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ANALYSIS ON A NONNEGATIVE MATRIX FACTORIZATION AND
ITS APPLICATIONS∗

YAT TIN CHOW† , KAZUFUMI ITO‡ , AND JUN ZOU§

Abstract. In this work we perform some mathematical analysis on a special nonnegative matrix
trifactorization (NMF) and apply this NMF to some imaging and inverse problems. We will propose
a sparse low-rank approximation of positive data and images in terms of tensor products of positive
vectors and investigate its effectiveness in terms of the number of tensor products to be used in the
approximation. A new multilevel analysis (MLA) framework is suggested to extract major compo-
nents in the matrix representing structures of different resolutions but still preserve the positivity
of the basis and sparsity of the approximation. We will also propose and formulate a semismooth
Newton method based on primal-dual active sets for the nonnegative factorization. Numerical results
are given to demonstrate the effectiveness of the proposed method at capturing features in images
and structures of inverse problems under no a priori assumption on the underlying structure in the
data as well as to provide a sparse low-rank representation of the data.
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1. Introduction to nonnegative matrix factorizations. Nonnegative ma-
trix factorization (NMF) has attracted a great deal of attention in the last decade
because of its many important applications, e.g., in extraction of principal compo-
nents, features, structures, and similarities inside a large set of data or an image. In
general, an NMF for a given matrix Y ∈ RN×M is to generate a factorization of the
form

(1.1) Y ≈ AP , A ∈ RN×k, P ∈ Rk×M ,

where the matrix factors A and P are nonnegative componentwise. This was studied
as early as in 1994 [48] and was used for machine learning and data mining [39, 40].
The concept of NMF as k-means clustering for principal component analysis has been
widely studied theoretically and numerically (see, e.g., [6, 13, 17, 18, 30, 43, 48, 54]);
and the concept of trifactorization was used as a concurrent column and row clustering
of data in [19]. In order to extract desired features as well as to reduce memory
complexity, sparsity is often imposed in NMF using l0 or l1 regularization. Effective
NMF toolboxes have also been developed to provide different choices of regularizers
and constraints, e.g., the nonnegative matrix factorization toolbox in MATLAB [44].
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A convex model for NMF was suggested in [20], where the convex l1,∞-norm was
used as the regularizer to enforce row sparsity. In an application of this convex model
to hyperspectral end-member selections, the NMF succeeded in providing abundance
maps of end-members representing different structures inside an image, e.g., roofs,
trees, grass, soil, and road.

One of the motivations for NMF is a pursuit of linear dimensionality reduction,
which aims to obtain an approximation of the data in the low-dimensional linear
space. It is very useful in various aspects, such as image processing, low-rank ma-
trix recovery, classification of documents/data, unmixing of spectral signatures, as
in applications like computational biology [16], clustering [18], music analysis [21],
community detection [53], and air emission control [48], etc. In addition to the con-
ventional Frobenius norm model for NMF, there are also other norms/divergences,
such as the Kullback–Leibler divergence [7, 51] and the Itakura–Saito distance for
music analysis [21]. Some of these models are motivated by statistical considerations
[50]. Although NMF is NP-hard in general and ill-posed, many algorithms have been
developed to realize NMF. A popular family of algorithms is the two-block coordinate
descent method, where the problem becomes convex after fixing one of the matrix
factors. Alternative direction algorithms are another family, which yield mostly a
decrease in objective functionals, and their convergence is guaranteed and often fast
once one of A and P in the NMF falls into an appropriate subspace. Multiplicative
updates are also a popular family [15, 40], and they are simple to implement and scale
well. Their convergence may be guaranteed [7], but it is mostly very slow [28]. Other
methods include the alternating least squares, which does not generally converge,
but the alternating nonnegative least squares may converge very fast in practice with
the help of active sets [36, 37, 38], and its convergence is guaranteed to a stationary
point (considering the fact that this is a block Gauss–Seidel update) [26]. For alter-
nating nonnegative least squares, the matrix factors are updated alternatively using
approaches such as projected gradients [45], quasi-Newton [11], or fast gradient meth-
ods [27]. The hierarchical alternating least squares is a special coordinate descent
method, which updates one column at a time and can be decoupled into the problems
of a single nonnegative variable [5, 10, 12, 24, 29, 42, 46]. This method converges much
faster than the multiplicative updates [22] and is guaranteed to converge to a station-
ary point [24]. A very important class of NMFs may be the separable/near-separable
NMFs, in which the matrix can be factorized into two factors, with one consisting
of the columns of the original matrix. This is especially useful in test-mining and
hyperspectral unmixing. The choice of ranks in nonnegative matrix factorizations is
usually a crucial but rather tricky issue. Some practically used techniques are “trial
and error,” “estimation using SVD,” and “experts insights” [4, 35, 21]. We refer
the reader to [23] for a detailed discussion about the development of NMFs in both
theories and algorithms.

For an NMF of the form (1.1), the rows of P may be viewed as the basis vectors
of the information contained in matrix Y . We may further impose P to be nearly
orthonormal, i.e., PPT ≈ I. This is similar to a partition of unity in the underlying
space, and the row vectors of P are similar to some indicator functions. In order to
reduce memory complexity in storing the basis P , one may further add a sparsity
constraint on P . The matrix A is an assignment matrix, which gives some special
weighting to the corresponding basis vectors of P . It is our aim to obtain a sparse
matrix A that has a very small number of nonzero entries. Therefore, A can be
interpreted as some sparse assignments of linear combinations of basis vectors in P .
As our interest is the case when matrix Y is nonnegative componentwise, we shall
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further require A ≥ 0 componentwise. Such a constraint may be infeasible if Y is not
nonnegative, and then one should relax the nonnegativity condition for A, but this is
not the focus of the current work. The sparsity constraint on A ensures more concise
information extraction. Moreover, we may also have a postprocess to sort (column)
vectors of A in descending order in terms of magnitude, which can yield the most
important basis vectors from matrix P . Using a standard l1 regularization to impose
sparsity for A and P and near-orthogonality for P , we may formulate the NMF for a
nonnegative matrix Y as the following minimization problem:

(1.2) min
A≥0,P≥0

||Y −AP ||2F,2 + α||A||F,1 + ν||P ||F,1 + γ||PPT − I||F,1

over nonnegative matrices A ∈ RN×k and P ∈ Rk×M , where ||X ||F,2 :=
√∑

i,j |Xij |2,
||X ||F,1 :=

∑
i,j |Xij |, and α, ν, γ are three regularization parameters. Under this

model, we regard the dimension k as the (nonnegative) rank of A under the NMF
throughout the paper.

We aim in this work to investigate a different but closely related nonnegative fac-
torization model. Before we start our discussion on the model of our interest, we first
discuss a classical matrix factorization for a general matrix to motivate the develop-
ment of our nonnegative factorization model. A popular classical matrix factorization
is the singular value decomposition (SVD), which helps obtain the best low-rank ap-
proximation of a matrix in the l2 sense and extracts the most important components
of the matrix based on the magnitude of their corresponding singular values. An SVD
is of the form

Y = UΣV T ,(1.3)

where we can interpret the matrices U, V as bases of information and Σ as a weighting
representing the importance of the corresponding basis vectors in U and V . Although
this approach gives the best low-rank approximation of matrix Y in the l2 norm after
a truncation of Σ, the SVD factorization is unstructured and usually does not respect
positivity, and the basis vectors of U and V are rather oscillatory. In particular, for
a matrix Y that represents an image or a probability density function, its SVD does
not give very useful information about the underlying structures of Y , e.g., indicating
the regions of high probability, locating objects inside the image and recognizing its
sparsity, etc. The major objective of this work is to achieve an NMF that may offer
a more structural decomposition of the matrix while still preserving the positivity of
the basis. Now, combining the nonnegativity constraints with a factorization form
similar to SVD gives rise to the idea of a nonnegative matrix trifactorization [19]. For
a given nonnegative matrix Y , we shall investigate in this work a nonnegative matrix
trifactorization of the following form using l1 regularization:

min
U≥0,Σ≥0,V ≥0

||Y − UΣV T ||2F,2 + α||Σ||F,1 + ν||U ||F,1

+ ν||V ||F,1 + γ||UUT − I||F,1 + γ||V V T − I||F,1 ,(1.4)

where we may interpret the matrices U ∈ RN×p and V ∈ RM×p as the bases of
information and Σ ∈ Rp×p as a weighting matrix. We emphasize that the matrix Σ is
not required to be diagonal in our setting here, but rather to be sparse. Though we see
the similarity between SVD and nonnegative matrix trifactorization by their forms,
we shall emphasize several features of the NMF very different from SVD. Therefore
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we do not consider our trifactorization as a general version of SVD. However, the
trifactorization and SVD do have some connections, and the SVD was used sometimes
to provide a good initial guess for NMF algorithms in the traditional setting of NMF
[25]. Under this trifactorization model, we shall regard the dimension p of the middle
matrix Σ ∈ Rp×p as the (nonnegative) rank of A under this NMF throughout the
paper.

We will mainly focus on the nonnegative matrix trifactorization model (1.4) in this
work, and we will analyze this factorization model and introduce some algorithms to
realize this factorization. We also propose the application of the aforementioned model
for nonnegative matrix trifactorizations to various sets of data and images to extract
their major components, which may represent some special structures or features, and
obtain an approximation of the data with low memory complexity when the rank p is
small, even when the original data and images do not share any sparsity structures.
This should be quite useful in applications, considering the fact that the factorization
gives a low-rank sparse approximation of the matrix in term of the tensor products
of column and row vectors of U and V . As p is small, it requires a small storage of
the columns and rows in the matrices U and V and a much smaller memory than the
original matrix does. The sparsity of Σ is also very important for the reduction of
memory complexity because we only need to store the respective columns and rows
of the matrices U and V , e.g., ui and vj , where the corresponding entry σij of matrix
Σ is significant. The sparsities of U and V are equally important because ui and vj
will then have a small number of nonzero entries and be inexpensive to store. These
reasons suggest that we apply the above NMF model to various sets of data and
images. However, the choice of an NMF model and its rank is usually very tricky and
affects the features and performances of the resulting factorizations directly. We shall
develop a theory to analyze the number of rank p to be used. To effectively implement
the NMF, we propose and formulate the semismooth Newton method based on primal-
dual active sets [33] for the resulting nonlinear optimizations, instead of the classical
methods [17, 19]. Using the result of an NMF from the Newton method, we shall also
propose a dissection of the image into levels by its order of importance.

We then proceed to develop a new multilevel analysis (MLA) framework for the
images based on an NMF, aiming at extracting major components inside the matrix Y
representing structures of different resolutions and achieving sparse low-rank approx-
imations of different levels with positive bases. At each level, we hope to extract and
represent finer features of the original image with sparse approximation by positive
bases, compared with the previous level. Our MLA framework is partially motivated
by the multiresolution analysis (MRA) in wavelets [14], but it is quite different in na-
ture. The MRA framework is well established to provide successive approximations
of increasing resolutions of a function by a shifting and scaling of a mother wavelet,
but the basis functions generated from the mother wavelet do not have the same
(positive) sign of the whole space. This is a very undesirable feature in our context.
Hence, we introduce a new MLA framework, which shall respect the positivity of the
basis for function/matrix approximation but still provide a multiresolution property
similar to that of MRA. In our MLA framework, we introduce a nested sequence of
linear spaces Hs, each of which represents a level of fineness, and define interpolation
operators among these spaces at coarser and finer levels. The NMF is then performed
on each level to obtain a positive sparse approximation. We would like to emphasize
that the main purpose of either our NMF model or our MLA framework is only to
identify and represent structures (of different scales) in the images or data. But we
are neither hoping to reconstruct the data in full entity nor to achieve the high-quality
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compression of images to defeat any available well-developed compression techniques,
e.g., wavelet/curvelet compression, JPEG, etc. Instead, we aim to compare the ef-
fectiveness of feature capturing of the new factorization with other existing methods.
Numerical experiments show good resolutions of images and data can be achieved by
this sparse approximation using the MLA framework of the NMF model, and some
major features and components in the images and data can be extracted without any
a priori assumption on their structures, such as sparsity and specific patterns.

