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STOCHASTIC CONVERGENCE OF REGULARIZED SOLUTIONS
AND THEIR FINITE ELEMENT APPROXIMATIONS TO INVERSE

SOURCE PROBLEMS\ast 

ZHIMING CHEN\dagger , WENLONG ZHANG\ddagger , AND JUN ZOU\S 

Abstract. In this work, we investigate the regularized solutions and their finite element solu-
tions to the inverse source problems governed by partial differential equations, and we establish the
stochastic convergence and optimal finite element convergence rates of these solutions under point-
wise measurement data with random noise. The regularization error estimates and the finite element
error estimates are derived with explicit dependence on the noise level, regularization parameter,
mesh size, and time step size, which can guide practical choices among these key parameters in real
applications. The error estimates also suggest an iterative algorithm for determining an optimal
regularization parameter. Numerical experiments are presented to demonstrate the effectiveness of
the analytical results.
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1. Introduction. This work presents a quantitative understanding of stochastic
convergence of the regularized solutions and their finite element approximations to
the inverse source problems governed by partial differential equations under the mea-
surement data with random noise. The inverse source problems may arise from very
different applications and modeling, e.g., diffusion or groundwater flow processes [1,
4, 6, 21, 5, 27, 28], heat conduction or convection-diffusion processes [3, 20, 21, 31, 39],
or acoustic problems [7, 35]. Pollutant source inversion can find many applications,
e.g., indoor and outdoor air pollution, and detecting and monitoring underground
water pollution. Physical, chemical, and biological measures have been developed for
the identification of sources and source strengths [4, 47, 48]. Due to the important ap-
plications of ill-posed inverse source problems, stable numerical solutions have been
widely studied, both deterministically and statistically [32, 38, 37]. A popular ap-
proach for inverse source problems is the least-squares optimization with appropriate
regularizations [3, 21, 46], which will also be the formulation we take in this work.

Our first main result is the establishment of the optimal stochastic error estimates
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between the exact solution and the regularized solution in a weaker topology of the
regularization space, in terms of the statistical property of the data noise rather than
the norm of the noise in some Hilbert space. We remark that regularization and con-
vergence of regularized solutions in the strong norm of the regularization space have
been widely studied under various source conditions. The classical source condition
requires the existence of a small source function [15]. One source condition was pro-
posed in [16] for an inverse conductivity problem to relax the restrictive requirement
on the smallness of the source function in the classical convergence theory [15]. A vari-
ational source condition was proposed in [23] and was further extended in [9, 19, 22].
How the classical or variational source conditions can be verified is still a hot topic.
It appears that the analytical techniques in all existing verifications of source condi-
tions are quite different for each concrete inverse problem [10, 11, 24, 25, 29]. The
current work makes a very promising first attempt to achieve the error estimates of
regularized solutions in a weaker topology without any source conditions.

The second main contribution of this work is to derive the stochastic convergence
and error estimates of finite element approximations to the inverse source problems.
The error estimates of finite element solutions to inverse problems have been known
to be quite challenging and still open to most practically important inverse prob-
lems. There have been various efforts on error estimates of finite element solutions
for inverse problems, especially for inverse elliptic and parabolic equations. But most
existing studies have been carried out only for some not so frequently used mathe-
matical formulations of inverse problems; see [44] for a detailed review and related
references therein. We are not aware of any error estimates of finite element solutions
to the frequently used least-squares formulations with Tikhonov regularizations, es-
pecially when the observation data are treated as random variables. We had a recent
study in [26] for a modified regularization formulation for an inverse stationary source
problem, where error estimates were achieved under some negative norms. One of our
main focuses in this work is to make an attempt to fill the gap, to provide error
estimates of finite element solutions to the least-squares formulations with Tikhonov
regularizations; more importantly, the observation data will be treated fully as ran-
dom variables in the entire analysis. As we shall demonstrate, the new error estimates
are not only optimal but also present explicit dependence on the critical parameters
like noise level, regularization parameter, mesh size, and time step size. Results of
this type are highly desirable in real applications as they can provide explicit guidance
in choosing these key parameters and are also the major challenge and difficulty in
error estimates of finite element solutions to regularized inverse problems.

We would like to mention a very important by-product from our convergence
analysis, namely, it suggests a deterministic iterative algorithm for finding an effec-
tive regularization parameter. The choice of an effective regularization parameter
is essential to the success of all output least-squares minimization approaches with
Tikhonov regularizations, but finding an effective regularization parameter for most
inverse problems has remained a big challenge.

Another feature of this work is that the entire analysis is carried out for a very
practical scenario, i.e., the scattered data. We shall assume the measurement data
is collected pointwise, with noise; otherwise no additional regularity assumption is
made. This is unlike analyses and results in most existing regularization theories. We
refer the reader to [29] for the study under the same regularization functional with
scattering data as in this paper, but in a deterministic linear setting.

