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NONLINEAR INEXACT UZAWA ALGORITHMS
FOR LINEAR AND NONLINEAR SADDLE-POINT PROBLEMS∗

QIYA HU† AND JUN ZOU‡

Abstract. This paper proposes some nonlinear Uzawa methods for solving linear and nonlinear
saddle-point problems. A nonlinear inexact Uzawa algorithm is first introduced for linear saddle-
point problems. Two different PCG techniques are allowed in the inner and outer iterations of the
algorithm. This algorithm is then extended for a class of nonlinear saddle-point problems arising
from some convex optimization problems with linear constraints. For this extension, some PCG
method used in the inner iteration needs to be carefully constructed so that it converges in a certain
energy norm instead of the usual l2-norm. It is shown that the new algorithm converges under some
practical conditions and there is no need for any a priori estimates on the minimal and maximal
eigenvalues of the two local preconditioned systems involved. The two new methods perform more
efficiently than the existing methods in the cases where no good preconditioners are available for the
Schur complements.
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1. Introduction. This paper is mainly concerned with the construction of effi-
cient nonlinear inexact Uzawa algorithms for solving the nonlinear saddle-point system{

F (x) + B y = f,
Bt x = g,

(1.1)

where B is an n ×m matrix with full column rank (m ≤ n), and F : Rn → Rn is a
nonlinear vector-valued function, not necessarily differentiable.

The nonlinear saddle-point system of form (1.1) arises frequently in augmented
Lagrangian formulations of inverse problems [16], electromagnetic Maxwell equations
[13], [15], and nonlinear optimizations, for example, of the form (cf. [12], [22], [41]){

min
x∈Rn

{J(x) − (f, x)}
s.t. Btx = g,

(1.2)

where J(x) is the function satisfying ∇J(x) = F (x).
When F (x) is linear, for example, F (x) = Ax with A being an n× n symmetric

positive definite matrix, system (1.1) reduces to the well-known (linear) saddle-point
problem {

Ax + B y = f,
Bt x = g.

(1.3)
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As we shall see, the Schur complement matrix

K = BtA−1B(1.4)

associated with system (1.3), and its preconditioners, play an essential role in solving
the saddle-point problem.

During the past decade, there has been a growing interest in preconditioned it-
erative methods for solving the indefinite saddle-point system of equations like (1.3);
see [4], [10], [11], [18], [20], [37], [39]. The standard Uzawa-type method [2], [3] and
the minimal residual (MINRES) method are the most popular iterative methods for
solving (1.3). Let Â and K̂ be two positive definite matrices, which are assumed
to be the preconditioners for the matrices A and K, respectively. Then it is known
that the convergence rates of both the standard Uzawa-type method and the MIN-
RES method depend on the condition numbers cond(Â−1A) and cond(K̂−1K) of the
two local preconditioned systems, and they are much less efficient when one of the
two condition numbers is relatively larger than the other. To effectively deal with
the case where cond(Â−1A) is relatively larger than con(K̂−1K), a nonlinear inexact
Uzawa algorithm was proposed in [10], in which the inner iteration uses a (nonlin-
ear) iterative method to replace the action of A−1. Recently we have introduced two
new algorithms (Algorithms 3.1 and 4.1 in [29]) to improve the existing algorithms
and convergence results. These two algorithms were, respectively, designed to effec-
tively treat two different cases: (a) cond(Â−1A) � cond(K̂−1K); (b) cond(K̂−1K)
� cond(Â−1A). It was shown that Algorithm 3.1 in [29] is efficient for case (a), but
Algorithm 4.1 there may not always be efficient for case (b), as there is one condition
(see (4.2) in [29]) which may not be easily guaranteed in applications.

The purpose of this paper is twofold. To better understand the difference between
linear and nonlinear saddle-point problems, we first propose some improved version of
Algorithm 4.1 in [29] for solving linear system (1.3). As we shall see, the new algorithm
is always convergent without any assumptions on the spectra of the preconditioned
systems K̂−1K and Â−1A. This seems to be an important advantage of the new
algorithm over the existing iterative methods for saddle-point problems. Then we
extend this improved algorithm to effectively solve nonlinear saddle-point problems
of form (1.1), which is assumed to arise from some convex minimization problems
with linear constraints.

To our knowledge, there have been very few investigations into the rate of con-
vergence for preconditioned iterative methods for nonlinear saddle-point systems. Al-
Baali and Fletcher studied in [1] rates of convergence of preconditioned nonlinear
conjugate gradient (CG) methods for unconstrained optimizations, when the precon-
ditioning matrix is taken to be the exact Hessian matrix at each iteration. In [14],
Chen gave a deep analysis on rates of convergence of inexact Uzawa methods for non-
linear saddle-point systems, when the exact Hessian matrix at each iteration is used
in the preconditioner for the Schur complement. Most existing analyses are carried
out in the standard l2-norm, which may not be so natural and accurate for many
problems from applications.

In this paper, we shall make an effort to study convergence rates of inexact Uzawa
algorithms in the energy-norm when the exact Hessian matrix in the Schur comple-
ment is replaced by some inexact preconditioner at each iteration. Due to the non-
linearity of the saddle-point system, the conditioning of the preconditioned Schur
complement may become much worse than that of the preconditioned Hessian ma-
trix at each iteration. In this case, a special nonlinear preconditioning process is first
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introduced to improve the conditioning of the preconditioned Schur complement. Fur-
ther, a preconditioned nonlinear CG method is introduced in the inner iteration for
the nonlinear system related to F (·) at each iteration. To ensure the convergence of
the global inexact Uzawa algorithm, the preconditioned nonlinear CG method needs
to be carefully constructed so that it converges in a certain energy norm instead of
the usual l2-norm. As we shall see, the new algorithm is always convergent without
any assumptions on the spectra of the preconditioned Schur complement systems and
Hessian matrices. More important, all the tolerance parameters involved in the inner
iterations of the inexact Uzawa algorithm can be taken to be some fixed constants in-
dependent of the iterations, for example, 1/2 or 1/3. This appears to be an important
advantage of the new algorithm over the existing ones.

Although quite different from what we are doing here, we mention another in-
teresting and popular approach widely used in the optimization community. This
approach intends to solve a nonlinear equality-constrained minimization problem by
sequential quadratic programming in which successively quadratic subproblems are
solved. Each quadratic subproblem amounts to solving a linear Karush–Kuhn–Tucker
(KKT) saddle-point system. Global preconditioners for the resulting KKT coefficient
matrices have been widely studied, and maintain the block structures of the original
KKT matrices; see [5], [6], [7], [23], [32], and the references therein.

The rest of this paper is organized as follows. First, in section 2 we propose an
improved variant of Algorithm 4.1 studied in [29] for linear saddle-point problems.
The algorithm is then extended for nonlinear saddle-point problems in section 3, and
its rate of convergence is also analyzed under some weak smoothness assumptions
on the nonlinear functions F (·). Finally, in section 4 we apply two new algorithms
proposed in sections 2 and 3 to solve an algebraic system of nonlinear saddle-point
problem and a linear saddle-point problem arising from the domain decomposition
method with Lagrange multiplier.

2. Nonlinear inexact Uzawa algorithms for linear saddle-point prob-
lems. In this section, we shall propose an improved variant of Algorithm 4.1 from
[29] for solving the linear saddle-point problem (1.3) and study its convergence. This
improved algorithm will be extended in section 3 to solve the nonlinear saddle-point
system (1.1). To do so, we need to introduce some notation. Rl will mean the usual
l-dimensional Euclidean space. For any l× l positive definite matrix G, ‖x‖G will rep-
resent the G-induced norm, namely ‖x‖G = (Gx, x)1/2 for all x ∈ Rl. To describe the
nonlinear inexact Uzawa algorithm, we introduce a nonlinear mapping ΨA : Rn → Rn

such that for any given ξ ∈ Rn, ΨA(ξ) is an “approximation” to the solution ϕ of the
linear system

Aϕ = ξ.(2.1)

The following assumption was often made on the accuracy of the approximation (e.g.,
see (4.2) in [10]):

‖ΨA(ξ) −A−1ξ‖A ≤ δ ‖A−1ξ‖A ∀ξ ∈ Rn(2.2)

for some δ ∈ (0, 1). Assumption (2.2) is natural and can be satisfied, for example, by
the approximate inverse generated by the preconditioned conjugate gradient (PCG)
iteration or by one sweep of a multigrid method with conjugate gradient smoothing
[10].

We first recall an algorithm from [29] for solving the linear saddle-point problem
(1.3).
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Algorithm 2.1 (nonlinear inexact Uzawa-steepest descent). Given {x0, y0} ∈
Rn ×Rm, the sequence of pairs {xi, yi} ∈ Rn ×Rm is defined for i = 1, 2, . . . , by the
following.

Step 1. Compute fi = f − (Axi + Byi) and ΨA(fi); update

xi+1 = xi + ΨA(fi).(2.3)

Step 2. Compute gi = Btxi+1 − g and di = K̂−1gi. Then compute the relaxation
parameter

τi =

{
(gi,di)

(ΨA(Bdi),Bdi)
for gi 	= 0;

1 for gi = 0.
(2.4)

Update

yi+1 = yi +
1

2
τi di.(2.5)

To study the convergence of Algorithm 2.1, we assume ΨA satisfies

‖A−1fi − ΨA(fi)‖A ≤ δf ‖A−1fi‖A,(2.6)

‖A−1Bdi − ΨA(Bdi)‖A ≤ δd ‖A−1Bdi‖A(2.7)

for two positive constants δf < 1 and δd < 1. We remark that one can simply take
δf and δd to be the constant δ in (2.2). But the introduction of these two different
constants enables us to see how the rate of convergence depends more explicitly on
the accuracies of the nonlinear inner iterations in (2.3) and (2.5).

