Patterns generation problems arising in multiplicative integer systems

Jung-Chao Ban
Dept of Applied Math.

National Dong Hwa University, Taiwan

Co-work with Song-Sun Lin and
Wen-Guei Hu

International Conference on Advances on Fractals and Related Topics 2012

1 Introduction

1.1 Some known results

Multiple ergodic average:

Let (X, T) be a topological dynamical system and $2 \leq$ $l \in \mathbb{N}$ be a positive integer. The multiple ergodic average

$$
\frac{1}{n} \sum_{k=1}^{n} f_{1}\left(T^{k} x\right) f_{2}\left(T^{2 k} x\right) \cdots f_{l}\left(T^{l k} x\right)
$$

where f_{1}, \ldots, f_{l} are l given continuous functions.
H. Furstenberg, J.d' Analyse Math. (1977): On the study of Szemerédi's theorem.
J. Bourgain, J. Reine. Angew. Math. (1990): For almost sure convergence.
B. Host and B. Kra, Ann. Math. (2005) : For L^{2}-norm convergence.
A. H. Fan, L. M. Liao and J. H. Ma, Monatshefte für Mathematik (2011) : If

$$
f_{1}(x)=f_{2}(x)=\cdots=f_{l}(x)=x_{1},
$$

and $X \subseteq \mathbb{D}$, where

$$
\mathbb{D}=\{+1,-1\}^{\mathbb{N}} .
$$

Define

$$
Y_{\alpha}=\left\{x \in \mathbb{D}: \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} x_{k} x_{2 k} \cdots x_{l k}=\alpha\right\},
$$

then $\forall \alpha \in[-1,1]$

$$
\operatorname{dim}_{H} Y_{\alpha}=1-\frac{1}{l}+\frac{1}{l} H\left(\frac{1+\alpha}{2}\right),
$$

where

$$
H(t)=-t \log _{2} t-(1-t) \log _{2}(1-t) .
$$

Let

$$
X \subseteq \mathbb{E}=\{0,1\}^{\mathbb{N}},
$$

and

$$
Z_{\alpha}=\left\{x \in \mathbb{E}: \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} x_{k} x_{2 k} \cdots x_{l k}=\alpha\right\}
$$

with simplified form $l=2$ and $\alpha=0$, that is

$$
\widehat{Z}_{0}=\left\{x \in \mathbb{E}: x_{n} x_{2 n}=0 \forall n\right\}
$$

and show that

$$
\operatorname{dim}_{B}\left(\hat{Z}_{0}\right)=\frac{1}{2 \log 2} \sum_{n=1}^{\infty} \frac{\log a_{n}}{2^{n}} \approx 0.8242936 \ldots
$$

R. Kenyon, Y. Peres and B. Solomyak, Ergodic Theory Dynam. Sys. (2011):

$$
\operatorname{dim}_{H}\left(\widehat{Z}_{0}\right)=-\log _{2} p=0.81137 \ldots
$$

where

$$
p^{3}=(1-p)^{2}, 0<p<1
$$

Furthermore,

$$
\operatorname{dim}_{H} \widehat{Z}_{0}<\operatorname{dim}_{B} \widehat{Z}_{0} .
$$

Y. Peres, J. Schmeling, S. Seuret and B. Solomyak, (2012): Consider

$$
\mathbb{E}_{m}=\{0, \ldots, m-1\}^{\mathbb{N}}, \Omega \subseteq \mathbb{E}_{m}
$$

Let

$$
S=\left\langle p_{1}, \ldots, p_{J}\right\rangle
$$

be the semigroup generated by distinct primes p_{1}, \ldots, p_{J}

$$
Z_{\Omega}^{(S)}=\left\{x \in \mathbb{E}_{m}:\left.x\right|_{i S} \in \Omega \forall i,(i, S)=1\right\}
$$

they present the Minkowski dimension formula and variational principle for Hausdorff dimension of $Z_{\Omega}^{(S)}$.

Remark :

(i). Different approach on for some multi-dimensional systems.
(ii). Combinatorial method leads us to consider more general MS, e.g., coupled systems.
(iii). Based on the previous work of patterns generation problems for \mathbb{Z}^{d} SFT.