We studied in a recent work [12] the stochastic convergence of a nonconform-
ing finite element method for the thin plate spline smoother for observational data.
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The spline model for scattered data has attracted considerable attention in the liter-
ature. The convergence rate in expectation of the error between the solution of the
spline model and the true solution was established in [41]. Under the condition that
measurement noise is sub-Gaussian random variables, the stochastic convergence of
the empirical error was obtained by the peeling argument in [42] (d = 1) and [12]
(d = 2, 3). In subsection 2.1 we shall borrow some analytical tools from [12, 41]
to study the stochastic convergence in expectation when the measurement noise is
random variables having bounded variance. The peeling argument is used in sub-
section 2.2 to show that the empirical error has an exponential decaying tail when
the measurement noise is sub-Gaussian random variables. The discretization and its
error estimates are considered in section 2.3, both in the expectation and in the Orlicz
norm for sub-Gaussian measurement noise. The general results developed in section 2
are applied to study an inverse nonstationary source problem in section 3. Numerical
examples are presented in section 4 to demonstrate the effectiveness of our analytical
results.

2. Inverse source problem. Let \Omega be a bounded domain in Rd (d = 1, 2, 3),
and let X and Y be two real Hilbert spaces such that Y is continuously embedded
in C(\=\Omega ) and compactly embedded in L2(\Omega ). The inner product and the norm of a
Hilbert space H are denoted by (\cdot , \cdot )H and \| \cdot \| H , respectively, but (\cdot , \cdot ) is used if
H = L2(\Omega ). Throughout the paper, we shall use C, with or without subscript, to
denote a generic constant independent of the mesh size h and the time step size \tau ,
and it may take a different value at each occurrence.

Let S be a linear bounded operator from X to Y whose null space N(S) = \{ 0\} ,
and let f\ast \in X be an unknown source. We are interested in the inverse source problem
of the general form:

(SIP) Given the measurement data of Sf\ast , recover the source f\ast .

There are many examples of inverse source problems of this type. Our studies
will focus on a very important physical scenario, assuming that the pointwise mea-
surement data is collected on a set of distributed sensors located at \{ xi\} ni=1 (xi \not = xj
for i \not = j) inside the physical domain \Omega [3, 20, 5, 27, 33, 35, 36]. We assume that the
measurements come with noise and take the form

(2.1) mi = (Sf\ast )(xi) + ei, i = 1, 2, . . . , n,

where e = (e1, e2, . . . , en)
T is the data noise vector, with \{ ei\} ni=1 being independent

and identically distributed random variables on a probability space (X,\scrF ,\BbbP ). We
shall denote m = (m1,m2, . . . ,mn)

T to be the vector of scattering data. Throughout
this work, we write \BbbE [A] for the expectation of a random variable A.

We look for an approximate solution fn of the unknown source function f\ast 

through the least-squares regularized minimization:

(2.2) min
f\in X

1

n

n\sum 
i=1

| (Sf)(xi) - mi| 2 + \lambda n\| f\| 2X ,

where \lambda n > 0 is called a regularization parameter.
We shall consider that the set of discrete points \{ xi\} ni=1 are scattered but quasi-

uniformly distributed in \Omega ; i.e., there exists a constant B > 0 such that dmax/dmin \leq 
B, where dmax and dmin are defined by

(2.3) dmax = sup
x\in \Omega 

inf
1\leq i\leq n

| x - xi| and dmin = inf
1\leq i \not =j\leq n

| xi  - xj | .
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For any u, v \in C(\=\Omega ) and y \in \BbbR n, we define

(y, v)n =
1

n

n\sum 
i=1

yiv(xi), (u, v)n =
1

n

n\sum 
i=1

u(xi)v(xi),

and the empirical seminorm \| u\| n = (
\sum n
i=1 u

2(xi)/n)
1/2 for any u \in C(\=\Omega ).

Throughout the work, we consider two kinds of random noises \{ ei\} ni=1,

(R1) \{ ei\} ni=1 are independent random variables satisfying \BbbE [ei] = 0 and \BbbE [e2i ] \leq \sigma 2;
(R2) \{ ei\} ni=1 are independent sub-Gaussian random variables with parameter \sigma ,

and provide two different techniques to analyze the stochastic convergence and a
practical approach to choose the parameter \lambda n in each case. We study the convergence
under the expectation \BbbE in the case (R1) and establish a stronger convergence in the
case (R2), where the errors have exponential decay tails.

2.1. Stochastic convergence for noisy data of variables with bounded
variance. We consider the measurement data of type (R1) in this subsection and
study the stochastic convergence of the error under the expectation \BbbE .

Assumption 2.1. We assume the following:
(1) There exists a constant \beta > 1 such that for all u \in Y ,

(2.4) \| u\| 2L2(\Omega ) \leq C(\| u\| 2n + n - \beta \| u\| 2Y ), \| u\| 2n \leq C(\| u\| 2L2(\Omega ) + n - \beta \| u\| 2Y ).

(2) The eigenvalues, 0 < \eta 1 \leq \eta 2 \leq \cdot \cdot \cdot , of the eigenvalue problem

(\psi , v)X = \eta (S\psi , Sv) \forall v \in X(2.5)

satisfy that \eta k \geq Ck\alpha , k = 1, 2, . . . , for some constant C depending only on the
operator S : X \rightarrow Y . The constant \alpha satisfies 1 < \alpha \leq \beta .

