Recent advances in Mandelbrot martingales theory

Julien Barral, Université Paris Nord

Advances in Fractals and Related Topics, CUHK, September 2012

Let $\Sigma = \{0,1\}^{\mathbb{N}_+}$ and for $n \ge 1$, $\Sigma_n = \{0,1\}^n$. *W*: positive rv. with $\mathbb{E} W = 1/2$. $\{W(w)\}_{\sigma \in \bigcup_{n \ge 1} \Sigma_n}$ independent rv's equidistributed with *W*.

 $Y_n = \sum_{\sigma \in \Sigma_n} W(\sigma|_1) W(\sigma|_2) \cdots W(\sigma|_n)$ is a positive martingale

э

Let $\Sigma = \{0,1\}^{\mathbb{N}_+}$ and for $n \ge 1$, $\Sigma_n = \{0,1\}^n$. *W*: positive rv. with $\mathbb{E} W = 1/2$. $\{W(w)\}_{\sigma \in \bigcup_{n \ge 1} \Sigma_n}$ independent rv's equidistributed with *W*.

 $Y_n = \sum_{\sigma \in \Sigma_n} W(\sigma|_1) W(\sigma|_2) \cdots W(\sigma|_n)$ is a positive martingale

Let $Y = \lim_{n \to \infty} Y_n$. Writing

$$\begin{aligned} Y_{n+1} &= \sum_{j \in \{0,1\}} W(j) \times \sum_{\sigma \in \Sigma_n} W(j \cdot \sigma|_1) W(j \cdot \sigma|_2) \cdots W(j \cdot \sigma|_n) \\ &= W(0) Y_n(0) + W(1) Y_n(1) \end{aligned}$$

yields

Y = W(0) Y(0) + W(1) Y(1),

where $\{W(j), Y(j)\}_{j \in \{0,1\}}$ are independent, $W(j) \sim W$, $Y(j) \sim Y$. Moreover, $\mathbb{P}(Y > 0) \in \{0,1\}$.

Using this recursively yields the Mandelbrot random measure on [0,1]

 $\mu(I_{\sigma}) = W(\sigma|_1) W(\sigma|_2) \cdots W(\sigma|_{|\sigma|}) Y(\sigma).$

Theorem (Kahane (1976))

Let $Y = \lim_{n \to \infty} Y_n$. Writing

$$\begin{aligned} Y_{n+1} &= \sum_{j \in \{0,1\}} W(j) \times \sum_{\sigma \in \Sigma_n} W(j \cdot \sigma|_1) W(j \cdot \sigma|_2) \cdots W(j \cdot \sigma|_n) \\ &= W(0) Y_n(0) + W(1) Y_n(1) \end{aligned}$$

yields

Y = W(0) Y(0) + W(1) Y(1),

where $\{W(j), Y(j)\}_{j \in \{0,1\}}$ are independent, $W(j) \sim W$, $Y(j) \sim Y$. Moreover, $\mathbb{P}(Y > 0) \in \{0,1\}$.

Using this recursively yields the Mandelbrot random measure on [0,1]

 $\mu(I_{\sigma}) = W(\sigma|_1) W(\sigma|_2) \cdots W(\sigma|_{|\sigma|}) Y(\sigma).$

Theorem (Kahane (1976))

Let $Y = \lim_{n \to \infty} Y_n$. Writing

$$\begin{aligned} Y_{n+1} &= \sum_{j \in \{0,1\}} W(j) \times \sum_{\sigma \in \Sigma_n} W(j \cdot \sigma|_1) W(j \cdot \sigma|_2) \cdots W(j \cdot \sigma|_n) \\ &= W(0) Y_n(0) + W(1) Y_n(1) \end{aligned}$$

yields

Y = W(0) Y(0) + W(1) Y(1),

where $\{W(j), Y(j)\}_{j \in \{0,1\}}$ are independent, $W(j) \sim W$, $Y(j) \sim Y$. Moreover, $\mathbb{P}(Y > 0) \in \{0,1\}$.

Using this recursively yields the Mandelbrot random measure on [0,1]

$$\mu(I_{\sigma}) = W(\sigma|_1) W(\sigma|_2) \cdots W(\sigma|_{|\sigma|}) Y(\sigma).$$

Theorem (Kahane (1976))

Let $Y = \lim_{n \to \infty} Y_n$. Writing

$$\begin{aligned} Y_{n+1} &= \sum_{j \in \{0,1\}} W(j) \times \sum_{\sigma \in \Sigma_n} W(j \cdot \sigma|_1) W(j \cdot \sigma|_2) \cdots W(j \cdot \sigma|_n) \\ &= W(0) Y_n(0) + W(1) Y_n(1) \end{aligned}$$

yields

$$Y = W(0) Y(0) + W(1) Y(1),$$

where $\{W(j), Y(j)\}_{j \in \{0,1\}}$ are independent, $W(j) \sim W$, $Y(j) \sim Y$. Moreover, $\mathbb{P}(Y > 0) \in \{0,1\}$.

Using this recursively yields the Mandelbrot random measure on [0,1]

$$\mu(I_{\sigma}) = W(\sigma|_1) W(\sigma|_2) \cdots W(\sigma|_{|\sigma|}) Y(\sigma).$$

Theorem (Kahane (1976))

Mandelbrot martingales. Normalization and related equation

Natural questions arise:

● (Mandelbrot, 1974) When E W log W ≥ 0, does there exist A_n > 0 such that (Y_n/A_n) converges to a non-trivial limit Z, at least in distribution?

If so A_n/A_{n+1} converges to A, $0 < A < \infty$, and the limit satisfies

 $Z \stackrel{d}{=} A W(0) Z(0) + 1 W(1) Z(1)$

② (Durrett and Liggett, 1983) In general, what are the non-trivial solutions to

(E) $Z \stackrel{d}{=} W(0) Z(0) + W(1) Z(1)$?

Are there natural multifractal measures associated with solutions of (E)?

3

Mandelbrot martingales. Normalization and related equation

Natural questions arise:

● (Mandelbrot, 1974) When E W log W ≥ 0, does there exist A_n > 0 such that (Y_n/A_n) converges to a non-trivial limit Z, at least in distribution?

If so A_n/A_{n+1} converges to A, $0 < A < \infty$, and the limit satisfies

 $Z \stackrel{d}{=} A W(0) Z(0) + 1 W(1) Z(1)$

(Durrett and Liggett, 1983) In general, what are the non-trivial solutions to

(E) $Z \stackrel{d}{=} W(0) Z(0) + W(1) Z(1)$?