1.2 Set up

(A. H. Fan, R. Kenyon, L. M. Liao, J. H. Ma, Y. Peres and B. Solomyak, J. Schmeling and S. Seuret) Consider

$$
\begin{aligned}
\mathbb{X}_{2}^{0} & =\left\{\left(x_{1}, x_{2}, \cdots\right) \in\{0,1\}^{\mathbb{N}}: x_{k} x_{2 k}=0, \forall k \geq 1\right\} \\
\mathbb{X}_{2,3}^{0} & =\left\{\left(x_{1,}, x_{2}, \cdots\right) \in\{0,1\}^{\mathbb{N}}: x_{k} x_{2 k} x_{3 k}=0, \forall k \geq 1\right\} .
\end{aligned}
$$

Goal : Compute $h\left(\mathbb{X}_{2}^{0}\right)$ or $h\left(\mathbb{X}_{2,3}^{0}\right)$.

Note :

$$
\operatorname{dim}_{M}(\mathbb{X})=\frac{1}{\log N} h(\mathbb{X})
$$

where N is the number of the symbols of the system \mathbb{X}.

1.3 Three types multiple shifts

Multi-dimensional system :

$$
\mathbb{X}_{2,3}^{0}=\left\{\left(x_{1}, x_{2}, \ldots\right) \in\{0,1\}^{\mathbb{N}}: x_{k} x_{2 k} x_{3 k}=0, k \geq 1\right\}
$$

Coupled systems:

$$
\begin{gathered}
\mathbb{X}_{2}^{A}=\left\{\left(x_{1}, x_{2}, \ldots\right) \in \Sigma_{A}: x_{k} x_{2 k}=0, k \geq 1\right\}, \text { i.e., } \\
\mathbb{X}_{2}^{A}=\mathbb{X}_{2}^{0} \cap \Sigma_{A}
\end{gathered}
$$

$\mathbb{X}_{2,3}^{A}=\left\{\left(x_{1}, x_{2}, \ldots\right) \in \Sigma_{A}: x_{k} x_{2 k} x_{3 k}=0, k \geq 1\right\}$, ie.,

$$
\mathbb{X}_{2,3}^{A}=\mathbb{X}_{2,3}^{0} \cap \Sigma_{A}
$$

1.4 The approach of Fan, Liao and Ma

For $k \geq 1$,
Z_{k} : the blank lattice of k cells in \mathbb{Z}^{1};
M_{k} : the numbered lattices of the first k elements in \mathbb{M}_{2} on Z_{k};
$i M_{k}$: the numbered lattices of the first k elements in $i \mathbb{M}_{2}$ on Z_{k};

$$
\mathcal{N}\left(2^{n}\right)=\underset{i \in \mathcal{I}, 1 \leq i \leq 2^{n}}{\cup} i M_{k_{n}(i)},
$$

Figure 1: \mathcal{I}_{2} and \mathbb{M}_{2}
where $\mathcal{N}(m):=\{k \in \mathbb{N}: 1 \leq k \leq m\}$ and $k_{n}(i)=$ $\max \left\{k: i 2^{k} \leq 2^{n}\right\}$

Proposition : For integer $Q \geq 2$ and $n \geq 1$,

$$
Q^{n}=(n+1)+n(Q-2)+(Q-1)^{2} \sum_{k=1}^{n-1} k Q^{n-1-k}
$$

In particular,

$$
2^{n}=(n+1)+\sum_{k=1}^{n-1} k 2^{n-1-k}
$$

- $X_{m}=\left\{\begin{array}{c}\left(x_{1}, \ldots, x_{m}\right) \in\{0,1\}^{\mathbb{Z}_{m}}: x_{k} x_{2 k}=0, \\ \text { for all } k \geq 1,2 k \leq m\end{array}\right\}$.
- $h\left(\mathbb{X}_{2}^{0}\right)=\lim _{m \rightarrow \infty} \frac{1}{m} \log \left|X_{m}\right|$

Constraint : $x_{k} x_{2 k}=0 \Leftrightarrow$ The forbidden set on Z_{2} is 11.