To measure the convergence rate of Algorithm 2.1 more accurately, an appropriate
norm is very crucial. For each element v from the product space Rn × Rm, we will
write it as v = {v1, v2}, where v1 ∈ Rn and v2 ∈ Rm. Then, as we did in [28], [29],
we shall use the norm

|||v||| = (‖v1‖2
A−1 + ‖v2‖2

K)
1
2 ∀ v = {v1, v2} ∈ Rn ×Rm.(2.8)

Finally, we introduce three error vectors exi ∈ Rn, eyi ∈ Rm, and Ei ∈ Rn ×Rm:

exi = x− xi, eyi = y − yi, Ei = {
√
δfi, e

y
i }, i = 0, 1, 2, . . . ,

and two parameters

κ̂ = cond(K̂−1K), β̂ =

√
1 − 4κ̂(1 − 2δd)

(1 + κ̂)2(1 − δd)2
;(2.9)

then we have the following estimates on the rate of convergence of Algorithm 2.1 in
[29].

Lemma 2.1. Assume that (2.6) and (2.7) are satisfied with the parameters δf < 1
3

and δd < 1
2 ; then Algorithm 2.1 converges. Moreover, the following estimate holds:

|||Ei+1||| ≤ ρ̂ |||Ei|||, i = 0, 1, 2, . . . .(2.10)

Also, (2.10) implies for i = 1, 2, 3, . . . that

‖exi ‖A ≤ (
√

1 + 4δf + ρ̂)ρ̂i−1|||E0|||, ‖eyi ‖K ≤ ρ̂i |||E0|||,(2.11)
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where the rate of convergence ρ̂ < 1 and can be estimated by

ρ̂ =

⎧⎨⎩
√
δf + δ2

f + δf for 0 < 1+β̂
2 ≤ 4δf

1+δf
;

1 − 1
4 (1 − β̂)(1 + δf ) for

4δf
1+δf

< 1+β̂
2 < 1.

(2.12)

Remark 2.1. Algorithm 2.1 converges when a general preconditioner K̂ is used for
the Schur complement system K = BtA−1B and a general nonlinear iteration ΨA is
used for solving Aϕ = ξ involved in the inner iteration. However, the steepest descent
method converges with a reasonable rate only when a good preconditioner is available
for the Schur complement system, namely, κ̂ = cond(K̂−1K) is not large. This is
the case when the saddle-point problem arises, for example, from the Stokes problem
[39]. Without such a good preconditioner the method may converge with a very slow
rate. Particularly, Algorithm 2.1 may be much less effective when cond(K̂−1K) �
cond(Â−1A).

Another algorithm (Algorithm 4.1) was proposed in [29] that combines the non-
linear inexact Uzawa algorithm with the CG method, in an effort to accelerate the
nonlinear inexact Uzawa algorithm when cond(K̂−1K) � cond(Â−1A). This is the
case when the saddle-point problems arise from the domain decomposition method
with Lagrange multiplier [27], [34], or from the Lagrange multiplier formulations for
optimization problems [25] and the parameter identification [16], [33]. But the algo-
rithm still does not seem satisfactory, as its convergence can be guaranteed only under
some restriction; see (4.2) in [29]. Next, we propose an improved variant of Algorithm
4.1 in [29].

Let H = BtÂ−1B. Consider the equation

Hψ = gi,(2.13)

where gi = Btxi+1 − g comes from Algorithm 2.1. We apply the PCG method with
the preconditioner K̂ to solve system (2.13) and let ΨH(gi) be the approximation
generated by this iteration. Assume that the approximation satisfies

‖ΨH(gi) −H−1gi‖H ≤ δg ‖H−1gi‖H(2.14)

for some δg ∈ (0, 1). For the approximation di = ΨH(gi), we introduce a relaxation
parameter τ i such that the error

‖τ i di −K−1gi‖2
K

is minimized. If di 	= 0, the direct calculation gives

τ i =
(gi, di)

(Kdi, di)
=

(gi, di)

(A−1Bdi, Bdi)
.

But the action of A−1 is usually very expensive, and thus will be replaced by the
action of ΨA:

τi =
(gi, di)

(ΨA(Bdi), Bdi)
≈ τ i.(2.15)

With this parameter τi, we propose the following new algorithm.
Algorithm 2.2 (nonlinear inexact Uzawa with mixed iteration). Given {x0, y0} ∈

Rn ×Rm, the sequence of pairs {xi, yi} ∈ Rn ×Rm is defined for i = 1, 2, . . . , as fol-
lows.
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Step 1. Compute fi = f − (Axi + Byi) and ΨA(fi); update

xi+1 = xi + ΨA(fi).(2.16)

Step 2. Compute gi = Btxi+1 − g and di = ΨH(gi). Then compute the parameter
τi:

τi =

{
(gi, di)

(ΨA(Bdi), Bdi)
if di 	= 0;

1 if di = 0
(2.17)

and update

yi+1 = yi +
1

2
τi di.(2.18)

Remark 2.2. Clearly when both fi and gi vanish, the vectors xi and yi are the
exact solution of (1.3). Thus Algorithm 2.2 terminates.

Next we shall analyze the convergence of Algorithm 2.2. Let κ∗ = cond(Â−1A)
and κ = κ∗(1 + δg)/(1 − δg). It follows from (2.14) that there is a symmetric and

positive definite matrix Q̂i (see Lemma 9 in [4]) such that Q̂−1
i gi = ΨH(gi) and all

eigenvalues of the matrix Q̂−1
i H are in the interval [1−δg, 1+δg]. Using this property,

one can directly check that

cond(Q̂−1
i K) ≤ κ =

1 + δg
1 − δg

cond(Â−1A).

This relation tells us the actual effect of introducing of approximation ΨH : when
cond(K̂−1K) � cond(Â−1A), the effect of ΨH(gi) (= Q̂−1

i gi) amounts to generat-

ing a new preconditioner Q̂i such that cond(Q̂−1
i K) is much more improved than

cond(K̂−1K) and has about the same magnitude as cond(Â−1A), e.g., less than three
times cond(Â−1A) when we take δg = 1

2 .
Let δf and δd be two parameters in (2.6) and (2.7), respectively, with fi and di

given in Algorithm 2.2, and define

β =

√
1 − 4κ(1 − 2δd)

(1 + κ)2(1 − δd)2
;(2.19)

then Algorithm 2.2 can be viewed as a variant of Algorithm 2.1 with K̂ replaced by
Q̂i. The following theorem follows from Lemma 2.1.

Theorem 2.2. Assume that (2.6) and (2.7) are satisfied with δf < 1
3 and δd < 1

2 ;
then Algorithm 2.2 converges. Moreover, the following estimate holds:

|||Ei+1||| ≤ ρ |||Ei|||, i = 0, 1 . . . ,(2.20)

which implies for i = 1, 2, . . . that

‖exi ‖A ≤ (
√

1 + 4δf + ρ)ρi−1|||E0|||, ‖eyi ‖K ≤ ρi|||E0|||,(2.21)

where the rate of convergence ρ(< 1) can be estimated by

ρ =

⎧⎨⎩
√
δf + δ2

f + δf for 0 < 1+β
2 ≤ 4δf

1+δf
;

1 − 1
4 (1 − β)(1 + δf ) for

4δf
1+δf

< 1+β
2 < 1.

(2.22)
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Remark 2.3. We see from Theorem 2.2 that the convergence of Algorithm 2.2 is
independent of the spectrum of the preconditioned Schur complement K̂−1K, and the
convergence rate of this new algorithm depends only on the condition number κ∗, not
on cond(K̂−1K). In contrast to Algorithm 2.1, Algorithm 2.2 should be very efficient
for the case when cond(K̂−1K) � cond(Â−1A). This seems to be an important
advantage of the new algorithm over the existing iterative methods for saddle-point
problems. The coefficient 1/2 in (2.18) is obtained by the worst case δg → 1− (refer
to [29]). In applications, the parameter δg is much less than 1, so we can choose a
larger parameter than 1/2 in (2.18), e.g., 7/10.

3. Nonlinear inexact Uzawa algorithms for nonlinear saddle-point prob-
lems. In this section, we discuss how to effectively extend the new Algorithm 2.2
proposed in section 2 for the linear saddle-point problem (1.3) to solve the nonlinear
saddle-point system (1.1), which is assumed to arise from some convex minimization
problems with linear constraints, e.g., of the form{

min
x∈Rn

{J(x) − (f, x)}
s.t. Btx = g,

(3.1)

where J(x) is the function satisfying ∇J(x) = F (x).

3.1. Notation and assumptions. We start with a few smoothness descriptions
on the nonlinear mapping F : Rn → Rn in (1.1) and recall some existing results from
[18] and [36], which will be used in the subsequent analysis.

As standard assumptions for nonlinear systems (cf. [1], [14]), we assume that F
is Lipschitzian and strongly monotone with modulus μ, i.e.,

(F (ξ) − F (η), ξ − η) ≥ μ ‖ξ − η‖2 ∀ ξ, η ∈ Rn.(3.2)

By Rademacher’s theorem [18], the Lipschitzian property of F implies that F is
differentiable almost everywhere. Let DF be the set of points where F is differentiable,
and let ∇F (ξ) be the gradient of F at ξ ∈ DF . Then at any point x ∈ Rn, we introduce
a set ∂s F (x):

∂sF (x) =

{
lim
ξ→x

ξ∈DF

∇F (ξ)

}
.

