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1 Introduction

1.1 Some known results

Multiple ergodic average:

Let (X;T ) be a topological dynamical system and 2 �
l 2 N be a positive integer. The multiple ergodic av-
erage

1

n

nX
k=1

f1(T
kx)f2(T

2kx) � � � fl(T lkx),

where f1; : : : ; fl are l given continuous functions.

H. Furstenberg, J.d�Analyse Math. (1977) : On the
study of Szemerédi�s theorem.

J. Bourgain, J. Reine. Angew. Math. (1990): For
almost sure convergence.



B. Host and B. Kra, Ann. Math. (2005) : For L2-norm
convergence.

A. H. Fan, L. M. Liao and J. H. Ma, Monatshefte für
Mathematik (2011) : If

f1(x) = f2(x) = � � � = fl(x) = x1;

and X � D, where

D = f+1;�1gN :

De�ne

Y� =

8<:x 2 D : limn!1
1

n

nX
k=1

xkx2k � � �xlk = �

9=; ,
then 8� 2 [�1; 1]

dimH Y� = 1�
1

l
+
1

l
H(
1 + �

2
);

where

H(t) = �t log2 t� (1� t) log2(1� t):



Let

X � E = f0; 1gN ;

and

Z� =

8<:x 2 E : limn!1
1

n

nX
k=1

xkx2k � � �xlk = �

9=; ,
with simpli�ed form l = 2 and � = 0, that is

bZ0 = fx 2 E : xnx2n = 0 8ng ,
and show that

dimB(
bZ0) = 1

2 log 2

1X
n=1

log an

2n
� 0:8242936:::;

R. Kenyon, Y. Peres and B. Solomyak, Ergodic The-
ory Dynam. Sys. (2011):

dimH(
bZ0) = � log2 p = 0:81137:::;

where

p3 = (1� p)2; 0 < p < 1:



Furthermore,

dimH
bZ0 < dimB bZ0.

Y. Peres, J. Schmeling, S. Seuret and B. Solomyak,
(2012): Consider

Em = f0; : : : ;m� 1gN ;
 � Em:

Let

S = hp1; : : : ; pJi

be the semigroup generated by distinct primes p1; : : : ; pJ

Z
(S)

 = fx 2 Em : xjiS 2 
 8i; (i; S) = 1g ,

they present the Minkowski dimension formula and
variational principle for Hausdor¤ dimension of Z(S)
 .

Remark :

(i). Di¤erent approach on for some multi-dimensional
systems.



(ii). Combinatorial method leads us to consider more
general MS, e.g., coupled systems.

(iii). Based on the previous work of patterns generation
problems for Zd SFT.

1.2 Set up

(A. H. Fan, R. Kenyon, L. M. Liao, J. H. Ma, Y.
Peres and B. Solomyak, J. Schmeling and S. Seuret)
Consider

X02 =
n
(x1;x2; � � � ) 2 f0; 1gN : xkx2k = 0; 8k � 1

o
;

X02;3 =
n
(x1;x2; � � � ) 2 f0; 1gN : xkx2kx3k = 0; 8k � 1

o
:

Goal : Compute h(X02) or h(X02;3).



Note :

dimM(X) =
1

logN
h(X),

where N is the number of the symbols of the system X.

1.3 Three types multiple shifts

Multi-dimensional system :

X02;3 =
n
(x1; x2; : : :) 2 f0; 1gN : xkx2kx3k = 0; k � 1

o
.

Coupled systems :

XA2 = f(x1; x2; : : :) 2 �A : xkx2k = 0; k � 1g, i.e.,

XA2 = X02 \ �A.

Multi-dimensional coupled systems :



XA2;3 = f(x1; x2; : : :) 2 �A : xkx2kx3k = 0; k � 1g,
ie.,

XA2;3 = X02;3 \ �A.

1.4 The approach of Fan, Liao and Ma

For k � 1,

Zk : the blank lattice of k cells in Z1;

Mk : the numbered lattices of the �rst k elements inM2

on Zk;

iMk : the numbered lattices of the �rst k elements in
iM2 on Zk;

N (2n) = S
i2I,1�i�2n

iMkn(i),



Figure 1: I2 and M2

where N (m) := fk 2 N : 1 � k � mg and kn(i) =
max

n
k : i2k � 2n

o
Proposition : For integer Q � 2 and n � 1,

Qn = (n+ 1) + n(Q� 2) + (Q� 1)2
n�1X
k=1

kQn�1�k:

In particular,

2n = (n+ 1) +
n�1X
k=1

k2n�1�k:



� Xm =

(
(x1; : : : ; xm) 2 f0; 1gZm : xkx2k = 0,

for all k � 1, 2k � m

)
.