Theorem : For any $Q \geq 2$, denote the multiplicative integer system

$$
\mathbb{X}_{Q}^{0}=\left\{\left(x_{1}, x_{2} \ldots\right) \in\{0,1\}^{\mathbb{N}}: x_{k} x_{Q k}=0 \forall k \geq 1\right\}
$$

then

$$
h\left(\mathbb{X}_{Q}^{0}\right)=(Q-1)^{2} \sum_{k=1}^{\infty} \frac{1}{Q^{k+1}} \log a_{k} .
$$

1.5 Main ingredient of the study on \mathbb{X}_{2}^{0}

(I). Identify the numbered lattice M_{k} in Z_{k} from the given system.
(II). Compute the numbers of copies of independent admissible lattices of the same length.
(III). Determine the set of all admissible patterns Σ_{k}, which can be generated on Z_{k}, and compute the number of $\left|\Sigma_{k}\right|$.

2 Multi-dimensional systems

Goal : Study the entropy of MDSs.

2.1 Step (I)

Goal : Identify the admissible numbered and blank lattices determined by the constraint $x_{k} x_{2 k} x_{3 k}=0$ in $\mathbb{X}_{2,3}^{0}$.

- Grouping lattices $: \mathbb{M}_{2,3}:=\left\{2^{k} 3^{l}: k, l \geq 0\right\}$;
- Decomposition of \mathbb{N} :

$$
\mathbb{N}=\bigcup_{i \in \mathcal{I}_{2,3}} i \mathbb{M}_{2,3}
$$

Figure 2: $\mathbb{M}_{2,3}$

- Leading number : $\mathcal{I}_{2,3}=\{n \in \mathbb{N}: 2 \nmid n$ and $3 \nmid n\}$

$$
=\{6 k+1,6 k+5\}_{k=0}^{\infty}=\{1,5,7,11, \ldots\}
$$

Figure 3: $\mathbb{N}=\bigcup_{i \in \mathcal{I}_{2,3}} i \mathbb{M}_{2,3}$

- Decomposition of $\mathcal{N}\left(q_{K}\right)$:

$$
\mathcal{N}\left(q_{K}\right)=\bigcup_{i \in I_{K}(k)} i M_{K}
$$

where $q_{K}=2^{m} 3^{n} \in \mathbb{M}_{2,3}$.

Figure 4: M_{1} to M_{15}

$$
\text { - } I_{K}(k)=\left(\frac{q_{K}}{q_{k+1}}, \frac{q_{K}}{q_{k}}\right] \cap \mathcal{I}_{2,3}
$$

- The number of copies of M_{k} in $\mathcal{N}\left(q_{K}\right): \alpha_{K}(k)=$ $\left|I_{K}(k)\right|$.

2.2 Step (II)

Goal : compute the numbers of copies of M_{k} for a given $\mathcal{N}(m)$

Proposition (Density of copies of M_{k}) : On $\mathbb{X}_{2,3}^{0}$ for an $k \geq 1$,

$$
\lim _{K \rightarrow \infty} \frac{\alpha_{K}(k)}{q_{K}}=\beta_{2,3}\left(\frac{1}{q_{k}}-\frac{1}{q_{k+1}}\right),
$$

where

$$
\beta_{2,3}=\frac{\#\left\{\mathcal{I}_{2,3} \cap[1,[2,3]]\right\}}{[2,3]}=\frac{1}{3} .
$$

2.3 Step (III)

Goal : computing the admissible patterns on L_{k} for all $k \geq 1$.

- The basic set of admissible patterns on L_{3}.

Figure 5: Basic patterns

- Let $\Sigma_{k}=\Sigma_{k}\left(\mathcal{B}_{2,3}\right)$ and $\left|\Sigma_{k}\right|=b_{k}$.

Remark :

(i). Patterns generation problem and 2-dimensional transition matrices.

k	1	2	3	4	5	6	7	8	9	10	11	12	13	14
b_{k}	2	4	7	14	25	50	90	160	320	584	1039	1861	3722	6774

$b_{25}=5,434,757$	$b_{42}=172,749,984,030$
$b_{63} \approx 5.291646495998910 \times 10^{16}$	$b_{88} \approx 2.006283543836154 \times 10^{23}$
$b_{118} \approx 1.439075072036499 \times 10^{31}$	$b_{149} \approx 1.766912321512124 \times 10^{39}$