With this set, we can define a generalized Jacobian of F at x in the sense of Clarke
[18] by

∂F (x) = co ∂sF (x),

where co ∂sF (x) is the convex hull of the set.
It is known (cf. [18]) that if F is locally Lipschitzian, then the following generalized

mean-value theorem holds: for any ξ, η ∈ Rn,

F (ξ) − F (η) ∈ co ∂F (ξη)(ξ − η),(3.3)

where ξη is the line segment between ξ and η, and co ∂F (ξη) = co{V ∈ ∂F (ζ), ζ ∈
ξη}.

A nice consequence (cf. [36]) of the strong monotone property (3.2) is that all
matrices from ∂F (η) for any η ∈ Rn are positive definite, and the following holds for
any V ∈ ∂F (η):

(V ξ, ξ) ≥ μ (ξ, ξ) ∀ ξ ∈ Rn.(3.4)
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As in [14], we do not assume F is differentiable everywhere but that it is semi-
smooth on Rn in the sense that for any ξ ∈ Rn there is a positive definite matrix Aξ

such that

lim
α→0

Aξ∈∂sF (ξ+α)

‖F (ξ + α) − F (ξ) −Aξα‖
‖α‖ = 0.(3.5)

Nonlinear saddle-point problems with nondifferentiable but semismooth vector-valued
functions F arise from some convex optimizations and numerical solutions of certain
nonlinear partial differential equations; we refer to [14] for such examples.

3.2. Properties of F in terms of its generalized Jacobian. Note that all
the descriptions in section 3.1 of the smoothness of the nonlinear mapping F : Rn →
Rn are in terms of the l2-norm. As we will see later, it is more accurate to interpret
these smoothness properties in terms of the so-called energy-norm, that is, the induced
norm by the generalized Jacobian of F , especially by the generalized Jacobian Ax of
F at x, where {x, y} ∈ Rn × Rm is the exact solution of system (1.1). This will be
the task of this section. For the sake of simplicity, we shall write Ax as A below.

First, directly from (3.4) and (3.5), we know that if F is semismooth on Rn, then
for any ξ ∈ Rn there is a positive definite matrix Aξ such that

lim
α→0

Aξ∈∂sF (ξ+α)

‖F (ξ + α) − F (ξ) −Aξα‖A−1

‖α‖A
= 0.(3.6)

Next, by the strictly monotone and Lipschitzian property of F we immediately know
there are two positive constants c0 and C0, which will be frequently needed later, such
that

c0 ‖ξ − η‖2
A ≤ (F (ξ) − F (η), ξ − η) ∀ ξ, η ∈ Rn,(3.7)

‖F (ξ) − F (η)‖2
A−1 ≤ C0 ‖ξ − η‖2

A ∀ ξ, η ∈ Rn.(3.8)

The use of constants c0 and C0 is more reasonable than the use of the corresponding
constants in the sense of the l2-norm. For instance, when F (x) is linear, say F (x) =
Ax, then c0 = C0 = 1, but the corresponding constants in the sense of the l2-norm
depend on the smallest and largest eigenvalues of A.

Starting now, we shall often use SV (ξ, r) to denote a ball in Rn which is centered
at point ξ, with radius r measured in the ‖ · ‖V -norm. The next lemma gives two
further properties of the nonlinear vector-valued function F .

Lemma 3.1. There are two positive constants c1 ≤ 1 and C1 ≥ 1 depending only
on constants c0 and C0 such that

(F (ζ) − F (ξ), ζ − ξ) ≤ C1(Aη(ζ − ξ), ζ − ξ) ∀ζ, ξ, η ∈ Rn,(3.9)

‖F (ζ) − F (ξ)‖A−1
η

≥ c1 ‖ζ − ξ‖Aη ∀ζ, ξ, η ∈ Rn.(3.10)

Proof. We first consider (3.9). It follows from (3.8) that for any ζ, ξ ∈ Rn,

(F (ζ) − F (ξ), ζ − ξ) ≤ ‖F (ζ) − F (ξ)‖A−1 ‖ζ − ξ‖A ≤
√
C0‖ζ − ξ‖2

A.(3.11)

But for any η ∈ Rn, by (3.6) there exists a positive number r = r(η) such that

‖F (η + α) − F (η) −Aηα‖A−1 ≤ c0
2
‖α‖A ∀ α ∈ SA(0, r).(3.12)
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This, together with (3.7), leads to

‖α‖2
A ≤ 1

c0
(F (η + α) − F (η), α) =

1

c0
{(F (η + α) − F (η) −Aηα, α) + (Aηα, α)}

≤ 1

c0
{‖F (η + α) − F (η) −Aηα‖A−1 ‖α‖A + (Aηα, α)}

≤ 1

2
‖α‖2

A +
1

c0
(Aηα, α).

So we have

‖α‖2
A ≤ 2

c0
(Aηα, α) ∀α ∈ SA(0, r).(3.13)

Noting that inequality (3.13) is invariant with respect to any constant scaling of
α, (3.9) follows readily from (3.11) and (3.13) with C1 = 2

√
C0/c0, or C1 = 1 if√

C0/c0 < 1/2.
Now we consider (3.10). By (3.12) and (3.8), we derive

(Aηα, α) ≤ ‖Aηα‖A−1 ‖α‖A
≤ (‖Aηα− F (η + α) + F (η)‖A−1 + ‖F (η + α) − F (η)‖A−1) ‖α‖A
≤

(c0
2

+
√
C0

)
‖α‖2

A ∀α ∈ SA(0, r),(3.14)

which is invariant up to any constant scaling of α, while by (3.7) we have

‖α‖2
A ≤ 1

c0
(F (η + α) − F (η), α) ≤ 1

c0
‖F (η + α) − F (η)‖A−1

η
‖α‖Aη

.(3.15)

Then (3.10) follows immediately from (3.14) and (3.15), with c1 = 2c0/(c0 + 2
√
C0)

or c1 = 1 if
√
C0/c0 < 1/2.

We end this section by assuming some sort of Lipschitzian property on the gener-
alized Jacobian of F : there exists a positive constant L such that for any two vectors
ξ, η ∈ Rn,

‖A− 1
2 (Vξ − Vη)A

− 1
2 ‖ ≤ L ‖ξ − η‖A ∀Vξ ∈ ∂F (ξ), Vη ∈ ∂F (η).(3.16)

3.3. Algorithms and their convergence. We are now going to extend the
new Algorithm 2.2 in section 2 for the linear saddle-point problem (1.3) to solve the
nonlinear saddle-point problem (1.1). As we have observed, an essential improvement
of this new algorithm over the existing ones (cf. [10]) lies in the fact that its conver-
gence is guaranteed and its rate of convergence can be estimated by assuming only
constant upper bounds for the error reduction factors (δf < 1/3 and δd < 1/2) in the
nonlinear inner iterations. These conditions may be easily satisfied, for example, by
the approximate inverse generated by the PCG iteration with the preconditioner Â.
Such loose requirements come as the consequence of the choice of a particular norm
||| · |||; see Remark 2.1 in [29]. In order to preserve this good feature in the current
nonlinear saddle-point system, one should use a norm similar to ||| · ||| involving the
matrix A = Ax. But unlike the linear saddle-point problem, the matrix Ax is not
available now since it involves the x-component of the exact solution {x, y} to system
(1.1). This fact brings in one of the major difficulties of nonlinear systems and can
be regarded as the main distinction between the linear and nonlinear saddle-point
problems.
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Now, we discuss how to extend Algorithm 2.2 of section 2 to solve the nonlinear
saddle-point problem (1.1). Let {xi, yi} ∈ Rn ×Rm be the ith iterate, and set

fi = f − F (xi) −Byi.

Let xi+1 be an approximate solution of the nonlinear equation

F (ξ) = f −Byi(3.17)

such that the residual εi = F (xi+1) − (f −Byi) satisfies

‖εi‖A−1 ≤ δ0 ‖fi‖A−1(3.18)

with 0 ≤ δ0 < 1. In general, the approximation xi+1 can be obtained by some
iterative method with xi as a natural initial guess. This will be discussed in detail in
section 3.4.

Let Ai = Axi
be a positive definite matrix as defined in (3.5), and let Âi be a

(positive definite) preconditioner of Ai; then we obtain an exact Schur complement
at xi and its approximation:

Ki = BtA−1
i B, Hi = BtÂ−1

i B.

Let K̂i be a preconditioner for Hi, and set gi = Btxi+1 − g. Similarly to the
introduction of the mapping ΨH in (2.14), we define a nonlinear mapping ΨHi :
Rm → Rm such that

‖ΨHi(gi) −H−1
i gi‖Hi ≤ δg ‖H−1

i gi‖Hi(3.19)

for some δg ∈ (0, 1). Let di = ΨHi(gi); then we introduce a nonlinear solver ΨAi+1 :
Rn → Rn satisfying

‖ΨAi+1
(Bdi) −A−1

i+1Bdi‖Ai+1
≤ γ ‖A−1

i+1Bdi‖Ai+1
(3.20)

for some γ ∈ [0, 1). As we observed in the linear saddle-point case, a relaxation
parameter τ i (see (2.15)) is important to ensure the convergence of our new algorithm:

τ i =
(gi, di)

(ΨA(Bdi), Bdi)
for di 	= 0.

Unfortunately, the matrix A = Ax is no longer available for the current nonlinear
problem (1.1). One alternative is to use the approximation Ai+1 of A; this leads to
the following new choice of the relaxation parameter τi:

τi =
(gi, di)

(ΨAi+1(Bdi), Bdi)
for di 	= 0.(3.21)

With this parameter and the motivation of Algorithm 2.2 for linear saddle-point
problems, we propose the following algorithm for solving the nonlinear saddle-point
system (1.1).