The contribution of this work includes both theory and numerical algorithms,
mainly in the following three aspects: (1) We develop a theory to provide an asymp-
totic estimate of an optimal choice of the dimension p in the matrix Σ in sections 2
and 3. Although it is often very practical and desirable to perform such analysis when
a generative model of Y is assumed, or when more specific sets of data are considered
[4, 35, 21], there are many applications where no prior knowledge of the structures
of the matrix Y is available. In these cases, one might not even expect a nontriv-
ial or meaningful factorization. However, we present an asymptotic theory from the
probabilistic arguments that give us the best asymptotic estimate for an optimal p
in the very general case when there is no prior information available. Our theoretical
analysis provides a lower bound in the probability sense; namely, p is selected such
that the lower bound of the probability is maximized. This theoretical estimate of p is
further justified numerically in section 5, where the rank p is selected in all numerical
examples for the MLA based on the asymptotic estimate, indicating that the choice
is indeed nearly optimal to balance between the necessity to include a larger basis to
represent the data and the aim to reduce the basis for sparse representation. (2) We
introduce an MLA framework to provide an approximation of the data at different
coarse levels. Although MLA and MRA share some similarities, we shall emphasize
in the later discussions that there are two fundamental differences. The first major
difference is that our MLA framework utilizes a positive basis and therefore respects
the positivity and structure of the data. The second major difference is that MRA
provides a direct sum decomposition of the L2 space into different resolutions, but
the basis functions are not positive, while MLA cannot provide a direct sum decom-
position, but it retains the positivity of the basis and is crucial to our applications of
interest in this work. (3) We propose and formulate a primal-dual semismooth Newton
method [34] for solving the nonlinear and nonsmooth optimizations involved in our
NMF. This method combines the semismooth Newton technique with the active-set
principle to handle the nonlinearity and nonsmoothness of the objective functional
(1.4), converges fast, and is computationally inexpensive. Our method may fall in a
category similar to the alternating nonnegative least squares, but it has some fun-
damental differences. We first pair up the last two matrices and perform the factor-
ization, and then further factorize the resulting matrices. This can be regarded as a
variant of a block Gauss–Seidel minimization performing only one sweep. Active sets
and semismooth Newton methods are both used to speed up the convergence, with
low computational efforts. Our semismooth Newton method is more advantageous
than some classical methods for trifactorization, e.g., the ones in [19] where the mul-
tiplicative update is used; and its performance and structure is comparable to other
quasi-Newton methods in the alternating nonnegative least squares. Furthermore, the
semismooth method deals effectively with the nonsmoothness in our NMF formulation
(2.1) and produces sequences that converge to the solution to the necessary optimality
system. The new method can provide more desirable factorizations in our numerical
tests than the standard NMF algorithms that usually do not use the regularizations
or use only the 2-norm regularizations [15, 48, 40, 5, 10, 24, 29, 42, 46]. Moreover,



B650 YAT TIN CHOW, KAZUFUMI ITO, AND JUN ZOU

the popular coordinate-descent-type methods may not be applicable to the current
objective functional (2.1) that contains the nonsmooth and nonseparable terms, and
they are likely to produce sequences which may get stuck in nonstationary points.

This paper is organized as follows. In section 2 the general mathematical frame-
work of nonnegative matrix trifactorization using l1 regularization is stated, and an
optimal choice of the dimension of matrix Σ is investigated. An MLA framework
using NMF is introduced in section 3, and a semismooth Newton method based on
primal-dual active sets for NMF is formulated in section 4. Applications of our frame-
work to imaging and inverse problems are provided in section 5, providing numerical
evidence for successful feature extractions and sparse low-rank representations of the
data.

2. A nonnegative matrix trifactorization using l1 regularization. In this
section we shall specify the type of matrix trifactorizations for our subsequent con-
sideration. For the purpose, we often write RN×M for the set of N ×M matrices and
(RN×M )+ ⊂ RN×M for those with positive entries. Given a matrix Y ∈ (RN×M )+,
we define a functional J α,ν,γ

p : (RN×p)+ × (Rp×p)+ × (RM×p)+ → R for a fixed set of
parameters p, α, γ:

J α,ν,γ
p (U,Σ, V ) := ||Y − UΣV T ||2F,2 + γ||Σ||F,1 + ν||U ||F,1

+ ν||V ||F,1 + α||UUT − I||F,1 + α||V V T − I||F,1.(2.1)

Let [Ũp, Σ̃p, Ṽp] be a minimizer of the functional; then we define an operator Iα,ν,γ
p :

(RN×M )+ → (RN×M )+ by

Iα,ν,γ
p (Y ) := ŨpΣ̃pṼp =

∑
i,j

σij(ũp)i ⊗ (ṽp)j ,(2.2)

where (ũp)i, (ṽp)j denote the column and row vectors of Ũp and Ṽp, respectively, and

σij is the (i, j)th entry of the matrix Σ̃p. Compared with the standard SVD, the above
trifactorization presents some essential differences: l1 regularizations are involved, and
the weighting matrix Σ̃p is not required to be diagonal.

It is easy to see that a smaller p means a smaller memory for storing the matrix
triple [Ũp, Σ̃p, Ṽp]. If Σ̃p is a sparse matrix, the memory complexity can be further
reduced, as we only need to store the vectors (ũp)i and (ṽp)j with nonzero σij . In fact,
for a generic matrix Y , if p can be chosen to be small such that ||Y − Iα,ν,γ

p (Y )||F,2

is also small in some sense, then [Ũp, Σ̃p, Ṽp] may serve as our desired sparse low-
rank approximation of Y . However, it is clear that the smaller the value of p is, the
poorer the approximation of Y by Iα,ν,γ

p (Y ) will be. With a smaller p, the error

||Y − Iα,ν,γ
p (Y )||F is larger, and so is the objective J α,ν,γ

p (Ũp, Σ̃p, Ṽp). Therefore, it
is interesting and practically important to balance these two effects, and this will be
analyzed in the next section.

We shall derive a lower bound for the probability of the error functional (2.1),
which measures the discrepancy of the data from a possible nonnegative matrix trifac-
torization, being controlled by a threshold δ (see (2.17)). This lower bound suggests
that we follow an asymptotic relation to choose an optimal rank p (see (2.18)). Then
similar analysis is performed to exploit the possibility of dropping some basis vectors
where the corresponding σij in Σ is small. We remark that although a lower bound of
the probability may not be sufficient to justify the maximization in the probability, it
strongly suggests the optimality of the asymptotic estimate. This choice of the rank
p will be further and fully justified numerically in section 5.
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We would also like to point out that we shall develop our theoretical asymptotic
estimate of an optimal choice of the dimension in the matrix Σ without any assumption
on the generative model of Y . It will be very practical and desirable if a special form of
the generative model is given, which may help us achieve a sharper bound and better
description of the situations [4, 35, 21]. However, there are many applications where
no prior knowledge of the structure of the matrix is available. Our theory shall give
us a best asymptotic estimate to help us choose an optimal rank p when a generative
model is lacking.

2.1. An optimal choice of the dimension p of the matrix Σ. In this
section, we aim to find an optimal choice of the dimension p of the matrix Σ̃ in
the decomposition (2.2) with respect to N,M by means of a probabilistic argument,
under no prior assumption on the structures of Y . In our analysis we shall assume
that Y is entrywise independent and identically distributed (i.i.d.) for simplicity of
presentation. We first derive a lower bound in terms of p,N,M, δ of the probability
that there exists a triple [U,Σ, V ] such that J α,ν,γ

p (U,Σ, V ) < δ for a given small δ
(Lemma 2.4). Then we maximize the lower bound over p to obtain an asymptotic
choice of p (cf. (2.18)).

The objective value J α,ν,γ
p (Up,Σp, Vp) reflects the deviations of matrices Up, Vp

from being orthogonal, the sparsity of Up,Σp, Vp, and the error of the approximation
of Y by Iα,ν,γ

p (Y ). Thus if we have J α,ν,γ
p (U,Σ, V ) < δ for some [U,Σ, V ], then

||Y − Iα,ν,γ
p (Y )||2F,2 ≤ J α,ν,γ

p (Ũp, Σ̃p, Ṽp) ≤ J α,ν,γ
p (U,Σ, V ) < δ .

This strongly suggests that our optimal choice of the rank p provided by our analysis
is legitimate.

We begin by showing the following several simple yet important lemmas concern-
ing a set of i.i.d. random vectors. Using these results, one can derive a lower bound
for the probability of the error functional (2.1) being controlled by a threshold δ (see
(2.17)). This lower bound suggests that we follow an asymptotic estimate (cf. (2.18))
to choose the optimal p, which is very important to our subsequent analysis.

Now we are ready to present the following few auxiliary but important results for
our further development.

Lemma 2.1. Consider a set of i.i.d. random vectors {Xi}Ni=1 ∈ [0, 1]d, where the
probability distribution dPX = fdx with dx denoting the standard Lebesgue measure
and 0 < C1 < f < C2 < ∞. Then the probability of the vectors ωi := Xi/||Xi||2
that can be approximated by p points {Pi}pi=1 ∈ Sd−1

⋃
[0, 1]d within an error of small

ε > 0 can be bounded by

pN (C3ε)
(d−1)N ≤ P

⎛⎝∃{Pi}pi=1 s.t. {ωi}Ni=1 ⊂
⋃

1≤i≤P

Bε(Pi)

⎞⎠ ≤ pN (C4ε)
(d−1)N(2.3)

for two positive constants C3 and C4 depending on the distribution fdx.

Proof. By the assumption on the i.i.d. random vectors {Xi}Ni=1 ∈ [0, 1]d, it is
direct to see that the random variables {ωi}Ni=1 ∈ Sd−1 have a probability density

dPω = gdω, where dω is the standard surface measure and C̃1

||ω||∞ ≤ g ≤ C̃2

||ω||∞ for

some constants C̃1, C̃2 which depend on C1 and C2. Then using the fact that for small
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ε > 0, Cε < sin ε < ε for some C > 0 and the binomial theorem, we derive

P

⎛⎝∃{Pi}pi=1 s.t. {ωi}Ni=1 ⊂
⋃

1≤i≤P

Bε(Pi)

⎞⎠
=

∑
∑p

i=1 Ni=N

N !∏
iNi!

1

|Sd−1
⋂
[0, 1]d|

∏
i

∫
Sd−1

⋂
[0,1]d

P(||ωi −K||2 < ε)NidK

≥
∑

∑p
i=1 Ni=N

N !∏
iNi!

(C3ε)
(d−1)

∑
i Ni ≥ pN (C3ε)

(d−1)N

for some C3 > 0. The other inequality is similar.

Lemma 2.2. Consider a set of i.i.d. random vectors {Pi}pi=1 ∈ [0, 1]d, where the
probability distribution dPω = fdω with dω denoting the standard surface measure
and 0 < C1 < f < C2 < ∞. Then for p ≤ d the probability of the set of vectors Pi

being almost mutually orthogonal within an error of small ε > 0 can be bounded by

p! d (C3ε)
(p)(p−1)

2 +(d−1) ≤ P (|〈Pi, Pj〉 − δij | < ε ∀i, j ) ≤ p! d (C4ε)
(p)(p−1)

2 +(d−1)(2.4)

for two positive constants C3 and C4 depending on the distribution fdx.

Proof. By a direct counting and the half angle formula, we obtain for p ≤ d that

P (〈|Pi, Pj〉 − δij | < ε ∀i, j)
≥ p! d (C3ε)

d−1
∏

1≤i≤p

(C3ε)
i|(Bi

1 × Bn−i
1 )

⋂
[0, 1]d|

≥ p! d (C3ε)
(p)(p−1)

2 +(d−1)

for some C3 > 0, where we have used the fact that ||Pi − Pj ||2 = 2 − 2〈Pi, Pj〉. The
other inequality is similar.

The next lemma follows directly from the previous two lemmas and will be very
helpful later for us to derive an important inequality (cf. (2.17)).

Lemma 2.3. Consider a set of i.i.d. random vectors {Xi}Ni=1 ∈ [0, 1]d, where the
probability distribution dPX = fdx with dx denoting the standard Lebesgue mea-
sure and 0 < C1 < f < C2 < ∞. Then for p ≤ N the probability of the event
Ep,ε representing the existence of {Pi}pi=1 such that {ωi}Ni=1 ⊂ ⋃

1≤i≤P Bε(Pi) and
|〈Pi, Pj〉 − δij | < ε for all i, j for a small ε > 0 can be bounded by(

pN − (p− 1)N
)
pl! d (C3ε)

p(p−1)
2 +(d−1)(N+1)

≤ P (Ep,ε\Ep−1,ε) ≤
(
pN − (p− 1)N

)
pl! d (C4ε)

p(p−1)
2 +(d−1)(N+1)

for two positive constants C3 and C4 depending on the distribution fdx, and therefore

p∑
l=1

(
lN − (l − 1)N

)
l! d (C3ε)

l(l−1)
2 +(d−1)(N+1)

≤ P (Ep,ε) ≤
p∑

l=1

(
lN − (l − 1)N

)
l! d (C4ε)

l(l−1)
2 +(d−1)(N+1) .