� h(X02) = limm!1
1
m log jXmj

Constraint : xkx2k = 0 , The forbidden set on Z2 is
11.

Theorem : For any Q � 2, denote the multiplicative
integer system

X0Q =
n
(x1; x2 : : :) 2 f0; 1gN : xkxQk = 0 8k � 1

o
;

then

h(X0Q) = (Q� 1)
2
1X
k=1

1

Qk+1
log ak:



1.5 Main ingredient of the study on X02

(I). Identify the numbered lattice Mk in Zk from the
given system.

(II). Compute the numbers of copies of independent
admissible lattices of the same length.

(III). Determine the set of all admissible patterns �k,
which can be generated on Zk, and compute the number
of j�kj.

2 Multi-dimensional systems

Goal : Study the entropy of MDSs.



2.1 Step (I)

Goal : Identify the admissible numbered and blank lat-
tices determined by the constraint xkx2kx3k = 0 inX02;3.

� Grouping lattices : M2;3 :=
n
2k3l : k; l � 0

o
;

� Decomposition of N :

N = S
i2I2;3

iM2;3

Figure 2: M2;3



� Leading number : I2;3 = fn 2 N : 2 - n and 3 - ng

= f6k + 1; 6k + 5g1k=0 = f1; 5; 7; 11; : : :g :

Figure 3: N = S
i2I2;3

iM2;3

� Decomposition of N (qK) :

N (qK) =
S

i2IK(k)
iMK;

where qK = 2m3n 2 M2;3.



Figure 4: M1 to M15



� IK(k) = (
qK
qk+1

; qKqk
] \ I2;3.

� The number of copies ofMk inN (qK) : �K(k) =
jIK (k)j.

2.2 Step (II)

Goal : compute the numbers of copies ofMk for a given
N (m)

Proposition (Density of copies of Mk) : On X02;3 for
an k � 1,

lim
K!1

�K(k)

qK
= �2;3

 
1

qk
� 1

qk+1

!
;

where

�2;3 =
#
n
I2;3 \ [1; [2; 3]]

o
[2; 3]

=
1

3
.



2.3 Step (III)

Goal : computing the admissible patterns on Lk for all
k � 1.

� The basic set of admissible patterns on L3.

Figure 5: Basic patterns

� Let �k = �k(B2;3) and j�kj = bk.

Remark :

(i). Patterns generation problem and 2-dimensional
transition matrices.



Figure 6: k and bk for X02;3

J.-C. Ban and S.-S. Lin, Discrete Contin. Dyn. Syst.
(2005);

J.-C. Ban, S.-S. Lin and Y.-H. Lin, Asian J. Math.
(2007);

J.-C. Ban, S.-S. Lin and Y.-H. Lin, International J. Bi-
furcation and Chaos. (2008);

J.-C. Ban, C.-H. Chang, S.-S. Lin and Y.-H. Lin, J. Dif-
ferential Equations (2009);

J.-C. Ban, C.-H. Chang and S.-S. Lin, J. Di¤erential
Equations (2012);



J.-C. Ban, W.-G. Hu, S.-S. Lin and Y.-H. Lin, Memo.
Amer. Math. Soc. (2012);

W.-G. Hu and S.-S. Lin, Proc. Amer. Math. Soc.
(2011) .

(ii). The Lk is not regular lattice, however, some idea
are the same!

Theorem : The entropy X02;3 is given by

h(X02;3) =
1X
k=1

�2;3

 
1

qk
� 1

qk+1

!
log j�kj :



For n � 1, let

h(n)(X02;3) =
nX
k=1

�2;3

 
1

qk
� 1

qk+1

!
log j�kj .

Numerical result for h(n)(X02;3) :

Figure 7: h(n)(X02;3)



2.4 General multi-dimensional systems

X012 =
n
(x1; x2; : : :) 2 f0; 1gN : xkx1kx2k = 0 8k � 1

o
:

Theorem : For any two integers 2 > 1 > 1 with
2 6= m1 for all m > 1. Then

h(X01;2) =
1X
k=1

�1;2

 
1

qk
� 1

qk+1

!
log j�k (1; 2)j ;

where

�1;2 =
#
n
I1;2 \ [1; [1; 2]]

o
[1; 2]

:

Theorem : For Q;m � 2; if 1 = Q and 2 = Qm;

then

h(X0Q;Qm) = (Q� 1)
2
1X
k=1

1

Qk+1
log jak(Q;Qm)j ;

where ak = jA(Q;Qm)j for k � m; aj = Qj; 1 � j �
m; where A(Q;Qm) is the associated transition matrix
of B(Q;Qm).