Are there natural multifractal measures associated with solutions of (E)?

Mandelbrot martingales. Normalization and related equation

Natural questions arise:

● (Mandelbrot, 1974) When E W log W ≥ 0, does there exist A_n > 0 such that (Y_n/A_n) converges to a non-trivial limit Z, at least in distribution?

If so A_n/A_{n+1} converges to A, $0 < A < \infty$, and the limit satisfies

 $Z \stackrel{d}{=} A W(0) Z(0) + 1 W(1) Z(1)$

(Durrett and Liggett, 1983) In general, what are the non-trivial solutions to

(E) $Z \stackrel{d}{=} W(0) Z(0) + W(1) Z(1)$?

Are there natural multifractal measures associated with solutions of (E)?

Suppose that $\mathbb{E} W \log W = 0$. For all $\beta \in [0, 1)$, set

$$W_{eta} = rac{W^{eta}}{2 \, \mathbb{E} \, W^{eta}}.$$
 It satisfies $egin{cases} \mathbb{E} \, W_{eta} = 1/2, \ \mathbb{E} \, W_{eta} \log W_{eta} < 0 \end{cases}$

Define

$$Y_n(eta) = \sum_{\sigma \in \Sigma_n} W_eta(\sigma|_1) W_eta(\sigma|_2) \cdots W_eta(\sigma|_n) ext{ and } Y'_n = -rac{\mathrm{d}}{\mathrm{d}eta} Y_n(eta).$$

Theorem (Biggins-Kyprianou (1997), Liu (2000))

If $\mathbb{E} W^{1+\epsilon} < \infty$ for some $\epsilon > 0$, then (Y'_n) converges almost surely to Y', Y' = W(0) Y'(0) + W(1) Y'(1), $\mathbb{E} Y' = \infty$.

This yields a.s. on [0,1] the "critical" measure

 $\mu'(I_{\sigma}) = W(\sigma|_1) W(\sigma|_2) \cdots W(\sigma|_{|\sigma|}) Y'(\sigma).$

Suppose that $\mathbb{E} W \log W = 0$. For all $\beta \in [0, 1)$, set

$$W_{eta} = rac{W^{eta}}{2 \, \mathbb{E} \, W^{eta}}.$$
 It satisfies $egin{cases} \mathbb{E} \ W_{eta} = 1/2, \ \mathbb{E} \ W_{eta} \log W_{eta} < 0 \end{cases}$

Define

$$Y_n(eta) = \sum_{\sigma \in \Sigma_n} W_eta(\sigma|_1) W_eta(\sigma|_2) \cdots W_eta(\sigma|_n) \text{ and } Y'_n = -rac{\mathrm{d}}{\mathrm{d}\beta} Y_n(eta).$$

Theorem (Biggins-Kyprianou (1997), Liu (2000))

If $\mathbb{E} W^{1+\epsilon} < \infty$ for some $\epsilon > 0$, then (Y'_n) converges almost surely to Y', Y' = W(0) Y'(0) + W(1) Y'(1), $\mathbb{E} Y' = \infty$.

This yields a.s. on [0,1] the "critical" measure

 $\mu'(I_{\sigma}) = W(\sigma|_1) W(\sigma|_2) \cdots W(\sigma|_{|\sigma|}) Y'(\sigma).$

Suppose that $\mathbb{E} W \log W = 0$. For all $\beta \in [0, 1)$, set

$$W_{eta} = rac{W^{eta}}{2 \, \mathbb{E} \, W^{eta}}.$$
 It satisfies $egin{cases} \mathbb{E} \ W_{eta} = 1/2, \ \mathbb{E} \ W_{eta} \log W_{eta} < 0 \end{cases}$

Define

$$Y_n(\beta) = \sum_{\sigma \in \Sigma_n} W_\beta(\sigma|_1) W_\beta(\sigma|_2) \cdots W_\beta(\sigma|_n) \text{ and } Y'_n = -\frac{\mathrm{d}}{\mathrm{d}\beta} Y_n(\beta).$$

Theorem (Biggins-Kyprianou (1997), Liu (2000))

If $\mathbb{E} W^{1+\epsilon} < \infty$ for some $\epsilon > 0$, then (Y'_n) converges almost surely to Y', Y' = W(0) Y'(0) + W(1) Y'(1), $\mathbb{E} Y' = \infty$.

This yields a.s. on [0,1] the "critical" measure

 $\mu'(I_{\sigma}) = W(\sigma|_1) W(\sigma|_2) \cdots W(\sigma|_{|\sigma|}) Y'(\sigma).$

Suppose that $\mathbb{E} W \log W = 0$. For all $\beta \in [0, 1)$, set

$$W_{eta} = rac{W^{eta}}{2 \mathbb{E} W^{eta}}.$$
 It satisfies $egin{cases} \mathbb{E} \ W_{eta} = 1/2, \ \mathbb{E} \ W_{eta} \log W_{eta} < 0 \end{cases}$

Define

$$Y_n(eta) = \sum_{\sigma \in \Sigma_n} W_eta(\sigma|_1) W_eta(\sigma|_2) \cdots W_eta(\sigma|_n) ext{ and } Y'_n = -rac{\mathrm{d}}{\mathrm{d}eta} Y_n(eta).$$

Theorem (Biggins-Kyprianou (1997), Liu (2000))

If $\mathbb{E} W^{1+\epsilon} < \infty$ for some $\epsilon > 0$, then (Y'_n) converges almost surely to Y', Y' = W(0) Y'(0) + W(1) Y'(1), $\mathbb{E} Y' = \infty$.

This yields a.s. on [0,1] the "critical" measure

$$\mu'(I_{\sigma}) = W(\sigma|_1) W(\sigma|_2) \cdots W(\sigma|_{|\sigma|}) Y'(\sigma).$$

Suppose that $\mathbb{E} W^{1+\epsilon} < \infty$ for some $\epsilon > 0$.

