THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics

Mathematical Modelling Project Team mathmodel@math.cuhk.edu.hk

Exercise (Equation of Straight Lines)

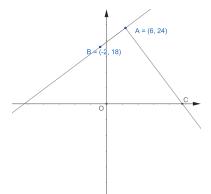
Last updated: 26/01/2025

Part A: Basic Questions

- 1. If the lines y = mx + b and $\frac{x}{a} + \frac{y}{b} = 1$ are perpendicular, find m in terms of a and b.
- 2. If the straight line 2x + y + k = 0 passes through the point of intersection of the two straight lines x + y 3 = 0and x - y + 1 = 0, find the value of k.
- 3. The equation of the straight line L is kx + 4y 2k = 0, where k is a constant. If L is perpendicular to the straight line 6x 9y + 4 = 0. Find the y-intercept of L.
- 4. The equation of the straight line L_1 is 4x + 3y 36 = 0. The straight line L_2 is perpendicular to L_1 and intersects L_1 at a point lying on the y-axis. Find the area of the region bounded by L_1 , L_2 and the x-axis.
- 5. O is the origin. A and B are the points (-2,0) and (4,0) respectively. l is a straight line through A with slope 1. C is a point on l such that CO = CB.
 - (a) Find the equation of l.
 - (b) Find the coordinates of C.
 - (c) Find the equation of the circle passing through O, B and C.
 - (d) If the circle OBC cuts l again at D, find the coordinates of D.
- 6. If the straight lines hx + ky + 15 = 0 and 4x + 3y 5 = 0 are perpendicular to each other and intersect at a point on the x-axis, then find k.

Part B: Advanced Questions

- 7. In the figure, the straight line passing through A and B is perpendicular to the straight line passing through A and C, where C is a point lying on the x-axis.
 - (a) Find the equation of the straight line passing through A and B.
 - (b) Find the coordinates of C.
 - (c) Find the area of $\triangle ABC$.
 - (d) A straight line passing through A cuts the line segment BC at D such that the area of $\triangle ABD$ is 90 square units. Let BD : DC = r : 1. Find the value of r.



- 8. The lines 3x y 8 = 0 and x y 2 = 0 meet at a point P. L_1 and L_2 are lines passing through P and having slopes $\frac{1}{2}$ and 2 respectively. Find their equations.
- 9. Let J be the circle $x^2 + y^2 = r^2$, where r > 0.
 - (a) Suppose that the straight line L: y = mx + c is a tangent to J.
 - i. Show that $c^2 = r^2(m^2 + 1)$.
 - ii. If L passes through a point (h, k), show that $(k mh)^2 = r^2(m^2 + 1)$.
 - (b) J is inscribed in a triangle PQR. The coordinates of P and R are (7,4) and (-5,5) respectively.
 - i. Find the radius of J.
 - ii. Using (a)(ii), or otherwise, find the slope of PQ.
 - iii. Find the coordinates of Q.
- 10. Two straight lines $L_1: x 2y + 3 = 0$ and $L_2: 2x y 1 = 0$. Find the equation of the straight line passing through P and with equal positive intercepts, find the equation of L.
- 11. A and B are the points (1,2) and (7,4) respectively. P is a point on the line segment AB such that $\frac{AP}{PB} = k$.
 - (a) Write down the coordinates of P in terms of k.
 - (b) Hence find the ratio in which the line 7x 3y 28 = 0 divides the line segment AB.
- 12. The coordinates of the points A and B are (5,7) and (13,1) respectively. Let P be a moving point in the rectangular coordinate plane such that P is equidistant from A and B. Denote the locus of P by Γ .
 - (a) Find the equation of Γ .
 - (b) Γ intersects the x-axis and the y-axis at H and K respectively. Denote the origin by O. Let C be the circle which passes through O, H and K. Someone claims that the circumference of C exceeds 30. Is the claim correct? Explain your answer.

Solutions

- 1. $\frac{x}{a} + \frac{y}{b} = 1$ can be changed into $y = -\frac{b}{a}x + b$. Since two lines are perpendicular, we have $m \cdot (-\frac{b}{a}) = -1$. Hence, $m = \frac{a}{b}$.
- 2. The intersection of the two straight lines is (1, 2). Hence, k = -4.
- 3. Since two lines are perpendicular, we have 6k 36 = 0. Hence, k = 6.

Then, the *y*-intercept of L is 3.

4. The intersection on y-axis must be (0, 12).

Note that L_2 is perpendicular to L_1 , the equation of L_2 is given by 3x - 4y + 48 = 0.

The region bounded by L_1 , L_2 and x-axis is a triangle with base 16 + 9 = 25 and height 12.

The desired area is 96.