We remark that the eigenvalue problem (2.5) is equivalent to the eigenvalue prob-
lem S\ast S\psi = \lambda \psi in X with \lambda = \eta  - 1, where S\ast : L2(\Omega ) \rightarrow X is the adjoint operator
of S : X \rightarrow L2(\Omega ). Since Y is assumed to be compactly embedded into L2(\Omega ), the
operator S is compact. By means of the spectral theorem of compact self-adjoint op-
erators (see, e.g., [30, Theorem 3, sect. 28] and [34, Theorem 2.36]) and the fact that
the null space N(S) = \{ 0\} , there exist the eigenvalues \lambda 1 \geq \lambda 2 \geq \cdot \cdot \cdot for the compact
operator S\ast S : X \rightarrow X, counted according to possible multiplicity, and the corre-
sponding eigenfunctions \{ \phi k\} \infty k=1 such that \{ \phi k\} \infty k=1 forms a complete orthonormal
basis of X, that is,

S\ast S\phi k = \lambda k\phi k in X, (\phi k, \phi l)X = \delta kl, (S\phi k, S\phi l) = \lambda k\delta kl, k, l = 1, 2, . . . ,(2.6)

where \delta kl is the Kronecker delta function. The condition \alpha > 1 in Assumption
2.1 then implies that S : X \rightarrow L2(\Omega ) is a Hilbert--Schmidt operator (see, e.g., [30,
section 30.8]).

We also remark that the restriction \alpha \leq \beta in Assumption 2.1 can be removed
by checking the detailed proof of Theorem 2.3 since we only need a lower bound of
\rho k \geq Cmin\{ k\alpha , n\beta \} from Lemma 2.2 to prove the variance bound. In this case,
Theorem 2.3 will depend on \beta consequently.

The following observation is inspired by [41], where it was shown that the solution
of a thin plate spline smoother model is attained in a finite-dimensional subset.
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Lemma 2.1. For a given m \in \BbbR n, let f be the solution to the optimization problem

(2.7) min
f\in X,(Sf)(xi)=mi

\| f\| 2X ;

then f \in Vn, where Vn is an n-dimensional subset of X.

Proof. Let V be a subset of X such that

V = \{ v \in X : (Sv)(xi) = 0, i = 1, 2, . . . , n\} .

Define the projection operator PV : X \rightarrow V ,

(PV [f ], v)X = (f, v)X \forall v \in V.

Choose \phi i \in X such that (S\phi i)(xj) = \delta ij . Let \psi i =  - PV [\phi i] + \phi i and Vn =
span\{ \psi 1, . . . , \psi n\} . We can easily check that (S\psi i)(xj) = \delta ij also holds. For any
f \in X, define the interpolation operator I:

If =

n\sum 
i=1

(Sf)(xi)\psi i.

We can easily see that If \in Vn and f  - If \in V , and hence we derive

(f  - If, If)X = (f  - If,

n\sum 
i=1

(Sf)(xi)(\phi i  - PV [\phi i]))X

=

n\sum 
i=1

(Sf)(xi)(f  - If, \phi i  - PV [\phi i])X = 0 ,

where we have used the fact that (v, \phi i  - PV [\phi i])X = 0 for all v \in V .
We see directly from the above equality that (If, If)X \leq (f, f)X , and hence we

have

min
f\in Vn,(Sf)(xi)=mi

\| f\| 2X = min
f\in X,Sf(xi)=mi

\| f\| 2X .

This completes the proof.

Lemma 2.2. Let Assumption 2.1 be fulfilled, and let Vn be defined as in Lemma
2.1. Then the eigenvalue problem

(2.8) (\psi , v)X = \rho (S\psi , Sv)n \forall v \in Vn

has n eigenvalues \rho 1 \leq \rho 2 \leq \cdot \cdot \cdot \leq \rho n, and all the eigenfunctions form an orthogonal
basis of Vn with respect to the norm \| S \cdot \| n. Moreover, there exists a constant C > 0
independent of k such that \rho k \geq Ck\alpha for k = 1, 2, . . . , n.

Proof. Consider Vn = span\{ \psi i\} ni=1 as defined in the proof of Lemma 2.1, and
(S\psi i)(xj) = \delta ij . We can write \psi =

\sum n
i=1(S\psi )(xi)\psi i for any \psi \in Vn. This implies

\| S \cdot \| n is a norm of Vn. Therefore, the eigenvalue problem (2.8) is equivalent to a
matrix eigenvalue problem \BbbA \Psi = \rho \BbbB \Psi for \Psi \in Rn, where \BbbA ,\BbbB \in Rn\times n are two
symmetric positive definite matrices. Thus the eigenvalue problem (2.8) has n finite
eigenvalues \rho 1 \leq \rho 2 \leq \cdot \cdot \cdot \leq \rho n and all eigenfunctions form an orthogonal basis of Vn
with respect to the norm \| S \cdot \| n.
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We are now ready to give a lower bound of the eigenvalues \rho k. Using the min-max
principle of the Rayleigh quotient for the eigenvalues and (2.4), we can derive

\rho k = min
dim(X)=k,X\subset Vn

max
u\in X

(u, u)X
(Su, Su)n

\geq C min
dim(X)=k,X\subset Vn

max
u\in X

(u, u)X
(Su, Su) + n - \beta (u, u)X

\geq C min
dim(X)=k,X\subset L2(\Omega )

max
u\in X

(u, u)X
(Su, Su) + n - \beta (u, u)X

= C
1

\eta  - 1
k + n - \beta 

\geq C
1

k - \alpha + n - \beta 
,

where we have used the fact that \eta k \geq Ck\alpha by Assumption 2.1. Now k\alpha n - \beta \leq 
n\alpha  - \beta \leq 1 for all k \leq n and \alpha \leq \beta . We conclude that \rho k \geq Ck\alpha . This completes the
proof.