- If E W log W < 0 (resp. E W log W = 0), Durrett and Liggett prove that up to multiplicative positive constant the unique solution to (E) is Y = ||µ|| (resp. Y' = ||µ'||).
- If the distribution of log(W) is non-lattice and E W log W > 0, let β be the unique solution of E W^β = 1/2 in (0,1). Setting W = W^β, we have E W log W > 0. This yields a non-degenerate Mandelbrot measure μ. Durrett and Liggett prove that the unique solutions to the functional equation (E) : are, up to a positive constant, of the form L_β(||μ||), where L_β is a stable Lévy subordinator of index β.
- If the distribution of log(W) is non-lattice and $\mathbb{E} W \log W > 0$, but $\mathbb{E} W \neq 1/2$, then other kind of solutions appear, all reducible to the form $L_{\beta}(\|\widetilde{\mu}'\|)$, where $\|\widetilde{\mu}'\|$ is a critical Mandelbrot measure independent of L_{β} .

Suppose that $\mathbb{E} W^{1+\epsilon} < \infty$ for some $\epsilon > 0$.

- If E W log W < 0 (resp. E W log W = 0), Durrett and Liggett prove that up to multiplicative positive constant the unique solution to (E) is Y = ||µ|| (resp. Y' = ||µ'||).
- If the distribution of log(W) is non-lattice and E W log W > 0, let β be the unique solution of E W^β = 1/2 in (0, 1). Setting W = W^β, we have E W log W > 0. This yields a non-degenerate Mandelbrot measure μ. Durrett and Liggett prove that the unique solutions to the functional equation (E) : are, up to a positive constant, of the form L_β(||μ||), where L_β is a stable Lévy subordinator of index β.
- If the distribution of log(W) is non-lattice and $\mathbb{E} W \log W > 0$, but $\mathbb{E} W \neq 1/2$, then other kind of solutions appear, all reducible to the form $L_{\beta}(\|\widetilde{\mu}'\|)$, where $\|\widetilde{\mu}'\|$ is a critical Mandelbrot measure independent of L_{β} .

Suppose that $\mathbb{E} W^{1+\epsilon} < \infty$ for some $\epsilon > 0$.

- If E W log W < 0 (resp. E W log W = 0), Durrett and Liggett prove that up to multiplicative positive constant the unique solution to (E) is Y = ||µ|| (resp. Y' = ||µ'||).
- If the distribution of log(W) is non-lattice and E W log W > 0, let β be the unique solution of E W^β = 1/2 in (0, 1).

Setting $W = W^{\beta}$, we have $\mathbb{E} W \log W > 0$. This yields a non-degenerate Mandelbrot measure $\tilde{\mu}$. Durrett and Liggett prove that the unique solutions to the functional equation (E): are, up to a positive constant, of the form $L_{\beta}(||\tilde{\mu}||)$, where L_{β} is a stable Lévy subordinator of index β .

• If the distribution of log(W) is non-lattice and $\mathbb{E} W \log W > 0$, but $\mathbb{E} W \neq 1/2$, then other kind of solutions appear, all reducible to the form $L_{\beta}(\|\widetilde{\mu}'\|)$, where $\|\widetilde{\mu}'\|$ is a critical Mandelbrot measure independent of L_{β} .

Suppose that $\mathbb{E} W^{1+\epsilon} < \infty$ for some $\epsilon > 0$.

- If E W log W < 0 (resp. E W log W = 0), Durrett and Liggett prove that up to multiplicative positive constant the unique solution to (E) is Y = ||µ|| (resp. Y' = ||µ'||).
- If the distribution of log(W) is non-lattice and E W log W > 0, let β be the unique solution of E W^β = 1/2 in (0, 1).
 Setting W = W^β, we have E W log W > 0. This yields a non-degenerate Mandelbrot measure μ. Durrett and Liggett prove that the unique solutions to the functional equation (E) : are, up to a positive constant, of the form L_β(||μ||), where L_β is a stable Lévy subordinator of index β.
- If the distribution of log(W) is non-lattice and $\mathbb{E} W \log W > 0$, but $\mathbb{E} W \neq 1/2$, then other kind of solutions appear, all reducible to the form $L_{\beta}(\|\widetilde{\mu}'\|)$, where $\|\widetilde{\mu}'\|$ is a critical Mandelbrot measure independent of L_{β} .

Suppose that $\mathbb{E} W^{1+\epsilon} < \infty$ for some $\epsilon > 0$.

- If E W log W < 0 (resp. E W log W = 0), Durrett and Liggett prove that up to multiplicative positive constant the unique solution to (E) is Y = ||µ|| (resp. Y' = ||µ'||).
- If the distribution of log(W) is non-lattice and E W log W > 0, let β be the unique solution of E W^β = 1/2 in (0, 1). Setting W = W^β, we have E W log W > 0. This yields a non-degenerate Mandelbrot measure μ. Durrett and Liggett prove that the unique solutions to the functional equation (E) : are, up to a positive constant, of the form L_β(||μ||), where L_β is a stable Lévy subordinator of index β.
- If the distribution of log(W) is non-lattice and $\mathbb{E} W \log W > 0$, but $\mathbb{E} W \neq 1/2$, then other kind of solutions appear, all reducible to the form $L_{\beta}(\|\tilde{\mu}'\|)$, where $\|\tilde{\mu}'\|$ is a critical Mandelbrot measure independent of L_{β} .

There are 4 kind of natural measures associated with (*E*), each providing a nice candidate to illustrate the multifractal formalism. Each satisfies for all $n \ge 1$

 $(\nu(I_{\sigma}))_{\sigma\in\Sigma_n}\stackrel{d}{=} (W(\sigma|_1)W(\sigma|_2)\cdots W(\sigma|_n)Z(\sigma))_{\sigma\in\Sigma_n}.$

- Mandelbrot measures μ (studied by many authors: Holley-Waymire (1992), Falconer (1996), Molchan (1996), B. (2000))
- Critical Mandelbrot measures μ' (studied by B. (2000)), with the question of existence of atoms left opened.
- $L'_{\beta,\mu}$: the derivative of the Lévy process L_{β} in multifractal Mandelbrot time $\mu([0, t])$ (studied by Jaffard (1999) when μ is the Lebesgue mesure, and in general by B.-Seuret (2007)).
- L'_{β,µ'}: the derivative of the Lévy process L_β in multifractal critical Mandelbrot time μ'([0, t]).