Algorithm 3.1 (nonlinear inexact Uzawa with mixed iteration). Given {x0, y0} ∈
Rn ×Rm, the sequence {xi, yi} ∈ Rn ×Rm is defined for i = 1, 2, . . . as follows:

Step 1. Compute xi+1 such that

F (xi+1) = f −Byi + εi.
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Step 2. Compute gi = Btxi+1−g and di = ΨHi
(gi). Then compute the parameter

τi:

τi =

{
(gi, di)

(ΨAi+1
(Bdi), Bdi)

if di 	= 0;

1 if di = 0

and update

yi+1 = yi +
1

2
τi di.(3.22)

To understand and more accurately describe the convergence of this new algo-
rithm, we need to introduce a few more parameters. First, by (3.6) we know that for
any parameter ω ∈ (0, 1), there is a positive number rω such that

‖F (x + α) − F (x) −Ax‖A−1 ≤ ω ‖α‖A ∀α ∈ SA(0, rω).(3.23)

Then we introduce a constant δd that is the minimal positive number satisfying

‖ΨAi+1(Bdi) −A−1Bdi‖A ≤ δd ‖A−1Bdi‖A.(3.24)

Now set rγ = (1 − 2γ)/(6L) for any positive parameter γ < 1
2 , and

κi = cond(Â−1
i Ai), κ0 =

1 + δg
1 − δg

max
i

κi, β0 =

√
1 − 4κ0(1 − 2δd)

(1 + κ0)2(1 − δd)2
,(3.25)

we will see δd < 1
2 when xi+1 ∈ SA(x, rγ) (Lemma 3.7), and hence we have 0 < β0 < 1.

The following few parameters will be used to describe the convergence region and
convergence rate of Algorithm 3.1:

ρ0 =

{ √
δ0 + δ2

0 + δ0 for 0 < 1+β0

2 ≤ 4δ0
1+δ0

,

1 − 1
4 (1 − β0)(1 + δ0) for 4δ0

1+δ0
< 1+β0

2 < 1
(3.26)

and

ρω =
ω
√

1 + δ0(1 +
√
δ0)

c0
, ω0 =

c0(1 − ρ0)√
1 + δ0(1 +

√
δ0)

, r∗ω =
c0

(1 +
√
δ0)

min{rω, rγ}.

(3.27)
Our final preparation is to choose an appropriate norm in which the convergence

can be ensured and well measured. As for the linear saddle-point problem, we define
||| · ||| to be the same as in (2.8), but with A = Ax and K = BtA−1B here.

Now we are ready to state our main results of this section about the convergence
of Algorithm 3.1, whose proof will be provided in section 3.5.

Theorem 3.2. Let ω0 < 1 be a fixed positive constant, ω ∈ (0, ω0) be a given
parameter, and rω be the maximal positive number such that estimate (3.23) is satis-
fied. Assume that (3.20) holds with γ < 1

2 and that the initial guess {x0, y0} satisfies
|||E0||| ≤ r∗ω. If the tolerance εi in Step 1 satisfies (3.18) with δ0 < 1

3 , then Algo-
rithm 3.1 converges, and the rate of convergence can be estimated by

|||Ei+1||| ≤ ρ∗0 |||Ei|||, i = 0, 1, 2, . . . ,(3.28)

where ρ∗0 = ρ0 + ρω < 1, and

Ei = {
√
δ0fi, e

y
i }, fi = f − F (xi) −Byi, eyi = y − yi.
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Remark 3.1. From Theorem 3.2 we see that the preconditioner K̂i for Hi can
be chosen in Algorithm 3.1 without any particular restriction, and the approximation
accuracy parameters δ0 and δd are independent of any other parameter, unlike in
most existing algorithms. The rate of convergence ρ∗0 depends only on δd and β0,
and does not depend directly on cond(K̂−1

i K); therefore no proper scalings of the

preconditioner K̂i are required as in the existing inexact Uzawa algorithms.
Remark 3.2. In Theorem 3.2, the initial guess {x0, y0} is required to lie within

a small neighborhood of {x, y}. Care must be taken for the choice of such initial
guesses. In applications, the initial guess may be obtained using a globally convergent
algorithm for (1.1) with one or two iterations, for example, the simple perturbation
method as described below.

Given a small positive number μ, approximate (1.1) by the perturbed system

F (x) + By = f, Btx− μ y = g.(3.29)

Expressing y in terms of x from the second equation and then substituting it into the
first equation, we obtain

F (x) +
1

μ
BBtx = f +

1

μ
Bg.(3.30)

One can solve this nonlinear equation using some classical iterative methods, for
instance, the steepest descent method, which is known to have slow convergence but
usually converges very fast at the first few iterations. Once an approximation of x is
available, the approximation of y can be obtained directly from the second equation
in (3.29). As this process is used to generate only an initial guess, the perturbation
parameter μ need not be too small, e.g., one may take μ = 0.1.

3.4. Solution of system (3.17). One major task in Algorithm 3.1 is to find
some effective way to compute xi+1 such that the tolerance requirement (3.18) is
satisfied with δ0 < 1

3 . In this subsection we will propose an iterative algorithm for
computing xi+1 which meets the requirement.

Let x∗
i be the exact solution of (3.17); then we have f −Byi = F (x∗

i ), and (3.18)
can be written as

‖F (xi+1) − F (x∗
i )‖A−1 ≤ δ0‖F (xi) − F (x∗

i )‖A−1 .(3.31)

When nonlinear equation (3.17) is solved by an iterative method with the initial guess
xi, condition (3.31) should come from the convergence results in the underlying norm.
Unfortunately, this conclusion is not straightforward here since the convergences of
most iterative methods for nonlinear equations are analyzed in the l2-norm (cf. [30],
[31], [36]), not in the “energy-norm” as required in (3.31).

Let Gi be a functional defined by

Gi(ξ) = J(ξ) + (Byi, ξ) − (f, ξ),

where J(x) is the functional in (3.1) satisfying ∇J(x) = F (x). Then (3.17) amounts
to the following minimization problem: Find x∗

i ∈ Rn such that

Gi(x
∗
i ) = min

ξ∈Rn
Gi(ξ).(3.32)

Next, we propose a PCG-type method to solve this minimization problem.
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Algorithm 3.2 (PCG-type method for solving (3.32)). Set

x
(0)
i = xi, p

(0)
i = −Â−1

i ∇Gi(xi),

then generate a sequence {x(k)
i }∞k=1 as follows.

Step 1. Compute the parameter τ
(k−1)
i such that

Gi(x
(k−1)
i + τ

(k−1)
i p

(k−1)
i ) = min

τ
Gi(x

(k−1)
i + τ p

(k−1)
i ).(3.33)

Update

x
(k)
i = x

(k−1)
i + τ

(k−1)
i p

(k−1)
i .(3.34)

Step 2. Compute

θ
(k)
i = −(Â−1

i ∇Gi(x
(k)
i ), A

x
(k)
i

p
(k−1)
i )/(A

x
(k)
i

p
(k−1)
i , p

(k−1)
i ).(3.35)

Compute

p
(k)
i = −Â−1

i ∇Gi(x
(k)
i ) − θ

(k)
i p

(k−1)
i .(3.36)

Before analyzing the convergence of Algorithm 3.2, let us introduce a few useful

constants. For the sake of simplicity, we shall write A
(k)
i = A

x
(k)
i

below. First, we can

easily see the existence of the two constants C
(k)
i and c

(k)
i from Lemma 3.1 and by

noting the relation

∇Gi(ξ + α) −∇Gi(ξ) = ∇J(ξ + α) −∇J(ξ) = F (ξ + α) − F (ξ).

The first constant C
(k)
i ≥ 1 is the smallest positive number satisfying

(∇Gi(ξ + α) −∇Gi(ξ), α) ≤ C
(k)
i (A

(k)
i α, α)(3.37)

for ξ = x
(k)
i and α = s p

(k)
i with all s > 0, also for ξ = x∗

i and α = t(x
(k)
i − x∗

i ) with

all t ∈ (0, 1); the second constant c
(k)
i ≤ 1 is the largest positive number satisfying

c
(k)
i ‖x(k)

i − x∗
i ‖A(k)

i

≤ ‖∇Gi(x
(k)
i ) −∇Gi(x

∗
i )‖(A

(k)
i

)−1 .(3.38)

It is obvious that for a less accurate estimate one may simply take the above two con-

stants C
(k)
i and c

(k)
i to be the constants C1 and c1 from (3.9) and (3.10), respectively.

Now define

κ
(k)
i = cond(Â

− 1
2

i A
(k)
i Â

− 1
2

i ), ρ
(k)
i = 1 −

(
c
(k)
i

C
(k)
i

)2
4κ

(k)
i

(κ
(k)
i + 1)2

.

Clearly, we see that ρ
(k)
i lies in the range 0 < ρ

(k)
i < 1. The following estimate holds

on the rate of convergence with Algorithm 3.2.

Lemma 3.3. Let x∗
i be the exact solution of (3.32), and let the sequence {x(k)

i }∞k=1

be generated by Algorithm 3.2. Then the following estimate holds:

Gi(x
(k+1)
i ) −Gi(x

∗
i ) ≤ ρ

(k)
i (Gi(x

(k)
i ) −Gi(x

∗
i )), k = 0, 1 . . . .(3.39)
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If we set xi+1 = x
(k0)
i for some positive integer k0, then

Gi(xi+1) −Gi(x
∗
i ) ≤

(
k0∏
k=1

ρ
(k−1)
i

)
(Gi(x

(k)
i ) −Gi(x

∗
i )).(3.40)

Proof. Using the generalized mean-value theorem and (3.34), we have for any
τ > 0,

(3.41)

Gi(x
(k)
i + τ p

(k)
i ) −Gi(x

(k)
i )

=

∫ 1

0

(
∇Gi(x

(k)
i + t τ p

(k)
i ), τ p

(k)
i

)
dt

= τ
(
∇Gi(x

(k)
i ), p

(k)
i

)
+

∫ 1

0

(
∇Gi(x

(k)
i + t τ p

(k)
i ) −∇Gi(x

(k)
i ), τ p

(k)
i

)
dt.