Theorem 2.3. Let Assumption 2.1 be fulfilled, and let fn \in X be the unique
solution of (2.2). Then there exist constants \lambda 0 > 0 and C > 0 such that for any
\lambda n \leq \lambda 0,

\BbbE 
\bigl[ 
\| Sfn  - Sf\ast \| 2n

\bigr] 
\leq C\lambda n\| f\ast \| 2X + C\sigma 2/(n\lambda 1/\alpha n ),(2.9)

\BbbE 
\bigl[ 
\| fn  - f\ast \| 2X

\bigr] 
\leq C\| f\ast \| 2X + C\sigma 2/(n\lambda 1+1/\alpha 

n ).(2.10)

Proof. By deriving the necessary condition of the quadratic minimization (2.2),
we can readily see that the unique minimizer fn \in X satisfies the variational equation

(2.11) \lambda n(fn, v)X + (Sfn, Sv)n = (m,Sv)n \forall v \in X.

For any v \in X, we introduce the energy norm \| | v\| | 2\lambda n
:= \lambda (v, v)X + \| Sv\| 2n. By taking

v = fn  - f\ast in (2.11), along with (2.1), we obtain

(2.12) | \| fn  - f\ast | \| \lambda n
\leq \lambda 1/2n \| f\ast \| X + sup

v\in L2(\Omega )

(e, Sv)n
\| | v\| | \lambda n

.

It remains to estimate the supremum term in (2.12). Using Lemma 2.1, we can
rewrite this supremum term equivalently as

sup
v\in X

(e, Sv)2n
\| | v\| | 2\lambda n

= sup
v\in X

(e, Sv)2n
\lambda n(v, v)X + \| Sv\| 2n

\leq sup
v\in X

(e, Sv)2n
\lambda nminu\in X,Su(xi)=Sv(xi)(u, u)X + \| Sv\| 2n

= sup
v\in X

(e, Sv)2n
\lambda nminu\in Vn,Su(xi)=Sv(xi)(u, u)X + \| Sv\| 2n

= sup
v\in Vn

(e, Sv)2n
\lambda n(v, v)X + \| Sv\| 2n

.

Let \rho 1 \leq \rho 2 \leq \cdot \cdot \cdot \leq \rho n be the eigenvalues of the problem

(2.13) (\psi , v)X = \rho (S\psi , Sv)n \forall v \in Vn,
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with the corresponding eigenfunctions \{ \psi k\} nk=1, which is an orthonormal basis of
Vn under the inner product (S\cdot , S\cdot )n. Thus (S\psi k, S\psi l)n = \delta kl and, consequently,
(\psi k, \psi l)X = \rho k\delta kl, k, l = 1, 2, . . . , n.

Now for any v \in Vn, we have the expansion v(x) =
\sum n
k=1 vk\psi k(x), where vk =

(Sv, S\psi k)n for k = 1, 2, . . . , n. Thus \| | v\| | 2\lambda n
=
\sum n
k=1(\lambda n\rho k + 1)v2k. By the Cauchy--

Schwarz inequality we can readily get

(e, Sv)2n =
1

n2

n\sum 
i=1

ei

\Biggl( 
n\sum 
k=1

vk\psi k(xi)

\Biggr) 
=

1

n2

n\sum 
k=1

vk

\Biggl( 
n\sum 
i=1

ei\psi k(xi)

\Biggr) 

\leq 1

n2

n\sum 
k=1

(1 + \lambda n\rho k)v
2
k \cdot 

n\sum 
k=1

(1 + \lambda n\rho k)
 - 1

\Biggl( 
n\sum 
i=1

ei(S\psi k)(xi)

\Biggr) 2

.

This, along with the fact that \| S\psi k\| n = 1, implies

\BbbE 

\Biggl[ 
sup
v\in Vn

(e, Sv)2n
\| | v\| | 2\lambda n

\Biggr] 
\leq 1

n2

n\sum 
k=1

(1 + \lambda n\rho k)
 - 1\BbbE 

\Biggl( 
n\sum 
i=1

ei(S\psi k)(xi)

\Biggr) 2

\leq \sigma 2n - 1
n\sum 
k=1

(1 + \lambda n\rho k)
 - 1,

where we have used in the last estimate the fact that the random variables \{ ei\} ni=1

are independent and identically distributed, i.e., \BbbE [eiej ] = \delta ij .
Now by Assumption 2.1 we readily derive

\BbbE 

\Biggl[ 
sup
v\in X

(e, Sv)2n
\| | v\| | 2\lambda n

\Biggr] 
\leq C\sigma 2n - 1

n\sum 
k=1

(1 + \lambda nk
\alpha ) - 1 \leq C\sigma 2n - 1

\int \infty 

1

(1 + \lambda nt
\alpha ) - 1dt.

It is easy to see that\int \infty 

1

(1 + \lambda nt
\alpha ) - 1dt = \lambda  - 1/\alpha 

n

\int \infty 

\lambda 
1/\alpha 
n

(1 + s\alpha ) - 1ds \leq C\lambda  - 1/\alpha 
n .