(4回) (4回) (4回)

There are 4 kind of natural measures associated with (*E*), each providing a nice candidate to illustrate the multifractal formalism. Each satisfies for all $n \ge 1$

 $(\nu(I_{\sigma}))_{\sigma\in\Sigma_n}\stackrel{d}{=} (W(\sigma|_1)W(\sigma|_2)\cdots W(\sigma|_n)Z(\sigma))_{\sigma\in\Sigma_n}.$

- Mandelbrot measures μ (studied by many authors: Holley-Waymire (1992), Falconer (1996), Molchan (1996), B. (2000))
- Critical Mandelbrot measures μ' (studied by B. (2000)), with the question of existence of atoms left opened.
- L'_{β,μ}: the derivative of the Lévy process L_β in multifractal Mandelbrot time μ([0, t]) (studied by Jaffard (1999) when μ is the Lebesgue mesure, and in general by B.-Seuret (2007)).
- L'_{β,µ'}: the derivative of the Lévy process L_β in multifractal critical Mandelbrot time μ'([0, t]).

(4 回) (4 回) (4 回)

э

There are 4 kind of natural measures associated with (*E*), each providing a nice candidate to illustrate the multifractal formalism. Each satisfies for all $n \ge 1$

 $(\nu(I_{\sigma}))_{\sigma\in\Sigma_n}\stackrel{d}{=} (W(\sigma|_1)W(\sigma|_2)\cdots W(\sigma|_n)Z(\sigma))_{\sigma\in\Sigma_n}.$

- Mandelbrot measures μ (studied by many authors: Holley-Waymire (1992), Falconer (1996), Molchan (1996), B. (2000))
- Critical Mandelbrot measures μ' (studied by B. (2000)), with the question of existence of atoms left opened.
- L'_{β,μ}: the derivative of the Lévy process L_β in multifractal Mandelbrot time μ([0, t]) (studied by Jaffard (1999) when μ is the Lebesgue mesure, and in general by B.-Seuret (2007)).
- L'_{β,µ'}: the derivative of the Lévy process L_β in multifractal critical Mandelbrot time μ'([0, t]).

周天 人居天 人居天 二日

There are 4 kind of natural measures associated with (*E*), each providing a nice candidate to illustrate the multifractal formalism. Each satisfies for all $n \ge 1$

$$(\nu(I_{\sigma}))_{\sigma\in\Sigma_n} \stackrel{d}{=} (W(\sigma|_1)W(\sigma|_2)\cdots W(\sigma|_n)Z(\sigma))_{\sigma\in\Sigma_n}$$

- Mandelbrot measures μ (studied by many authors: Holley-Waymire (1992), Falconer (1996), Molchan (1996), B. (2000))
- Critical Mandelbrot measures μ' (studied by B. (2000)), with the question of existence of atoms left opened.
- L'_{β,μ}: the derivative of the Lévy process L_β in multifractal Mandelbrot time μ([0, t]) (studied by Jaffard (1999) when μ is the Lebesgue mesure, and in general by B.-Seuret (2007)).
- L'_{β,µ'}: the derivative of the Lévy process L_β in multifractal critical Mandelbrot time μ'([0, t]).

- A 🗐 🕨

Theorem (Aidekon and Shi, Webb (log-gaussian case), (2011))

Suppose that $\mathbb{E} W \log W = 0$ and $\mathbb{E} W^{1+\epsilon} < \infty$ for some $\epsilon > 0$. Then, there exists c > 0 such that

$$c n^{1/2} Y_n \xrightarrow[n \to \infty]{\mathbb{P}} Y'.$$

Suppose that $\mathbb{E} W \log W > 0$. The normalization problem is closely related to the critical case. Once again for all $\beta \in [0, 1]$, set

$$W_{\beta} = \frac{W^{\beta}}{2 \mathbb{E} W^{\beta}}. \text{ It satisfies } \begin{cases} \mathbb{E} W_{\beta} = 1/2, \\ f(\beta) = \mathbb{E} W_{\beta} \log W_{\beta} \text{ is increasing}, \\ f(0) = -\log(2)/2 < 0, \ f(1) = \mathbb{E} W \log W > 0 \end{cases}$$

There is a unique $eta_0\in(0,1)$ such that \mathbb{E} W_{eta_0} log $W_{eta_0}=0.$

Theorem (Madaule, Webb (log-gaussian case) (2011))

Suppose that $\mathbb{E} W \log W > 0$, $\mathbb{E} W^{1+\epsilon} < \infty$ for some $\epsilon > 0$, and the distribution of $\log W$ is non-lattice. Then

$$n^{rac{3}{2eta_0}} c^n Y_n \stackrel{d}{\longrightarrow} Z > 0,$$

Suppose that $\mathbb{E} W \log W > 0$. The normalization problem is closely related to the critical case. Once again for all $\beta \in [0, 1]$, set

$$W_{\beta} = \frac{W^{\beta}}{2\mathbb{E} W^{\beta}}. \text{ It satisfies } \begin{cases} \mathbb{E} W_{\beta} = 1/2, \\ f(\beta) = \mathbb{E} W_{\beta} \log W_{\beta} \text{ is increasing}, \\ f(0) = -\log(2)/2 < 0, \ f(1) = \mathbb{E} W \log W > 0 \end{cases}$$

There is a unique $eta_0\in(0,1)$ such that \mathbb{E} W_{eta_0} log $W_{eta_0}=0.$

Theorem (Madaule, Webb (log-gaussian case) (2011))

Suppose that $\mathbb{E} W \log W > 0$, $\mathbb{E} W^{1+\epsilon} < \infty$ for some $\epsilon > 0$, and the distribution of $\log W$ is non-lattice. Then

$$n^{rac{3}{2eta_0}} c^n Y_n \stackrel{d}{\longrightarrow} Z > 0,$$

Suppose that $\mathbb{E} W \log W > 0$. The normalization problem is closely related to the critical case. Once again for all $\beta \in [0, 1]$, set

 $W_{\beta} = \frac{W^{\beta}}{2\mathbb{E} W^{\beta}}. \text{ It satisfies } \begin{cases} \mathbb{E} W_{\beta} = 1/2, \\ f(\beta) = \mathbb{E} W_{\beta} \log W_{\beta} \text{ is increasing}, \\ f(0) = -\log(2)/2 < 0, \ f(1) = \mathbb{E} W \log W > 0 \end{cases}$

There is a unique $eta_0\in(0,1)$ such that \mathbb{E} W_{eta_0} log $W_{eta_0}=0.$

Theorem (Madaule, Webb (log-gaussian case) (2011))