But it follows from (3.37) with ξ = x
(k)
i and α = t τ p

(k)
i that(

∇Gi(x
(k)
i + t τ p

(k)
i ) −∇Gi(x

(k)
i ), τ p

(k)
i

)
≤ C

(k)
i t τ2(A

(k)
i p

(k)
i , p

(k)
i ).

Plugging this into (3.41) yields

Gi(x
(k)
i + τ p

(k)
i ) −Gi(x

(k)
i ) ≤ τ (∇Gi(x

(k)
i ), p

(k)
i ) +

1

2
C

(k)
i τ2(A

(k)
i p

(k)
i , p

(k)
i ).(3.42)

Noting that the parameter τ
(k)
i defining x

(k+1)
i satisfies (3.33), we obtain

Gi(x
(k+1)
i ) −Gi(x

(k)
i ) ≤ − (∇Gi(x

(k)
i ), p

(k)
i )2

2C
(k)
i (A

(k)
i p

(k)
i , p

(k)
i )

(3.43)

if we take in (3.42) that

τ = − (∇Gi(x
(k)
i ), p

(k)
i )

C
(k)
i (A

(k)
i p

(k)
i , p

(k)
i )

.

To further estimate the fraction in (3.43), we first know from (3.33) that

(∇Gi(x
(k)
i ), p

(k−1)
i ) = 0.(3.44)

Using this, and making the scalar product of both sides of (3.36) with ∇Gi(x
(k)
i ), we

derive

(∇Gi(x
(k)
i ), p

(k)
i ) = −‖Â− 1

2
i ∇Gi(x

(k)
i )‖2.(3.45)

On the other hand, by direct computing using (3.36) and (3.35) we get

(A
(k)
i p

(k)
i , p

(k)
i ) = ‖Â−1

i ∇Gi(x
(k)
i )‖2

A
(k)
i

− (Â−1
i ∇Gi(x

(k)
i ), A

(k)
i p

(k−1)
i )2

‖p(k−1)
i ‖2

A
(k)
i

≤ ‖Â−1
i ∇Gi(x

(k)
i )‖2

A
(k)
i

.(3.46)
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Now it follows from (3.45), (3.46), (3.43), and a well-known matrix-eigenvalue in-
equality (see (3.1) in [29]) that

Gi(x
(k+1)
i ) −Gi(x

(k)
i ) ≤ − ‖Â− 1

2
i ∇Gi(x

(k)
i )‖4

2C
(k)
i ‖Â−1

i ∇Gi(x
(k)
i )‖2

A
(k)
i

≤ − 1

2C
(k)
i

4κ
(k)
i

(κ
(k)
i + 1)2

‖∇Gi(x
(k)
i )‖2

(A
(k)
i

)−1
.(3.47)

But noting ∇Gi(x
∗
i ) = 0, we deduce from (3.38) that

‖∇Gi(x
(k)
i )‖2

(A
(k)
i

)−1
= ‖∇Gi(x

(k)
i ) −∇Gi(x

∗
i )‖2

(A
(k)
i

)−1
≥ (c

(k)
i )2 ‖x(k)

i − x∗
i ‖2

A
(k)
i

.

This, along with (3.47), implies

Gi(x
(k+1)
i ) −Gi(x

(k)
i ) ≤ − (c

(k)
i )2

2C
(k)
i

4κ
(k)
i

(κ
(k)
i + 1)2

‖x(k)
i − x∗

i ‖2
Ai
.(3.48)

Furthermore, by the generalized mean-value theorem and the fact that ∇Gi(x
∗
i ) = 0

again, we can write

Gi(x
(k)
i ) −Gi(x

∗
i ) =

∫ 1

0

(
∇Gi(x

∗
i + t(x

(k)
i − x∗

i )) −∇Gi(x
∗
i ), x

(k)
i − x∗

i

)
dt.

Taking ξ = x∗
i and α = t (x

(k)
i − x∗

i ) in (3.37), we come to

Gi(x
(k)
i ) −Gi(x

∗
i ) ≤

C
(k)
i

2
‖x(k)

i − x∗
i ‖2

A
(k)
i

.

Combining this with (3.48) leads to

Gi(x
(k+1)
i ) −Gi(x

(k)
i ) ≤ −

(
c
(k)
i

C
(k)
i

)2
4κ

(k)
i

(κ
(k)
i + 1)2

(G(x
(k)
i ) −G(x∗

i )).

Therefore

Gi(x
(k+1)
i ) −Gi(x

∗
i ) ≤

⎛⎝1 −
(

c
(k)
i

C
(k)
i

)2
4κ

(k)
i

(κ
(k)
i + 1)2

⎞⎠ (G(x
(k)
i ) −G(x∗

i )),

which proves the desired result.

Remark 3.3. Algorithm 3.2 is always convergent, so we have x
(k)
i → x∗

i and

p
(k)
i → 0 as k → +∞. Then by (3.6) one can verify that C

(k)
i → 1 and c

(k)
i → 1 as

k → +∞. This implies

lim
k→∞

ρ
(k)
i = 1 − 4κi

(κi + 1)2
=

(1 − κi

1 + κi

)2

with κi = cond(Â−1
i Ai).

Remark 3.4. The second inequality in (3.46) cannot become an equality except
that

(Â−1
i ∇Gi(x

(k)
i ), A

(k)
i p

(k−1)
i ) = 0.
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But this orthogonality does not hold, since we have only (∇Gi(x
(k)
i ), p

(k−1)
i ) = 0 but

Âi 	= A
(k)
i in general. So (3.46) should be a strict inequality, and in turn the actual

rate of convergence of Algorithm 3.2 is faster than that described by (3.39), i.e., the
convergence rate of the steepest descent method (cf. [35]). Also, we remark that the
exact line search is assumed in Algorithm 3.2. For the cases with inexact line searches,

the relaxation parameter θ
(k)
i needs to be corrected somehow, and the discussion is

much more technical (cf. [1], [19], [40]).
With the convergence rate estimate given by Lemma 3.3, the next lemma discusses

how to meet the tolerance condition (3.18).

Lemma 3.4. For a given pair {xi, yi} in Rn × Rm, let {x(k)
i }∞k=1 be a sequence

generated by Algorithm 3.2 for the minimization problem (3.32). Then for any δ0 ∈
(0, 1), there exists an integer k0 depending on δ0 such that with xi+1 = x

(k0)
i , the

residual εi = F (xi+1) − (f −Byi) satisfies the tolerance condition (3.18).
Proof. Let x∗

i be the minimizer in (3.32) and the solution to (3.17). It follows
from (3.8) that

‖εi‖2
A−1 = ‖F (xi+1) − F (x∗

i )‖2
A−1 ≤ C0‖xi+1 − x∗

i ‖2
A.(3.49)

By the mean-value theorem and the fact that ∇Gi(x
∗
i ) = 0, we can write

Gi(xi+1) −Gi(x
∗
i ) =

∫ 1

0

(∇Gi(x
∗
i + t(xi+1 − x∗

i )), xi+1 − x∗
i )dt

=

∫ 1

0

(∇Gi(x
∗
i + t(xi+1 − x∗

i )) −∇Gi(x
∗
i ), xi+1 − x∗

i )dt

=

∫ 1

0

(F (x∗
i + t(xi+1 − x∗

i )) − F (x∗
i ), xi+1 − x∗

i )dt.

This, along with (3.7), leads to

Gi(xi+1) −Gi(x
∗
i ) ≥ c0

∫ 1

0

t ‖xi+1 − x∗
i ‖2

Adt =
c0
2
‖xi+1 − x∗

i ‖2
A;

combining it with (3.49) and (3.39), we have

‖εi‖2
A−1 ≤ 2C0

c0
(Gi(xi+1) −Gi(x

∗
i )) ≤

2C0 δ̂i
c0

(Gi(xi) −Gi(x
∗
i ))(3.50)

with δ̂i =
∏k0

k=1 ρ
(k−1)
i . On the other hand, using the mean-value theorem and (3.8),

we see

Gi(xi) −Gi(x
∗
i ) =

∫ 1

0

(∇Gi(x
∗
i + t(xi − x∗

i )), xi − x∗
i )dt

=

∫ 1

0

(F (x∗
i + t(xi − x∗

i )) − F (x∗
i ), xi − x∗

i )dt

≤ C0

2
‖xi − x∗

i ‖2
A.(3.51)

But it follows from (3.7) that

‖xi − x∗
i ‖2

A ≤ 1

c0
(F (xi) − F (x∗

i ), xi − x∗
i ) ≤

1

c0
‖F (xi) − F (x∗

i )‖A−1 ‖xi − x∗
i ‖A,



814 QIYA HU AND JUN ZOU

which implies that

‖xi − x∗
i ‖A ≤ 1

c0
‖F (xi) − F (x∗

i )‖A−1 .

This combined with (3.51) gives

Gi(xi) −Gi(x
∗
i ) ≤

C0

2c20
‖F (xi) − F (x∗

i )‖2
A−1 .

Now we obtain from (3.50) that

‖εi‖2
A−1 ≤ δ̂iC

2
0

c30
‖F (xi) − F (x∗

i )‖2
A−1 =

δ̂iC
2
0

c30
‖fi‖2

A−1 ,

which leads to the satisfaction of (3.18) when k0 is chosen such that δ̂i ≤ c30δ
2
0

C2
0

.

