Patterns generation problems arising in multiplicative integer systems

Jung-Chao Ban

Dept of Applied Math. National Dong Hwa University, Taiwan Co-work with Song-Sun Lin and Wen-Guei Hu

International Conference on Advances on Fractals and Related Topics 2012

1 Introduction

1.1 Some known results

Multiple ergodic average:

Let (X, T) be a topological dynamical system and $2 \le l \in \mathbb{N}$ be a positive integer. The **multiple ergodic av**erage

$$\frac{1}{n}\sum_{k=1}^{n} f_1(T^kx)f_2(T^{2k}x)\cdots f_l(T^{lk}x),$$

where f_1, \ldots, f_l are l given continuous functions.

H. Furstenberg, *J.d' Analyse Math. (1977)* : On the study of Szemerédi's theorem.

J. Bourgain, *J. Reine. Angew. Math.* (1990): For almost sure convergence.

B. Host and **B.** Kra, Ann. Math. (2005) : For L^2 -norm convergence.

A. H. Fan, L. M. Liao and J. H. Ma, *Monatshefte für Mathematik* (2011) : If

$$f_1(x) = f_2(x) = \cdots = f_l(x) = x_1,$$

and $X \subseteq \mathbb{D}$, where

$$\mathbb{D}=\left\{ +1,-1
ight\} ^{\mathbb{N}}.$$

Define

$$Y_{\alpha} = \left\{ x \in \mathbb{D} : \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} x_k x_{2k} \cdots x_{lk} = \alpha \right\},$$

then $\forall lpha \in [-1, 1]$

$$\dim_H Y_{\alpha} = 1 - \frac{1}{l} + \frac{1}{l}H(\frac{1+\alpha}{2}),$$

where

$$H(t) = -t \log_2 t - (1 - t) \log_2 (1 - t).$$

Let

$$X \subseteq \mathbb{E} = \left\{ \mathsf{0}, \mathsf{1}
ight\}^{\mathbb{N}},$$

 $\quad \text{and} \quad$

$$Z_{\alpha} = \left\{ x \in \mathbb{E} : \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} x_k x_{2k} \cdots x_{lk} = \alpha \right\},$$

with simplified form l=2 and $\alpha=$ 0, that is

$$\widehat{Z}_{\mathbf{0}} = \{x \in \mathbb{E}: \ x_n x_{2n} = \mathbf{0} \ \forall n\}$$
 ,

and show that

$$\dim_B(\widehat{Z}_0) = \frac{1}{2\log 2} \sum_{n=1}^{\infty} \frac{\log a_n}{2^n} \approx 0.8242936...,$$

R. Kenyon, Y. Peres and B. Solomyak, Ergodic Theory Dynam. Sys. (2011):

$$\dim_H(\widehat{Z}_0) = -\log_2 p = 0.81137...,$$

where

$$p^{3} = (1 - p)^{2}, 0$$

Furthermore,

$$\dim_H \widehat{Z}_0 < \dim_B \widehat{Z}_0.$$

Y. Peres, J. Schmeling, S. Seuret and B. Solomyak, (2012): Consider

$$\mathbb{E}_m = \{0, \ldots, m-1\}^{\mathbb{N}}, \Omega \subseteq \mathbb{E}_m.$$

Let

$$S = \langle p_1, \dots, p_J \rangle$$

be the semigroup generated by distinct primes p_1, \ldots, p_J

$$Z_{oldsymbol{\Omega}}^{(S)} = \{x \in \mathbb{E}_m: \; x|_{iS} \in oldsymbol{\Omega} \; orall i, \; (i,S) = oldsymbol{1}\}$$
 ,

they present the Minkowski dimension formula and variational principle for Hausdorff dimension of $Z_{\Omega}^{(S)}$.

Remark :

(i). **Different approach** on for some multi-dimensional systems.

(ii). Combinatorial method leads us to consider more general MS, e.g., coupled systems.

(iii). Based on the previous work of **patterns generation problems** for \mathbb{Z}^d SFT.