Suppose that $\mathbb{E} W \log W > 0$, $\mathbb{E} W^{1+\epsilon} < \infty$ for some $\epsilon > 0$, and the distribution of $\log W$ is non-lattice. Then

$$n^{rac{3}{2eta_0}} c^n Y_n \stackrel{d}{\longrightarrow} Z > 0,$$

Suppose that $\mathbb{E} W \log W > 0$. The normalization problem is closely related to the critical case. Once again for all $\beta \in [0, 1]$, set

$$W_{\beta} = \frac{W^{\beta}}{2 \mathbb{E} W^{\beta}}. \text{ It satisfies } \begin{cases} \mathbb{E} W_{\beta} = 1/2, \\ f(\beta) = \mathbb{E} W_{\beta} \log W_{\beta} \text{ is increasing}, \\ f(0) = -\log(2)/2 < 0, \ f(1) = \mathbb{E} W \log W > 0 \end{cases}$$

There is a unique $eta_0\in(0,1)$ such that \mathbb{E} W_{eta_0} log $W_{eta_0}=0.$

Theorem (Madaule, Webb (log-gaussian case) (2011))

Suppose that $\mathbb{E} W \log W > 0$, $\mathbb{E} W^{1+\epsilon} < \infty$ for some $\epsilon > 0$, and the distribution of $\log W$ is non-lattice. Then

$$n^{rac{3}{2eta_0}} c^n Y_n \stackrel{d}{\underset{n o \infty}{\longrightarrow}} Z > 0,$$

Suppose that $\mathbb{E} W \log W > 0$. The normalization problem is closely related to the critical case. Once again for all $\beta \in [0, 1]$, set

$$W_{\beta} = \frac{W^{\beta}}{2 \mathbb{E} W^{\beta}}. \text{ It satisfies } \begin{cases} \mathbb{E} W_{\beta} = 1/2, \\ f(\beta) = \mathbb{E} W_{\beta} \log W_{\beta} \text{ is increasing}, \\ f(0) = -\log(2)/2 < 0, \ f(1) = \mathbb{E} W \log W > 0 \end{cases}$$

There is a unique $eta_0\in(0,1)$ such that \mathbb{E} W_{eta_0} log $W_{eta_0}=0.$

Theorem (Madaule, Webb (log-gaussian case) (2011))

Suppose that $\mathbb{E} W \log W > 0$, $\mathbb{E} W^{1+\epsilon} < \infty$ for some $\epsilon > 0$, and the distribution of $\log W$ is non-lattice. Then

$$n^{rac{3}{2eta_0}} c^n Y_n \stackrel{d}{\longrightarrow} Z > 0,$$

Suppose that $\mathbb{E} W \log W > 0$. The normalization problem is closely related to the critical case. Once again for all $\beta \in [0, 1]$, set

$$W_{\beta} = \frac{W^{\beta}}{2 \mathbb{E} W^{\beta}}. \text{ It satisfies } \begin{cases} \mathbb{E} W_{\beta} = 1/2, \\ f(\beta) = \mathbb{E} W_{\beta} \log W_{\beta} \text{ is increasing}, \\ f(0) = -\log(2)/2 < 0, \ f(1) = \mathbb{E} W \log W > 0 \end{cases}$$

There is a unique $\beta_0 \in (0,1)$ such that $\mathbb{E} W_{\beta_0} \log W_{\beta_0} = 0$.

Theorem (Madaule, Webb (log-gaussian case) (2011))

Suppose that $\mathbb{E} W \log W > 0$, $\mathbb{E} W^{1+\epsilon} < \infty$ for some $\epsilon > 0$, and the distribution of $\log W$ is non-lattice. Then

$$n^{rac{3}{2eta_0}} c^n Y_n \stackrel{d}{\underset{n o \infty}{\longrightarrow}} Z > 0,$$

Suppose that $\mathbb{E} W \log W > 0$. The normalization problem is closely related to the critical case. Once again for all $\beta \in [0, 1]$, set

$$W_{\beta} = \frac{W^{\beta}}{2 \mathbb{E} W^{\beta}}. \text{ It satisfies } \begin{cases} \mathbb{E} W_{\beta} = 1/2, \\ f(\beta) = \mathbb{E} W_{\beta} \log W_{\beta} \text{ is increasing}, \\ f(0) = -\log(2)/2 < 0, \ f(1) = \mathbb{E} W \log W > 0 \end{cases}$$

There is a unique $\beta_0 \in (0, 1)$ such that $\mathbb{E} W_{\beta_0} \log W_{\beta_0} = 0$.

Theorem (Madaule, Webb (log-gaussian case) (2011))

Suppose that $\mathbb{E} W \log W > 0$, $\mathbb{E} W^{1+\epsilon} < \infty$ for some $\epsilon > 0$, and the distribution of $\log W$ is non-lattice. Then

$$n^{rac{3}{2eta_0}} c^n Y_n \stackrel{d}{\underset{n o \infty}{\longrightarrow}} Z > 0,$$

Normalization of Y_n

We summarize.

Theorem (Aidekon and Shi (2011), Webb (2011))

Suppose that $\mathbb{E} W \log W = 0$ and $\mathbb{E} W^{1+\epsilon} < \infty$ for some $\epsilon > 0$. Then, there exists a $c_W > 0$ such that

$$c n^{1/2} Y_n \xrightarrow[n \to \infty]{\mathbb{P}} Y'.$$

Theorem (Webb (log-gaussian case), Madaule (2011))

Suppose that $\mathbb{E} W \log W > 0$, $\mathbb{E} W^{1+\epsilon} < \infty$ for some $\epsilon > 0$, and the distribution of log W is non-lattice. Then there exists a unique $\beta \in (0,1)$ such that

$$n^{rac{3}{2\beta}} c^n Y_n \stackrel{d}{\longrightarrow} Z > 0,$$

where $c = (2 \mathbb{E} W^{\beta})^{-1/\beta}$ and $Z \stackrel{d}{=} c W(0) Z(0) + c W(1) Z(1)$ (recall that β is the unique solution of $\mathbb{E} W_{\beta} \log W_{\beta} = 0$ in (0, 1)).

Recall: let

$\mu_n(I_{\sigma}) = W(\sigma|_1) \, W(\sigma|_2) \cdots W(\sigma|_{|\sigma|}) \quad \text{for } \sigma \in \Sigma_n.$

If $\mathbb{E} W \log W \ge 0$ then almost surely the martingale $\mu_n \stackrel{weakly}{\longrightarrow} \mu = 0$ as $n \to \infty$.

