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Abstract. In applying multilevel iterative methods on unstructured meshes, the grid hierarchy
can allow general coarse grids whose boundaries may be nonmatching to the boundary of the fine
grid. In this case, the standard coarse-to-fine grid transfer operators with linear interpolants are
not accurate enough at Neumann boundaries so special care is needed to correctly handle different
types of boundary conditions. We propose two effective ways to adapt the standard coarse-to-fine
interpolations to correctly implement boundary conditions for two-dimensional polygonal domains,
and we provide some numerical examples of multilevel Schwarz methods (and multigrid methods)
which show that these methods are as efficient as in the structured case. In addition, we prove that
the proposed interpolants possess the local optimal L2-approximation and H1-stability, which are
essential in the convergence analysis of the multilevel Schwarz methods. Using these results, we give
a condition number bound for two-level Schwarz methods.
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1. Introduction. Unstructured grids have become popular in scientific comput-
ing because they can be easily adapted to complex geometries and sharp gradients in
the solution [3, 12, 17]. However, in order to compete with structured meshes which
can exploit the regularity of the mesh, there is a need to develop efficient solvers
on unstructured meshes including good multilevel algorithms such as domain decom-
position or multigrid methods. Since no natural coarse grids exist as in structured
meshes, practical multilevel domain decomposition and multigrid algorithms must al-
low coarser grids which are nonquasi uniform with boundaries and interior elements
which are not necessarily matching to that of the fine mesh. The traditional solvers
need to be modified so that their efficiency will not be adversely affected by this lack
of structure and to ensure that a proper sequence of coarse subspaces exists for the
domain decomposition or multigrid methods.

Providing a coarse grid hierarchy for multilevel methods poses some difficulties
when using unstructured meshes, and several different approaches have been devel-
oped recently (see, for instance, [14, 15, 18, 19]). One technique generates a coarse
grid hierarchy by using independent grids created by some grid generator (for exam-
ple, the one which produced the original grid). Another approach uses agglomeration
techniques to create a coarse space hierarchy. Still another method uses a graph ap-
proach by forming maximal independent sets (MIS) of the boundaries and interiors
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of the mesh and then retriangulating the resulting vertex set. The advantage of using
a MIS approach is that the grids are node-nested, and thus efficient methods can be
used to create the interpolation and restriction operators needed to transfer informa-
tion from one level to the other. A disadvantage, however, is that for complicated
geometries, particularly in three dimensions, special care must be taken to ensure that
the coarse grids which are produced are valid and preserve the important geometric
features of the fine domain.

Using MIS coarsening to generate a coarse grid hierarchy, it was shown in [7] that
for domain decomposition methods for elliptic problems on unstructured meshes, the
same optimal convergence rate can be achieved as in the structured case provided that
the coarse grid domain covers the Neumann boundary part of the fine grid domain,
but no such requirement is needed for homogeneous Dirichlet boundary conditions.
This was demonstrated numerically with problems on the unit square by physically
extending the coarse grid domain beyond the Neumann boundaries and using linear
interpolation.

In this paper, we will extend this idea to include interpolants with nonzero exten-
sions which do not require the coarse grid domain be modified to cover the Neumann
boundary part of the fine grid domain, and we will provide some analysis on a cru-
cial step in the convergence analysis of two-level Schwarz methods on unstructured
meshes using such coarse-to-fine interpolants. We will follow the general framework
for convergence analyses applicable to unstructured meshes in [7, 8, 9], which can be
viewed as a natural extension of the one formulated by Xu [23] for structured meshes.
Some preliminary results can be found in [5].

This paper is arranged as follows. The considered elliptic problem is introduced in
section 2, and the coarse-to-fine grid transfer operators along with several particular
interpolants are defined in section 3. In section 4, we provide some numerical results
on multilevel Schwarz (cf. [2, 24]) and multigrid methods using the coarse-to-fine grid
transfer operators proposed in section 3. Previous numerical results on multilevel
Schwarz methods on structured grids can be found in [21, 24]. The results we present
here, however, appear to be the first on multilevel Schwarz on unstructured grids.

Section 5 gives an optimal condition number bound for the two-level additive
Schwarz method. The optimal L2-approximation and H1-stability properties of the
interpolants, which are essential in the convergence analysis of the multilevel Schwarz
methods, are shown in the appendix. As multilevel additive methods need some more
technical tools, for example, stability of the inverse of the coarse-to-fine interpolant
(cf. Chan–Zou [9]), a full multilevel convergence theory is beyond the scope of this
paper. Though it is not clear to us whether the two-level convergence results can
be extended to the multilevel case, we emphasize that the proposed interpolants are
applicable to the general multilevel case and the numerical results in section 4 show
that, in practice, optimal convergence for the multilevel case can be achieved using
these interpolants. We summarize with some conclusions in section 6.

2. The elliptic problem. Let us consider the elliptic boundary value problem

−
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Fig. 1. Zero extension interpolants: (a) I0
h
: with unmodified coarse boundaries; (b) I1

h
: with

modified coarse boundaries to cover the parts where Neumann conditions exist (dashed lines). Thick
lines represent coarse grid boundaries.

where (aij(x)) is symmetric and uniformly positive definite and b(x) ≥ 0 in Ω. Ω is
a polygonal domain, and ΓD and ΓN are two curves consisting of piecewise straight
lines with Γ̄D ∪ Γ̄N = ∂Ω. γ = (γ1, γ2) is the unit outward normal to ∂Ω.