Moreover, the following lower bound holds:

P (Ep,ε) ≥ dpN(C3ε)
(d−1)(N+1)+ (p)(p−1)

2 .
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Proof. The following inequality follows directly from the arguments of the previ-
ous two lemmas:∑

∑p
1 Ni=N,
Ni>0

N !∏
iNi!

p! d (C3ε)
p(p−1)

2 +(d−1)(N+1)

≤ P (Ep,ε\Ep−1,ε) ≤
∑

∑p
1 Ni=N,
Ni>0

N !∏
iNi!

p! d (C4ε)
p(p−1)

2 +(d−1)(N+1) .

The last term can be readily simplified by the following summation:

∑
∑p

1 Ni=N ,Ni>0

N !∏
iNi!

=
∑

∑p
1 Ni=N

N !∏
iNi!

−
∑

∑p−1
1 Ni=N

N !∏
iNi!

= pN − (p− 1)N ,

so the first inequality in the lemma follows. The second inequality is a direct conse-
quence of the first after taking a summation over p. The last inequality comes readily
from the second one.

We may notice from the arguments of the previous lemmas that all the proba-
bility estimates there involve two constants C3 and C4, which depend heavily on the
constants C1 and C2 that control the probability distribution fdx. It would be very
interesting to explore how these constants depend on f more explicitly, and the results
will help us understand the dependence of the constant in the subsequent estimate of
an optimal choice of the rank p (see (2.18)) on the distribution f .

Next, we wish to connect what we have proved in Lemma 2.3 to the probability
of the error functional (2.1) being controlled by a threshold δ, which will help us
derive a very important asymptotic estimate of the optimal rank p. For this pur-
pose, we consider a general image Y =

∑
i,j Yij ei ⊗ ej comprised of nonnegative

entries. Without loss of generality, we may assume maxi,j |Yij | = 1. If we write
Yi :=

∑
j Yij ej, and ωi = Yi/||Yi||2, then Y =

∑
i ||Yi||2 ei ⊗ ωi. If there exists a set

of {Pi}pi=1 such that {ωi}Ni=1 ⊂ ⋃1≤i≤P Bε(Pi) and |〈Pi, Pj〉 − δij | < ε for all i, j, we

can write {ωkj}Kj

j=1 ∈ Bε(Pj) for some Kj with 1 ≤ j ≤ p. Then we should have

Y =
∑
i

||Yi||2ei ⊗ ωi ≈
p∑

j=1

Kj∑
kj=1

||Ykj ||2 ekj ⊗ Pj .

Writing Qj = (
∑Kj

kj=1 ||Ykj ||2ekj )/
√∑Kj

kj=1 ||Ykj ||2 and σij = δij

√∑Kj

kj=1 ||Ykj ||2,
then

Y ≈
∑
i,j

σij Qi ⊗ Pj ,

where |〈Pi, Pj〉 − δij | < ε and |〈Qi, Qj〉 − δij | = 0 for any i, j. By setting Σ = (σij),
P = (Pi)

T , Q = (Qj), we derive directly that∣∣∣∣∣
∣∣∣∣∣Y −

∑
i,j

σij Qi ⊗ Pj

∣∣∣∣∣
∣∣∣∣∣
F2

≤
p∑

j=1

Kj∑
kj=1

||Ykj ||2|ωkj − Pj | ≤ ||Y ||F,2ε ≤ NMε ,
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which implies

J α,ν,γ
p (Ũp, Σ̃p, Ṽp)≤ J α,ν,γ

p (Q,Σ, P )

≤ ||Y ||F,2ε+ γ
∑
j

√√√√√ Kj∑
kj=1

||Ykj ||2

+ ν
∑
j

||Qj ||1 + ν
∑
i

||Pi||1 + αp(p− 1)ε

≤ NMε+NM(γ + 2ν) + α p(p− 1)ε .

Now if we assume Y is an entrywise i.i.d. random matrix, then both the columns
and rows are i.i.d. vector-valued random variables, and so are the normalized columns
and rows. Therefore we may apply Lemma 2.3 to get that the probability of the event
Ep,ε, such that the above bound holds, can be bounded below by

P (Ep,ε) ≥
p∑

l=1

(
lN − (l − 1)N

)
l!M (C3ε)

l(l−1)
2 +(M−1)(N+1)

≥M pN (C3ε)
(M−1)(N+1)+

(p)(p−1)
2 .

Similarly, switching the columns and rows of the image, we may follow the above
argument again to conclude the same with N,M swapped. Combining the above two
statements, we come to

P

(
J α,ν,γ
p (Ũp, Σ̃p, Ṽp) < NMε+NM(γ + 2ν) + αp(p− 1)ε

)
≥

p∑
l=1

(
lmax(N,M) − (l − 1)max(N,M)

)
l! min(N,M) (C3ε)

μ(N,M,l)

≥ min(N,M)pmax(N,M)(C3ε)
μ(N,M,p) ,

where the function μ( · , · , · ) is defined for all N,M, l ∈ N by

μ(N,M, l) :=
l(l − 1)

2
+NM − |N −M | − 1 .(2.5)

If we further choose the parameter γ+2ν ≤ (K − 1)ε for some K > 1, we can deduce
the following lemma.

Lemma 2.4. For any small ε > 0 and for all N,M ∈ N, it holds that

P

(
J α,ν,γ
p (Ũp, Σ̃p, Ṽp) <

(
KNM +min(N,M)2

)
ε
)

≥
p∑

l=1

(
lmax(N,M) − (l − 1)max(N,M)

)
l! min(N,M) (C3ε)

μ(N,M,l)(2.6)

≥ min(N,M)pmax(N,M)(C3ε)
μ(N,M,p),(2.7)

where the function μ( · , · , · ) is defined as in (2.5) and γ is such that γ+2ν ≤ (K−1)ε
for some K > 1.
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Before we derive a sharp bound of an optimal choice for p from (2.6), let us
consider a rough lower bound introduced in the last inequality (2.7). Clearly, for the
function

F (p) := min(N,M)pmax(N,M) (C3ε)
μ(N,M,p)

for p ≥ 1, it is easy to see that

F ′(p) =
F (p)

p

(
max(N,M) +

| log(C3ε)|
16

− | log(C3ε)|
(
p− 3

4

)2
)⎧⎨⎩

>
=
<

⎫⎬⎭ 0 ,

namely

p

⎧⎨⎩<=
>

⎫⎬⎭ 3

4
+

√
1

16
+

max(N,M)

| log(C3ε)| .

Therefore we can propose a primitive optimal choice of p to maximize the lower bound
of the possibility P

(J α,ν,γ
p ([Ũp, Σ̃p, Ṽp]) <

(
KNM +min(N,M)2

)
ε
)
, i.e., to choose

p =

√
max(N,M)

| log(C3ε)|(2.8)

for large N,M . Following some basic substitutions, we obtain the following theorem.

Theorem 2.5. For any small δ > 0, we have

P

(
min
p

J α,ν,γ
p (Ũp, Σ̃p, Ṽp) < δ

)
≥ min(N,M) p

max(N,M)
N,M,δ (C3ε)

μ(N,M,pN,M,δ)(2.9)

whenever γ+2ν ≤ (K− 1) ε, where ε = δ
(
KNM +min(N,M)2

)−1
for some K > 1,

the function μ( · , · , · ) is defined as in (2.5), and pN,M,δ is the following constant:

pN,M,δ :=

√
max(N,M)

| log(C3ε)| =

√
max(N,M)

log(KNM +min(N,M)2)− | log δ| − logC3
.(2.10)

When M = N , it is obvious that the above optimal choice of p for a fixed δ > 0
is of the form

p = pN,N,δ =

√
N

2 logN − | log δ| − logC3 + log(K + 1)
∼
√

N

2 logN
(2.11)

as N goes to infinity. The last asymptotic relation actually gives a precise approxi-
mation and √

N

2 logN
≤ pN,N,δ ≤

√
N

logN
(2.12)

if N is large enough such that N > C3δ
−1. Hence (2.11) serves as an optimal choice

of p for large N . Furthermore, with this choice of p, the memory complexity is

asymptotically
√

2N3

logN as N goes to infinity.

However, we note that the optimal choice of p obtained above is only based on a
rough lower bound (2.7). In what follows, we deduce a sharper bound by using (2.6).
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Since the summation in (2.6) always increases with p, we get an optimal choice of p by
controlling the increment of (2.6) with respect to p. In order to do so, we investigate
the ratio of the terms

al :=
(
lmax(N,M) − (l − 1)max(N,M)

)
l! min(N,M) (C3ε)

μ(N,M,l) ,

explicitly given by

al+1

al
=

(l + 1)max(N,M) − lmax(N,M)

lmax(N,M) − (l − 1)max(N,M)
l e−| log(C3ε)|(l+1) .

From L’Hôpital’s rule, we can directly see that for a fixed pair of N,M the ratio
al+1/al → 0 as l → ∞. Therefore, given a small η < 1, there is always a p̂N,M,η,ε

such that al+1/al ≤ η whenever l > p̂N,M,η,ε. Then for all p > p̂N,M,η,ε we have that

P

(
Jα,ν,γ

p (Ũp, Σ̃p, Ṽp) <
(
KNM + min(N,M)2

)
ε
)

≥
p̂N,M,η,ε−1∑

l=1

(
lmax(N,M) − (l − 1)max(N,M)

)
l! min(N,M) (C3ε)

μ(N,M,l)

+
1

1 − η

(
(p̂N,M,η,ε)

max(N,M) − (p̂N,M,η,ε − 1)max(N,M)
)
(p̂N,M,η,ε)! min(N,M) (C3ε)

μ(N,M,p̂N,M,η,ε)

whenever γ + 2ν ≤ (K − 1) ε and that the increment of p from p̂N,M,η,ε onward
brings insignificant increment to the summation in (2.6). Now we aim to find an
explicit p̂N,M,η,ε in terms of N,M , thus obtaining an optimal choice of p. By Hölder’s
inequality we readily derive

ap+1/ap =

∑max(N,M)−1
i=0 (1 + 1/p)i∑max(N,M)−1
i=0 (1− 1/p)i

p e−| log(C3ε)|(p+1)

≤ p(p+ 1)max(N,M)−1

(p− 1)max(N,M)−1
e−| log(C3ε)|(p+1) .(2.13)

Now if we consider the smooth function

G(N0, p) :=
p (p+ 1)N0−1

(p− 1)N0−1
e−| log(C3ε)|(p+1)

for p > 1 and N0 >
1
2 | log(C3ε)|+ 1 + 1

6| log(C3ε)| , then we see that

∂

∂p
G(N0, p)

= G(N0, p)

(
1

p
+
N0 − 1

p+ 1
− N0 − 1

p− 1
− | log(C3ε)|

)
= −

(
| log(C3ε)|p3 − p2 − (| log(C3ε)| − 2N0 + 2)p+ 1

)
(p+ 1)N0−2

(p− 1)N0
e−| log(C3ε)|(p+1)

< 0 .

Together with the fact that G(N0, p) → +∞ as p → 1+, whereas G(N0, p) → 0 as
p → +∞, one directly obtains that G(N0, · ) is monotonically decreasing for p > 1
from the value +∞ down to 0. Fixing N0, we then have a well-defined smooth
monotone function G(N0, ·)−1 : (0,∞) → (1,∞) by the inverse function theorem.
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The implicit function g : (12 | log(C3ε)| + 1 + 1
6| log(C3ε)| ,∞) → (1,∞) defined by

G(N0, g(N0)) = η is now well-defined and smooth by the implicit function theorem
as g(N0) = [G(N0, ·)]−1(η). Moreover,

g′ = −
∂G
∂N0

(N0, g(N0))
∂G
∂p (N0, g(N0))

= − log

(
g + 1

g − 1

)(
1

g
+
N0 − 1

g + 1
− N0 − 1

g − 1
− | log(C3ε)|

)−1

= log

(
g + 1

g − 1

)
g(g + 1)(g − 1)

| log(C3ε)|g3 − g2 − (| log(C3ε)| − 2N0 + 2)g + 1
.