- 5. (a) The equation of l is y = x + 2.
 - (b) C(2,4).
 - (c) The x-coordinate of the center of the circle is $\frac{0+4}{2} = 2$. Suppose the function is $(x-2)^2 + (y-b)^2 = r^2$ for some b and r. Take O(0,0) and C(2,4) and we will get $b = \frac{3}{2}$ and $r = \frac{5}{2}$. Therefore, the equation of the circle is $(x-2)^2 + (y-\frac{3}{2})^2 = \frac{25}{4}$.
 - (d) Take y = x + 2 into the equation of the circle. We get x = 2 or $-\frac{1}{2}$. Hence, the coordinates of D is $(-\frac{1}{2}, \frac{3}{2})$.
- 6. $(\frac{5}{4}, 0)$ is a point on the line 4x + 3y 5 = 0 and also on x-axis. Hence, it is a point on hx + ky + 15 = 0. Therefore, h = -12. Since hx + ky + 15 = 0 and 4x + 3y - 5 = 0 are perpendicular, we have 4h + 3k = 0. Therefore, k = 16.
- 7. (a) The equation is $y = \frac{3}{4}x + \frac{39}{2}$.
 - (b) The equation of AC is $y = -\frac{4}{3}x + 32$. Hence, the coordinates of C is (24, 0).
 - (c) Note that $|AB| = \sqrt{8^2 + 6^2} = 10$ and $|AC| = \sqrt{18^2 + 24^2} = 30$. Hence, the area is $\frac{10 \cdot 30}{2} = 150$.

(d)
$$\frac{BD}{DC} = \frac{S_{\triangle ABD}}{S_{\triangle ADC}} = \frac{90}{150 - 90} = \frac{3}{2}$$

Hence, $r = \frac{3}{2}$.

8. The coordinates of P is (3, 1).

Hence, the equation of L_1 is given by $y = \frac{1}{2}(x-3) + 1 = \frac{1}{2}x - \frac{1}{2}$. The equation of L_2 is given by y = 2(x-3) + 1 = 2x - 5.

- 9. (a) i. Combine the equation of L and J, we have $x^2 + (mx + c)^2 = r^2$. Hence, $(1 + m^2)x^2 + 2mcx + c^2 - r^2 = 0$. $\Delta = 4m^2c^2 - 4(1 + m^2)(c^2 - r^2) = 0$ Therefore, $c^2 = r^2(m^2 + 1)$.
 - ii. Put (h, k) into L, we have k = mh + c. Hence, $(k - mh)^2 = c^2 = r^2(m^2 + 1)$.

(b) i. The equation of *PR* is given by $\frac{y-4}{x-7} = \frac{-5-4}{-5-7} = \frac{3}{4}$, which is 3x - 4y - 5 = 0. Therefore, *x*-intercept= $\frac{5}{3}$ and *y*-intercept= $\frac{-5}{4}$. Hence, we have $1 = \sqrt{(5)^2 + (5)^2} = 1 = 5 = 5$

$$\frac{1}{2}r\sqrt{(\frac{5}{3})^2 + (\frac{5}{4})^2} = \frac{1}{2} \cdot \frac{5}{3} \cdot \frac{5}{4}.$$

Then, r = 1.

- ii. Use (a)(ii) with (h, k) = (7, 4) and r = 1. We have $(4 - 7m)^2 = m^2 + 1$, which gives $m = \frac{3}{4}$ or $\frac{5}{12}$. Hence, $m_{PQ} = \frac{5}{12}$.
- iii. Use (a)(ii) with (h, k) = R = (-5, 5) and r = 1. We have $(-5 + 5m)^2 = m^2 + 1$, which gives $m = \frac{3}{4}$ or $\frac{4}{3}$. Hence, $m_{QR} = \frac{4}{3}$. Let Q = (a, b). We have $\frac{b-4}{a-7} = \frac{5}{12}$ and $\frac{b+5}{a+5} = \frac{4}{3}$. Solve *a* and *b*, we have $Q = (\frac{-7}{11}, \frac{9}{11})$.
- 10. We first compute the coordinates of P, which is $(\frac{5}{3}, \frac{7}{3})$. Since L has equal positive intercepts, its slope is -1. Hence, the equation of L is x + y - 4 = 0.
- 11. (a) The coordinates of P is $(\frac{7k+1}{k+1}, \frac{4k+2}{k+1})$.
 - (b) When *P* lies on 7x 3y 28 = 0,

$$7(\frac{7k+1}{k+1}) - 3(\frac{4k+2}{k+1}) - 28 = 0$$

We get k = 3. Hence, the ratio is 3:1.

12. (a) The equation of Γ is:

$$(x-5)^2 + (y-7)^2 = (x-13)^2 + (y-1)^2$$

4x - 3y - 24 = 0.

(b) H(6,0) and K(0,-8)Since $\angle HOK = 90^{\circ}$, HK is a diameter of C. Diameter= $\sqrt{6^2 + 8^2} = 10$

Hence, the circumference of C is $10\pi = 31.4 > 30$. The claim is correct.