Let T h be a given fine triangulation of the domain Ω with triangular elements,
and let V h be the piecewise linear finite element space defined on T h with functions
vanishing at the nodal points lying in the Dirichlet boundary part ΓD. Suppose T H is
a coarse triangulation of the domain Ω with its elements forming a polygonal domain
ΩH . With unstructured meshes, the MIS coarsening strategy for generating a coarse
grid hierarchy may produce coarse grid domains whose boundaries do not match that
of the fine domain. Note then that ΩH is allowed to be nonnested and nonmatching
with Ω, so in general we have ΩH 6= Ω (see Fig. 1). Moreover, we do not require the
coarse grid T H to have anything to do with the fine grid T h, i.e., none of the nodes of
T H need be nodes of T h, but only that it is shape regular. No assumption on quasi
uniformity is made on the grids T h and T H . Let V H be the piecewise linear finite
element space corresponding to the coarse grid triangulation T H and the boundary
condition in V H be defined as follows: each boundary node xH

i ∈ ∂ΩH in T H is
assigned the same boundary condition type (Dirichlet or Neumann) as the closest fine
boundary node to xH

i . By changing boundary conditions for a few coarse boundary
nodes, if needed, the coarse boundary nodes can be arranged in such a way that
two neighbors of each Neumann (resp., Dirichlet) node are also of Neumann (resp.,
Dirichlet) type with only two Neumann (resp., Dirichlet) nodes near two junctions
between ΓD and ΓN to have one Dirichlet and one Neumann node as its two neighbors.

It is intuitively obvious that for the coarse grid, T H , to assist in accelerating the
convergence of iterative methods on the fine grid, T h, it cannot be allowed to be too
small compared with the fine grid. Therefore, we always assume that ΩH covers a
significant part of Ω. More accurately, we assume that there exists a positive constant
C such that for any point x ∈ ∂Ω, we have

dist(x, τH) ≤ C d(τH),

where τH is the closest element in T H to x and d(τH) the diameter of τH .

Two-level Schwarz methods. Here and below, the subscript which is a domain
or subdomain stresses that the integral involved is done over the related domain or
subdomain, e.g., AΩ and AΩk below.
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The finite element approximation to the original elliptic problem can be formu-
lated as follows. Find u ∈ V h such that

AΩ(u, v) = (f, v) ∀ v ∈ V h,(2.1)

where the bilinear form AΩ(· , ·) is defined by

AΩ(u, v) =

∫

Ω

(

2
∑

i,j=1

aij
∂u

∂xj

∂v

∂xi

+ b uv

)

dx.

To construct the two-level additive Schwarz method for solving the finite element
system (2.1), we first decompose the domain Ω into p nonoverlapping subdomains Ω̃k

(1 ≤ k ≤ p), then extend each Ω̃k to a larger one Ωk such that the distance between
∂Ωk and ∂Ω̃k is bounded from below by δk > 0. We assume that ∂Ωk does not cut
through any element τh ∈ T h.

Corresponding to each subdomain Ωk, we define a subspace V k of V h by

V k = {v ∈ V h; v = 0 on Ω \ Ωk}.

We now introduce a fine-grid operator A on V h and a coarse-grid operator AH

on V H by

(Au, v)Ω = AΩ(u, v) ∀u, v ∈ V h, (AHu, v)ΩH = AΩH (u, v) ∀u, v ∈ V H

and a local operator Ak on each subspace V k by

(Aku, v)Ωk = AΩk(u, v) ∀u, v ∈ V k.

Let fh ∈ V h be the L2 projection of f ; then the finite element system (2.1) is
equivalent to the equation

Au = fh,

which can be solved by the preconditioned CG method with the two-level additive
Schwarz preconditioner M . We next construct M . To this aim, we need a “prolonga-
tion” operator Ik from each subspace V k to V h and Ih from V H to V h, respectively.
Then the two-level additive Schwarz preconditioner M can be formulated as

M = IhA
−1
H Qh +

p
∑

k=1

IkA
−1
k Qk(2.2)

with Qh : V h → V H and Qk : V h → V k being the adjoints of Ih and Ik, respectively
(cf. [9]).

Since V k ⊂ V h, 1 ≤ k ≤ p, the natural injection Ik can be taken as the prolonga-
tion operator from V k to V h. The coarse grid space V H , however, is not generally a
subspace of V h as the coarse elements are often not the unions of some fine elements
in the unstructured grid, even if ΩH = Ω. It was shown in [7] that unstructured grid
methods were as efficient as those for structured grids. However, in addition to the
nonnestedness of the coarse grid space induced by the unstructured grid, when the
coarse grid boundary ∂ΩH does not match with the original boundary ∂Ω, the coarse
space V H will not be a subspace of the fine space V h. We focus on this case and
define a general interpolant Ih in section 3 which can be used for the prolongation
operator from V H to V h.



50 TONY F. CHAN, SUSIE GO, AND JUN ZOU

3. Coarse-to-fine interpolations. To construct a coarse-to-fine transfer oper-
ator, one may easily come up with the standard nodal value interpolant associated
with the fine space V h. But notice that this interpolant is well defined only for those
fine nodes also lying in the coarse domain Ω̄H and is meaningless for those fine nodes
lying outside Ω̄H . A simple and natural way to remove this barrier is to assign those
fine node values by zero. This is indeed a reasonable and efficient thing to do when
the assignment is done along the coarse boundary part of Dirichlet type (which is also
near the fine boundary part of Dirichlet type). We shall denote this interpolant as
the coarse-to-fine interpolant, I0

h.
I

0

h
: Zero extension with unmodified coarse boundaries. Where coarse

grid boundary conditions are of Dirichlet type, the standard nodal value interpolants
with zero extensions can be accurate enough for interpolating fine grid values outside
the coarse grid domain ΩH (cf. Fig. 1(a)); we refer to [6, 7] for the theoretical and
numerical justifications of I0

h.
Although the interpolant I0

h is appropriate to use at Dirichlet boundaries, it is
not accurate enough to use at Neumann boundaries, or not accurate at all sometimes;
see the numerical results in [7] and section 4. To achieve better efficiency, we should
modify this intergrid operator to account for the Neumann condition. We now propose
two general ways to treat such boundaries:

1. Modify the coarse grid domain to cover any fine grid boundaries of Neumann
type.

2. Increase the accuracy of the interpolants by accounting for the Neumann
condition for those fine nodes in Ω\ΩH .

The first approach is motivated by the fact that standard nodal value interpolants
can still be used with efficiency where the coarse grid covers the Neumann boundary
part of the fine grid. This was first proposed and justified in [7]. We shall denote this
operator as the coarse-to-fine interpolant, I1

h.
I

1

h
: Zero extension with modified coarse boundaries. Modify the original

coarse grid domain ΩH to make it appropriately larger so that it covers the Neumann
boundary part of the fine grid domain (see Fig. 1(b)). Let us still denote the modified
coarse grid domain by ΩH . Then for all vH ∈ V H , the interpolant I1

h is defined as

I1
hv

H(xh
j ) =

{

vH(xh
j ) for xh

j ∈ Ω ∩ Ω̄H ,

0 for xh
j ∈ Ω \ Ω̄H .