1.2 Set up

(A. H. Fan, R. Kenyon, L. M. Liao, J. H. Ma, Y. Peres and B. Solomyak, J. Schmeling and S. Seuret) Consider

 $\mathbb{X}_{2}^{0} = \left\{ (x_{1,}x_{2},\cdots) \in \{0,1\}^{\mathbb{N}} : x_{k}x_{2k} = 0, \forall k \geq 1 \right\};$ $\mathbb{X}_{2,3}^{0} = \left\{ (x_{1,}x_{2},\cdots) \in \{0,1\}^{\mathbb{N}} : x_{k}x_{2k}x_{3k} = 0, \forall k \geq 1 \right\}.$

Goal : Compute $h(\mathbb{X}_2^0)$ or $h(\mathbb{X}_{2,3}^0)$.

Note :

$$\mathsf{dim}_M(\mathbb{X}) = rac{1}{\log N}h(\mathbb{X})$$
,

where N is the number of the symbols of the system X.

1.3 Three types multiple shifts

Multi-dimensional system :

$$\mathbb{X}_{2,3}^{0} = \left\{ (x_{1}, x_{2}, \ldots) \in \{0, 1\}^{\mathbb{N}} : x_{k} x_{2k} x_{3k} = 0, \ k \ge 1 \right\}.$$

Coupled systems :

$$\mathbb{X}_2^A=\{(x_1,x_2,\ldots)\in \mathbf{\Sigma}_A: x_kx_{2k}=\mathbf{0}, \ k\geq \mathbf{1}\}$$
, i.e., $\mathbb{X}_2^A=\mathbb{X}_2^\mathbf{0}\cap \mathbf{\Sigma}_A.$

Multi-dimensional coupled systems :

$$\mathbb{X}^{A}_{2,3} = \{(x_1, x_2, \ldots) \in \mathbf{\Sigma}_A : x_k x_{2k} x_{3k} = \mathbf{0}, \ k \geq \mathbf{1}\},$$
ie.,

$$\mathbb{X}_{2,3}^A = \mathbb{X}_{2,3}^0 \cap \Sigma_A.$$

1.4 The approach of Fan, Liao and Ma

For $k \geq 1$,

 Z_k : the blank lattice of k cells in \mathbb{Z}^1 ;

 M_k : the numbered lattices of the first k elements in \mathbb{M}_2 on $Z_k;$

 iM_k : the numbered lattices of the first k elements in $i\mathbb{M}_2$ on Z_k ;

$$\mathcal{N}(2^n) = \bigcup_{i \in \mathcal{I}, 1 \leq i \leq 2^n} i M_{k_n(i)},$$

Figure 1: \mathcal{I}_2 and \mathbb{M}_2

where $\mathcal{N}(m) := \{k \in \mathbb{N} : 1 \leq k \leq m\}$ and $k_n(i) = \max\left\{k : i2^k \leq 2^n
ight\}$

Proposition : For integer $Q \ge 2$ and $n \ge 1$,

$$Q^{n} = (n+1) + n(Q-2) + (Q-1)^{2} \sum_{k=1}^{n-1} kQ^{n-1-k}$$

In particular,

$$2^n = (n+1) + \sum_{k=1}^{n-1} k 2^{n-1-k}$$

•
$$X_m = \left\{ \begin{array}{c} (x_1, \dots, x_m) \in \{0, 1\}^{\mathbb{Z}_m} : x_k x_{2k} = 0, \\ \text{for all } k \ge 1, \ 2k \le m \end{array} \right\}.$$

•
$$h(\mathbb{X}_2^0) = \lim_{m \to \infty} \frac{1}{m} \log |X_m|$$

Constraint : $x_k x_{2k} = 0 \Leftrightarrow$ The forbidden set on Z_2 is 11.

