 1, there exists
C(w) € R% such that

us(l) < C(w)|1|#®) (|og (1 . m))-wﬁ

for all subintervals | of [0, 1].

v
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L9-spectrum of the critical measure

For 8 > 0 set
Z,(B) = > W) =D XY (o) (recall that Z,(8) = > X)),
oEeY, o€y, oEY,

Theorem (Collet and Koukiou (1992), Waymire-Williams (1994), ...)
With probability 1,

1 ~ 1+log,(Ee) ifBeo,1),
= log, Z,
1082 (B) v {0 i8> 1
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L9-spectrum of the critical measure

Z,(B)= > 1 (l)".

oE€Y,

Q (deduced from Ossiander-Waymire (2000)) If 5 € [0,1) then a.s., a
non trivial Mandelbrot measure yus is associated with Wg,

Z,(5)
m nch E(H/ﬂﬁ)“ﬂﬂ“-
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L9-spectrum of the critical measure

Z,(B)= > 1 (l)".

oE€Y,

Q (deduced from Ossiander-Waymire (2000)) If 5 € [0,1) then a.s., a
non trivial Mandelbrot measure yus is associated with Wg,

Z,(5)
m nch E(H/ﬂﬁ)“ﬂﬂ“-

@ (B., Kupiainen, Nikula, Saksman, Webb (2012), log-gaussian case)
IFB =1, cn/2Z,(1) - ||1/].
n—o00
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L9-spectrum of the critical measure

Z,(B)= > 1 (l)".

oE€Y,

Q (deduced from Ossiander-Waymire (2000)) If 5 € [0,1) then a.s., a
non trivial Mandelbrot measure yus is associated with Wg,

Z,(5)
m nch E(H/ﬂﬁ)“ﬂﬂ“-

@ (B., Kupiainen, Nikula, Saksman, Webb (2012), log-gaussian case)
IFB=1, cn*2Z,1) - |14/
n—o0
© (B., Kupiainen, Nikula, Saksman, Webb (2012), log-gaussian case)
IfB>1, ¢nP?Zy(B) =5 Lyjs(lli):

J. Barral Recent advances in Mandelbrot martingales theory