This is a natural extension of vH by zero outside the Dirichlet boundary part of the
coarse grid domain. Similar zero extensions were used in Kornhuber–Yserentant [16]
to embed an arbitrarily complicated domain into a square or cube in constructing mul-
tilevel methods on nested and quasi-uniform meshes for second-order elliptic problems
with purely Dirichlet boundary conditions.

Although the coarse-to-fine operator I1
h works well for mixed boundary conditions,

one has to modify the original coarse grid so that it covers the Neumann boundary
part of the find grid domain. This can be difficult to do for very complicated domains.
To avoid modifying the original coarse grid, we now consider standard finite element
interpolants which are modified only near Neumann boundaries. To do so, we first
introduce some notation. Let τHlr be any coarse boundary element in T H which is
made up of the three vertices xH

l , xH
r , xH

i and which has an edge on the boundary
∂ΩH , denoted by xH

l xH
r . We use Ω(xH

l , xH
r ) to denote the union of all fine elements,

if any, which has a nonempty intersection with the unbounded domain formed by
the edge xH

l xH
r and two outward normal lines to xH

l xH
r at two vertices xH

l , xH
r (cf.
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Fig. 2. Shaded region, Ω(xH
l
, xH

r ), shows the fine grid part which is not completely covered by
the coarse grid domain.

Fig. 2). By including a few more fine elements in some Ω(xH
l , xH

r ), if necessary, we
may assume that the fine grid part (Ω\ΩH) is included in the union of all Ω(xH

l , xH
r ).

Moreover, we assume

(H1) diam Ω(xH
l , xH

r ) ≤ µ0 diam τHlr ,

which implies the measure of Ω(xH
l , xH

r ) is bounded by the measure of τHlr :

|Ω(xH
l , xH

r )| ≤ µ |τHlr |,

where µ0 and µ are two positive constants independent of H and h. Without any
difficulty, the constant µ0, and so µ, can be allowed in our subsequent results to
depend on the two nodes xH

l , xH
r . In this case, µ0 and µ will enter all the related

bounds naturally.
We remark that (H1) restricts the size of the fine grid part near the edge xH

l xH
r

but outside the coarse grid domain ΩH ; that is, each local fine grid part Ω(xH
l , xH

r )
is not allowed to be too large compared to its nearest coarse element τHlr . This is a
reasonable requirement in applications.

Then the standard nodal value interpolant associated with the fine space V h can
be generalized outward to each local fine grid part Ω(xH

l , xH
r ) using three given linear

functions θ1, θ2, and θ3, which are defined in Ω̄∪ Ω̄H but bounded in Ω(xH
l , xH

r )∪ τHlr
and satisfy

θ1(x) + θ2(x) + θ3(x) = 1, ∀x ∈ Ω̄ ∪ Ω̄H .(3.1)

Note that the functions θ1, θ2, and θ3 above are not necessarily nonnegative, and
although they are element τHlr -related, we will not use any index to specify this relation
in order to simplify the notation. Then for any coarse function vH ∈ V H , we define
an operator Θh by

Θhv
H(x) = θ1(x)vH(xH

l ) + θ2(x)vH(xH
r ) + θ3(x)vH(xH

i ), ∀x ∈ Ω(xH
l , xH

r ) ∪ τHlr

and assume that

(H2) Θhv
H = vH on the edge xH

l xH
r ,

which means Θhv
H is indeed an extension of vH . For convenience, later on we will

always regard Θhv
H as a function defined also outside Ω(xH

l , xH
r ) ∪ τHlr by extending

it naturally.
With the above notation, we can introduce the general coarse-to-fine interpolant Ih.
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Fig. 3. More accurate interpolants: (a) I2
h
: Fine nodal values outside the coarse domain are

interpolated with coarse nodal values on the nearest coarse grid edge; (b) I3
h
: Fine nodal values

outside the coarse domain are interpolated with nodal values on the nearest coarse element τH
lr

.
Thick lines represent coarse grid boundaries or elements, and dotted lines show the coarse nodes
used to interpolate the fine nodal value at xh

j
.

Definition 3.1. For any coarse function vH in V H , its image under the coarse-

to-fine interpolant Ih is specified as follows:

(C1) For any fine node xh
j in Ω̄ ∩ Ω̄H ,

Ihv
H(xh

j ) = vH(xh
j ).

(C2) For any fine node xh
j in Ω(xH

l , xH
r ) \ Ω̄H with both xH

l and xH
r of Neumann

nodes,

Ihv
H(xh

j ) = Θhv
H(xh

j ).

(C3) For any fine node xh
j in Ω(xH

l , xH
r ) \ Ω̄H with both xH

l and xH
r of Dirichlet

nodes,

Ihv
H(xh

j ) = 0.

(C4) For any fine node xh
j in Ω(xH

l , xH
r ) \ Ω̄H with one of xH

l and xH
r being the

Neumann node and one being the Dirichlet node,

Ihv
H(xh

j ) = 0 if xh
j is a fine boundary node of Dirichlet type,

Ihv
H(xh

j ) = Θhv
H(xh

j ) otherwise.