Theorem : For any $Q \ge 2$, denote the multiplicative integer system

 $\mathbb{X}_Q^0 = \left\{ (x_1, x_2 \ldots) \in \{0, 1\}^{\mathbb{N}} : x_k x_{Qk} = 0 \ \forall k \ge 1 \right\},$ then

$$h(\mathbb{X}_Q^0) = (Q-1)^2 \sum_{k=1}^{\infty} \frac{1}{Q^{k+1}} \log a_k.$$

1.5 Main ingredient of the study on \mathbb{X}_2^0

(I). Identify the numbered lattice M_k in Z_k from the given system.

(II). **Compute the numbers of copies** of independent admissible lattices of the same length.

(III). Determine the set of all admissible patterns Σ_k , which can be generated on Z_k , and compute the number of $|\Sigma_k|$.

2 Multi-dimensional systems

Goal : Study the entropy of MDSs.

2.1 Step (I)

Goal : Identify the admissible numbered and blank lattices determined by the constraint $x_k x_{2k} x_{3k} = 0$ in $\mathbb{X}_{2,3}^0$.

- Grouping lattices : $\mathbb{M}_{2,3} := \left\{ 2^k 3^l : k, l \geq 0 \right\}$;
- Decomposition of \mathbb{N} :

$$\mathbb{N} = \bigcup_{i \in \mathcal{I}_{2,3}} i \mathbb{M}_{2,3}$$

243	486	972	1944	3888	7776	q_{27}	q_{33}	q_{40}	q_{47}	q_{55}	q_{64}
81	162	324	648	1296	2592	q_{19}	q_{24}	q_{30}	q_{36}	q_{43}	q_{51}
27	54	108	216	432	864	q_{12}	q_{16}	q_{21}	q_{26}	q_{32}	q_{39}
9	18	36	72	144	288	q_7	q_{10}	q_{14}	q_{18}	q_{23}	q_{29}
3	6	12	24	48	96	q_3	q_5	q_8	q_{11}	q_{15}	q_{20}
1	2	4	8	16	32	q_1	q_2	q_4	q_6	q_9	q_{13}

Figure 2: $\mathbb{M}_{2,3}$

• Leading number : $\mathcal{I}_{2,3} = \{n \in \mathbb{N} : 2 \nmid n \text{ and } 3 \nmid n\}$ = $\{6k + 1, 6k + 5\}_{k=0}^{\infty} = \{1, 5, 7, 11, \ldots\}.$

Figure 3: $\mathbb{N} = \bigcup_{i \in \mathcal{I}_{2,3}} i\mathbb{M}_{2,3}$

• Decomposition of $\mathcal{N}(q_K)$:

$$\mathcal{N}(q_K) = \bigcup_{i \in I_K(k)} iM_K,$$

where $q_K = 2^m 3^n \in \mathbb{M}_{2,3}$.

Figure 4: M_1 to M_{15}

•
$$I_K(k) = \left(\frac{q_K}{q_{k+1}}, \frac{q_K}{q_k}\right] \cap \mathcal{I}_{2,3}.$$

• The number of copies of M_k in $\mathcal{N}(q_K)$: $\alpha_K(k) = |I_K(k)|$.

2.2 Step (II)

Goal : compute the numbers of copies of M_k for a given $\mathcal{N}(m)$

Proposition (Density of copies of M_k **)** : On $\mathbb{X}_{2,3}^0$ for an $k \geq 1$,

$$\lim_{K \to \infty} \frac{\alpha_K(k)}{q_K} = \beta_{2,3} \left(\frac{1}{q_k} - \frac{1}{q_{k+1}} \right),$$

where

$$\beta_{2,3} = \frac{\# \left\{ \mathcal{I}_{2,3} \cap [1, [2, 3]] \right\}}{[2, 3]} = \frac{1}{3}.$$

2.3 Step (III)

Goal : computing the admissible patterns on L_k for all $k \ge 1$.

• The basic set of admissible patterns on L_3 .

Figure 5: Basic patterns

• Let
$$\Sigma_k = \Sigma_k(\mathcal{B}_{2,3})$$
 and $|\Sigma_k| = b_k$.