3.5. An analysis on the convergence of Algorithm 3.1. We are now ready
to study the convergence of Algorithm 3.1 and show Theorem 3.2. For this purpose,
we need a few auxiliary lemmas. We remark that all notation below will be the same
as in subsection 3.3. But for the sake of convenience, let us recall some frequently used
notation here: {x, y} is the exact solution to (1.1), Aξ is a positive definite matrix
defined by (3.6) at any given point ξ ∈ Rn, but with Ax simply denoted as A and Axi

as Ai. The following are some error, or residual, vector quantities:

Ei = {
√
δ0fi, e

y
i }, fi = f − F (xi) −Byi, exi = x− xi, eyi = y − yi.

The first lemma below gives conditions on the current approximation pair {xi, yi}
to ensure xi+1 lies in a specified neighborhood of x.

Lemma 3.5. Let rω be a fixed positive number, and let the pair {xi, yi} be given
such that |||Ei||| ≤ c0

(1+
√
δ0)

rω. If xi+1 ∈ Rn is generated such that condition (3.18)

holds for the residual εi = F (xi+1) − (f −Byi), then xi+1 ∈ SA(x, rω).
Proof. We know from the first equation of (1.1) that f = F (x) + By; hence

F (xi+1) − F (x) = B(y − yi) + εi.(3.52)

But it follows from (3.7) that

c0‖xi+1 − x‖2
A ≤ (F (xi+1) − F (x), xi+1 − x)

= (B(y − yi) + εi, xi+1 − x)

≤ ‖B(y − yi) + εi‖A−1 ‖xi+1 − x‖A,

which implies

‖xi+1 − x‖A ≤ 1

c0
‖B(y − yi) + εi‖A−1 ≤ 1

c0
(‖B(y − yi)‖A−1 + ‖εi‖A−1).

This, along with (3.18), leads to

‖xi+1 − x‖A ≤ 1

c0
(‖B(y − yi)‖A−1 + δ0‖fi‖A−1)

=
1

c0
(‖eyi ‖K +

√
δ0‖

√
δ0fi‖A−1)

≤ (1 +
√
δ0)

c0
|||Ei|||,(3.53)

which proves the desired result.
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The next lemma demonstrates that the matrix A = Ax will be close to Ai+1 as
long as xi+1 stays close to x.

Lemma 3.6. For any given positive ε < 1, and any xi+1 ∈ SA(x, ε/(2L)), we
have

‖(A−Ai+1)α‖A−1 ≤ ε ‖α‖A ∀α ∈ Rn.(3.54)

So all the eigenvalues of the matrix A−1Ai+1 lie in the interval [1 − ε, 1 + ε], and

‖α‖A ≤
‖α‖Ai+1√

1 − ε
∀α ∈ Rn.(3.55)

Proof. Clearly (3.54) is invariant with respect to any constant scaling of α. There-
fore it suffices to show that there is a number α0 > 0 such that (3.54) holds for all
α ∈ Rn satisfying ‖α‖A ≤ α0. To show this, we rewrite (A−Ai+1)α as

(A−Ai+1)α = [Aα− (F (x + α) − F (x))] + [F (xi+1 + α) − F (xi+1) −Ai+1α]

+[F (x + α) − F (x) − (F (xi+1 + α) − F (xi+1))],

then by the triangle inequality we have

‖(A−Ai+1)α‖A−1 ≤ ‖Aα− (F (x + α) − F (x))‖A−1

+‖F (xi+1 + α) − F (xi+1) −Ai+1α‖A−1

+‖F (x + α) − F (x) − (F (xi+1 + α) − F (xi+1))‖A−1 .(3.56)

But for any given positive ε < 1, we know from (3.6) that there is a positive number
α0 such that the following two estimates hold for any α ∈ Rn satisfying ‖α‖A ≤ α0,

‖Aα− (F (x + α) − F (x))‖A−1 ≤ ε

4
‖α‖A,(3.57)

‖F (xi+1 + α) − F (xi+1) −Ai+1α‖A−1 ≤ ε

4
‖α‖A.(3.58)

Let G(ξ) = F (ξ+α)−F (ξ). Clearly, the Lipschitzian property of F implies the same
property for G. Thus by (3.3) there is a matrix V ∈ co ∂G(xi+1x) such that

F (x + α) − F (x) − (F (xi+1 + α) − F (xi+1)) = G(x) −G(xi+1) = V (x− xi+1);

this gives

(3.59)

‖F (x + α) − F (x) − (F (xi+1 + α) − F (xi+1))‖A−1 ≤ ‖A− 1
2V A− 1

2 ‖ ‖x− xi+1‖A.

As G(ξ) = F (ξ + α) − F (ξ), we have

co ∂G(xi+1x) = co ∂F (α + xi+1x) − co ∂F (xi+1x),

so it follows from (3.16) that

‖A− 1
2V A− 1

2 ‖ ≤ L ‖α‖A.

This with (3.59) yields

‖F (x + α) − F (x) − (F (xi+1 + α) − F (xi+1))‖A−1 ≤ L‖x− xi+1‖A ‖α‖A.
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Thus for any xi+1 ∈ SA(x, ε/(2L)), we have

‖F (x + α) − F (x) − (F (xi+1 + α) − F (xi+1))‖A−1 ≤ ε

2
‖α‖A;

this, along with (3.57) and (3.58), proves (3.54).
Now by writing (3.54) as

‖(I −A−1Ai+1)α‖A ≤ ε ‖α‖A,

we see that the eigenvalues of A−1Ai+1 must lie in the interval [1− ε, 1+ ε]. This fact
further implies

(A(A−1Ai+1)α, α) ≥ (1 − ε)(Aα,α) ∀α ∈ Rn;

therefore,

(Aα,α) = (Ai+1α, α) + (Aα,α) − (A(A−1Ai+1)α, α)

≤ (Ai+1α, α) + ε (Aα,α),

which leads to estimate (3.55).
Remark 3.5. We see from the proof of Lemma 3.6 that estimate (3.54) is a direct

consequence of (3.5) or (3.6). If F is smooth, then inequality (3.54) amounts to the
condition that the gradient of F is Lipschitzian.

Lemma 3.7. For a given parameter γ < 1
2 , assume xi+1 ∈ SA(x, ε/(2L)) with

ε < (1 − 2γ)/3, and (3.20) is satisfied. Then (3.24) holds with δd < 1
2 .

Proof. For simplicity, we write b = Bdi and Ψ(b) = ΨAi+1
(Bdi). Then it suffices

to verify

‖Ψ(b) −A−1b‖A ≤ 1

2
‖A−1b‖A(3.60)

under the condition

‖Ψ(b) −A−1
i+1b‖Ai+1 ≤ γ ‖A−1

i+1b‖Ai+1 .(3.61)

To see this, first by the triangle inequality,

‖Ψ(b) −A−1b‖A ≤ ‖Ψ(b) −A−1
i+1b‖A + ‖A−1

i+1b−A−1b‖A.(3.62)

Using (3.55) and (3.61) above we derive

‖Ψ(b) −A−1
i+1b‖A ≤

‖Ψ(b) −A−1
i+1b‖Ai+1√

1 − ε
≤ γ√

1 − ε
‖A−1

i+1b‖Ai+1 .(3.63)

On the other hand, it follows from (3.54) and (3.55) that

‖A−1
i+1b−A−1b‖A = ‖(A−Ai+1)A

−1
i+1b‖A−1 ≤ ε ‖A−1

i+1b‖A ≤ ε√
1 − ε

‖A−1
i+1b‖Ai+1 .

Substituting this and (3.63) into (3.62), and using Lemma 3.6 again, leads to

‖Ψ(b) −A−1b‖A ≤ γ + ε√
1 − ε

‖A−1
i+1b‖Ai+1 =

γ + ε√
1 − ε

‖b‖A−1
i+1

≤ γ + ε

1 − ε
‖b‖A−1 =

γ + ε

1 − ε
‖A−1b‖A.(3.64)

This proves (3.60) by noting γ+ε
1−ε < 1

2 when ε < 1−2γ
3 .
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Recalling that gi, τi, and ΨHi
(gi) are the quantities used in Algorithm 3.1, that

the parameter β0 is defined in (3.25), and that K = BtA−1B is the exact Schur
complement with A = Ax, using (3.24) ensured by Lemma 3.7 we can derive the
following lemma, which is basically the same as Lemma 3.1 in [29] (but with different
notation).

Lemma 3.8. For a given parameter γ < 1
2 , assume xi+1 ∈ SA(x, ε/(2L)) with

ε < (1 − 2γ)/3, and (3.20) is satisfied. Then there is a symmetric and positive definite
matrix Qi such that
(i) Q−1

i gi = 1
2 τi ΨHi

(gi);

(ii) all eigenvalues of the matrix Q−1
i K are in the interval [(1 − β0)/2, 1].

The following lemma is basically Lemma 3.5 in [28], with slight modifications.
Lemma 3.9. Let N be an n× n symmetric and positive semidefinite matrix, and

let F(N) be a block matrix given by

F(N) =

(
−δ0(I + N) −

√
δ0N

−
√
δ0N (I −N)

)
.

If all positive eigenvalues of N lie in the interval [1− 1+β0

2 , 1], then we have ‖F(N)‖ ≤
ρ0, where ρ0 < 1 is defined in (3.26).