The following are two concrete examples of interpolants which satisfy the above
definition and assumptions. We give only the corresponding forms of Θh’s required
in the definition.

I
2

h
: Nearest edge interpolation. Define the interpolant at xh

j by using the

nodes of the coarse boundary edge closest to xh
j (see Fig. 3):

I2
hv

H(xh
j ) = λ(xh

j )vH(xH
l ) + (1 − λ(xh

j ))vH(xH
r ),

where xH
l and xH

r are the nodes of the coarse boundary edge closest to xh
j and λ is

the ratio of the lengths of two segments of the edge xH
l xH

r cut off by the normal line
passing through xh

j to the edge (see Fig. 3). This kind of interpolation was used by
Bank–Xu [1] in their construction of a hierarchical basis on an unstructured mesh.
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Fig. 4. Some fine grids: an unstructured square with 385 nodes (left), NASA airfoil with 4253
nodes (center), and an annulus with 610 nodes (right).

I
3

h
: Nearest element interpolation. Define the nonzero extension by using

barycentric functions (see Fig. 3):

I3
hv

H(xh
j ) = λl(x

h
j )vH(xH

l ) + λr(x
h
j )vH(xH

r ) + λi(x
h
j )vH(xH

i ),

where λl, λr, λi are three barycentric coordinate functions (also known as area or
volume coordinates) corresponding to τHlr .

Remark 3.1. Note that the functions λl, λr, and λi used in the definition of
I3
h satisfy λl, λr, λi ≥ 0 for xh

j ∈ τHlr , but not so for xh
j 6∈ τHlr . In the case as

shown in Fig. 3(b), we have xh
j 6∈ τHlr , λl(x) ≥ 0, λr(x) ≥ 0, but λi(x) ≤ 0 and

λl(x) + λr(x) + λi(x) = 1. By (H1), we always have

|λl(x)| ≤ µ1, |λr(x)| ≤ µ1, and |λi(x)| ≤ µ1 ∀x ∈ Ω(xH
l , xH

r ) ∪ τHlr ,

where µ1 is a constant independent of h and H but depending only on the constant
µ in (H1).

4. Numerical results. In this section, we provide some numerical results of do-
main decomposition and multigrid methods on unstructured meshes for elliptic prob-
lems on various fine grid domains (see Fig. 4). The well-known NASA airfoil mesh
was provided by T. Barth and D. Jesperson of NASA Ames, and a fine, unstructured
square and annulus were generated using Barth’s two-dimensional Delaunay trian-
gulator. All numerical experiments were performed using the Portable, Extensible
Toolkit for Scientific Computation (PETSc) [13] running on a Sun SPARC 20. Piece-
wise linear finite elements were used for the discretizations and the resulting linear
system was solved using either multilevel overlapping Schwarz or V-cycle multigrid as
a preconditioner with full GMRES as an outer accelerator.

Our approach to generating a coarse grid hierarchy is to find a maximal inde-
pendent set of the boundaries and the interior of the fine grid of the mesh and then
retriangulate the resulting set of vertices (other coarsening algorithms can be used
here). This process is then repeated recursively for the desired number of levels. An
example coarse grid hierarchy of the airfoil mesh retriangulated with Cavendish’s al-
gorithm [4] is shown in Fig. 5, where G2 refers to the first coarsening of the fine grid,
G1 is the coarsening of G2, and G0 is the coarsening of the G1.

We shall present numerical results for Schwarz solvers and multigrid methods. For
partitioning, all the domains (except the coarsest) were partitioned using the recur-
sive spectral bisection method [20] with exact solves for both the subdomain problems
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G2

G1

G0

Fig. 5. Airfoil grid hierarchy with unmodified boundaries (left) and modified boundaries (right).
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Table 1

Additive multilevel Schwarz iterations for the Poisson problem on a unit square grid. All
grids (except coarsest) were partitioned using RSB. Shown is the number of GMRES iterations to
convergence.

Dirichlet boundary conditions

# of # of # of # overlap elements

levels nodes subdomains 0 1 2

6409 256 84 63 50

1 1522 64 45 36 27

385 16 26 19 16

1522 64 19 16 16
385 1

2 385 16 19 15 15
102 1

102 4 17 15 15
29 1

6409 256 28 24 25
1522 64
385 1

1522 64 32 25 26
3 385 16

102 1

385 16 31 26 26
102 4
29 1

6409 256 43 37 37
1522 64
385 16

4 102 1

1522 64 42 37 37
385 16
102 4
29 1

and the coarse grid problem. To generate overlapping subdomains, we first partition
the domain into nonoverlapping subdomains and then extend each subdomain by
some number of elements.

In all the experiments, the initial iterate is set to be zero and the iteration is
stopped when the discrete norm of the residual is reduced by a factor of 10−5.

For our first experiment, we use additive Schwarz to solve the Poisson problem
on a unit square with homogeneous Dirichlet boundary conditions. Because the fine
domain is so simple and Dirichlet boundary conditions are given, nonmatching bound-
aries are not an issue here and no special interpolants are used. We provide these
results simply for completeness, as multilevel Schwarz results on unstructured grids
have not been previously found in the literature to the authors’ knowledge. Table 1
shows the number of GMRES iterations to convergence with varying fine grid problem
and varying number of levels.

Providing a coarse grid improved convergence, and without it the method is not
scalable to the case with a large number of subproblems. Interesting things to notice
are that for a fixed number of levels, multilevel Schwarz is mesh-size independent, but
that the number of iterations increases with the number of levels for a fixed problem
size. This had also been previously observed for structured meshes using a multilevel
diagonal scaling method in [21] and is due to the additive nature of the method. Also,
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Table 2

Additive multilevel Schwarz iterations for the elliptic problem with mildly varying coefficients
on the airfoil grid (G3) with 4253 unknowns. All grids (except coarsest) were partitioned using RSB
with one element overlap. Shown is the number of GMRES iterations to convergence. * indicates
identical results since no coarse grid was used.