Now note that withN0 >
1
2 | log(C3ε)|+1+ 1

6| log(C3ε)| and g > 1, we have | log(C3ε)|g3−
g2 − (| log(C3ε)| − 2N0 + 2)g + 1 > | log(C3ε)| and 0 < g′(N0) <∞ for all N0. More-
over, putting these inequalities back into the expression of g′, we see that g satisfies
the following differential inequality for large N0:

g′ ≤ log

(
g + 1

g − 1

)
2

| log(C3ε)| ≤
4

(g − 1)| log(C3ε)| .

Now, using the Gronwall–Bellman–Bihari inequality, we directly infer that

g ≤ H−1(H(a(η)) +N0)(2.14)

for some constant a(η) depending only on η, where the function H is defined by

H(s) :=
| log(C3ε)|

4

∫
(s− 1)ds =

| log(C3ε)|(s− 1)2

8
+ K̂0(η)(2.15)

for some K̂0(η). Therefore the following inequality holds for g and some constants

K̂1(η), K̂2(η), K̂3(η):

g ≤
√
K̂1(η)N0 − K̂2(η)

| log(C3ε)| + K̂3(η) .

Using pN,M,δ defined in (2.10), we can choose p̂N,M,η,ε such that

p̂N,M,η,ε = Kη

√
max(N,M)

| log(C3ε)| = KηpN,M,δ(2.16)

for some Kη depending on η; then for all

p > p̂N,M,η,ε ≥ g (max(N,M)) = [G (max(N,M), ·)]−1
(η),

we have

p(p+ 1)max(N,M)−1

(p− 1)max(N,M)−1
e−| log(C3ε)|(p+1) < η .

Hence the growth of the probability P
(J α,ν,γ

p (Ũp, Σ̃p, Ṽp) <
(
KNM +min(N,M)2

)
ε
)

with respect to p becomes insignificant for p > p̂N,M,η,ε. This gives another optimal
choice of p. Surprisingly, we notice that p̂N,M,η,ε ∼ pN,M,δ , i.e., the two choices of p
are of the same order. This leads to the following results.
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Theorem 2.6. The following probability bound holds for any small δ > 0:

P

(
J α,ν,γ
p (Ũp, Σ̃p, Ṽp) < δ

)
≥

p∑
l=1

(
lmax(N,M) − (l − 1)max(N,M)

)
l! min(N,M) (C3ε)

μ(N,M,l)(2.17)

whenever γ + 2ν ≤ (K − 1) ε, where ε = δ
(
KNM +min(N,M)2

)−1
for some K > 1

and the function μ( · , · , · ) is defined as in (2.5). For a given small constant η,
the growth of the summation above with respect to p can be controlled by η when
p > Kη pN,M,δ for some Kη depending only on η, where pN,M,δ is defined as (2.10).

The above theorem is crucial for suggesting our optimal choice of an asymptotic
p. Indeed, we can easily see that ||Y − Iα,νγ

p (Y )||2F,2 < δ if J α,ν,γ
p (Ũp, Σ̃p, Ṽp) < δ.

And in the particular case when M = N , the following asymptotic order for p,

p ∼
√

N

logN
,(2.18)

is basically an optimal choice of p, and they are equivalent up to a multiplicative
constant wheneverN > C3δ

−1. Following this optimal choice, the memory complexity

grows in the order
√

N3

logN as N goes to infinity.

We may notice that the multiplicative asymptotic estimate (2.18) has its multi-
plicative constant that depends strongly on the distribution fdx. A thorough inves-
tigation of the dependence is important for a better understanding of the asymptotic
estimate.

2.2. Effects of magnitudes of entries in matrix Σ. In this subsection, we
discuss a further reduction of the memory complexity by truncating the matrix Σ̃p =
(σij) and dropping the less important components (ũp)i⊗ (ṽp)j in (2.2) in a way that
it still serves as a good approximation of the original matrix Y .

For doing so, we rearrange σij from the largest value to the smallest one as

σi1j1 ≥ σi2j2 ≥ · · · ≥ σip2 jp2 , and we write σ̃l = σiljlel ⊗ el and Σ̃p,p̃ =
∑p̃

l=1 σ̃l as

the truncated matrix for all p̃ ≤ p2. The sequence {σ̃l}p
2

l=1 represents the components

of Σ̃p in descending order by the importance of their magnitudes. Let [Ũp,Σp, Ṽp]
be a minimizer of the functional (2.1); then we define a convenient operator Iα,ν,γ

p,p̃ :

RN×M → (RN×M )+ by

Iα,ν,γ
p,p̃ (Y ) := ŨpΣ̃p,p̃Ṽp =

p̃∑
l=1

σiljl(ũp)il ⊗ (ṽp)jl .(2.19)

The approximation Y ≈ Iα,ν,γ
p,p̃ (Y ) = ŨpΣ̃p,p̃Ṽp is a truncation of the approxima-

tion (2.2) of Y up to p̃. This truncated approximation drops those less important
components, and hence we need only save the vectors (ũp)il and (ṽp)jl for 1 ≤ l ≤ p̃.
This further reduces the memory complexity and serves as our desired sparse low-rank
approximation of Y . Next, we give a brief analysis for this truncated approximation
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of Y . We obtain directly from the pigeon-hole principle that

J α,ν,γ
p (Ũp, Σ̃p,p̃, Ṽp) < J α,ν,γ

p (Ũp, Σ̃p, Ṽp) + ||I||1
p2−p̃∑
i=0

1

p2 − i

< J α,ν,γ
p (Ũp, Σ̃p, Ṽp) + ||I||1

∫ 1

p̃

p2

1/xdx

< J α,ν,γ
p (Ũp, Σ̃p, Ṽp) +NM log

(
p2

p̃

)
<
(
(K + T )NM +min(N,M)2

)
ε

whenever J α,ν,γ
p (Ũp, Σ̃p, Ṽp) <

(
(KNM +min(N,M)2

)
ε for some K and p̃ > e−Tεp2

for some T . Now the following corollary is a direct consequence of this estimate
combined with Theorem 2.5.

Corollary 2.7. For some given constants K and L, let ε = δ((K + T )NM +
min(N,M)2)−1 and pN,M,δ be given by (2.10). Then the following inequality holds
for any small δ > 0, γ + 2ν ≤ (K − 1) ε, and p̃ > e−Tεp2:

P

(
min
p

J α,ν,γ
p (Ũp, Σ̃p,p̃, Ṽp) < δ

)
≥ min(N,M) p

max(N,M)
N,M,δ (C3ε)

μ(N,M,pN,M,δ) .

3. Multilevel analysis (MLA) of nonnegative trifactorizations. In this
section, we introduce an MLA framework based on the trifactorization addressed in
the previous section. We notice that, for a matrix Y , especially when it represents an
image or an inhomogeneous medium inclusion, there are features of different scales in
Y , which may usually represent different objects or several different parts of one object
in the image. We aim at extracting these features of different scales and represent
them in a sparse low-rank approximation in terms of tensor products. Therefore we
introduce an MLA framework to NMF which helps us achieve a sparse representation
of the features of multiple scales, ranging from the coarsest scale to the finest scale
in the image Y . This MLA framework aims to identify the major components in
the matrix Y which represent structures at multiple scales/levels of the image so that
structures from large scales up to small scales in the image can be separately identified
and sparsely represented. Our MLA framework is partially motivated by the MRA
in wavelet analysis, which is widely used to capture different resolutions of a function
or image as well as for compression purposes. However, an essential difference of
our MLA framework from the MRA lies in its unique feature that the positivity of
the basis for the function/matrix approximation is respected, while a multiresolution
property similar to that in MRA is still achieved.

The most primitive idea of MRA is to successively approximate an L2-function by
dyadic shifts and dilations of a wavelet function ψ (a.k.a. the mother wavelet), which
results in a multiple resolution of the L2-function. But the mother wavelet ψ has a
vanishing mean [14, 47], and it cannot have the same sign in the whole space. So the
MRA approximation fails to represent an L2-function f by positive basis functions.
This is also true for higher dimensions. Therefore the MRA may not be desirable if
we intend to approximate a positive function by a positive basis. This is often the
case when the function/matrix represents an image or a probability density function,
and it motivates us for a nonnegative version of a similar multilevel approximation of
the function based on the NMF technique. We shall call it the MLA, in the hope that
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each finer level of approximation of the function by a positive basis shall represent an
increasing resolution in some sense.

Next, we formulate a mathematical framework for the MLA in NMF. For the sake
of exposition, we introduce several convenient operators for the subsequent discussion.
We first define an interpolation operator ιs : RN×M → R

N
rs ×M

rs as the following
averaging operator:

ιs(Y ) :=
∑

1≤i≤N/rs,1≤j≤M/rs

1

r2s

∑
k,l∈QIiJj

Yklei ⊗ ej ,(3.1)

where QIiJj contains the entries with indices (i, j) satisfying iN/rs ≤ k < (i +
1)N/rs, jM/rs ≤ l < (j + 1)M/rs. We note that this operator gives an interpolation

from a fine space H0 := RN×M to a coarse space Hs := R
N
rs ×M

rs , and the spaces Hs

actually form a nested sequence of spaces, i.e., Hs ⊂ Hl if s > l. Certainly one may
consider more general nested sequences of spaces and interpolation operators. Then
we define Iα,ν,γ

s,p : (RN×M )+ → (RN×M )+ by

Iα,ν,γ
s,p := ιTs ◦ Iα,γ

p ◦ ιs .(3.2)

Let �·� be the floor function, and let smax be an integer such that

smax ≤ �log(min(N,M))/ log(r)�;

then the action Iα,ν,γ
s,p (Y ) represents the approximation of the (smax−s)th level of the

image Y by NMF. Similarly, we define Iα,ν,γ
s,p,p̃ : (RN×M )+ → (RN×M )+ as a truncated

approximation of the (smax − s)th level of Y by

Iα,ν,γ
s,p,p̃ := ιTs ◦ Iα,ν,γ

p,p̃ ◦ ιs .(3.3)

We may notice that our new MLA and the existing MRA share some similarities:
they both present a dissection of the image into different slices (referred to as levels
and scales in the respective MLA and MRA frameworks), with each level providing
a specific coarse/fine level of information about the data. But there are some funda-
mental differences between MLA and MRA: the basis in an MRA framework cannot
hold a same sign in the whole space, while the MLA approximation is represented by
a positive basis. On the other hand, the L2 space is decomposed into a direct sum
in an MRA framework, and hence a summation over different layers gives back the
original image; but in the MLA framework, the direct-sum structure is not maintained
in order to enforce the positivity of the basis, and therefore the results from different
levels cannot be combined directly or linearly into one image.

Now we are ready to investigate and analyze the error of the approximation
given by this MLA framework. For the sake of simplicity, we write the summation∑

I∈{I1,...,IN/r2},J∈{J1,...,JM/r2} a(YI,J) as
∑

I,J a(YI,J ), where YIJ is the (I, J)th block

of the matrix Y and a(·) is any function acting on these block matrices. Then it is
easy to see by combining the arguments in the previous sections and the Poincaré



ANALYSIS ON A NONNEGATIVE MATRIX FACTORIZATION B661

inequality that

||Y − ιTs ◦ Iα,ν,γ
p,p̃ ◦ ιs(Y )||2F,2

≤ r2s||ιs(Y )− Iα,ν,γ
p,p̃ ◦ ιs(Y )||2F,2 +

∑
I,J

||∇δYIJ ||2F,2

≤ r2sJ α,ν,γ
p (Ũp, Σ̃p,p̃, Ṽp) +

∑
I,J

||∇δYIJ ||2F,2

≤ r2sJ α,ν,γ
p (Ũp, Σ̃p,, Ṽp) + r2s

(
r−2sNM log

(
p2

p̃

))
+
∑
I,J

||∇δYIJ ||2F,2,

where ∇δ is the difference gradient operator defined as

(∇δX)i,j = (Xi+1,j −Xi,j , Xi,j+1 −Xi,j)

for any matrix X , [Ũp, Σ̃p, Ṽp] is an argument minimum of (2.1) with Y replaced by

ιs(Y ), and Σ̃p,p̃ is the truncation of Σ̃p up to p̃ (see section 2.2). Therefore if we can

choose [Ũp, Σ̃p, Ṽp] such that J α,ν,γ
p (Ũp, Σ̃p, Ṽp) < r−2s

(
(KNM +min(N,M)2

)
ε and

p̃ > e−Tεp2 for some K and T , then

||Y − Iα,ν,γ
s,p,p̃ (Y )||2F,2 ≤ ((K + T )NM +min(N,M)2

)
ε+
∑
I,J

||∇δYIJ ||2F,2 .