Figure 6: k and b_{k} for $\mathbb{X}_{2,3}^{0}$
J.-C. Ban and S.-S. Lin, Discrete Contin. Dyn. Syst. (2005);
J.-C. Ban, S.-S. Lin and Y.-H. Lin, Asian J. Math. (2007);
J.-C. Ban, S.-S. Lin and Y.-H. Lin, International J. Bifurcation and Chaos. (2008);
J.-C. Ban, C.-H. Chang, S.-S. Lin and Y.-H. Lin, J. Differential Equations (2009);
J.-C. Ban, C.-H. Chang and S.-S. Lin, J. Differential Equations (2012);
J.-C. Ban, W.-G. Hu, S.-S. Lin and Y.-H. Lin, Memo. Amer. Math. Soc. (2012);
W.-G. Hu and S.-S. Lin, Proc. Amer. Math. Soc. (2011) .
(ii). The L_{k} is not regular lattice, however, some idea are the same!

Theorem : The entropy $\mathbb{X}_{2,3}^{0}$ is given by

$$
h\left(\mathbb{X}_{2,3}^{0}\right)=\sum_{k=1}^{\infty} \beta_{2,3}\left(\frac{1}{q_{k}}-\frac{1}{q_{k+1}}\right) \log \left|\Sigma_{k}\right| .
$$

For $n \geq 1$, let

$$
h^{(n)}\left(\mathbb{X}_{2,3}^{0}\right)=\sum_{k=1}^{n} \beta_{2,3}\left(\frac{1}{q_{k}}-\frac{1}{q_{k+1}}\right) \log \left|\Sigma_{k}\right|
$$

Numerical result for $h^{(n)}\left(X_{2,3}^{0}\right)$:

n 4 13 25 42 $h^{(n)}\left(\mathbb{X}_{2,3}^{0}\right)$ 0.319901 0.537229 0.620707 0.645733 63 88 118 149 0.652284 0.653865 0.654224 0.654303				

Figure 7: $h^{(n)}\left(\mathbb{X}_{2,3}^{0}\right)$

2.4 General multi-dimensional systems

$\mathbb{X}_{\gamma_{1} \gamma_{2}}^{0}=\left\{\left(x_{1}, x_{2}, \ldots\right) \in\{0,1\}^{\mathbb{N}}: x_{k} x_{\gamma_{1} k} x_{\gamma_{2} k}=0 \forall k \geq 1\right\}$.
Theorem : For any two integers $\gamma_{2}>\gamma_{1}>1$ with $\gamma_{2} \neq \gamma_{1}^{m}$ for all $m>1$. Then
$h\left(\mathbb{X}_{\gamma_{1}, \gamma_{2}}^{0}\right)=\sum_{k=1}^{\infty} \beta_{\gamma_{1}, \gamma_{2}}\left(\frac{1}{q_{k}}-\frac{1}{q_{k+1}}\right) \log \left|\Sigma_{k}\left(\gamma_{1}, \gamma_{2}\right)\right|$,
where

$$
\beta_{\gamma_{1}, \gamma_{2}}=\frac{\#\left\{\mathcal{I}_{\gamma_{1}, \gamma_{2}} \cap\left[1,\left[\gamma_{1}, \gamma_{2}\right]\right]\right\}}{\left[\gamma_{1}, \gamma_{2}\right]}
$$

Theorem : For $Q, m \geq 2$, if $\gamma_{1}=Q$ and $\gamma_{2}=Q^{m}$, then

$$
h\left(\mathbb{X}_{Q, Q^{m}}^{0}\right)=(Q-1)^{2} \sum_{k=1}^{\infty} \frac{1}{Q^{k+1}} \log \left|a_{k}\left(Q, Q^{m}\right)\right|,
$$

where $a_{k}=\left|A\left(Q, Q^{m}\right)\right|$ for $k \geq m, a_{j}=Q^{j}, 1 \leq j \leq$ m, where $A\left(Q, Q^{m}\right)$ is the associated transition matrix of $\mathcal{B}\left(Q, Q^{m}\right)$.
\mathbb{X}_{Γ}^{0}

$$
=\left\{\left(x_{1}, x_{2}, \ldots\right) \in\{0,1\}^{\mathbb{N}}: x_{k} x_{\gamma_{1} k} x_{\gamma_{2} k} \cdots x_{\gamma_{d} k}=0, k \geq 1\right\} .
$$