Dirichlet boundary conditions

Special interpolant used

# of levels Grids
# of

subdomains
I0
h

I1
h

I2
h

I3
h

1 G3 32 23 * * *

2 G3 32 15 15 15 16
G2 1

3 G3 32 23 23 23 25
G2 8
G1 1

4 G3 32 32 33 33 35
G2 8
G1 2
G0 1

Mixed Dirichlet/Neumann boundary conditions

Special interpolant used

# of levels Grids
# of

subdomains
I0
h

I1
h

I2
h

I3
h

1 G3 32 51 * * *

2 G3 32 43 14 15 16
G2 1

3 G3 32 53 21 23 23
G2 8
G1 1

4 G3 32 61 27 29 30
G2 8
G1 2
G0 1

increasing the amount of overlap improved convergence, but in practice, a one-element
overlap was sufficient.

In our second experiment, we solve a mildly varying coefficient problem on the
airfoil,

∂

∂x

(

(1 + xy)
∂u

∂x

)

+
∂

∂y

(

(sin(3y))
∂u

∂y

)

= (4xy + 2) sin(3y) + 9x2 cos(6y),

with either a purely Dirichlet boundary condition or a mixed boundary condition:
Dirichlet for x ≤ 0.2 and homogeneous Neumann for x > 0.2. For this problem,
the nonhomogeneous Dirichlet condition is u = 2 + x2 sin(3y). Table 2 shows the
number of GMRES iterations to convergence using additive multilevel Schwarz with
the different boundary treatments.

We see the slow increase in iteration number as we increase the number of lev-
els used. More important, we see the deterioration in the method when Neumann
conditions are not properly handled.

In Table 3, we show results for the same problem solved using a hybrid multiplica-
tive-additive Schwarz (multiplicative between levels but additive among subdomains
on the same level). As in the additive case, deterioration of the method occurs when
mixed boundary conditions are present. However, we can achieve optimal conver-
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Table 3

Hybrid multiplicative-additive multilevel Schwarz iterations for the elliptic problem with mildly
varying coefficients on the airfoil grid (G3) with 4253 unknowns. All grids (except coarsest) were
partitioned using RSB with one element overlap. Shown is the number of GMRES iterations to
convergence. * indicates identical results since no coarse grid was used.

Dirichlet boundary conditions

Special interpolant used

# of levels Grids
# of

subdomains
I0
h

I1
h

I2
h

I3
h

1 G3 32 23 * * *

2 G3 32 13 13 13 14
G2 1

3 G3 32 13 13 13 14
G2 8
G1 1

4 G3 32 13 13 13 14
G2 8
G1 2
G0 1

Mixed Dirichlet/Neumann boundary conditions

Special interpolant used

# of levels Grids
# of

subdomains
I0
h

I1
h

I2
h

I3
h

1 G3 32 51 * * *

2 G3 32 36 13 13 14
G2 1

3 G3 32 36 13 13 14
G2 8
G1 1

4 G3 32 36 13 13 14
G2 8
G1 2
G0 1

gence rates, even with a varying number of levels with the hybrid method. Still
further improvement can be obtained when using a multiplicative method (both on
the subdomains and between levels), and the method behaves much like multigrid
(see Tables 4 and 5). In fact, this is nothing more than multigrid but with a block
smoother. A V-cycle multigrid method with pointwise Gauss–Seidel smoothing and
two pre- and two postsmoothings per level was used to produce the results in Table 5.

Table 6 shows some multigrid results for the Poisson equation on an annulus. The
forcing function is set to be one and both kinds of boundary conditions were tested.
A V-cycle multigrid method with pointwise Gauss–Seidel smoothing and two pre- and
two postsmoothings per level was used. When mixed boundary conditions are present,
the deterioration is less pronounced in the multigrid method, but it still exists. It
is interesting to note that in our previous multigrid experiments on a quasi-uniform
annulus (see [5]), the observed deterioration in the method was much more dramatic
than those observed here with the unstructured annulus. We believe that this was due
to some extremely poor element aspect ratios on the fine grid in the quasi-uniform
case, compounding the effect of the poor approximation on Neumann boundaries.

5. Two-level convergence theory. Here, we try to set up a framework for con-
vergence theory. An important ingredient in the convergence proof for the overlapping
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Table 4

Multiplicative multilevel Schwarz iterations for the elliptic problem with mildly varying coef-
ficients on the airfoil grid (G3) with 4253 unknowns. All grids (except coarsest) were partitioned
using RSB with one element overlap. Shown is the number of GMRES iterations to convergence. *
indicates identical results since no coarse grid was used.

Dirichlet boundary conditions

Special interpolant used
# of
levels Grids

# of
subdomains

I0
h

I1
h

I2
h

I3
h

1 G3 32 9 * * *

2 G3 32 4 4 4 4
G2 1

3 G3 32 4 4 4 4
G2 8
G1 1

4 G3 32 4 4 4 4
G2 8
G1 2
G0 1

Mixed Dirichlet/Neumann boundary conditions

Special interpolant used
# of
levels Grids

# of
subdomains

I0
h

I1
h

I2
h

I3
h

1 G3 32 23 * * *

2 G3 32 5 4 4 4
G2 1

3 G3 32 5 4 4 4
G2 8
G1 1

4 G3 32 5 4 4 4
G2 8
G1 2
G0 1

multilevel domain decomposition and multigrid methods is the requirement that the
coarse-to-fine grid transfer operator possesses the local optimal L2-approximation and
local H1-stability properties [7, 8, 9]. The locality of these properties is essential to
the effectiveness of these methods on highly nonquasi-uniform unstructured meshes.

We need to introduce some more notation (see section 2): for τh ∈ T h and
τH ∈ T H ,

N(τH) = union of coarse elements adjacent to τH ,

Bk = ∪τH∩Ωk 6=∅ τ
H , hk = max

τh⊂Ωk

hτ ,

Sk = ∪τH⊂Bk
N(τH), Hk = max

τH⊂Bk

Hτ .