Let pr−sN,r−sM,δ be defined as in (2.11). We recall from the discussions in the previous
section that the probability of the above event, denoted as Ep,p̃,δ, is bounded below
by

P(Ep,p̃,δ) ≥ r−s min(N,M) p
r−s max(N,M)
r−sN,r−sM,δ (C3ε)

μ(r−sN,r−sM,pr−sN,r−sM,δ)

for γ + 2ν ≤ (K − 1) ε .

In general, we may not expect that either ||∇δY ||2F,2 or
∑

I,J ||∇δYIJ ||2F,2 can be
controlled, since we have not imposed any regularity conditions for Y . However, if we
further assume that Y has some regularity, for instance,

∑
I,J ||∇δYIJ ||2F,2 < K̂MNε,

then

||Y − Iα,ν,γ
s,p,p̃ (Y )||2F,2 ≤

(
(K + T + K̂)NM +min(N,M)2

)
ε .

Combining all the above arguments, we come to the following conclusion.

Theorem 3.1. Let K,T, K̂ be given, let

ε = −r2sδ
(
(K + T + K̂)NM +min(N,M)2

)−1

,

and for any small δ > 0, let Ep,p̃,δ be the event that the following inequality holds:

||Y − Iα,ν,γ
s,p,p̃ (Y )||2F,2 ≤ ((K + T )NM +min(N,M)2

)
ε+
∑
I,J

||∇δYIJ ||2F,2 ;

then if p̃ is chosen such that p̃ > eTεp2, we have for any s and γ + 2ν ≤ (K − 1) ε
that

P

(⋃
p

Ep,p̃,δ

)
≥ r−s min(N,M) p

r−s max(N,M)
r−sN,r−sM,δ (C3ε)

μ(r−sN,r−sM,pr−sN,r−sM,δ) ,(3.4)
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where the functions μ(·, ·, ·) and pr−sN,r−sM,δ are defined as in (2.5) and (2.10), re-
spectively. For all s and p < r−s min(N,M), we have

P (Ep,p̃,δ) ≥
p∑

l=1

(
lr

−s max(N,M) − (l − 1)r
−s max(N,M)

)
l! r−s min(N,M) (C3ε)

μ(r−sN,r−sM,l)(3.5)

whenever p̃ > eTεp2 and γ+2ν ≤ (K−1) ε. For a given small constant η, the growth of
the summation above with respect to p can be controlled by η when p > Kη pr−sN,r−sM,δ

for some Kη depending only on η. Furthermore, if the event Ep,p̃,δ occurs and the

inequality
∑

I,J ||∇δYIJ ||2F,2 < K̂MNε holds, then

||Y − Iα,ν,γ
s,p,p̃ (Y )||2F,2 ≤ δ .(3.6)

Now we can see from the above theorem that for a given threshold δ andM = N , if
Y has the regularity such that ||∇δY ||2F,2 < K̃δ for some K̃ < 1, then the lower bound

of the probability of ||Y −Iα,γ
s,p,p̃(Y )||2F,2 < δ is higher than that of ||Y −Iα,ν,γ

p,p̃ (Y )||2F,2 <
δ with an appropriately selected p̃. Furthermore, for each s, the optimal choice of p
has the same order as pr−sN,r−sM,δ, which behaves asymptotically like

p ∼ r−s/2

√
N

logN − 2s log r
,(3.7)

with the memory complexity of Iα,ν,γ
s,p,p̃ growing in the order r−3s/2

√
N3

logN−2s log r as N

goes to infinity. This indicates that, by increasing s, the probability of a valid approx-
imation by the sth level in MLA of NMF is increased and the memory complexity is
decreased. Moreover, we observe from our subsequent numerical experiments that the
resulting approximations Iα,ν,γ

s,p,p̃ from larger values of s capture the coarser features of
Y , and they achieve finer and finer features as s decreases.

4. Semismooth Newton method for nonnegative factorizations. In this
section, we propose and formulate an efficient and cost-effective numerical algorithm
to realize the NMF for a given image or data Y , as we discussed in the previous
sections. Instead of finding the optimal solution [Ũp,Σp, Ṽp] of the functional (2.1),
we shall propose performing the following alternative two-stage NMF to obtain an
approximation of Iα,ν,γ

p (Y ):

Y ≈ AV T , AT ≈ ΣTUT ; then form Y ≈ UΣV T .(4.1)

In each of the above two NMFs, we minimize the functional (1.2) via a semismooth
Newton method based on primal-dual active sets [34], which will be derived below.

As we recall, a big class of NMF algorithms falls in a category called the multi-
plicative updates [15, 40], which has a variant to guarantee convergence [7]. Although
it is simple to implement and scales well, its convergence is very slow [28]. Another
method is the alternating least squares, which does not converge generally, but the
alternating nonnegative least squares can be fast in practice with the use of active
sets [36, 37, 38], and it is guaranteed to converge to a stationary point [26]. For the
alternating nonnegative least squares, the matrix factors are updated alternatively,
e.g., using projected gradients [45], or accelerated by the quasi-Newton [11] or fast
gradient methods [27]. One may also use the hierarchical alternating least squares,
which is a coordinate descent method that updates one column at a time and can be
decoupled into the problems of a single nonnegative variable [5, 10, 12, 24, 29, 42, 46].
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This method converges to a stationary point [24] and is much faster than the mul-
tiplicative updates [22]. We refer the reader to [23] for a detailed discussion on the
development of NMFs in both theories and algorithms.

Our method may fall in a category similar to the alternating nonnegative least
square, but it has some fundamental differences. We first pair up the last two matrices,
perform the factorization, and then further factorize the resulting matrices. This can
be regarded as a variant of a block Gauss–Seidel minimization performing only one
sweep. Active sets and semi-smooth Newton methods are both used to speed up the
convergence, with low computational efforts. The semismooth Newton method is more
advantageous than some classical methods for trifactorization, e.g., the multiplicative
updates [17, 19]; and its performance and structure are comparable to some other
quasi-Newton methods in the alternating nonnegative least squares. Moreover, the
semismooth method deals effectively with the nonsmoothness in our NMF formulation
(2.1), converges to the solutions to the necessary optimality system (4.8), and may
provide a more desirable factorization in our numerical tests than the standard NMF
algorithms which do not take the regularizations or take the 2-norm regularizations
[15, 48, 40, 5, 10, 24, 29, 42, 46]. Furthermore, some existing methods, e.g., the
coordinate descent method, may not be applicable to our functional (2.1) involving
nonsmooth and nonseparable 1-norm terms, and they are likely to produce sequences
that may get stuck in some nonstationary points.

Our two-stage NMF may not yield the optimal solution [Ũp,Σp, Ṽp] of the func-
tional (2.1), but it generates a sufficiently fine approximation of Iα,ν,γ

p (Y ), as we shall
observe from our numerical experiments. More importantly, this two-stage process is
more user-friendly and less expensive computationally, since the linearized systems of
the functional (2.1) involved in the semismooth Newton iteration are much more con-
venient to evaluate numerically than the systems encountered when (2.1) is minimized
directly.

4.1. Semismooth Newton method based on primal-dual active sets for
NMF. Before we present a two-stage NMF for an approximation of Iα,ν,γ

p (Y ), we
first discuss some mathematical properties of the important nonconvex minimization
problem (1.2). The semismooth Newton method based on primal-dual active sets was
studied in [34] to solve either convex or nonconvex nonsmooth optimization problems
effectively by combining the ideas of active sets and Newton-type update. In this
section, we formulate this method for solving the nonsmooth nonconvex optimization
(1.2):

(4.2) min
A≥0,P≥0

J(A,P ) := ||Y − AP ||2F,2 + α||A||F,1 + ν||P ||F,1 + γ||PPT − I||F,1.

4.1.1. Complementary conditions. We first recall two complementary condi-
tions for the characterization of some constraint conditions from [34], which are crucial
for the development of the algorithm in the subsequent analysis. For this purpose,
we will need the subdifferential of the function | · | : R → R, which is the set-valued
signum function defined by

∂| · |(x) =

⎧⎪⎨⎪⎩
1 if x > 0 ,

[−1, 1] if x = 0 ,

−1 if x < 0 .

(4.3)

With this definition, we are now ready to introduce the first complementarity con-
dition which characterizes the set-valued subdifferential ∂| · | based on the following
equivalence [34].
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Lemma 4.1. For any given constant c > 0, it holds that

λ =
λ+ cx

max(1, |λ+ cx|) ⇔ λ ∈ ∂| · |(x) .(4.4)

The above theorem follows directly from a pointwise comparison of the corre-
sponding set-valued functions. The condition λ = (λ + cx)/max(1, |λ + cx|) for a
given c > 0 is regarded as a complementary condition characterizing the subdifferen-
tial ∂|·| [34], where the choice of c is arbitrary. However, in a practical implementation
using the complementary condition, c is often chosen as a fixed constant that acts as
a stabilization parameter.

Now, for any matrix A, we note that ||A||F,1 =
∑

i,j |Ai,j |. Then, using a dual
variable λ and the complementarity condition (4.1), the set-valued subdifferential
function ∂|| · ||F,1(A) can be characterized by

λi,j =
λi,j + cAi,j

max(1, |λi,j + cAi,j |) ⇔ λ ∈ ∂|| · ||F,1(A) .(4.5)

We may often write this simply as λ = λ+cA
max(1,|λ+cA|) , where the division, the maximum,

and the absolute value are all taken pointwise.
Next we introduce a second complementary condition that is used to characterize

an inequality constrain x ≥ 0 [34]. For a functional F : RN → R, the constrained
optimization

(4.6) minF (x) subject to x ≥ 0

can be reformulated into an equivalent augmented Lagrangian formulation [34], yield-
ing the following result.

Theorem 4.2. The necessary optimality conditions for the minimization problem
(4.6) are given by

(4.7) 0 ∈ ∂F (x) + μ and μ = min(μ+ cx, 0) .

The proof of this theorem follows from the same arguments in [34]. The condition
μ = min(μ+cx, 0) for the dual variable μ is regarded as a complementary condition in
[34], which serves as a characterization of the constraint x ≥ 0. This complementary
condition may also be regarded as a project of the solution to the convex set as the
epigraph defined by the constraint.

4.1.2. Necessary optimality conditions for the optimization (4.2). By
applying Theorem4.2 and Lemma 4.1 and calculating the subdifferentials involved,
we come to the following necessary optimality conditions for the optimization (4.2)
using the primal-dual and other auxiliary variables.

Theorem 4.3. The necessary optimality conditions for the optimization (4.2) can
be given in terms of the primal-dual variables (A,P,R, L, μA, λA, μP , λP , λL) and two
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constants c1, c2 by

(4.8)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 = 2APP T − 2Y PT + μA + αλA,

λA = λA+c2A
max(1,|λA+c2A|) ,

μA = min(μA + c1A, 0),

0 = −2ATY + 2ATAP + μP + νλP + γλLR,

λP = λP+c2P
max(1,|λP+c2P |) ,

L = PPT − I,

R = P ◦ T + T ◦ PT ◦ T,
λL = λL+c2L

max(1,|λL+c2L|) ,

μP = min(μP + c1P, 0),

where T : RM×N → RN×M is the transpose operator that maps A to AT .