Recall: let

$\mu_n(I_{\sigma}) = W(\sigma|_1) W(\sigma|_2) \cdots W(\sigma|_{|\sigma|}) \quad \text{for } \sigma \in \Sigma_n.$

If $\mathbb{E} W \log W \ge 0$ then almost surely the martingale $\mu_n \xrightarrow{\text{weakly}} \mu = 0$ as $n \to \infty$.

Identification of the limit for the associated measures

$$\mu_n(I_{\sigma}) = W(\sigma|_1) W(\sigma|_2) \cdots W(\sigma|_{|\sigma|}) \quad \text{for } \sigma \in \Sigma_n.$$

Theorem

Suppose that $\mathbb{E} W \log W \ge 0$, $\mathbb{E} W^{1+\epsilon} < \infty$ for some $\epsilon > 0$, and the distribution of $\log W$ is non-lattice.

● (Johnson and Waymire, 2011) If $\mathbb{E} W \log W = 0$ then,

$$c n^{1/2} \mu_n \overset{\text{weakly in } \mathbb{P}}{\underset{n \to \infty}{\longrightarrow}} \mu'.$$

② (B., Rhodes and Vargas, 2012) If E W log W > 0, let β ∈ (0,1) such that E W_β log W_β = 0, where W_β = ^{W^β}/_{2E W^β}. Let μ'_β the associate critical measure. We have

$$n^{rac{3}{2eta}} \, c^n \, \mu_n \stackrel{\text{weakly in } d}{\underset{n o \infty}{\longrightarrow}} L'_{eta, \mu'_{eta}}$$

Identification of the limit for the associated measures

$$\mu_n(I_{\sigma}) = W(\sigma|_1) W(\sigma|_2) \cdots W(\sigma|_{|\sigma|}) \quad \text{for } \sigma \in \Sigma_n.$$

Theorem

Suppose that $\mathbb{E} W \log W \ge 0$, $\mathbb{E} W^{1+\epsilon} < \infty$ for some $\epsilon > 0$, and the distribution of log W is non-lattice.

● (Johnson and Waymire, 2011) If $\mathbb{E} W \log W = 0$ then,

$$c n^{1/2} \mu_n \xrightarrow[n \to \infty]{\text{weakly in } \mathbb{P}} \mu'.$$

② (B., Rhodes and Vargas, 2012) If E W log W > 0, let β ∈ (0,1) such that E W_β log W_β = 0, where W_β = ^{W^β}/_{2EW^β}. Let μ'_β the associate critical measure. We have

$$n^{rac{3}{2eta}} c^n \mu_n \overset{\text{weakly in } d}{\underset{n o \infty}{\longrightarrow}} L'_{eta,\mu'_{eta}}$$

Identification of the limit for the associated measures

$$\mu_n(I_{\sigma}) = W(\sigma|_1) W(\sigma|_2) \cdots W(\sigma|_{|\sigma|}) \quad \text{for } \sigma \in \Sigma_n.$$

Theorem

Suppose that $\mathbb{E} W \log W \ge 0$, $\mathbb{E} W^{1+\epsilon} < \infty$ for some $\epsilon > 0$, and the distribution of $\log W$ is non-lattice.

● (Johnson and Waymire, 2011) If $\mathbb{E} W \log W = 0$ then,

$$c n^{1/2} \mu_n \xrightarrow[n \to \infty]{\text{weakly in } \mathbb{P}} \mu'.$$

② (B., Rhodes and Vargas, 2012) If E W log W > 0, let β ∈ (0,1) such that E W_β log W_β = 0, where W_β = ^{W^β}/_{2EW^β}. Let μ'_β the associate critical measure. We have

$$n^{rac{3}{2eta}} \operatorname{c}^n \mu_n \overset{\operatorname{weakly in } d}{\underset{n o \infty}{\longrightarrow}} L'_{\beta,\mu'_{\beta}}.$$

Another natural normalization

$$\mu_n(I_{\sigma}) = W(\sigma|_1) W(\sigma|_2) \cdots W(\sigma|_{|\sigma|}) \quad \text{for } \sigma \in \Sigma_n.$$

Corollary

Suppose that $\mathbb{E} W \log W \ge 0$, $\mathbb{E} W^{1+\epsilon} < \infty$ for some $\epsilon > 0$.

(Johnson and Waymire, 2011) If $\mathbb{E} W \log W = 0$ then,

$$\frac{\mu_n}{\|\mu_n\|} \xrightarrow[n \to \infty]{\text{weakly in } \mathbb{P}} \frac{\mu'}{\|\mu'\|}.$$

2 (B., Rhodes, Vargas, 2012) If $\mathbb{E} W \log W > 0$ and the distribution of log W is non-lattice, then

$$\frac{\mu_n}{\|\mu_n\|} \stackrel{\text{weakly in d}}{\longrightarrow} \frac{L'_{\beta,\mu'_\beta}}{\|L'_{\beta,\mu'_\beta}\|}.$$

Another natural normalization

$$\mu_n(I_{\sigma}) = W(\sigma|_1) W(\sigma|_2) \cdots W(\sigma|_{|\sigma|}) \quad \text{for } \sigma \in \Sigma_n.$$

Corollary

Suppose that $\mathbb{E} W \log W \ge 0$, $\mathbb{E} W^{1+\epsilon} < \infty$ for some $\epsilon > 0$.

(Johnson and Waymire, 2011) If $\mathbb{E} W \log W = 0$ then,

$$\frac{\mu_n}{\|\mu_n\|} \xrightarrow[n \to \infty]{\text{weakly in } \mathbb{P}} \frac{\mu'}{\|\mu'\|}.$$

2 (B., Rhodes, Vargas, 2012) If $\mathbb{E} W \log W > 0$ and the distribution of log W is non-lattice, then

$$\frac{\mu_n}{\|\mu_n\|} \xrightarrow[n \to \infty]{\text{weakly in } d} \frac{L'_{\beta,\mu'_\beta}}{\|L'_{\beta,\mu'_\beta}\|}.$$

Assume that W is normalized to $\mathbb{E} W \log W = 0$. Write

$$W(\sigma) = e^{\xi(\sigma)}, \ W(\sigma|_1)W(\sigma|_2)\cdots W(\sigma|_{\sigma|}) = e^{X(\sigma)}, \ X(\sigma) = \sum_{i=1}^n \xi(\sigma|_k).$$

Define the partition function

$$\beta \ge 0 \mapsto Z_n(\beta) = \sum_{\sigma \in \Sigma_n} e^{\beta X(\sigma)}$$

and for each $\beta \geq 0$ consider the sequence of Gibbs measures

$$\mu_{\beta,n}(I_{\sigma}) = \frac{e^{\beta X(\sigma)}}{Z_n(\beta)}.$$

Suppose that $\mathbb{E} e^{(1+\epsilon)\xi} < \infty$ for some $\epsilon > 0$.