This completes the proof by using (2.12).

We can observe that Theorem 2.3 presents the expectational convergence of the
output error Sfn  - Sf\ast , but only the expectational boundedness of the source error
fn  - f\ast in the X-norm. Next, we shall show that we can achieve the expectational
convergence of the source error fn - f\ast in a weaker topology. To do so, we consider the
eigensystem \{ (\lambda k = \eta  - 1

k , \phi k)\} \infty k=1 of the compact operator S\ast S : X \rightarrow X satisfying
(2.6) and define a subspace of X:

W =

\Biggl\{ 
v \in X :

\infty \sum 
k=1

\eta 
1/2
k (v, \phi k)

2
X <\infty 

\Biggr\} 
(2.14)

with the norm \| v\| W := (
\sum \infty 
k=1 \eta 

1/2
k (v, \phi k)

2
X)1/2 for all v \in W . One can see that

W = R[(S\ast S)1/4], i.e., the range of the operator (S\ast S)1/4. We recall that for \theta > 0,
X\theta = R[(S\ast S)\theta ] is called the source sets in the literature [14, p. 58].

Corollary 2.4. Let Assumption 2.1 be satisfied and let \lambda n \geq n - \beta for all n \geq 1.
Then

\BbbE 
\bigl[ 
\| fn  - f\ast \| 2W \prime 

\bigr] 
\leq C\lambda 1/2n \| f\ast \| 2X + C\sigma 2/(n\lambda 1/2+1/\alpha 

n ),
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where W \prime is the dual space of W with respect to X.

Proof. By (2.6), for any v \in X, we have the expansion v =
\sum \infty 
k=1 vk\phi k with vk =

(v, \phi k)X . We can directly check that \| v\| 2X =
\sum \infty 
k=1 v

2
k and \| Sv\| 2L2(\Omega ) =

\sum \infty 
k=1 \eta 

 - 1
k v2k.

Then for any g \in X, g =
\sum \infty 
k=1 gk\phi k, with gk = (g, \phi k)X , we can obtain by the

Cauchy--Schwarz inequality that

\| g\| W \prime = sup
0\not =v\in Z

| (g, v)X | 
\| g\| W

= sup
0\not =g\in Z

| 
\sum \infty 
k=1 gkvk| 
\| g\| W

\leq 

\Biggl( \infty \sum 
k=1

\eta 
 - 1/2
k v2k

\Biggr) 1/2

\leq \| Sv\| 1/2L2(\Omega )\| v\| 
1/2
X .

Taking g = f\ast  - fn in the above inequality, we obtain

(2.15) \| f\ast  - fn\| 2W \prime \leq \| Sf\ast  - Sfn\| L2(\Omega )\| f\ast  - fn\| X .

From Assumption 2.1 (1), the boundedness of the operator S : X \rightarrow Y , and the
assumption that \lambda n \geq n - \beta , we deduce

\| Sf\ast  - Sfn\| 2L2(\Omega ) \leq C(\| Sf\ast  - Sfn\| 2n + n - \beta \| f\ast  - fn\| 2X)

\leq C(\| Sf\ast  - Sfn\| 2n + \lambda n\| f\ast  - fn\| 2X).

Using this estimate, we derive from (2.15) that

\| f\ast  - fn\| 2W \prime \leq C\lambda 1/2n \| f\ast  - fn\| 2X + C\lambda  - 1/2
n \| Sf\ast  - Sfn\| 2n,(2.16)

which, together with (2.9) and (2.10), completes the proof of the corollary.

2.2. Stochastic convergence for noisy data being sub-Gaussian random
variables. We consider in this section the case (R2) for the data (2.1), that is,

(2.17) \BbbE 
\Bigl[ 
exp(\lambda (ei  - \BbbE [ei]))

\Bigr] 
\leq exp

\Bigl( 1
2
\sigma 2\lambda 2

\Bigr) 
\forall \lambda \in \BbbR ,

and study the stochastic convergence of the error \| Sf\ast  - Sfn\| n and \| f\ast  - fn\| W \prime .
We first give a brief introduction of sub-Gaussian random variables and the theory

of empirical processes that will be used in our subsequent analysis; see [12, 43, 42] for
more details. The probability distribution function of a sub-Gaussian random variable
Z has an exponentially decaying tail, that is,

(2.18) \BbbP (| Z  - \BbbE [Z]| \geq z) \leq 2 exp
\Bigl( 
 - z2

2\sigma 2

\Bigr) 
\forall z > 0.

We shall also use the Orlicz norm. For a monotonically increasing convex function
\psi satisfying \psi (0) = 0, the Orlicz norm \| Z\| \psi of a random variable Z is defined as

(2.19) \| Z\| \psi = inf

\biggl\{ 
C > 0 : \BbbE 

\biggl[ 
\psi 

\biggl( 
| X| 
C

\biggr) \biggr] 
\leq 1

\biggr\} 
.