4.1.3. Semismooth Newton strategy. We introduced the necessary optimal-
ity conditions for solving the optimization problem (4.2) in the previous subsection.
We shall now develop a semismooth Newton method for solving these optimality sys-
tems, which can be readily shown to be Newton differentiable [34]. To further develop
our algorithm, we separate the variables (A,P,R, L, μA, λA, μP , λP , λL) into three
sets, i.e., (A, μA, λA), (P, μP , λP ), and (L,R, λL), and solve for each set of variables
independently. Clearly, the separated systems are easier for us to perform active-set
techniques and greatly reduce the computational costs, and more importantly, each
separated nonlinear system consists of many fewer variables and is therefore much
more stable when performing semismooth Newton iterations. Together with the in-
troduction of the active and inactive sets

AA,1 = {(i, j) : (μA)i,j + c1Ai,j > 0} , IA,1 = {(i, j) : (μA)i,j + c1Ai,j ≤ 0} ,
AA,2 = {(i, j) : |(λA)i,j + c2Ai,j | ≤ 1} , IA,2 = {(i, j) : |(λA)i,j + c2Ai,j | > 1} ,
AP,1 = {(i, j) : (μP )i,j + c1Pi,j > 0} , IP,1 = {(i, j) : (μP )i,j + c1Pi,j ≤ 0} ,
AP,2 = {(i, j) : |(λP )i,j + c2Pi,j | ≤ 1} , IP,2 = {(i, j) : |(λP )i,j + c2Pi,j | > 1} ,
AL = {(i, j) : |(λL)i,j + c2Li,j| ≤ 1} , IL = {(i, j) : |(λL)i,j + c2Li,j | > 1} ,

we can separate (4.8) into three simple systems thanks to direct substitutions and
pointwise comparisons of the complementary conditions:

(1) For a fixed P , we have A = 0 on AA,1

⋃AA,2, while (A, λA) on IA,1

⋂ IA,2

satisfies

2APPT − 2Y PT + αλA = 0 , λA|λA + c2A| − (λA + c2A) = 0 .(4.9)

(2) For the fixed A,L,R, λL, we have P = 0 on AP,1

⋃AP,2, while (P, λP ) on IP
satisfies

−2ATY + 2ATAP + νλP + γλLR = 0 , λP |λP + c2P | − (λP + c2P ) = 0 .(4.10)

(3) For a fixed P , we have L = 0 on AL, while (L,R, λL) on IL satisfies

L = PPT − I , R = P ◦ T + T ◦ PT ◦ T , λL|λL + c2L| − (λL + c2L) = 0 .(4.11)

For the nonlinear constraints with λA, λP . and λL, we propose a semismooth
Newton-step update as in [33] to solve the corresponding equations. To solve the
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first system (4.9), the following semismooth Newton update from (A, λA) to (A+, λ+A)
involving damping and regularization can be derived as in [33, 34]:

2A+PPT − 2Y PT + αλ+A = 0 , λ+A − c2
dA − 1

(
I − aAb

T
A

)
A+ + aA = 0 ,(4.12)

where aA = λA

max(1,|λA|) , bA = λA+c2A
|λA+c2A| , and dA = |λA + c2A|. Similarly we can

linearize the constraints for the variables λP and λL.
On the other hand, although the second equation in the third system (4.11) is

linear, it is computationally expensive, as the transpose operator T is involved. We
therefore suggest a semismooth Newton update for R from L and P instead of a direct
substitution. The fact that (Lh−L) = Rh(P h−P )+O(h2) holds when L = PPT − I
and (Lh, Rh, P h) = (L,R, P ) + O(h), together with the aforementioned linearization
strategy for λL, provides us with the following semismooth Newton update from
(L,R, P ) to (L+, R+, P+):

L+ = P+(P+)T − I , R+(P+ − P ) = (L+ − L) , λ+L

=
c2

dL − 1

(
I − aLb

T
L

)
L+ − aL,(4.13)

where aL, bL, and dL are given, respectively, by aL = λL

max(1,|λL|) , bL = λL+c2L
|λL+c2L| , and

dL = |λL + c2L|.
4.1.4. Numerical algorithms. Combining all the techniques and results from

the previous two subsections, we are ready to propose the semismooth Newton method
based on primal-dual active sets for solving the optimality system (4.8) to tackle the
minimization problem (4.2).

Semismooth Newton Algorithm 1. Given two constants c1, c2 and the initial
guess (A0, P 0, μ0

A, λ
0
A, μ

0
P , λ

0
P , λ

0
L).

For k = 0, 1, . . . ,K, do the following steps :

1. Compute μ
(k)
A := −2A(k)P (k)P (k)T + 2Y (P (k))T − αλ

(k)
A .

2. Set the active and inactive sets Ak
A,i and Ik

A,i for i = 1, 2 :

A(k)
A,1 = {(i, j) : (μA)

(k)
i,j + c1A

(k)
i,j > 0} , I(k)

A,1 = {(i, j) : (μA)
(k)
i,j + c1A

(k)
i,j ≤ 0} ,

A(k)
A,2 = {(i, j) : |(λA)

(k)
i,j + c2A

(k)
i,j | ≤ 1} , I(k)

A,2 = {(i, j) : |(λA)
(k)
i,j + c2A

(k)
i,j | > 1} .

3. Compute a
(k)
A , b

(k)
A , d

(k)
A :

a
(k)
A :=

λ
(k)
A

max(1, |λ(k)A |)
, b

(k)
A :=

λ
(k)
A + c2A

(k)

|λ(k)A + c2A(k)|
, d

(k)
A := |λ(k)A + c2A

(k)| .

4. Set A(k+1) := 0 on A(k)
A,1

⋃A(k)
A,2; solve the system for (A(k+1), λ

(k+1)
A ) on

I(k)
A,1

⋂ I(k)
A,2 :⎧⎨⎩0 = 2A(k+1)P (k)P (k)T − 2Y (P (k))T + αλ

(k+1)
A ,

0 = λ
(k+1)
A − c2

d
(k)
A −1

(
I − a

(k)
A [b

(k)
A ]T

)
A(k+1) + a

(k)
A .

5. Compute μ
(k)
P := 2(A(k+1))TY − 2(A(k+1))TA(k+1)P (k) − νλ

(k)
P − γλ

(k)
L R(k) .
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6. Set the active and inactive sets Ak
P,i and Ik

P,i for i = 1, 2 :

A(k)
P,1 = {(i, j) : (μP )

(k)
i,j + c1P

(k)
i,j > 0} , I(k)

P,1 = {(i, j) : (μP )
(k)
i,j + c1P

(k)
i,j ≤ 0} ,

A(k)
P,2 = {(i, j) : |(λP )

(k)
i,j + c2P

(k)
i,j | ≤ 1} , I(k)

P,2 = {(i, j) : |(λP )
(k)
i,j + c2P

(k)
i,j | > 1} .

7. Compute a
(k)
P , b

(k)
P , d

(k)
P :

a
(k)
P :=

λ
(k)
P

max(1, |λ(k)P |)
, b

(k)
P :=

λ
(k)
P + c2P

(k)

|λ(k)P + c2P (k)|
, d

(k)
P := |λ(k)P + c2P

(k)| .

8. Set P (k+1) := 0 on A(k)
P,1

⋃A(k)
P,2; solve the system for (P (k+1), λ

(k+1)
P ) on

I(k)
P,1

⋂ I(k)
P,2 :⎧⎨⎩0 = −2(A(k+1))TY + 2(A(k+1))TA(k+1)P (k+1) + νλ

(k+1)
P + γλ

(k)
L R(k),

0 = λ
(k+1)
P − c2

d
(k)
P −1

(
I − a

(k)
P [b

(k)
P ]T

)
P (k+1) + a

(k)
P .

9. Set the active and inactive sets A(k)
L and I(k)

L :

A(k)
L = {(i, j) : |(λL)

(k)
i,j + c2L

(k)
i,j | ≤ 1} , I(k)

L = {(i, j) : |(λL)
(k)
i,j + c2L

(k)
i,j | > 1} .

10. Compute a
(k)
L , b

(k)
L , d

(k)
L :

a
(k)
L :=

λ
(k)
L

max(1, |λ(k)L |)
, b

(k)
L :=

λ
(k)
L + c2L

(k)

|λ(k)L + c2L(k)|
, d

(k)
L := |λ(k)L + c2L

(k)| .

11. Set L(k+1) = 0 on A(k)
L ; evaluate (L(k+1), R(k+1), λ

(k+1)
L ) on I(k)

L :⎧⎪⎪⎨⎪⎪⎩
L(k+1) = P (k+1)(P (k+1))T − I ,

R(k+1)(P (k+1) − P (k)) =
(
L(k+1) − L(k)

)
,

λ
(k+1)
L = c2

d
(k)
L −1

(
I − a

(k)
L [b

(k)
L ]T

)
L(k+1) − a

(k)
L .

A natural choice of the stopping criterion is based on the changes of the active
sets: if the active sets from two consecutive iterations are the same, we may stop the
iteration [34]. As the iteration goes on, A,P, L become more and more sparse, and
the sizes of the linear systems involved drop drastically, so the inversions of the linear
systems are more stable and less expensive computationally.

Finally, a few remarks are in order for effective implementations of the algorithm:
1. With the enforcement of the constraints A,P ≥ 0 by the dual variables
μA, μP , the algorithm ensures naturally A(k), P (k) ≥ 0 for all k if the ini-
tial guesses A(0) and P (0) are set to be nonnegative. Thus the algorithm can

be simplified by setting the dual variables λ
(k)
A and λ

(k)
P to be λ

(k)
A = λ

(k)
P = 1

and drop the active/inactive sets A(k)
A,2, I(k)

A,2, A(k)
P,2, and I(k)

P,2.
2. In order to further simplify the algorithm, we may normalize the row vectors of
P after step 8 so that PPT has unitary diagonal entries. If this normalization

is added, then L(k) ≥ 0 for all k. In this case, λ
(k)
L can simply be set to be

λ
(k)
L = 1, while A(k)

L and I(k)
L can be dropped.
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3. In the development of our algorithm above, we assume Y ≥ 0 entrywise;
therefore it is natural to enforce the constraint A ≥ 0. This nonnegativity
condition for A is, however, infeasible and shall be dropped if Y is not non-
negative entrywise. In this case, nonetheless, we can still utilize the above
algorithm for a nonnegative factorization with the following minor modifica-

tion: drop the dual variable μA and the active/inactive sets A(k)
A,1 and I(k)

A,1.

4.2. Nonnegative matrix factorization of an image. With Semismooth
Newton Algorithm 1 to minimize the functional (4.2), we are ready to propose an
algorithm to approximate Iα,ν,γ

p (Y ) in (2.2) and Iα,ν,γ
p,p̃ (Y ) in (2.19) for the NMF of

an image Y .

Nonnegative Matrix Factorization Algorithm 2. Specify five parameters
α, ν, γ, p, p̃.

1. Apply Semismooth Newton Algorithm 1 to find a minimizer [A0, V0] of the
problem

min
A≥0,V≥0

||Y −AV T ||2F,2 + α||A||F,1 + ν||V ||F,1 + γ||V TV − I||F,1.

2. Apply Semismooth Newton Algorithm 1 to find a minimizer [Σ0, U0] of the
problem

min
Σ≥0,U≥0

||AT
0 − ΣTUT ||2F,2 + α||Σ||F,1 + ν||U ||F,1 + γ||UTU − I||F,1.

3. Form Iα,ν,γ
p (Y ) := U0Σ0V

T
0 from [U0,Σ0, V0] .

4. Sort the entries of Σ0 from the largest to the smallest as σi1j1 ≥ σi2j2 ≥ · · · ≥
σip2 jp2 .

5. Compute σ̃l := σiljleil ⊗ ejl ; then form Σ0,p̃ :=
∑p̃

l=1 σ̃l .
6. Form the factorization Iα,ν,γ

p,p̃ (Y ) := U0Σ0,p̃V
T
0 .

4.3. Multilevel analysis algorithm based on NMF. Based on the results
from an NMF, we can propose a multi-level analysis algorithm.

Multilevel Analysis Algorithm 3. Specify a scaling parameter r and a con-
stant smax such that smax < log(min(N,M))/ log r; set parameters α, ν, γ and two
arrays of parameters [p(1), . . . , p(smax)], [p̃(1), . . . , p̃(smax)].

For s = 1, 2, . . . , smax, do the following steps:
1. Compute ιs(Y ) as in (3.1).
2. Calculate Iα,ν,γ

p(s),p̃(s)[ιs(Y )] by Nonnegative Matrix Factorization Algorithm 2.

3. Calculate Iα,ν,γ
s,p(s),p̃(s)(Y ) := ιTs ◦ Iα,ν,γ

p(s),p̃(s) ◦ ιs(Y ).