Theorem (Collet and Koukiou (1992), Waymire-Williams (1994), ...)

With probability 1,

$$\frac{1}{n}\log Z_n(\beta) \xrightarrow[n\to\infty]{} \begin{cases} \log(2\mathbb{E}\,e^{\beta\xi}) & \text{if } \beta\in[0,1), \\ 0 & \text{if } \beta\geq 1 \end{cases}$$

Suppose that $\mathbb{E} e^{(1+\epsilon)\xi} < \infty$ for some $\epsilon > 0$. Let μ' be the critical Mandelbrot measure. Suppose that the law of ξ is non-lattice.

$$\mathbb{P}(n^{3/2} \max_{\sigma \in \Sigma_n} e^{X_{\sigma}} \leq z) \mathop{\longrightarrow}\limits_{n \to \infty} \mathbb{E} \exp(-c \|\mu'\|/z).$$

Suppose that $\mathbb{E} e^{(1+\epsilon)\xi} < \infty$ for some $\epsilon > 0$. Let μ' be the critical Mandelbrot measure. Suppose that the law of ξ is non-lattice.

$$\mathbb{P}(n^{3/2} \max_{\sigma \in \Sigma_n} e^{X_{\sigma}} \leq z) \mathop{\longrightarrow}\limits_{n \to \infty} \mathbb{E} \exp(-c \|\mu'\|/z).$$

Suppose that $\mathbb{E} e^{(1+\epsilon)\xi} < \infty$ for some $\epsilon > 0$. Let μ' be the critical Mandelbrot measure. Suppose that the law of ξ is non-lattice.

TheoremIf $\beta \in [0, 1)$ then a.s., a non trivial Mandelbrot measure μ_{β} is associated with W_{β} , $\frac{Z_n(\beta)}{(2\mathbb{E} e^{\beta\xi})^n} \xrightarrow[n \to \infty]{} \|\mu_{\beta}\|, \ \mu_{\beta,n} \xrightarrow[n \to \infty]{} \frac{\mu_{\beta}}{\|\mu_{\beta}\|}.$ If $\beta = 1$, $c n^{1/2} Z_n(1) \xrightarrow[n \to \infty]{} \|\mu'\|, \ \frac{\mu_{1,n}}{\|\mu_{1,n}\|} \xrightarrow[n \to \infty]{} \frac{\mu'}{\|\mu'\|}.$ If $\beta > 1$, $n^{\frac{3\beta}{2}} Z_n(\beta) \xrightarrow[n \to \infty]{} \|L'_{1/\beta,\mu'}\|, \ \mu_{\beta,n} \xrightarrow[n \to \infty]{} \frac{L'_{1/\beta,\mu'}}{\|L'_{1/\beta,\mu'}\|}.$

$$\mathbb{P}(n^{3/2} \max_{\sigma \in \Sigma_n} e^{X_{\sigma}} \leq z) \mathop{\longrightarrow}\limits_{n \to \infty} \mathbb{E} \exp(-c \|\mu'\|/z).$$

Suppose that $\mathbb{E} e^{(1+\epsilon)\xi} < \infty$ for some $\epsilon > 0$. Let μ' be the critical Mandelbrot measure. Suppose that the law of ξ is non-lattice.

Theorem

if β ∈ [0,1) then a.s., a non trivial Mandelbrot measure μ_β is associated with W_β, Z_n(β)/(2 E e^{βξ})ⁿ → ||μ_β||, μ_{β,n} weakly μ_β/||μ_β||.
If β = 1, c n^{1/2}Z_n(1) → ||μ'||, μ_{1,n} weakly in μ'/(n→∞) ||μ'||.
If β > 1, n^{3β/2}Z_n(β) → ||L'_{1/β,μ'}||, μ_{β,n} weakly in d/(n→∞) ||L'_{1/β,μ'}||.

$$\mathbb{P}(n^{3/2} \max_{\sigma \in \Sigma_n} e^{X_{\sigma}} \leq z) \mathop{\longrightarrow}\limits_{n \to \infty} \mathbb{E} \exp(-c \|\mu'\|/z).$$

Suppose that $\mathbb{E} e^{(1+\epsilon)\xi} < \infty$ for some $\epsilon > 0$. Let μ' be the critical Mandelbrot measure. Suppose that the law of ξ is non-lattice.

Theorem

if β ∈ [0,1) then a.s., a non trivial Mandelbrot measure μ_β is associated with W_β, Z_n(β)/(2 E e^{βξ})ⁿ → ||μ_β||, μ_β, μ_β, weakly μ_β/||μ_β||.
If β = 1, c n^{1/2}Z_n(1) → ||μ'||, μ_{1,n} weakly in μ'/(n→∞) ||μ'||.
If β > 1, n^{3β/2}Z_n(β) → ||L'_{1/β,μ'}||, μ_β, weakly in d L'_{1/β,μ'}||.

$$\mathbb{P}(n^{3/2} \max_{\sigma \in \Sigma_n} e^{X_{\sigma}} \leq z) \mathop{\longrightarrow}_{n \to \infty} \mathbb{E} \exp(-c \|\mu'\|/z).$$

Continuity of the critical Mandelbrot measure

Here we also assume that $\mathbb{E} W^{-\epsilon} < \infty$ for some $\epsilon > 0$.

Theorem (B., Kupiainen, Nikula, Saksman, Webb (2012))

For any $\gamma \in [0, 1/2)$ we have

$$n^{\gamma} \max_{\sigma \in \Sigma_n} \mu'(I_{\sigma}) \stackrel{\mathbb{P}}{\longrightarrow} 0 \quad \mathrm{as} \quad n \to \infty,$$

and for any $\gamma \in (1/2,\infty)$ we have

$$n^{\gamma} \max_{\sigma \in \Sigma_n} \mu'(I_{\sigma}) \stackrel{\mathbb{P}}{\longrightarrow} \infty \quad \text{as} \quad n \to \infty.$$

Corollary

Almost surely the limit measure μ' has no atoms.