Remark :

(i). Patterns generation problem and 2-dimensional transition matrices.

k	1	2	3	4	5	6	7	8	9	10	11	12	13	14
b_k	2	4	7	14	25	50	90	160	320	584	1039	1861	3722	6774
$b_{25} = 5,434,757$ $b_{42} = 172,749,984,030$														
$b_{63} \approx 5.291646495998910 \times 10^{16}$ $b_{88} \approx 2.006283543836154 \times 10^{23}$														
$b_{118} \approx 1.439075072036499 \times 10^{31}$ $b_{149} \approx 1.766912321512124 \times 10^{39}$														

Figure 6: k and b_k for $\mathbb{X}_{2,3}^0$

J.-C. Ban and S.-S. Lin, **Discrete Contin. Dyn. Syst.** (2005);

J.-C. Ban, S.-S. Lin and Y.-H. Lin, **Asian J. Math.** (2007);

J.-C. Ban, S.-S. Lin and Y.-H. Lin, International J. Bifurcation and Chaos. (2008);

J.-C. Ban, C.-H. Chang, S.-S. Lin and Y.-H. Lin, J. Differential Equations (2009);

J.-C. Ban, C.-H. Chang and S.-S. Lin, **J. Differential Equations** (2012);

J.-C. Ban, W.-G. Hu, S.-S. Lin and Y.-H. Lin, **Memo. Amer. Math. Soc.** (2012);

W.-G. Hu and S.-S. Lin, **Proc. Amer. Math. Soc.** (2011).

(ii). The L_k is **not regular lattice**, however, some idea are the same!

Theorem : The entropy $\mathbb{X}_{2,3}^0$ is given by

$$h(\mathbb{X}_{2,3}^{0}) = \sum_{k=1}^{\infty} eta_{2,3}\left(rac{1}{q_k} - rac{1}{q_{k+1}}
ight) \log |\mathbf{\Sigma}_k| \,.$$

For $n \geq 1$, let

$$h^{(n)}(\mathbb{X}_{2,3}^{0}) = \sum_{k=1}^{n} eta_{2,3}\left(rac{1}{q_{k}} - rac{1}{q_{k+1}}
ight) \log |\mathbf{\Sigma}_{k}| \, .$$

Numerical result for $h^{(n)}(X_{2,3}^0)$:

n	n			13		25	42	
$h^{(n)}(\mathbb{X}^{0}_{2,3})$		0.319901		0.537229		0.620707	0.645733	
63		88		118		149		
0.652284	ł	0.653865	0	0.654224	(0.654303		
0.652284	ł	0.653865	0	0.654224		0.654303		

Figure 7: $h^{(n)}(X_{2,3}^{0})$

2.4 General multi-dimensional systems

$$\mathbb{X}_{\gamma_1\gamma_2}^{\mathbf{0}} = \left\{ (x_1, x_2, \ldots) \in \{\mathbf{0}, \mathbf{1}\}^{\mathbb{N}} : x_k x_{\gamma_1 k} x_{\gamma_2 k} = \mathbf{0} \ \forall k \ge \mathbf{1} \right\}$$

Theorem : For any two integers $\gamma_2 > \gamma_1 > 1$ with $\gamma_2 \neq \gamma_1^m$ for all m > 1. Then

$$h(\mathbb{X}_{\gamma_1,\gamma_2}^{\mathbf{0}}) = \sum_{k=1}^{\infty} \beta_{\gamma_1,\gamma_2} \left(\frac{1}{q_k} - \frac{1}{q_{k+1}} \right) \log |\boldsymbol{\Sigma}_k (\gamma_1,\gamma_2)|,$$

where

$$\beta_{\gamma_1,\gamma_2} = \frac{\#\left\{\mathcal{I}_{\gamma_1,\gamma_2} \cap [1, [\gamma_1, \gamma_2]]\right\}}{[\gamma_1, \gamma_2]}.$$

Theorem : For $Q, m \ge 2$, if $\gamma_1 = Q$ and $\gamma_2 = Q^m$, then

$$h(\mathbb{X}_{Q,Q^m}^0) = (Q-1)^2 \sum_{k=1}^{\infty} \frac{1}{Q^{k+1}} \log |a_k(Q,Q^m)|,$$

where $a_k = |A(Q, Q^m)|$ for $k \ge m$, $a_j = Q^j$, $1 \le j \le m$, where $A(Q, Q^m)$ is the associated transition matrix of $\mathcal{B}(Q, Q^m)$.