Note that Bk is the union of all coarse elements having nonempty intersection with
the subdomain Ωk. We allow each Ωk to be of quite different size and of quite different
shape from other subdomains, but we make the following reasonable assumptions:

(A1) Any point x ∈ Ω belongs to at most q0 subdomains of {Ωk}pk=1 with q0 > 0
an integer.

(A2) hk
<
∼ Hk, and card{τH ∈ T H ; τH ⊂ Bk} ≤ n0 for 1 ≤ k ≤ p with n0 > 0

an integer.
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Table 5

Multigrid iterations for the elliptic problem with mildly varying coefficients on the airfoil.
Shown is the number of GMRES iterations to convergence.

Dirichlet boundary conditions

Special interpolant used
# of fine

grid nodes
MG
levels

# of coarse
grid nodes

I0
h

I1
h

I2
h

I3
h

2 1170 4 4 4 4

4253 3 340 4 4 4 4

4 101 4 4 4 4

Mixed Dirichlet/Neumann boundary conditions

Special interpolant used
# of fine

grid nodes
MG
levels

# of coarse
grid nodes

I0
h

I1
h

I2
h

I3
h

2 1170 6 5 4 4

4253 3 340 6 4 5 5

4 101 7 5 5 5

Table 6

Multigrid iterations for the Poisson problem on an annulus. The exit condition was decreased
to 10−6 from 10−5. Shown is the number of GMRES iterations to convergence.

Dirichlet boundary conditions

Special interpolant used
# of fine

grid nodes
MG
levels

# of coarse
grid nodes

I0
h

I1
h

I2
h

I3
h

2 610 4 4 4 4

2430 3 160 4 4 4 4

4 47 4 4 4 4

Mixed Dirichlet/Neumann boundary conditions

Special interpolant used
# of fine

grid nodes
MG
levels

# of coarse
grid nodes

I0
h

I1
h

I2
h

I3
h

2 610 6 5 4 4

2430 3 160 7 5 4 4

4 47 7 5 4 4

(A3) Any point x ∈ ΩH belongs to at most q0 subdomains of {Sk}
p
k=1.

The following theorem gives the bound of the condition number κ(MA) for the
two-level additive Schwarz method (2.2) of section 2.

Theorem 5.1. Under the assumptions (A1)–(A3), we have

κ(MA) <∼ max
1≤k≤p

H2
k

δ2
k

.

Theorem 5.1 indicates that an optimal condition number may be expected if the
local overlap δk is proportional to the local subdomain size Hk.

To prove Theorem 5.1, it is essential for any u ∈ V h to find a partition u =
IhuH +

∑p

k=1 uk with uk ∈ V k (1 ≤ k ≤ p) and uH ∈ V H such that IhuH is bounded
by u in both L2-norm and H1-norm and preserves the local optimal L2-norm error
approximation to u. This can be done quite routinely by using Lemma A.2 (see the
appendix) and the standard partition {θi}

p
i=1 of unity for Ω corresponding to the

subdomains {Ωk}pi=1. We refer to [7, 8, 9] for the details.
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6. Conclusions. When using general unstructured meshes, the coarse grid do-
main may not necessarily match that of the fine grid. For the parts of the fine grid
domain which are not contained in the coarse domain, special treatments must be
done to handle different boundary conditions. The transfer operators using linear in-
terpolation with a zero extension are the most natural to implement and are effective
for problems with Dirichlet boundary conditions.

For problems where Neumann boundary conditions exist, however, zero extension
is no longer appropriate and special interpolants should be sought. Our numerical
results show the significance of the assumption that when standard interpolations
with zero extension are used, the coarse grid must cover the Neumann boundaries of
the fine grid problem; otherwise deterioration of the methods occurs. The deteriora-
tion is most significant when using additive multilevel methods but can still be seen
for the multiplicative methods. When coupled with highly stretched elements, the
deterioration can be very significant, even for multiplicative methods.

Although modifying the coarse grid domains to ensure that this assumption is
satisfied is effective, this approach can be problematic to implement for particularly
complicated domains or can sometimes generate coarse grid domains which deviate
significantly from the fine domain.

An alternative is to modify the interpolants so that nonzero extensions are used
on those fine grid boundaries which have Neumann conditions and which are not
contained within the coarse grid domain. Since we are using the multilevel methods
only as preconditioners, the extension need not be particularly accurate; we used
either constant extension with the nearest boundary nodal value or extension using
the barycentric functions of the nearest coarse grid element, neither of which is difficult
to implement.

Appendix. We now prove the lemma which implies the stability and approx-
imation of the coarse space V H to the fine space V h under the coarse-to-fine grid
transfer operator Ih and which immediately gives rise to the convergence and condi-
tion number bounds for the two-level additive Schwarz methods (cf. section 5). As
multilevel additive methods need some more technical tools, for example, stability of
the inverse of the coarse-to-fine interpolant and construction of a “good” partition of
a fine function over the subspaces of all grid levels (cf. Chan–Zou [9]), we do not yet
know whether a similar convergence result can be extended to the multilevel case.

Appendix A. Stability and approximation properties of the interpola-

tion operator. Purely for our theoretical analysis, we now introduce a triangulation
T̃ H . Extend T H to a larger but still shape-regular triangulation T̃ H , the correspond-
ing domain denoted by Ω̃H , such that the Neumann boundary of ΩH is contained
in Ω̃H but the Dirichlet boundary remains the same. Let Ṽ H be the corresponding
piecewise linear finite element space on T̃ H with completely homogeneous Dirichlet
boundary condition. Then we have

V H = Ṽ H |Ω̄H .

We then have the following local optimal L2-approximation and H1-stability for the
operator Ih on the coarse space V H .