Proof of Theorem 3.2. With the previous technical preparations, we are now
ready to demonstrate Theorem 3.1. First, we recall that ρ0, ρω, and r∗ω are three
parameters defined in (3.26) and (3.27). Then for Theorem 3.2 it suffices to prove
that ρ∗0 = ρ0 + ρω < 1, and the following relations hold for i = 0, 1, 2, . . .:

|||Ei+1||| ≤ ρ∗0|||Ei||| < |||Ei||| ≤ r∗ω.(3.65)

We shall achieve this by induction. We start with the verification of this for i = 0.
To do so, we shall first derive an error propagation equation. We know from (3.52)
(i = 0) that

F (x1) − F (x) = Bey0 + ε0.(3.66)

But by the assumption of Theorem 3.2 on the initial guess {x0, y0} and the definition of
r∗ω, we know |||E0||| ≤ r∗ω = c0r̂ω/(1 +

√
δ0) with r̂ω = min{rω, rγ}, so x1 ∈ SA(x, r̂ω)

by Lemma 3.5, which implies x1 ∈ SA(x, rγ) ∩ SA(x, rω). This enables us to apply
Lemma 3.8(i) and Algorithm 3.1 to write

y1 = y0 + Q−1
0 Bt(x1 − x).(3.67)

With (3.66), we can further deduce

A
1
2 (x1 − x)

= A− 1
2 (F (x1) − F (x)) −A− 1

2 [F (x1) − F (x) −A(x1 − x)]

= A− 1
2 (Bey0 + ε0) − ϕ1,(3.68)

where ϕ1 = A− 1
2 [F (x1) − F (x) − A(x1 − x)]. Setting N0 = A− 1

2BQ−1
0 BtA− 1

2 , we
obtain from (3.67) and (3.68) that

A− 1
2Bey1 = A− 1

2Bey0 −N0[A
− 1

2 (Bey0 + ε0) − ϕ1]

= (I −N0)A
− 1

2Bey0 −N0A
− 1

2 ε0 + N0ϕ1.(3.69)
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Multiplying (3.66) by A− 1
2 , we have

A− 1
2 (F (x) − F (x1)) = −A− 1

2Bey0 −A− 1
2 ε0.(3.70)

Then using the fact that

f1 = f − F (x1) −By1 = F (x) − F (x1) + Bey1,

we derive from (3.69) and (3.70) that

A− 1
2 f1 = −(I + N0)A

− 1
2 ε0 −N0A

− 1
2Bey0 + N0ϕ1.(3.71)

Now by defining for k = 0, 1, 2, . . . ,

Ey
k = A− 1

2Beyk, Exy
k =

√
δ0A

− 1
2 fk, eεk =

√
δ0

−1
A− 1

2 εk,

we come to the following propagation equation using (3.69) and multiplying (3.71) by√
δ0: (

Exy
1

Ey
1

)
= F(N0)

(
eε0

Ey
0

)
+

( √
δ0N0 ϕ1

N0 ϕ1

)
.(3.72)

We know from Lemma 3.8(ii) that all the positive eigenvalues of the matrix N0 lie
in the interval [1 − 1+β0

2 , 1]; thus ‖F(N0)‖ ≤ ρ0 by Lemma 3.9. Then with the
assumption of Theorem 3.2 on the tolerance εi for i = 0, 1, 2, . . . , we know (3.18) is
satisfied, leading to

‖eε0‖ ≤ ‖
√

δ0A
− 1

2 f0‖ = ‖Exy
0 ‖.

By this, with the definition of the norm ||| · |||, we see

‖eε0‖2 + ‖Ey
0‖2 ≤ |||E0|||2.

Using this and the bound ‖F(N0)‖ ≤ ρ0, we derive from (3.72) that

|||E1||| ≤ ρ0 |||E0||| +
√

1 + δ0 ‖ϕ1‖.(3.73)

Noting x1 ∈ SA(x, rω), it follows from (3.23), (3.53), and the definition of ρω in (3.27)
that √

1 + δ0 ‖ϕ1‖ =
√

1 + δ0 ‖F (x1) − F (x) −A(x1 − x)‖A−1

≤ ω
√

1 + δ0 ‖x1 − x‖A

≤ ω
√

1 + δ0(1 +
√
δ0)

c0
|||E0||| = ρω|||E0|||.

Then we know from (3.73) that

|||E1||| ≤ (ρ0 + ρω)|||E0||| = ρ∗0|||E0|||.

Noting the fact that ω is taken from the range (0, ω0), we have

ρω =
ω
√

1 + δ0(1 +
√
δ0)

c0
<

ω0

√
1 + δ0(1 +

√
δ0)

c0
.
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This, with the definition of ω0 in (3.27), shows ρω < 1− ρ0, so ρ∗0 = ρω + ρ0 < 1, and

|||E1||| ≤ ρ∗0|||E0||| < |||E0||| ≤ r∗ω,

which verifies (3.65) for i = 0.
Now we assume (3.65) holds for i = k− 1 with any integer k > 1; then in exactly

the same manner as for deriving the error propagation equation (3.72), we have(
Exy

k+1

Ey
k+1

)
= F(Nk)

(
eεk

Ey
k

)
+

( √
δ0Nk ϕk+1

Nk ϕk+1

)
(3.74)

where ϕk+1 = A− 1
2 [F (xk+1) − F (x) − A(xk+1 − x)] and Nk = A− 1

2BQ−1
k BtA− 1

2 .
With this relation, one can follow exactly the same proof as for i = 0 above to verify
that (3.65) holds for i = k. This completes the proof of (3.65) by induction.

4. Numerical experiments. In this section, we shall apply two new algorithms
proposed in sections 2 and 3, Algorithms 2.2 and 3.1, and some other existing algo-
rithms, to solve a linear saddle-point problem arising from a domain decomposition
method with a Lagrange multiplier and a nonlinear saddle-point problem.

4.1. A linear saddle-point problem arising from a domain decompo-
sition method with a Lagrange multiplier. Domain decomposition methods
with Lagrange multipliers have become popular in solving second order elliptic prob-
lems; see, for example, [8], [27], [34], and the references therein. This method allows
nonmatching grids to be used in different subdomains, with Lagrange multipliers
introduced to preserve necessary interface continuities between local solutions from
neighboring subdomains. A domain decomposition method with a Lagrange mul-
tiplier results in a saddle-point system with respect to the primal variable and the
Lagrange multiplier. Two different approaches are often used to solve the resulting
saddle-point system: the first one eliminates the primal variable in the system and
forms an interface equation for the multiplier, then solves the interface equation by
a PCG method [26]; the second directly solves the saddle-point system by some pre-
conditioned iterative method [27], [34]. We shall compare the efficiency of these two
different approaches.

Consider the model elliptic problem

−∇ · (a∇u) = f in Ω; u = g on ∂Ω,(4.1)

where Ω is a three-dimensional rectangular domain Ω = [0, 2]× [0, 1]2. We decompose
Ω into two subdomains Ω1 and Ω2: Ω1 = [0, 1]3, Ω2 = [1, 2] × [0, 1]2, and then
triangulate each subdomain Ωk (k = 1, 2) into smaller cubic elements, each with edges
of equal length hk. We remark that the two triangulations in Ω1 and Ω2, denoted
T h1 and T h2 , respectively, are not required to match on the interface Γ = Ω1 ∩ Ω2.
By Nhk

we denote the set of vertices of all elements in the triangulation of Ωk, and
Γhk

= Γ ∩Nhk
for k = 1, 2.

On each Ωk, we define V h(Ωk) ⊂ H1(Ωk) to be the standard Q1 finite element
space [17], [24], associated with the triangulation T hk , and

V h
g (Ωk) =

{
v ∈ V h(Ωk); v(xi) = g(xi) ∀xi ∈ Nhk

∩ (∂Ωk\Γ)
}
,

V h
g (Ω) =

{
v = {v1, v2} ∈ V h

g (Ω1) × V h
g (Ω2); v1(xi) = v2(xi) ∀xi ∈ Γh1

}
.
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Now the finite element approximation of the elliptic problem (4.1) can be formu-
lated as follows: Find {uh1 , uh2} ∈ V h

g (Ω) such that

2∑
k=1

(a∇uhk
,∇vk)Ωk

=

2∑
k=1

(f, vk)Ωk
∀ v = {v1, v2} ∈ V h

0 (Ω).(4.2)

By introducing a discrete Lagrange multiplier χ to remove the constraints on the
interface as required in the finite element space V h

g (Ω), system (4.2) can be written
as the algebraic saddle-point system [27]⎛⎝ A1 0 B1

0 A2 B2

Bt
1 Bt

2 0

⎞⎠⎛⎝ U1

U2

χ

⎞⎠ =

⎛⎝ b1
b2
d

⎞⎠ ,(4.3)

where A1 and A2 are the stiffness matrices associated with the bilinear form (a∇·,∇·)Ωk

under the nodal basis of V hk
0 (Ωk), and Uk corresponds to the nodal values of uhk

in
Ωk ∪ Γhk

.
By eliminating the variables U1 and U2 in (4.3), we obtain the interface equation

[26]

Kχ = b(4.4)

with

K =
2∑

k=1

Bt
kA

−1
k Bk, b =

2∑
k=1

Bt
kA

−1
k bk − d.

We note that the Schur complement K is a dense matrix, possibly of large size.
The direct solver for system (4.4) is very expensive. Instead, we will consider the
following three iterative methods for solving (4.3).

M1. Solve the interface equation (4.4) by the CG method. Recall that we are
mainly interested in the case where no good preconditioners are available for
the Schur complement, so CG is used here instead of PCG, although some
effective preconditioners are available for the current Schur complement;
see, e.g., [9], [21]. In fact, this main interest prompts us to choose the worst
preconditioner, the identity, for the Schur complement K involved in all
three algorithms we shall test.

M2. Solve the saddle-point system (4.3) directly by the well-known precondi-
tioned MINRES method [39]. We will take an (algebraic) multigrid pre-
conditioner (cf. [42]) to be the preconditioner Â for the first 2 × 2 block
matrix in the coefficient matrix of (4.3) and the identity matrix to be the
preconditioner K̂ for the Schur complement K.