Theorem : Let $\Gamma=\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{d}\right)$, if $1<\gamma_{2}<$ $\gamma_{2}<\cdots<\gamma_{d}, d \geq 3$ and $\gamma_{j} \neq \gamma_{i}^{m}$ for all $m \geq 2$ and $1 \leq i \leq j \leq d$. Then the entropy of \mathbb{X}_{Γ}^{0} is given by

$$
h\left(\mathbb{X}_{\Gamma}^{0}\right)=\sum_{k=1}^{\infty} \beta_{\Gamma}\left(\frac{1}{q_{k}}-\frac{1}{q_{k+1}}\right) \log \left|\Sigma_{k}\right|
$$

where

$$
\beta_{\Gamma}=\frac{\mathcal{I}_{\Gamma} \cap\left[1,\left[\gamma_{1}, \gamma_{2}, \ldots, \gamma_{d}\right]\right]}{\left[\gamma_{1}, \gamma_{2}, \ldots, \gamma_{d}\right]} .
$$

Note : the numbered lattice is d-dimensional.

$$
\begin{aligned}
& \mathbb{X}_{\Gamma}(N, \mathcal{C}) \\
& =\left\{\left(x_{1}, x_{2}, \ldots\right) \in\{0,1, \ldots, N\}^{\mathbb{N}}: x_{k} x_{\gamma_{1} k} \cdots x_{\gamma_{d} k} \in \mathcal{C}\right\} .
\end{aligned}
$$

Figure 8: The numbered lattice for $\mathbb{M}_{2,3,5}$

Theorem : Let $\Gamma=\left\{\gamma_{1}, \ldots, \gamma_{d}\right\}$ satisfy conditions as above and $\mathcal{C} \subseteq\left\{0,1, \ldots,(N-1)^{d}\right\}$. Then the entropy of $\mathbb{X}_{\Gamma}(N, \mathcal{C})$ is given by
$h\left(\mathbb{X}_{\Gamma}(N, \mathcal{C})\right)=\sum_{k=1}^{\infty} \beta_{\Gamma}\left(\frac{1}{q_{k}}-\frac{1}{q_{k+1}}\right) \log \left|\Sigma_{k}\left(\mathcal{B}_{\Gamma}(N, \mathcal{C})\right)\right|$,
where $\Sigma_{k}\left(\mathcal{B}_{\Gamma}(N, \mathcal{C})\right)$ is the set of d-dimensional admissible local patterns that can be generated by $\mathcal{B}_{\Gamma}(N, \mathcal{C})$ on L_{k}.

3 Coupled systems

Goal: compute the entropy of $\mathbb{X}_{Q}^{A}=\mathbb{X}_{Q}^{0} \cap \Sigma_{A}$.
Coupled systems :

$$
\mathbb{X}_{2}^{A}=\mathbb{X}_{2}^{0} \cap \Sigma_{A}=\left\{\left(x_{1}, x_{2}, \ldots\right) \in \Sigma_{A}: x_{k} x_{2 k}=0 \forall k \geq 1\right\} .
$$

Figure 9: The effect of Σ_{A}
Zigzag line : connects all natural integers comes from $\Sigma_{A} ;$

Horizontal line : connect the integers in in $i \mathbb{M}_{2}$ for each $i \in \mathcal{I}_{2}$.note: $i \mathbb{M}_{2}$ and $j \mathbb{M}_{2}$ are no longer mutually independent!! Therefore, it is regarded as a coupled system. Idea : Decouple !!
3.1 Strategy: decouple system \mathbb{X}_{2}^{A}

Strategy:

(I). To decouple the whole system into disjoint pieces by eliminating \mathbb{M}_{2} such that only

$$
\widetilde{\mathbb{X}}_{2}^{A}=\left(\bigcup_{1<i \in \mathcal{I}_{2}} i \mathbb{M}_{2}\right) \cap \Sigma_{A}
$$

is considered.
(II). From the reduced system $\widetilde{\mathbb{X}}_{2}^{A}$, a sequence $\left\{\mathbb{X}_{2}^{A}(m)\right\}_{m=1}^{\infty}$ of independent branches are chosen.
(III) The entropy of the decoupled independent system $\mathbb{X}_{2}^{A}(m)$ can be computed easily.
(IV). An appropriate choice of $\mathbb{X}_{2}^{A}(m)$ is demonstrated to enable the recovery of the entropy of \mathbb{X}_{2}^{A}, i.e.,

$$
\lim _{m \rightarrow \infty} h\left(\mathbb{X}_{2}^{A}(m)\right)=h\left(\mathbb{X}_{2}^{A}\right)
$$