$\mathbb{X}_{\mathsf{L}}^{0}$

$$= \{ (x_1, x_2, \ldots) \in \{0, 1\}^{\mathbb{N}} : x_k x_{\gamma_1 k} x_{\gamma_2 k} \cdots x_{\gamma_d k} = 0, \ k \ge 1 \}.$$

Theorem : Let $\Gamma = (\gamma_1, \gamma_2, \dots, \gamma_d)$, if $1 < \gamma_2 < \gamma_2 < \dots < \gamma_d$, $d \ge 3$ and $\gamma_j \ne \gamma_i^m$ for all $m \ge 2$ and $1 \le i \le j \le d$. Then the entropy of \mathbb{X}^0_{Γ} is given by

$$h(\mathbb{X}_{\Gamma}^{0}) = \sum_{k=1}^{\infty} eta_{\Gamma} \left(rac{1}{q_{k}} - rac{1}{q_{k+1}}
ight) \log |\Sigma_{k}|,$$

where

$$\beta_{\Gamma} = \frac{\mathcal{I}_{\Gamma} \cap [1, [\gamma_1, \gamma_2, \dots, \gamma_d]]}{[\gamma_1, \gamma_2, \dots, \gamma_d]}.$$

Note : the numbered lattice is *d*-dimensional.

$$\mathbb{X}_{\Gamma}(N, \mathcal{C})$$

= $\{(x_1, x_2, \ldots) \in \{0, 1, \ldots, N\}^{\mathbb{N}} : x_k x_{\gamma_1 k} \cdots x_{\gamma_d k} \in \mathcal{C}\}.$

Figure 8: The numbered lattice for $\mathbb{M}_{2,3,5}$

Theorem : Let $\Gamma = \{\gamma_1, \ldots, \gamma_d\}$ satisfy conditions as above and $C \subseteq \{0, 1, \ldots, (N-1)^d\}$. Then the entropy of $\mathbb{X}_{\Gamma}(N, C)$ is given by

$$h(\mathbb{X}_{\Gamma}(N, \mathcal{C})) = \sum_{k=1}^{\infty} \beta_{\Gamma} \left(\frac{1}{q_k} - \frac{1}{q_{k+1}} \right) \log |\Sigma_k(\mathcal{B}_{\Gamma}(N, \mathcal{C}))|,$$

where $\Sigma_k (\mathcal{B}_{\Gamma}(N, \mathcal{C}))$ is the set of *d*-dimensional admissible local patterns that can be generated by $\mathcal{B}_{\Gamma}(N, \mathcal{C})$ on L_k .

3 Coupled systems

Goal: compute the entropy of $\mathbb{X}_Q^A = \mathbb{X}_Q^0 \cap \Sigma_A$.

Coupled systems :

Figure 9: The effect of Σ_A

Zigzag line : connects all natural integers comes from Σ_A ;

Horizontal line : connect the integers in in $i\mathbb{M}_2$ for each $i \in \mathcal{I}_2$.note: $i\mathbb{M}_2$ and $j\mathbb{M}_2$ are no longer mutually independent!! Therefore, it is regarded as a *coupled system*.

Idea : Decouple !!

3.1 Strategy: decouple system \mathbb{X}_2^A

Strategy:

(I). To decouple the whole system into disjoint pieces by eliminating \mathbb{M}_2 such that only

$$\widetilde{\mathbb{X}}_2^A = \left(\bigcup_{1 < i \in \mathcal{I}_2} i \mathbb{M}_2\right) \cap \mathbf{\Sigma}_A$$

is considered.