For most of our analyses, we will use the Orlicz norm \| Z\| \psi 2
, with \psi 2(t) = et

2  - 1 for
t > 0. Through some calculations, we have the estimate (see, e.g., [12, (4.5)])

(2.20) \BbbP (| Z| \geq z) \leq 2 exp

\Biggl( 
 - z2

\| Z\| 2\psi 2

\Biggr) 
\forall z > 0.
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Consider a semimetric space \BbbT with a semimetric \sansd and the random process
\{ Zt : t \in \BbbT \} indexed by \BbbT . The random process \{ Zt : t \in \BbbT \} is called sub-Gaussian if

(2.21) \BbbP (| Zs  - Zt| > z) \leq 2 exp

\biggl( 
 - z2

2 \sansd (s, t)2

\biggr) 
\forall s, t \in \BbbT , z > 0.

For a semimetric space (\BbbT , \sansd ) and \varepsilon > 0, the covering number N(\varepsilon ,\BbbT , \sansd ) is the mini-
mum number of \varepsilon -balls that cover \BbbT , and logN(\varepsilon ,\BbbT , \sansd ) is called the covering entropy
that is a crucial quantity to characterize the complexity of space \BbbT . We assume the
following.

Assumption 2.2. For a unit ball SY in Y and any \varepsilon > 0, there exists a constant
\gamma < 2 such that the covering entropy is controlled by

logN(\varepsilon , SY, \| \cdot \| L\infty (\Omega )) \leq C\varepsilon  - \gamma .

Important estimates of the covering entropy for Sobolev spaces can be found in
[8]. We shall often need the following maximal inequality [43, section 2.2.1].

Lemma 2.5. If \{ Zt : t \in \BbbT \} is a separable sub-Gaussian random process, then it
holds for some constant K > 0 that

\| sup
s,t\in \BbbT 

| Zs  - Zt| \| \psi 2
\leq K

\int diam\BbbT 

0

\sqrt{} 
logN

\Bigl( \varepsilon 
2
,\BbbT , \sansd 

\Bigr) 
d\varepsilon .

The useful results in the following two lemmas can be found in [12].

Lemma 2.6. \{ En(f) := (e, Sf)n : f \in X\} is a sub-Gaussian random process with
respect to the semidistance \sansd (f, v) = \sigma n - 1/2\| Sf  - Sv\| n for any f, v \in X.

Lemma 2.7. Let C1 > 0 and K1 > 0 be two constants, and let Z be any random
variable satisfying

\BbbP (| Z| > \alpha (1 + z)) \leq C1 exp

\biggl( 
 - z2

K2
1

\biggr) 
\forall \alpha > 0, z \geq 1 .

Then there exists a constant C(C1,K1) > 0 depending on C1 and K1 such that

\| Z\| \psi 2 \leq C(C1,K1)\alpha .

Theorem 2.8. Let Assumption 2.2 be fulfilled, let \rho 0 = \| f\ast \| X + \sigma n - 1/2, and let

fn \in X be the solution of problem (2.2). If we take \lambda 
1/2+\gamma /4
n = O(\sigma n - 1/2\rho  - 1

0 ), then
there exists a constant C > 0 such that

\BbbP (\| Sfn  - Sf\ast \| n \geq \lambda 1/2n \rho 0z) \leq 2 e - Cz
2

and \BbbP (\| fn\| X \geq \rho 0z) \leq 2 e - Cz
2

.

Proof. By using the estimate (2.20), it suffices to prove

(2.22) \| \| Sfn  - Sf\ast \| n\| \psi 2
\leq C\lambda 1/2n \rho 0 and \| \| fn\| X\| \psi 2

\leq C\rho 0.

Because of their similarity, we will prove only the first estimate in (2.22) by the peeling
argument. It follows from (2.2) that

(2.23) \| Sfn  - Sf\ast \| 2n + \lambda n\| fn\| 2X \leq 2(e, Sfn  - Sf\ast )n + \lambda n\| f\ast \| 2X .
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Let \delta > 0, \rho > 0 be two constants to be determined later, and we set for i, j \geq 1

(2.24) A0 = [0, \delta ), Ai = [2i - 1\delta , 2i\delta ), B0 = [0, \rho ), Bj = [2j - 1\rho , 2j\rho ) .

For i, j \geq 0, we further define

Fij = \{ v \in X : \| Sv\| n \in Ai , \| v\| X \in Bj\} .

Then we can readily see

(2.25) \BbbP (\| Sfn  - Sf\ast \| n > \delta ) \leq 
\infty \sum 
i=1

\infty \sum 
j=0

\BbbP (fn  - f\ast \in Fij).

Now we estimate \BbbP (fn  - f\ast \in Fij) for each pair \{ i, j\} . By Lemma 2.6, we know
\{ (e, Sv)n : v \in X\} is a sub-Gaussian random process with respect to the semidistance
\sansd (f, v). With this semidistance, it is easy to see that diam(Fij) \leq 2\sigma n - 1/2 \cdot 2i\delta . Then
we can deduce by using Lemma 2.5 that

\| sup
f - f\ast \in Fij

| (e, Sf  - Sf\ast )n| \| \psi 2 \leq K

\int \sigma n - 1/2\cdot 2i+1\delta 

0

\sqrt{} 
logN

\Bigl( \varepsilon 
2
, Fij , \sansd 

\Bigr) 
d\varepsilon 

= K

\int \sigma n - 1/2\cdot 2i+1\delta 

0

\sqrt{} 
logN

\Bigl( \varepsilon 

2\sigma n - 1/2
, Fij , \| S \cdot \| n

\Bigr) 
d\varepsilon .