M3. Solve the saddle-point system (4.3) directly by Algorithm 2.2 of section 2.
The preconditioners Â and K̂ are taken to be the same as in M2. The ap-
proximation ΨA(φ) is taken to be Â−1φ for any φ, while the approximation
ΨH(gi) is generated by two PCG iterations for solving (2.13). (Note that
PCG is the same as CG here since K̂ is taken to be the identity.)

Table 4.1 shows the numerical results with M1, M2, and M3, where the coefficient
a(x, y, z) in (4.1) is taken to be a(x, y, z) = 1+xyz, and functions f and g are taken so

that the exact solution of (4.1) is u(x, y, z) = (x+y+z)
1
5 . Considering the singularity
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Table 4.1

Number of iterations and CPU time (in seconds).

h1 M1 M2 M3 (θ = 1
2
) M3 (θ = 0.7)

iter CPU iter CPU iter CPU iter CPU
1/8 10 0.14 20 0.53 10 0.52 8 0.43
1/16 15 16.6 33 8.5 11 6.6 10 6.0
1/32 21 1956.9 58 158.5 13 89.9 12 86.3

of the solution at the origin, we take h1 = h2/2. In all the experiments, the initial
guesses for the three iterative methods are taken to be zero, and the outer iterations
terminate when the relative error of the residual reaches 10−5. We mentioned in
Remark 2.3 that the coefficient 1/2 in (2.18) can be replaced by a larger number than
1/2, which is now tested in Table 4.1 with two different choices of this coefficient,
denoted by a parameter θ.

We remark that the actions of the Schur complement K involve the actions of
the local solvers A−1

k . These actions must be very accurate, since our target is to
solve system (4.3) or (4.4). One may use both direct solvers or iterative solvers to
realize the actions of these local solvers. But if iterative solvers are used, the stopping
criterion should be up to a very high accuracy. So we have chosen in our experiments
to realize these local solvers by the standard direct solver, a banded sparse version of
the Gauss elimination.

From Table 4.1 we see that the new method (M3), Algorithm 2.2, outperforms
M1 and M2 essentially, and this appears to be more evident when the discrete system
becomes larger.

4.2. An algebraic nonlinear saddle-point problem. We now consider an
algebraic nonlinear saddle-point problem and compare the convergence of the new
Algorithm 3.1 of section 3 and the well-known augmented-Uzawa method, which has
been widely used for nonlinear saddle-point systems.

Let Im be the m×m identity matrix, and let Tm an m×m matrix with entries
given by

tij =

{
1 if |i− j| = 1;
0 otherwise.

For n = 2m, we define an n× n symmetric positive definite matrix M and an n×m
matrix B with full rank as follows:

M =

(
5
2Im − 1

4Tm −Im
−Im

5
2Im − 1

4Tm

)
, B = (0, 2Im − Tm)t.

The smallest and largest eigenvalues of M are given by [14]

λ1 = 4 sin2 m

2(n + m)
π + sin2 1

2(m + 1)
π = 1 + sin2 1

2(m + 1)
π,

λn = 4 sin2 n

2(n + m)
π + sin2 m

2(m + 1)
π = 3 + sin2 m

2(m + 1)
π.

Now we define the nonlinear mapping F as

F (ξ) = Mξ +
1

5

(
ξ1

1 + ξ2
1

,
ξ2

1 + ξ2
2

, . . . ,
ξn

1 + ξ2
n

)t

∀ ξ = (ξ1 ξ2 · · · ξn)t ∈ Rn.(4.5)
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One can verify that F is strongly monotone and Lipschitz continuous. Moreover, we
have

∇F (ξ) = M +
1

5
diag

(
1 − ξ2

1

(1 + ξ2
1)2

,
1 − ξ2

2

(1 + ξ2
2)2

, . . . ,
1 − ξ2

n

(1 + ξ2
n)2

)
,

which implies

4

5
‖ζ‖2 ≤ (∇F (ξ)ζ, ζ) ≤ 21

5
‖ζ‖2 ∀ζ, ξ ∈ Rn.(4.6)

Let Ai = ∇F (xi). If we choose Âi = In, we have cond(Â−1
i Ai) ≤ 21/4. Noting

that the Schur complement Ki = BtA−1
i B is a dense matrix without any special

structure, it is difficult to find a reasonable preconditioner K̂i for Ki. Therefore we
will take the worst preconditioner K̂i = Im.

The functional J(ξ) satisfying ∇J(ξ) = F (ξ) can be written as

J(ξ) =
1

2
(Mξ, ξ) +

1

10

n∑
l=1

ln(1 + ξ2
l ).(4.7)

One can see that J(ξ) is uniformly convex. This enables us to realize the nonlinear
inner iteration in Algorithm 3.1 for finding xi+1 by Algorithm 3.2.

The right-hand side functions f and g in (1.1) are generated using system (1.1)
when the exact solution is taken to be

x = (1, 1, . . . , 1)t, y =

(
1,

1

2
, . . . ,

1

m

)t

.

We will compare the new nonlinear inexact Uzawa algorithm (Algorithm 3.1) with
the well-known augmented-Uzawa method (see [38, pp. 234–244]). The augmented-
Uzawa method converges, provided that the inner iteration involved is accurate enough,
and the augmented parameter r is taken to be sufficiently large (or the initial guess
is very close to the exact solution).

The initial guess x0 for both Algorithm 3.1 and the augmented-Uzawa method
will be taken to be the approximation generated by three steps of the steepest descent
method for solving the perturbation system (3.30) with μ = 1/10 and the zero initial
guess. With x0 available, y0 is then determined from the second equation of (3.29).
The iterations of Algorithm 3.1 and the augmented-Uzawa method terminate when

ε =

{
‖f − F (xi) −Byi‖2 + ‖g −Btxi‖2

‖f‖2 + ‖g‖2

} 1
2

≤ 10−5.(4.8)

We first apply Algorithm 3.1 for the nonlinear saddle-point problem (1.1) with the
data described as above. There are three stopping parameters δ0, δg, and γ involved
in the inner iterations. For the convenience of numerical tests, we will replace the
norms used in (3.18), (3.19), and (3.20) by the l2-norms of the relative errors of the
residuals, and take δ0 = 1/4 and γ = 1/4, but a few different choices for δg. The
convergence results of Algorithm 3.1 are summarized in Table 4.2.

We then apply the augmented-Uzawa method for the nonlinear saddle-point prob-
lem (1.1) with the data described as above. Each nonlinear inner iteration involved in
the augmented-Uzawa algorithm is realized by 30 or 40 iteration of Algorithm 3.2—a
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Table 4.2

Number of iterations and CPU time (in seconds) with Algorithm 3.1.

(n, m) (100, 50) (200, 100) (400, 200) (800, 400)
iter CPU iter CPU iter CPU iter CPU

δg = 1/4 32 2.1 30 9.5 30 104.9 28 676.6
δg = 1/6 29 2.2 31 14.4 29 87.3 27 635.6
δg = 1/8 29 1.8 28 11.0 28 77.4 27 633.8

Table 4.3

Number of iterations and CPU time with augmented-Uzawa algorithm (30 inner iterations).

(n, m) (100, 50) (200, 100) (400, 200) (800, 400)
iter CPU iter CPU iter CPU iter CPU

r = 10 255 85.5 180 267.8 139 987.7 106 7375.1
r = 50 62 20.8 49 73.1 40 284.9 31 2160.8
r = 100 64 21.6 61 90.8 51 361.8 40 2786.6

Table 4.4

Number of iterations and CPU time with augmented-Uzawa algorithm (40 inner iteration).

(n, m) (100, 50) (200, 100) (400, 200) (800, 400)
iter CPU iter CPU iter CPU iter CPU

r = 10 255 115.5 179 388.1 138 1311.1 106 10553.7
r = 50 53 24.1 38 82.6 28 266.7 22 2195.9
r = 100 44 19.9 41 89.0 30 285.6 24 2406.2

Table 4.5

Number of iterations and CPU time with augmented-Uzawa algorithm (ε̃ ≤ 10−2).

(n, m) (100, 50) (200, 100) (400, 200) (800, 400)
iter CPU iter CPU iter CPU iter CPU

r = 10 255 97.0 179 354.8 138 1342.1 106 10269.6
r = 50 52 62.5 37 198.7 28 880.8 22 6249.0
r = 100 27 34.8 18 114.7 13 331.9 10 2356.4

preconditioned CG-type method. The numerical results are summarized in Table 4.3
(30 inner iterations) and Table 4.4 (40 inner iterations).

In order to better understand the effect of the inner iterations, we have also
implemented stopping the inner iterations by the standard stopping criterion, which
is set to stop the inner iterations when the relative residual is less than ε̃. The
numerical results are summarized in Table 4.5.

Tables 4.3–4.5 indicate that both the convergence rate and the CPU time of the
augmented-Uzawa algorithm depend strongly on the augmented parameter r. But
there is still no theory about the selection of a reasonable or optimal parameter r.

One can see from Tables 4.2–4.5 that Algorithm 3.1 is evidently more efficient
than the augmented-Uzawa method (even if the optimal parameter r may be found).
For the augmented-Uzawa method, one can clearly see that it converges faster with
more inner iterations, which, however, does not necessarily lead to less CPU times;
see the figures in Table 4.3 and 4.4 with r = 50. When the inner iterations are set
to be too accurate, the total CPU time may be much longer; compare the figures in
Tables 4.4 and 4.5 with r = 50. But how to set the stopping criterion for the inner
iterations of the augmented-Uzawa method is rather difficult and often quite problem
dependent.
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