Lemma A.1. Let Ih be any interpolation operator defined in Definition 3.1, and

let vH be any coarse function in V H . If we extend vH onto Ṽ H in any way, still
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denoted by vH , then for any τH ∈ T H , we have

(l1)
∑

τh∩τH 6=∅

τh⊂Ω̄H

‖vH − Ihv
H‖2

0,τh ≤ Cd2(τH)|vH |21,N(τH),

(l2)
∑

τh∩τH 6=∅

τh⊂Ω̄H

|Ihv
H |1,τh ≤ C|vH |1,N(τH),

(l3)
∑

τh∈Ω(xH

l
,xH

r
)

‖vH − Ihv
H‖2

0,τh ≤ Cd2(τHlr )
∑

τH∈N(τH

lr
)

|vH |21,N(τH),

(l4)
∑

τh∈Ω(xH

l
,xH

r
)

|Ihv
H |21,τh ≤ C

∑

τH∈N(τH

lr
)

|vH |21,N(τH),

where Ω(xH
l , xH

r ) is any region as introduced in section 3.
Proof. The inequalities (l1) and (l2) correspond to the parts where the fine grid

domain is completely contained in the coarse grid domain. Their proofs can be found
in [7, 8]. The last two inequalities (l3) and (l4) correspond to the fine grid parts which
are not covered by the coarse grid and which we shall prove here. We give the proofs
only for the cases (C1)–(C2); the other case can be proved similarly.

We first prove inequality (l3), i.e., L2-optimal approximation. For any fine ele-
ment τh in Ω(xH

l , xH
r ), as Ihv

H is linear on τh we can express

Ihv
H(x) =

3
∑

i=1

Ihv
H(xh

i )φh
i ,

where xh
i (i = 1, 2, 3) are the three vertices of τh and φh

i (i = 1, 2, 3) are the corre-
sponding basis functions of V h at these three nodes. Then by definition of Ih and the
boundedness of θi (i = 1, 2, 3), we have

‖Ihv
H‖2

0,τh ≤ Cd2(τh)

3
∑

i=1

(

Ihv
H(xh

i )
)2

≤ Cd2(τh)
{

(vH(xH
l ))2 + (vH(xH

r ))2 + (vH(xH
i ))2

}

.

Summing over all τh ∈ Ω(xH
l , xH

r ) and using (H1),

∑

τh∈Ω(xH

l
,xH

r
)

‖Ihv
H‖2

0,τh ≤ C
{

(vH(xH
l ))2 + (vH(xH

r ))2 + (vH(xH
i ))2

}

∑

τh

d2(τh)

≤ C
{

(vH(xH
l ))2 + (vH(xH

r ))2 + (vH(xH
i ))2

}

|τHlr |

≤ C‖vH‖2
0,τH

lr

.

Using this and inequality (a + b)2 ≤ 2(a2 + b2) ∀ a, b ∈ R1, we obtain

∑

τh∈Ω(xH

l
,xH

r
)

‖vH − Ihv
H‖2

0,τh ≤ 2
∑

τh∈Ω(xH

l
,xH

r
)

‖vH‖2
0,τh + C‖vH‖2

0,τH

lr

≤ C‖vH‖2
0,N(τH

lr
).
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x H
i

τH
lr

x H
l x H

r

x H x H

1 2

τH

τH

1

2

Fig. 6. Fine grid element (shaded) in Ω(xH
l
, xH

r ), which is covered by τH
lr

plus two extended

coarse elements, τH1 and τH2 .

Noting that the left-hand side of the inequality doesn’t change by replacing vH with
vH plus any constant, we obtain by Poincaré inequality that

∑

τh∈Ω(xH

l
,xH

r
)

‖vH − Ihv
H‖2

0,τh ≤ Cd2(τHlr )|vH |21,N(τH

lr
).

This proves (l3).
We next prove (l4), i.e., H1-stability. For the ease of notation, we assume that

Ω(xH
l , xH

r ) can be covered by τHlr plus two extended coarse elements τH1 and τH2 ∈ Ω̃H

(see Fig. 6).
Let us define

Θ̃hv
H(x) =

{

vH(x) if x ∈ Ω̄ ∩ Ω̄H ,

Θhv
H(x) if x ∈ Ω\ΩH .

It is easy to see that Θ̃hv
H is continuous and belongs to H1(τ̄Hlr ∪ Ω(xH

l , xH
r )), and

by definition of Ih and Θ̃h, we have

Ihv
H(x) = ĨhΘ̃hv

H(x) ∀x ∈ τ̄Hlr ∪ Ω(xH
l , xH

r ).

Here Ĩh is the standard nodal value interpolant defined on the finite element space
V h. We have to bound |Ihv

H |1,τh for all τh ∈ Ω(xH
l , xH

r ). By the triangle inequality,

|Ihv
H |21,τh ≤ 2|ĨhΘ̃hv

H − Θ̃hv
H |21,τh + 2|Θ̃hv

H |21,τh .(A.1)

For the first term in (A.1), we have by standard interpolation theory (see Ciarlet [10])
that

(I)3 ≡ |ĨhΘ̃hv
H − Θ̃hv

H |21,τh ≤ Ch2|Θ̃hv
H |21,∞,τh .(A.2)

Let the maximum of Θ̃hv
H be reached at some point x0, which must belong to either

τH1 ∪ τH2 or τHlr or N(τHlr ) \ τHlr , and denote it by m(x0) = |Θ̃hv
H |21,∞,τh We consider

only the two cases x0 ∈ τH1 ∪ τH2 or x0 ∈ τHlr as the case of x0 ∈ N(τHlr ) \ τHlr is similar
to the one for x0 ∈ τHlr . For either case, we can always construct a shape regular
element τh1 with x0 as one of its vertices such that τh1 ⊂ τH1 ∪ τH2 for the former and
τh1 ⊂ τHlr for the latter and d(τh1 ) is of the same size as d(τh) (see Fig. 7). Then it
follows from the inverse inequality that for x0 ∈ τH1 ∪ τH2 ,

(I)3 ≤ Cd2(τh)m(x0) ≤ Cd2(τh)|Θ̃hv
H |21,∞,τh

1

≤ C|Θ̃hv
H |21,τh

1

;
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τH
lr

x H
i

τh
1

x H
x H

rl

τh
1

Fig. 7. A shape regular element, τh1 , whose diameter is of the same size as τh ∈ Ω(xH
l
, xH

r )
(shaded).

while for x0 ∈ τHlr ,

(I)3 ≤ Cd2(τh)m(x0) ≤ Cd2(τh)|vH |21,∞,τh

1

≤ C|vH |21,τh

1

.