Theorem (B., Kupiainen, Nikula, Saksman, Webb (2012))

For any $\gamma \in (0, 1/2)$, with probability 1, there exists $C(\omega) \in \mathbb{R}^*_+$ such that

$$\mu'(I) \leq {\it C}(\omega) \left(\log \left(1 + rac{1}{|I|}
ight)
ight)^{-\gamma}$$

for all subintervals I of [0, 1]. Moreover, one cannot take $\gamma > 1/2$ in the above statement.

Application to the modulus of continuity of the subcritical measure

Here we suppose that $\mathbb{E} W^q < \infty$ for all q > 0. Set

 $\varphi(q) = 1 + \log_2 \mathbb{E} W^q.$

Notice that $0 < \varphi(q) < 1$ over (0,1) and $\varphi(0) = 0$. Recall that for $\beta \in (0,1)$, μ_{β} is the Mandelbrot measure defined as

 $\mu_{\beta}(I_{\sigma}) = e^{\beta X(\sigma)} Y_{\beta}(\sigma).$

Theorem (B., Kupiainen, Nikula, Saksman, Webb (2012)) Let $\beta \in (0,1)$ and $\gamma \in (0,1/2)$. With probability 1, there exists $C(\omega) \in \mathbb{R}^*_+$ such that

$$\mu_{eta}(I) \leq C(\omega)|I|^{arphi(eta)} \left(\log\left(1+rac{1}{|I|}
ight)
ight)^{-\gammaeta}$$

for all subintervals I of [0, 1].

Application to the modulus of continuity of the subcritical measure

Here we suppose that $\mathbb{E} W^q < \infty$ for all q > 0. Set

 $\varphi(q) = 1 + \log_2 \mathbb{E} W^q.$

Notice that $0 < \varphi(q) < 1$ over (0, 1) and $\varphi(0) = 0$. Recall that for $\beta \in (0, 1)$, μ_{β} is the Mandelbrot measure defined as

 $\mu_{\beta}(I_{\sigma}) = e^{\beta X(\sigma)} Y_{\beta}(\sigma).$

Theorem (B., Kupiainen, Nikula, Saksman, Webb (2012))

Let $\beta \in (0, 1)$ and $\gamma \in (0, 1/2)$. With probability 1, there exists $C(\omega) \in \mathbb{R}^*_+$ such that

$$\mu_eta(I) \leq \mathcal{C}(\omega) |I|^{arphi(eta)} \left(\log\left(1 + rac{1}{|I|}
ight)
ight)^{-\gammaeta}$$

for all subintervals I of [0, 1].

For
$$\beta \ge 0$$
 set
 $\widetilde{Z}_n(\beta) = \sum_{\sigma \in \Sigma_n} \mu'(I_{\sigma})^{\beta} = \sum_{\sigma \in \Sigma_n} e^{\beta X(\sigma)} Y'(\sigma)^{\beta}$ (recall that $Z_n(\beta) = \sum_{\sigma \in \Sigma_n} e^{\beta X(\sigma)}$).

Theorem (Collet and Koukiou (1992), Waymire-Williams (1994), ...)

With probability 1,

$$\frac{1}{n}\log_2 \widetilde{Z}_n(\beta) \underset{n \to \infty}{\longrightarrow} \begin{cases} 1 + \log_2(\mathbb{E} e^{\beta\xi}) & \text{ if } \beta \in [0, 1), \\ 0 & \text{ if } \beta \ge 1 \end{cases}.$$

$$\widetilde{Z}_n(\beta) = \sum_{\sigma \in \Sigma_n} \mu'(I_\sigma)^{\beta}.$$

Theorem

(deduced from Ossiander-Waymire (2000)) If β ∈ [0, 1) then a.s., a non trivial Mandelbrot measure μ_β is associated with W_β,

 ²/_n(β)
 ²/_{n→∞} E(||μ'||^β)||μ_β||.

(a) (B., Kupiainen, Nikula, Saksman, Webb (2012), log-gaussian case) If $\beta = 1$, $c n^{1/2} \widetilde{Z}_n(1) \stackrel{d}{\underset{n \to \infty}{\longrightarrow}} \|\mu'\|$.

 (B., Kupiainen, Nikula, Saksman, Webb (2012), log-gaussian case) If β > 1, c n^{β/2} Z̃_n(β) ^d/_{n→∞} L_{1/β}(||μ'||).

$$\widetilde{Z}_n(\beta) = \sum_{\sigma \in \Sigma_n} \mu'(I_\sigma)^{\beta}.$$

Theorem

 (deduced from Ossiander-Waymire (2000)) If β ∈ [0, 1) then a.s., a non trivial Mandelbrot measure μ_β is associated with W_β, ^Z_n(β) (2 E e^{βξ})ⁿ →∞ E(||μ'||^β)||μ_β||.
 (B., Kupiainen, Nikula, Saksman, Webb (2012), log-gaussian case) If β = 1, c n^{1/2} Z̃_n(1) d/(n→∞) ||μ'||.
 (B., Kupiainen, Nikula, Saksman, Webb (2012), log-gaussian case) If β = 1, c n^{β/2} Z̃_n(β) d/(n→∞) ||μ'||.

$$\widetilde{Z}_n(\beta) = \sum_{\sigma \in \Sigma_n} \mu'(I_\sigma)^{\beta}.$$

Theorem

 (deduced from Ossiander-Waymire (2000)) If β ∈ [0, 1) then a.s., a non trivial Mandelbrot measure μ_β is associated with W_β, ^Z_n(β) (2 E e^{βξ})ⁿ → E(||μ'||^β)||μ_β||.
 (B., Kupiainen, Nikula, Saksman, Webb (2012), log-gaussian case)

If
$$\beta = 1$$
, $c n^{1/2} \widetilde{Z}_n(1) \xrightarrow[n \to \infty]{d} \|\mu'\|.$

• (B., Kupiainen, Nikula, Saksman, Webb (2012), log-gaussian case) If $\beta > 1$, $c n^{\beta/2} \widetilde{Z}_n(\beta) \xrightarrow[n \to \infty]{d} L_{1/\beta}(||\mu'||)$.