(II). From the reduced system $\widetilde{\mathbb{X}}_{2}^{A}$, a sequence $\{\mathbb{X}_{2}^{A}(m)\}_{m=1}^{\infty}$ of **independent branches** are chosen.

(III) The **entropy** of the decoupled independent system $\mathbb{X}_2^A(m)$ can be computed easily.

(IV). An appropriate choice of $\mathbb{X}_2^A(m)$ is demonstrated to enable the **recovery of the entropy** of \mathbb{X}_2^A , i.e.,

$$\lim_{m\to\infty}h(\mathbb{X}_2^A(m))=h(\mathbb{X}_2^A).$$

3.2 Lower and upper bounds for $h(\mathbb{X}_2^A)$

Theorem : The entropy $h(\mathbb{X}_2^A)$ is given by

$$h(\mathbb{X}_2^A) = \lim_{k o\infty} rac{1}{2(2^k-1)} \log |\mathbf{\Sigma}_k|\,,$$

where Σ_k the admissible patterns on L_k . Furthermore,

$$egin{aligned} &rac{1}{2(2^k-1)}\log|\mathbf{\Sigma}_k| \leq h(\mathbb{X}_2^A)\ &\leq &rac{1}{2(2^k-1)}\log|\mathbf{\Sigma}_k|+rac{k}{2(2^k-1)}\log2. \end{aligned}$$

Numerical result for $h^{(n)}(\mathbb{X}_2^A)$:

Figure 10: The admissible numbered lattice M_k in $\widetilde{\mathbb{X}}_2^A$

Figure 11: $M_4(3)$

Figure 12: The decoupled system by M_2

Figure 13: Distribution of M_k

n	2	3	4
$ \Sigma_n $	9	237	213624
$h^{(n)}(\mathbb{X}_2^A)$	0.366204	0.390576	0.409066
$\bar{h}^{(n)}(\mathbb{X}_2^A)$	0.597253	0.539107	0.501485

Figure 14: $|\mathbf{\Sigma}_n|$ and $h^{(n)}\left(\mathbb{X}_2^A\right)$

3.3 General coupled systems

Theorem : For any $Q \ge 3$ and $k \ge 2$,

$$egin{aligned} & rac{Q-1}{Q(Q^k-1)}\log\left|\Sigma_{Q;k}
ight|\leq h(\mathbb{X}_Q^A)\ &\leq & rac{Q-1}{Q(Q^k-1)}\left(\log\left|\Sigma_{Q;k}
ight|+k\log 2
ight), \end{aligned}$$

and

$$h(\mathbb{X}_Q^A) = \lim_{k o \infty} rac{Q-1}{Q(Q^k-1)} \log \left| \mathbf{\Sigma}_{Q;k}
ight|,$$

where $\Sigma_{Q;k}$ is the set of all admissible patterns on $L_{Q;k}$, and $L_{Q;k}$ is the degree k blank lattice.

Theorem : For any $Q \geq 3$, $\mathcal{C} \subseteq \left\{0, 1, \dots, (N-1)^d\right\}$ and $k \geq 2$,

$$egin{aligned} &rac{Q-1}{Q(Q^k-1)}\log|\mathbf{\Sigma}_k(Q;A;N,\mathcal{C})| \leq h\left(\mathbb{X}_Q^A(N,\mathcal{C})
ight) \ &\leq &rac{Q-1}{Q(Q^k-1)}\left(\log|\mathbf{\Sigma}_k(Q;A;N,\mathcal{C})|+k\log N
ight), \end{aligned}$$

and

$$h\left(\mathbb{X}_Q^A(N,\mathcal{C})\right) = \lim_{k \to \infty} \frac{Q-1}{Q(Q^k-1)} \log \left| \Sigma_k\left(Q;A;N,\mathcal{C}\right) \right|,$$

where $\Sigma_k(Q; A; N, C)$ is the set of all admissible patterns on $L_{Q;k}$ the constraint of the vertices on the bold lines in $L_{Q;k}$ is given by A and the constraint of the vertices on the lines in $L_{Q,k}$ is given by N and C.