Summing (I)3 over all τh ∈ Ω(xH
l , xH

r ), and using (A.1)–(A.2), we obtain

∑

τh∈Ω(xH

l
,xH

r
)

|Ihv
H |21,τh ≤ C

(

|Θ̃hv
H |21,τH

1

+ |Θ̃hv
H |21,τH

2

+ |vH |21,N(τH

lr
)

)

.(A.3)

, Θ̃hv
H is linear over Ω(xH

l , xH
r ), uniquely determined by values vH(xH

l ), vH(xH
r )

and vH(xH
i ); thus we derive immediately by direct calculations (cf. Fig. 7) that, with

wH = Θ̃hv
H ,

|wH |21,τH

1

≤ C{(wH(xH
l ) − wH(xH

r ))2 + (wH(xH
r ) − wH(xH

1 ))2

+(wH(xH
1 ) − wH(xH

l ))2}.

Using the assumption (H2), we know

wH(xH
l ) = vH(xH

l ), wH(xH
r ) = vH(xH

r ).

Combining with the definition of Θh, the boundedness of θi and (3.1) yields

|wH |21,τH

1

≤ C{(vH(xH
l ) − vH(xH

r ))2 + (vH(xH
r ) − vH(xH

i ))2

+(vH(xH
i ) − vH(xH

l ))2}

≤ C|vH |21,τH

lr

.

The same result is true for |wH |2
1,τH

2

≡ |Θ̃hv
H |2

1,τH

2

. Thus we obtain from these

estimates and (A.3) that

∑

τh∈Ω(xH

l
,xH

r
)

|Ihv
H |21,τh ≤ C|vH |21,N(τH

lr
).

This proves (l4).
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The next lemma implies the stability and approximation properties of the inter-
polant Ihu

H to u. Let Ω̂ be an open bounded domain in R2 which is large enough
that it contains both Ω and Ω̃H , and let E : H1(Ω) → H1(Ω̂) be a linear extension
operator satisfying

Ew|Ω = w, ‖Ew‖
1,Ω̂

≤ C‖w‖1,Ω ∀w ∈ H1(Ω).

See Stein [22] for the existence of such an extension operator. Let QH : L2(Ω̃H) → Ṽ H

be Clément’s interpolant. We refer to Clément [11] for its definition and Chan–Zou
[8] and Chan–Smith–Zou [7] for its use in domain decomposition contexts. Evidently,

(QHwH)|ΩH ∈ V H ∀wH ∈ L2(Ω̃H).

Lemma A.2. Given any interpolation operator Ih satisfying Definition 3.1, then

for any uh ∈ V h there exists uH ∈ V H such that for all τH ∈ T H , we have

(l1)
∑

τh∩τH 6=∅

τh⊂Ω̄H

‖uh − Ihu
H‖2

0,τh ≤ Cd2(τH)|Euh|21,N(τH),

(l2)
∑

τh∩τH 6=∅

τh⊂Ω̄H

|Ihu
H |1,τh ≤ C|Euh|1,N(τH),

(l3)
∑

τh∈Ω(xH

l
,xH

r
)

‖uh − Ihu
H‖2

0,τh ≤ Cd2(τHlr )
∑

τH∈N(τH

lr
)

|Euh|21,N(τH),

(l4)
∑

τh∈Ω(xH

l
,xH

r
)

|Ihu
H |21,τh ≤ C

∑

τH∈N(τH

lr
)

|Euh|21,N(τH).

Proof. As stated in the proof of Lemma A.1, the proof of the inequalities (l1) and
(l2) is easy and can be found in [7, 8]. We next prove (l3) and (l4).

For any uh ∈ V h, we choose uH ∈ V H by

uH = QHEuh|ΩH ∈ V H .

This uH satisfies the required results. The H1-stability (l4) is an immediate conse-
quence of Lemma A.1 and the H1-stability of QH . We now prove (l3).

On the fine domain Ωh = Ω, we can split uh − Ihu
H into two parts:

uh − Ihu
H = (Euh −QHEuh) + (QHEuh − IhQHEuh).(A.4)

First term estimate in (A.4). If a Neumann boundary condition is imposed on at
least one of the two coarse nodes xH

l and xH
r in the space V H , we derive by assumption

on Ω(xH
l , xH

r ) and properties of Clément’s interpolant QH that

∑

τh∈Ω(xH

l
,xH

r
)

‖Euh −QHEuh‖2
0,τh ≤ ‖Euh −QHEuh‖2

0,N(τH

lr
)

≤ Cd2(τHlr )
∑

τH∈N(τH

lr
)

|Euh|21,N(τH).

If a Dirichlet boundary condition is imposed on both nodes xH
l and xH

r in the space
V H , the result follows from Poincaré inequality.
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Second term estimate in (A.4). We obtain from Lemma A.1 that, with vh = Euh,

∑

τh∈Ω(xH

l
,xH

r
)

‖QHvh − IhQHvh‖2
0,τh ≤ Cd2(τHlr )|QHvh|21,N(τH

lr
).

Then using the stability of QH yields

∑

τh∈Ω(xH

l
,xH

r
)

‖QHEuh − IhQHEuh‖2
0,τh ≤ Cd2(τHlr )

∑

τH∈N(τH

lr
)

|Euh|21,N(τH).

Now (l3) follows from (A.4) and the above two estimates for the first and second
terms in (A.4).
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