By Assumption 2.2, we have the estimate for the covering entropy,

logN
\Bigl( \varepsilon 

2\sigma n - 1/2
, Fij , \| S \cdot \| n

\Bigr) 
\leq logN

\Bigl( \varepsilon 

2\sigma n - 1/2
, Fij , \| S \cdot \| L\infty (\Omega )

\Bigr) 
= logN

\Bigl( \varepsilon 

2\sigma n - 1/2
, S(Fij), \| \cdot \| L\infty (\Omega )

\Bigr) 
\leq C

\biggl( 
2\sigma n - 1/2 \cdot 2j\rho 

\varepsilon 

\biggr) \gamma 
,

where we have used the fact that S(Fij) is included in the ball in Y of radius C(2j\rho )
since S : X \rightarrow Y is a bounded operator. Using this, we can further derive

\| sup
f - f\ast \in Fij

| (e, Sf  - Sf\ast )n\| \psi 2
\leq K

\int \sigma n - 1/2\cdot 2i+1\delta 

0

\biggl( 
2\sigma n - 1/2 \cdot 2j\rho 

\varepsilon 

\biggr) \gamma /2
d\varepsilon 

= C\sigma n - 1/2(2j\rho )\gamma /2(2i\delta )1 - \gamma /2.(2.26)

Then by using the estimates (2.23) and (2.20), we have for i, j \geq 1,

\BbbP (fn  - f\ast \in Fij) \leq \BbbP 

\Biggl( 
22(i - 1)\delta 2 + \lambda n2

2(j - 1)\rho 2 \leq 2 sup
f - f\ast \in Fij

| (e, f  - f\ast )n| + \lambda n\rho 
2
0

\Biggr) 

= \BbbP 

\Biggl( 
2 sup
f - f\ast \in Fij

| (e, Sf  - Sf\ast )n| \geq 22(i - 1)\delta 2 + \lambda n2
2(j - 1)\rho 2  - \lambda n\rho 

2
0

\Biggr) 

\leq 2 exp

\Biggl[ 
 - 1

C\sigma 2n - 1

\biggl( 
22(i - 1)\delta 2 + \lambda n2

2(j - 1)\rho 2  - \lambda n\rho 
2
0

(2i\delta )1 - \gamma /2(2j\rho )\gamma /2

\biggr) 2
\Biggr] 
.

Now for z \geq 1, we take \delta 2 = \lambda n\rho 
2
0(1 + z)2, \rho = \rho 0 . Then with the choice that

\lambda 
1
2+

\gamma 
4

n = O(\sigma n - 1/2\rho  - 1
0 ) and by direct computing, we readily obtain for i, j \geq 1 that

(2.27) \BbbP (fn  - f\ast \in Fij) \leq 2 exp

\Biggl[ 
 - C

\biggl( 
22(i - 1)z(1 + z) + 22(j - 1)

(2i(1 + z))1 - \gamma /2(2j)\gamma /2

\biggr) 2
\Biggr] 
.
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To simplify the above estimate, we use Young's inequality that ab \leq ap/p+ bq/q
for any a, b > 0 and p, q > 1 such that p - 1 + q - 1 = 1 to obtain

(2i(1 + z))1 - \gamma /2(2j)\gamma /2 \leq C((1 + z)2i + 2j).

Therefore we get from (2.27) for i, j \geq 1 that

\BbbP (fn  - f\ast \in Fij) \leq 2 exp
\bigl[ 
 - C(22iz2 + 22j)

\bigr] 
.

Similarly, one can show for i \geq 1, j = 0 that

\BbbP (fn  - f\ast \in Fi0) \leq 2 exp
\bigl[ 
 - C(22iz2)

\bigr] 
.

Collecting the above estimates for all i, j \geq 0 and using the facts that

\infty \sum 
j=1

exp( - C(22j)
\bigr) 
\leq exp( - C) < 1 and

\infty \sum 
i=1

exp( - C(22iz2)
\bigr) 
\leq exp( - Cz2),

we come to the conclusion that
\infty \sum 
i=1

\infty \sum 
j=0

\BbbP (fn  - f\ast \in Fij) \leq 2

\infty \sum 
i=1

\infty \sum 
j=1

exp( - C(22iz2 + 22j)) + 2

\infty \sum 
i=1

exp( - C(22iz2)).

The above estimate can be further bounded by 4exp( - Cz2). Using this, we get from
(2.25) that

(2.28) \BbbP (\| Sfn  - Sf\ast \| n > \lambda 1/2n \rho 0(1 + z)) \leq 4 exp( - Cz2) \forall z \geq 1.

This, along with Lemma 2.7, implies that \| \| Sfn - Sf\ast \| n\| \psi 2
\leq C\lambda 

1/2
n \rho 0, which is the

first estimate in (2.22). The second estimate is similar to the first one by taking i \geq 0
and j \geq 1 in the summation above (2.28).

Using the subspace W defined in (2.14), we can derive the following stochastic
convergence of the error \| fn  - f\ast \| W \prime .

Corollary 2.9. Let Assumptions 2.1 and 2.2 be satisfied. If \lambda n \geq n - \beta , we have

\BbbP (\| fn  - f\ast \| W \prime \geq \lambda 1/4n \rho 0z) \leq 2 e - Cz
2

.