5. Applications to photo and EIT images. In this section we shall apply
both the NMF and the MLA framework of an NMF suggested in section 4 to some
photo images and several EIT images reconstructed by some direct sampling methods.
We shall investigate two applications, the first one being an MLA for photo images
using NMF, and the second one being an NMF over the images from an inversion
algorithm for a broad class of coefficient determination inverse problems. In the first
application, we aim at capturing features of different scales in an image and obtain a
sparse low-rank representation of these features; in the second application, we hope
to identify the principal components in the image, which correspond to the signals
coming from the inhomogeneity in the corresponding inverse problems, and remove
artifacts and noise from the images.
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5.1. Applications to photo images. We perform now an MLA using NMF
for several grey-scaled images Y . In view of the fact that an image can be repre-
sented by a positive function, and so are the major structures/objects inside these
images, we are naturally motivated to use the NMF to identify the principal com-
ponents of the image corresponding to these major objects in the figure and obtain
a sparse representation of these objects and structures. MLA is employed to obtain
these corresponding principal components representing structures/objects at multiple
scales/levels of the image so that structures of large and small scales in the image can
be separately identified and sparsely represented. We shall also aim to achieve a sparse
representation which is robust to noise during transmission of data through channels.
But we emphasize that we are neither aiming at reconstructing the image in full entity
from all the NMF components in terms of tensor products nor hoping to obtain a very
high compression ratio of memory complexity to defeat any well-developed compres-
sion techniques, e.g., wavelet/curvelet compression, JPEG, etc., since they are surely
better candidates for compression. Rather, we aim to compare the ability of feature
capturing of our newly introduced factorization with other existing methods.

In the subsequent three examples, we shall utilize the Multilevel Analysis Algo-
rithm 3 to approximate Iα,ν,γ

s,p(s),p̃(s)(Y ), in which the Nonnegative Matrix Factorization

Algorithm 2 is used to calculate Iα,ν,γ
p(s),p̃(s)[ιs(Y )] and the Semismooth Newton Algo-

rithm 1 is used to minimize (4.2) for the NMF. In all the following examples, the
parameters in Algorithm 3 are set to r = 2, α = 0.2, ν = 0.02, γ = 0.02, whereas
smax is set differently in each example. Considering the theoretical optimal choice of
p in (3.7), the array of parameters p(s) is set to

p(s) =

⌊
T1

√
max(N,M)

max(1, logmax(N,M)− 2s log r)
r−s/2

⌋
(5.1)

in all our examples, where �·� is the floor function and T1 is a given constant. We
observe from numerical experiments that this asymptotic formula (3.7) is, on one
hand, necessary for good approximation of the desirable structures we hope to identify
and, on the other hand, grows fairly slowly as the value smax − s increases and
henceforth is a practical choice and very desirable for feature identifications and sparse
representation. To ensure that the fidelity of the most important features in the image
can be kept after dropping the less important components from Σ̃p,p̃, the parameter

p̃(s) is chosen by a threshold based on the l1-norm of Σ̃p, i.e., as the first integer such
that

p̃(s)∑
l=1

σiljl > T2

p(s)2∑
l=1

σiljl ,

where T2 is a threshold which is smaller than 1. In all the following examples, T1
and T2 are always chosen as T1 = 3.5 and T2 = 0.95. A quantization process Q is
performed on all the three matrices [Ũp, Σ̃p,p̃, Ṽp] which we get by Algorithm 2 as

Q(Aij) :=
⌊ Aij

0.01

⌋
for any matrix (Aij). This is to minimize the number of possible

choices of values in the matrix entries in order to embrace the possibility for an
efficient entropy coding postprocessing after the NMF process and minimize memory
complexity. The parameters c1, c2 in Algorithm 1 are always set to 1.

For the sake of comparisons between feature extraction, sparsity of representation,
and robustness against noise in the transmission channel, we shall also compare the
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performance of NMF with those by the SVD and the JPEG compression. For a given
image Y , the SVD with the level parameter s, ISV D,s, is taken as

ISV D,s := ιTS (UΣV T ) with ιs(Y ) = UΣV T .(5.2)

Again, the same quantization processQ is performed on the three matrices [U,Σ, V ] as
described above to embrace the possibility for efficient entropy coding. Meanwhile, for
the JPEG compression format, we follow the standard routine as in [52]. Namely we
first perform a discrete cosine transform (DCT) on 8×8 pixel-blocks to give the DCT
coefficients (Dij) on each block and then perform the standard JPEG quantization

process Cij =
⌊ Dij

(Q50)ij

⌋
with the given standard JPEG quantization matrix Q50 [52].

A level parameter s is introduced to define the image IJPG,s as the reconstruction of
the JPEG from only the first 23−s Fourier coefficients in each 8 × 8 pixel-block for
s = 0, 1, 2, 3. Note that, with this definition, only four levels are available for JPEG.

In order to test the robustness of the algorithms for feature preservation during the
transmission process of data through channel, multiplication noise is added to simulate
the scenario of data transmission through a noisy cable for each of the aforementioned
algorithms, i.e., NMF, SVD, and JPEG. For the NMF process, multiplicative noise is
added to the three matrices [Ũp, Σ̃p,p̃, Ṽp] after quantization as

(Ũ ζ
p )ij = (Ũp)ij(1 + σζij) , (Σ̃ζ

p,p̃)ij = (Σ̃p,p̃)ij(1 + σζij)

(Ṽp)
ζ
ij = (Ṽp)ij(1 + σζij) ,(5.3)

where Iα,ν,γ
p(s),p̃(s)[ιs(Y )] := ŨpΣ̃p,p̃Ṽ

T
p , Iα,ν,γ

s,p(s),p̃(s)(Y ) := ιTs ◦ Iα,ν,γ
p(s),p̃(s) ◦ ιs(Y ), σ is the

noise level, and ζ is uniformly distributed between [−1, 1]. Multiplicative noise is used
to preserve the positivity in the perturbed data, which is a necessary feature in NMF.
Noisy reconstruction from the NMF is then given by[

Iα,ν,γ
s,p(s),p̃(s)

]ζ
(Y ) := ιTs Ũ

ζ
p Σ̃

ζ
p,p̃(Ṽ

ζ
p )

T
.(5.4)

Similarly, for the SVD process, multiplicative noise is added in [U,Σ, V ] after quanti-
zation such that

U ζ
ij = Uij(1 + σζij) , Σζ

ij = Σij(1 + σζij) , V ζ
ij = Vij(1 + σζij) ,(5.5)

where ISVD,s := ιTs (UΣV T ) and ιs(Y ) := UΣV T . The noisy reconstruction IζSV D,s is
then taken as

IζSV D,s := ιTS (U
ζΣζ(V ζ)T ).(5.6)

For the JPEG process, multiplicative noise is added in DCT coefficients on each 8×8
pixel-block after quantization:

Cζ
ij = Cij(1 + σζij) ,(5.7)

and the noisy reconstruction IζJPG,s comes as the dequantization of Cζ by multipli-
cation by Q50 followed by an inverse DCT. In all our numerical examples, we always
set the noise level to be σ = 25%.
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The relative error of the reconstruction image Ireconst from each reconstruction
method is quantified in the following manner on the quotient space of L2 after taking
an affine equivalence:

ε(Ireconst) :=
mina,b∈R ||aIreconst + b− Y ||L2

||Y ||L2

.

This measurement of error is adopted because all the reconstructed images are shown
such that the color scale gives only the relative contrast of the gray scale, and there-
fore an affine equivalence is taken for an appropriate measure of relative error. For
each image, we shall also measure the memory complexity ratio of a given method,
which is given as the ratio between the memory size of the data after performing the
corresponding method and that of the original data. We would like to remark that
the memory complexities for all the three methods (including JPEG) in our examples
are computed based on its size before entropy coding; meanwhile, a same entropy
coding technique can be applied to all the three methods considering the fact that all
of them have undergone a quantization process.

Example 1. In this example, we set Y as the grey-scale image presented in Figure
1(left). The parameter smax is chosen as smax = [log(min(N,M))/ log(r) − 3]. The
resulting images from MLA without noise are shown in Figure 2, whereas reconstruc-
tions with 25% noise are given in Figure 3. The memory complexity ratios for the
(smax − s)th level of the three methods and their respective relative L2 errors with
and without noise are shown in Table 1.

Table 1

smax − s : 1 2 3 4 5 6

p : 20 24 24 28 34 42

p̃ : 142 177 152 153 195 332

Memory complexity ratio of NMF : 0.0017 0.0033 0.0061 0.0116 0.0271 0.0573

Memory complexity ratio of SVD : 0.0015 0.0036 0.0072 0.0168 0.0409 0.1011

Memory complexity ratio of JPEG : NA NA 0.0154 0.0497 0.0982 0.1048

Relative L2 error in NMF (with 0% noise) : 0.2723 0.2567 0.2350 0.1878 0.1630 0.1561

Relative L2 error in SVD (with 0% noise) : 0.2733 0.2584 0.2342 0.1875 0.1591 0.1594

Relative L2 error in JPEG (with 0% noise) : NA NA 0.1855 0.0974 0.0689 0.0535

Relative L2 error in NMF (with 25% noise) : 0.2768 0.2631 0.2462 0.2029 0.1770 0.1689

Relative L2 error in SVD (with 25% noise) : 0.2755 0.2629 0.2456 0.2029 0.1754 0.1704

Relative L2 error in JPEG (with 25% noise) : NA NA 0.1941 0.1089 0.0711 0.0673

We can see from Figures 2 and 3 that in the absence of noise, although it is
true that the NMF does not outperform SVD and JPEG of the same level, many
reasonable details of different scales can already be captured in different levels of
NMF, starting from the coarser image of the horse, then finer details, and afterwards
the clear black-and-white strips on the horse. In each level, JPEG gives the best
image of the three; however, it also needs a relatively high memory complexity in the
same level. Meanwhile the NMF provides a representation of a relatively low memory
complexity of the same layer. It is especially interesting to note that a memory
complexity ratio of about 0.01 (before entropy coding) at level 4 can already give us
many details of the horse. With the presence of noise, we can see that although the
relative L2 errors of both NMF and SVD are more or less the same, many coarser
layers of SVD are not free from the contamination of noise in the form of vertical and
horizontal strips in the background, and that the NMF gives a better shape of the
horse. The NMF layers are affected by noise, but most of the nice details of the horse
can still be kept. The JPEG stays the most robust against the noise; nonetheless, the
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Fig. 1. Original images in Example 1 (left), Example 2 (middle), and Example 3 (right).

performance of NMF is also quite reasonable, considering the fact that NMF of the
same layer usually requires less than half of the memory as JPEG.

Example 2. In this example, we set Y as the image presented in Figure 1(middle).
The parameters are the same as in Example 1. The resulting images are shown in
Figure 4. The memory complexity ratios for the (smax−s)th level of the three methods
and their respective relative L2 errors with and without noise are shown in Table 2.

Table 2

smax − s : 1 2 3 4 5
p : 22 21 23 28 34
p̃ : 143 113 118 146 208

Memory complexity ratio of NMF : 0.0047 0.0075 0.0140 0.0309 0.0711
Memory complexity ratio of SVD : 0.0053 0.0103 0.0225 0.0548 0.1330
Memory complexity ratio of JPEG : NA 0.0155 0.0364 0.0619 0.0716

Relative L2 error in NMF (with 0% noise) : 0.2945 0.2749 0.2503 0.1966 0.1693
Relative L2 error in SVD (with 0% noise) : 0.3024 0.2770 0.2553 0.2075 0.1717
Relative L2 error in JPEG (with 0% noise) : NA 0.2487 0.1827 0.0884 0.0663
Relative L2 error in NMF (with 25% noise) : 0.3104 0.2842 0.2614 0.2225 0.1899
Relative L2 error in SVD (with 25% noise) : 0.3040 0.2867 0.2536 0.2298 0.2024
Relative L2 error in JPEG (with 25% noise) : NA 0.2664 0.2025 0.1250 0.1082

From Figures 4 and 5, finer and finer details are reasonably captured as the level
number of the NMF layers increases, while a reasonably low compression ratio is
attained. This time the memory complexity of JPEG becomes comparable to NMF.
At each level, JPEG still gives the best image of the three on the same layer; however,
we notice that with the same level of memory complexity, some of the NMF images
can provide a finer layer of details than the other two methods. With the presence
of noise, we can see that the figures of all the three methods seem to be seriously
contaminated, but the relative L2 errors of NMF actually outperform those of the SVD
in some layers. However, to our surprise, it seems that the figures of NMF seem more
robust to keep the background clean, while the figures of the SVD are contaminated
by random strips whereas the JPEG by random squares. In the coarsest level, the
SVD does not give the shape of a table, but the NMF still generates a recognizable
shape. Moreover, the most detail of the table in the finer level is still reasonably kept
by the NMF in the presence of noise.

Example 3. In this last imaging example, we use the same set of parameters as
for Examples 1 and 2 except that we now set smax = [log(min(N,M))/ log(r)− 4]. Y
is set as the image in Figure 1(right), and the resulting images are shown in Figure
6. The memory complexity ratios for the (smax − s)th level of the three methods and
their respective relative L2 errors with and without noise are shown in Table 3.
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Fig. 2. MLA for the image in Example 1 using NMF without noise.