X0�

=
n
(x1; x2; : : :) 2 f0; 1gN : xkx1kx2k � � �xdk = 0, k � 1

o
.

Theorem : Let � = (1; 2; : : : ; d), if 1 < 2 <

2 < � � � < d; d � 3 and j 6= mi for all m � 2 and
1 � i � j � d. Then the entropy of X0� is given by

h(X0�) =
1X
k=1

��

 
1

qk
� 1

qk+1

!
log j�kj ;

where

�� =
I� \ [1; [1; 2; : : : ; d]]

[1; 2; : : : ; d]
.

Note : the numbered lattice is d-dimensional.

X� (N; C)

=
n
(x1; x2; : : :) 2 f0; 1; : : : ; NgN : xkx1k � � �xdk 2 C

o
.



Figure 8: The numbered lattice for M2;3;5

Theorem : Let � = f1; : : : ; dg satisfy conditions as
above and C �

n
0; 1; : : : ; (N � 1)d

o
. Then the entropy

of X�(N; C) is given by

h(X�(N; C)) =
1X
k=1

��

 
1

qk
� 1

qk+1

!
log j�k(B� (N; C))j ;

where �k (B� (N; C)) is the set of d-dimensional admis-
sible local patterns that can be generated by B�(N; C)
on Lk.



3 Coupled systems

Goal: compute the entropy of XAQ = X
0
Q \ �A.

Coupled systems :

XA2 = X02\�A = f(x1; x2; : : :) 2 �A : xkx2k = 0 8k � 1g.

Figure 9: The e¤ect of �A

Zigzag line : connects all natural integers comes from
�A;



Horizontal line : connect the integers in in iM2 for each
i 2 I2.note: iM2 and jM2 are no longer mutually inde-
pendent!! Therefore, it is regarded as a coupled system.

Idea : Decouple !!

3.1 Strategy: decouple system XA2

Strategy:

(I). To decouple the whole system into disjoint pieces
by eliminating M2 such that only

eXA2 =
 S
1<i2I2

iM2

!T
�A

is considered.

(II). From the reduced system eXA2 , a sequence nXA2 (m)o1m=1
of independent branches are chosen.



(III) The entropy of the decoupled independent system
XA2 (m) can be computed easily.

(IV). An appropriate choice of XA2 (m) is demonstrated
to enable the recovery of the entropy of XA2 , i.e.,

lim
m!1h(X

A
2 (m)) = h(XA2 ).

3.2 Lower and upper bounds for h(XA2 )

Theorem : The entropy h(XA2 ) is given by

h(XA2 ) = lim
k!1

1

2(2k � 1)
log j�kj ;

where �k the admissible patterns on Lk. Furthermore,

1

2(2k � 1)
log j�kj � h(XA2 )

� 1

2(2k � 1)
log j�kj+

k

2(2k � 1)
log 2:

Numerical result for h(n)
�
XA2

�
:



Figure 10: The admissible numbered lattice Mk in
eXA2



Figure 11: M4(3)

Figure 12: The decoupled system by M2



Figure 13: Distribution of Mk

Figure 14: j�nj and h(n)
�
XA2

�



3.3 General coupled systems

Theorem : For any Q � 3 and k � 2,
Q� 1

Q(Qk � 1)
log

����Q;k��� � h(XAQ)
� Q� 1

Q(Qk � 1)
�
log

����Q;k���+ k log 2� ;
and

h(XAQ) = lim
k!1

Q� 1
Q(Qk � 1)

log
����Q;k��� ;

where �Q;k is the set of all admissible patterns on LQ;k,
and LQ;k is the degree k blank lattice.

Theorem : For any Q � 3, C �
n
0; 1; : : : ; (N � 1)d

o
and k � 2,

Q� 1
Q(Qk � 1)

log j�k(Q;A;N; C)j � h
�
XAQ(N; C)

�
� Q� 1

Q(Qk � 1)
(log j�k(Q;A;N; C)j+ k logN) ;



and

h
�
XAQ(N; C)

�
= lim
k!1

Q� 1
Q(Qk � 1)

log j�k (Q;A;N; C)j ;

where �k (Q;A;N; C) is the set of all admissible pat-
terns on LQ;k the constraint of the vertices on the bold
lines in LQ;k is given by A and the constraint of the
vertices on the lines in LQ;k is given by N and C.
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