3.2 Lower and upper bounds for $h\left(\mathbb{X}_{2}^{A}\right)$

Theorem : The entropy $h\left(\mathbb{X}_{2}^{A}\right)$ is given by

$$
h\left(\mathbb{X}_{2}^{A}\right)=\lim _{k \rightarrow \infty} \frac{1}{2\left(2^{k}-1\right)} \log \left|\Sigma_{k}\right|
$$

where Σ_{k} the admissible patterns on L_{k}. Furthermore,

$$
\begin{aligned}
& \frac{1}{2\left(2^{k}-1\right)} \log \left|\Sigma_{k}\right| \leq h\left(\mathbb{X}_{2}^{A}\right) \\
\leq & \frac{1}{2\left(2^{k}-1\right)} \log \left|\Sigma_{k}\right|+\frac{k}{2\left(2^{k}-1\right)} \log 2
\end{aligned}
$$

Numerical result for $h^{(n)}\left(\mathbb{X}_{2}^{A}\right)$:

Figure 10: The admissible numbered lattice M_{k} in $\widetilde{\mathbb{X}}_{2}^{A}$

Figure 11: $M_{4}(3)$

Figure 12: The decoupled system by M_{2}

Figure 13: Distribution of M_{k}

n	2	3	4
$\left\|\Sigma_{n}\right\|$	9	237	213624
$h^{(n)}\left(\mathbb{X}_{2}^{A}\right)$	0.366204	0.390576	0.409066
$\bar{h}^{(n)}\left(\mathbb{X}_{2}^{A}\right)$	0.597253	0.539107	0.501485

Figure 14: $\left|\Sigma_{n}\right|$ and $h^{(n)}\left(\mathbb{X}_{2}^{A}\right)$

3.3 General coupled systems

Theorem : For any $Q \geq 3$ and $k \geq 2$,

$$
\begin{aligned}
& \frac{Q-1}{Q\left(Q^{k}-1\right)} \log \left|\Sigma_{Q ; k}\right| \leq h\left(\mathbb{X}_{Q}^{A}\right) \\
\leq & \frac{Q-1}{Q\left(Q^{k}-1\right)}\left(\log \left|\Sigma_{Q ; k}\right|+k \log 2\right)
\end{aligned}
$$

and

$$
h\left(\mathbb{X}_{Q}^{A}\right)=\lim _{k \rightarrow \infty} \frac{Q-1}{Q\left(Q^{k}-1\right)} \log \left|\Sigma_{Q ; k}\right|
$$

where $\Sigma_{Q ; k}$ is the set of all admissible patterns on $L_{Q ; k}$, and $L_{Q ; k}$ is the degree k blank lattice.

Theorem : For any $Q \geq 3, \mathcal{C} \subseteq\left\{0,1, \ldots,(N-1)^{d}\right\}$ and $k \geq 2$,

$$
\begin{aligned}
& \frac{Q-1}{Q\left(Q^{k}-1\right)} \log \left|\Sigma_{k}(Q ; A ; N, \mathcal{C})\right| \leq h\left(\mathbb{X}_{Q}^{A}(N, \mathcal{C})\right) \\
\leq & \frac{Q-1}{Q\left(Q^{k}-1\right)}\left(\log \left|\Sigma_{k}(Q ; A ; N, \mathcal{C})\right|+k \log N\right),
\end{aligned}
$$

and
$h\left(\mathbb{X}_{Q}^{A}(N, \mathcal{C})\right)=\lim _{k \rightarrow \infty} \frac{Q-1}{Q\left(Q^{k}-1\right)} \log \left|\Sigma_{k}(Q ; A ; N, \mathcal{C})\right|$,
where $\Sigma_{k}(Q ; A ; N, \mathcal{C})$ is the set of all admissible patterns on $L_{Q ; k}$ the constraint of the vertices on the bold lines in $L_{Q ; k}$ is given by A and the constraint of the vertices on the lines in $L_{Q, k}$ is given by N and \mathcal{C}.