B674 YAT TIN CHOW, KAZUFUMI ITO, AND JUN ZOU

NMF: Level 1

100 200 300 400 500 600 700 800 900

100

200

300

400

500

600

700

SVD: Level 1

100 200 300 400 500 600 700 800 900

100

200

300

400

500

600

700

Jpeg, Q=50: Level 1

100 200 300 400 500 600 700 800 900

100

200

300

400

500

600

700

NMF: Level 2

100 200 300 400 500 600 700 800 900

100

200

300

400

500

600

700

SVD: Level 2

100 200 300 400 500 600 700 800 900

100

200

300

400

500

600

700

Jpeg, Q=50: Level 2

100 200 300 400 500 600 700 800 900

100

200

300

400

500

600

700

NMF: Level 3

100 200 300 400 500 600 700 800 900

100

200

300

400

500

600

700

SVD: Level 3

100 200 300 400 500 600 700 800 900

100

200

300

400

500

600

700

JPEG, Q=50: Level 3

100 200 300 400 500 600 700 800 900

100

200

300

400

500

600

700

NMF: Level 4

100 200 300 400 500 600 700 800 900

100

200

300

400

500

600

700

SVD: Level 4

100 200 300 400 500 600 700 800 900

100

200

300

400

500

600

700

JPEG, Q=50: Level 4

100 200 300 400 500 600 700 800 900

100

200

300

400

500

600

700

NMF: Level 5

100 200 300 400 500 600 700 800 900

100

200

300

400

500

600

700

SVD: Level 5

100 200 300 400 500 600 700 800 900

100

200

300

400

500

600

700

JPEG, Q=50: Level 5

100 200 300 400 500 600 700 800 900

100

200

300

400

500

600

700

NMF: Level 6

100 200 300 400 500 600 700 800 900

100

200

300

400

500

600

700

SVD: Level 6

100 200 300 400 500 600 700 800 900

100

200

300

400

500

600

700

JPEG, Q=50: Level 6

100 200 300 400 500 600 700 800 900

100

200

300

400

500

600

700

Fig. 3. MLA for the image in Example 1 using NMF with 25% noise.
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Fig. 4. MLA for the image in Example 2 using NMF without noise.
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Fig. 5. MLA for the image in Example 2 using NMF with 25% noise.
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Table 3

smax − s : 1 2 3 4 5
p : 24 24 28 34 43
p̃ : 173 74 52 34 73

Memory complexity ratio of NMF : 0.0033 0.0059 0.0116 0.0283 0.0600
Memory complexity ratio of SVD : 0.0038 0.0076 0.0177 0.0430 0.1089
Memory complexity ratio of JPEG : NA 0.0156 0.0297 0.0609 0.0753

Relative L2 error in NMF (with 0% noise) : 0.4766 0.4283 0.3673 0.3109 0.2808
Relative L2 error in SVD (with 0% noise) : 0.4763 0.4239 0.3638 0.3133 0.2813
Relative L2 error in JPEG (with 0% noise) : NA 0.3994 0.2753 0.1472 0.1079
Relative L2 error in NMF (with 25% noise) : 0.4813 0.4344 0.3769 0.3311 0.3011
Relative L2 error in SVD (with 25% noise) : 0.4832 0.4362 0.3791 0.3311 0.3038
Relative L2 error in JPEG (with 25% noise) : NA 0.4221 0.3172 0.2203 0.1967

From Table 3 we can see that, on the same layer, SVD always needs about double
the memory of the NMF to just have a similar performance. Again, from Figure 6, we
infer that JPEG outperforms the other two methods at the same layer in the absence
of noise. Nevertheless, if we choose the same memory complexity ratio, e.g., 1.5%,
we can actually get a third layer of the NMF but only a 2nd layer of JPEG, and
the relative error of the smaller-sized third layer of NMF is actually smaller than the
larger-sized second layer of JPEG. Moreover, as we can see from Figures 6 and 7, when
the layers increase and finer details are revealed, a level 4 of NMF is enough to read
the Chinese characters, which requires less than 0.03% of memory complexity. With
the presence of noise, the relative error of the fourth layer of NMF where the Chinese
characters are recognizable becomes comparable with the third layer of JPEG, while
their memory complexity is the same. Many of the NMF figures have fewer errors
than the SVD figures on the same layers, while the memory complexities of SVD are
actually larger. Again, in Figure 7, the SVD and the JPEG images are obviously
contaminated, respectively, by straight strips and random squares, whereas the noise
contamination in the NMF layers seem less obvious.

5.2. Images reconstructed by direct sampling methods. In this subsec-
tion, we shall apply the NMF to the images reconstructed by some recently developed
inversion algorithms, namely the direct sampling methods (DSMs). The DSMs are a
family of simple and efficient inversion methods which provide a good estimate of the
locations of inhomogeneities inside a homogeneous background representing various
physical media from a single or a small number of boundary data in both the full
and the limited aperture cases. They were developed for inverse acoustic medium
scattering in [41, 49, 31] and were later extended to the diffusive optical tomography
(DOT) [8], EIT [9], and the electromagnetic inverse scattering problem [32]. In each
of these tomographies, a family of probing functions is constructed and an indicator
function is defined as a duality product between the observed data and the probing
function. The index function, which we shall denote as a general image Y , represents
the likelihood of whether a given sampling point sits inside an inhomogeneous inclu-
sion. The DSMs are very inexpensive and robust against noise in the data, and they
work with very limited measurement data.

However, from our numerical experiments in the aforementioned references, we
notice that, in exchange for their robustness and cost-effectiveness, the images recon-
structed by DSMs often contain some artifacts. These artifacts come mainly from the
fact that the images are generated by applying a kernel K(x, y) on a function with its
support sitting inside the inhomogeneous inclusions, where the kernel K(x, y) results
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Fig. 6. MLA for the image in Example 3 using NMF without noise.

from a duality product between the probing function centered at x and the fundamen-
tal solution centered at y of the corresponding forward problem. K(x, y) is expected
to reach its maximum at x = y and decays quickly when x moves away from y; hence
the DSM provides a good estimate of the inclusions. However, we notice in many
practical situations that although the kernel K(x, y) attains its maximum at x = y,
some regions corresponding to the nondiagonal part of the kernel are not negligible,
and are quite diffusive, leading to shadows and tails in the DSM images. Moreover,
one shall expect the information we obtain from the measurement to provide a sharper
image of the inclusions [1, 2, 3]. Therefore we like to reduce the artifacts in the DSM
images. From the above discussions we know that a DSM image Y consists of three
parts: the first part from the signals of the inhomogeneous inclusions, the second
from the contamination of the image by the nondiagonal part of the kernel, and the
third part from the noise in the measurement data. Considering the fact that the
DSM image and a likelihood function are both positive, it is natural for us to apply
the NMF to the DSM images, in the hope of identifying the principal components
of the image corresponding to the signal from the inhomogeneous inclusions. But we
emphasize that we are not aiming to reconstruct the original DSM image from all
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Fig. 7. MLA for the image in Example 3 using NMF with 25% noise.

the components (in terms of tensor products) obtained by NMF, but only to look for
principal components of the image containing signals from inhomogeneous inclusions.

Now we shall apply the NMF to the EIT images reconstructed by the DSM.
EIT is an effective noninvasive technique to recover the electrical conductivity of
an inhomogeneous medium by applying currents at a number of electrodes on the
boundary and measuring the corresponding voltages. It has wide applications in
many areas, such as oil and geophysical prospection, medical imaging, physiological
measurement, early diagnosis of breast cancer, monitoring of pulmonary functions,
and detection of leaks from buried pipes [9]. We consider the same numerical setting
as in the numerical experiments of EIT for a circular domain using DSM described
in [9, section 6]. The physical coefficients of the inhomogeneous inclusions are all
set to σ = 5. The images generated from the scattered potential field using the
DSM algorithm are then applied to Algorithm 2 for NMF, with parameters set to
α = 0.2, ν = 0, γ = 0.02, p = 5, p̃ = 3, and c1 = c2 = 1 in all the examples.

Example 4. We investigate an example with two inclusions of size 0.1 × 0.1,
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Fig. 8. NMF decomposition of the DSM images from EIT in Example 4, with {σiljl}3l=1 =
{2.3712, 2.3548, 2.2904}.

respectively, at the positions (−0.44, 0.36) and (0.36,−0.44); see Figure 8(a). The
squared reconstructed images from the indices Y after normalization as described in
[9] are presented in Figure 8(b). The components σiljl (ũp)il ⊗ (ṽp)jl for l = 1, 2, 3
obtained from NMF using Algorithm 2 over the DSM image are shown in Figures
8(c)–(e). The values in the entries of Σ are, respectively, given as {σiljl}3l=1 =
{2.3712, 2.3548, 2.2904} in this example. The squared image of the approximation
to Iα,ν,γ

p,p̃ (Y ) after normalization is shown in Figure 8(f). The components of inhomo-
geneous inclusions sitting inside the original medium are decomposed into different
components from the NMF.

Example 5. In this example, we consider the case of four inclusions of the same
size as in Example 4 sitting inside the sampling region, which are placed at positions
of (0.36, 0.36), (0.36,−0.44), (−0.44, 0.36), and (−0.44,−0.44); see Figure 9(a). The
squared reconstructed images from the indices Y after normalization are shown in
Figure 9(b). Figures 9(c)–(e) present the images of σiljl (ũp)il ⊗ (ṽp)jl for l = 1, 2, 3
after NMF over the image Y . The values in the entries of Σ are, respectively, given
as {σiljl}3l=1 = {5.9647, 4.2460, 3.8970} in this example. The squared image of the
approximation to Iα,ν,γ

p,p̃ (Y ) after normalization is shown in Figure 9(f). We can see
that we can obtain fairly nicely the principal components of the image coming from
signals from the inclusions.

Example 6. In this example, two inclusions of the same size as in Example 4
are introduced in the homogeneous background, and they are, respectively, placed
at the positions (−0.36, 0.36) and (0.36, 0.36) inside the domain; see Figure 10(a).
The squared reconstructed images from the indices Y after normalization are given in
Figure 10(b). The images of σiljl (ũp)il⊗(ṽp)jl for l = 1, 2, 3 after NMF over the image
Y are shown in Figures 10(c)–(e). The values in the entries of Σ are, respectively,
given as {σiljl}3l=1 = {3.9194, 0, 0} in this example. Figure 10(f) presents the squared
image of the approximation to Iα,ν,γ

p,p̃ (Y ) after normalization. From the figures, we can
see that the principal components coming from the inclusions can be nicely obtained,
both the sizes and the locations of inhomogeneities can be reasonably obtained, and
the artifacts in the DSM image are effectively removed.

We have also tested the NMF for the DSM images from the DOT [8], and quite
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Fig. 9. NMF decomposition of the DSM images from EIT in Example 5, with {σiljl}3l=1 =
{5.9647, 4.2460, 3.8970}.
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Fig. 10. NMF decomposition of the DSM images from EIT in Example 6, with {σiljl}3l=1 =
{3.9194, 0, 0}.

similar results are observed.

6. Concluding remarks. We have proposed a special framework of nonnega-
tive matrix trifactorization using l1 regularization, and studied the probability of its
existence and an optimal choice of the dimension in the factorization. The new trifac-
torization offers a more structural decomposition of positive data and images in terms
of tensor products of positive bases. A primal-dual semismooth Newton method has
been derived for the nonlinear optimizations involved in the trifactorization. Then we
have developed a new multilevel analysis (MLA) framework for the images based on
a nonnegative matrix trifactorization, aiming at extracting major components inside
an image representing structures of different resolutions and achieving sparse low-
rank approximations of different levels with positive bases. The factorization method
and the MLA framework have been applied to several imaging and inverse problems.
There are, however, several open problems related to nonnegative matrix factoriza-
tion and its applications to imaging and inverse problems. First, our analysis on the
optimal choice of dimension in the nonnegative matrix factorization assumes no prior
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information on a generative model for an image. But in many practical situations,
a generative model of the image is known, and then our asymptotic estimate of the
optimal choice of dimension may be improved, and the multiplicative constant in
the asymptotic estimate should be more explicitly given in terms of the generative
model. Second, it will be interesting to investigate the possibility of combining the
data achieved from different levels of our new MLA to resume the true image. Finally,
it will be a nice direction to analyze the ill-posed nature of different inverse problems
using nonnegative matrix factorization so that one may find substantial improvements
in numerical reconstructions.
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