Proof. By (2.16) and (2.22), we readily deduce

\| \| f\ast  - fn\| W \prime \| \psi 2
\leq C\lambda 1/4n \| \| f\ast  - fn\| X\| \psi 2

+ C\lambda  - 1/4
n \| \| Sf\ast  - Sfn\| n\| \psi 2

\leq C\rho 0\lambda 
1/4
n .

Then the desired estimate is a direct consequence of (2.20).

2.3. Convergence of the discrete solutions. In this section we consider the
approximation to the optimal control problem (2.2), i.e.,

min
f\in X

\| Sf  - m\| 2n + \lambda n\| f\| 2X .

We can directly verify that the solution fn \in X satisfies the weak formulation

(2.29) \lambda n(fn, v)X + (Sfn, Sv)n = (m,Sv)n \forall v \in X .

Let Vh \subset X and Yh \subset C(\=\Omega ) be two discrete function spaces (e.g., finite element
spaces) with dimensions Nh and Mh, respectively, and let Sh : X \rightarrow Yh be the
discrete approximation of the operator S : X \rightarrow Y . We make the following standard
assumptions on the discretization space Vh and the approximation operator Sh.
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Assumption 2.3. For the discrete operator Sh : X \rightarrow Yh, the following hold:
(1) There exists an error estimate e(h) such that the discrete operator Sh satisfies

\| Sf  - Shf\| 2n \leq Ce(h)\| f\| 2X \forall f \in X .

(2) For any f \in X, there exists vh \in Vh such that

\lambda n\| f  - vh\| 2X + \| Shf  - Shvh\| 2n \leq C(\lambda n + e(h))\| f\| 2X .

We can now look for the discrete solution to problem (2.2):

min
fh\in Vh

\| Shfh  - m\| 2n + \lambda n\| fh\| 2X .

Obviously, fh satisfies the weak formulation:

(2.30) \lambda n(fh, vh)X + (Shfh, Shvh)n = (m,Shvh)n \forall vh \in Vh.

2.3.1. Convergence for noisy data from random variables with bounded
variance. We study in this section the expectational convergence of the discrete
solution to (2.30) in the case (R1) for the data (2.1), with the main results stated
below.

Theorem 2.10. Let Assumptions 2.1 and 2.3 be fulfilled, and let fh \in Vh be the
solution of (2.30). Then there exist constants \lambda 0 > 0 and C > 0 such that for any
\lambda n \leq \lambda 0,

\BbbE 
\bigl[ 
\| Sf\ast  - Shfh\| 2n

\bigr] 
\leq C(\lambda n + e(h))\| f\ast \| 2X + C

\biggl[ 
1 +

e(h)

\lambda n
+
Nhe(h)

\lambda 
1 - 1/\alpha 
n

\biggr] 
\sigma 2

n\lambda 
1/\alpha 
n

,(2.31)

\BbbE 
\bigl[ 
\| f\ast  - fh\| 2X

\bigr] 
\leq C

\lambda n + e(h)

\lambda n
\| f\ast \| 2X + C

\biggl[ 
1 +

e(h)

\lambda n
+
Nhe(h)

\lambda 
1 - 1/\alpha 
n

\biggr] 
\sigma 2

n\lambda 
1+1/\alpha 
n

.(2.32)

In particular, if e(h) \leq C\lambda n and Nhe(h) \leq C\lambda 
1 - 1/\alpha 
n , we have

\BbbE 
\bigl[ 
\| Sf\ast  - Shfh\| 2n

\bigr] 
\leq C\lambda n\| f\ast \| 2X + C\sigma 2/(n\lambda 1/\alpha n ),(2.33)

\BbbE 
\bigl[ 
\| f\ast  - fh\| 2X

\bigr] 
\leq C\| f\ast \| 2X + C\sigma 2/(n\lambda 1+1/\alpha 

n ).(2.34)

Proof. For any f, v \in X, we denote ah(f, v) = \lambda n(f, v)X + (Shf, Shv)n and
\| f\| 2ah = ah(f, f). For any wh \in Vh, by taking v = wh in (2.29) and vh = wh in
(2.30), we readily obtain

ah(fh  - vh, wh) = ah(fn  - vh, wh) + ((S  - Sh)fn, Shwh)n + (Sf\ast  - Sfn, (Sh  - S)wh)n

+ (e, (Sh  - S)wh)n :\equiv ah(fn  - vh, wh) + F (wh) \forall vh, wh \in Vh.

By the triangle inequality, we can further derive

(2.35) \| fn  - fh\| ah \leq C inf
vh\in Vh

\| fn  - vh\| ah + C sup
wh\in Vh

| F (wh)| 
\| wh\| ah

.

But from Assumption 2.3 (1), we have

sup
wh\in Vh

| ((S  - Sh)fn, Shwh)n| 
\| wh\| ah

\leq \| Sfn  - Shfn\| n \leq Ce(h)1/2\| fn\| X ,(2.36)

sup
wh\in Vh

| (Sf\ast  - Sfn, (Sh  - S)wh)n| 
\| wh\| ah

\leq C\| Sf\ast  - Sfn\| n
e(h)1/2

\lambda 
1/2
n

.(2.37)
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Now we estimate \BbbE (supwh\in Vh
| (e, Swh  - Shwh)n| 2/\| wh\| 2ah). Let \{ \psi k\} Nh

k=1 be the
orthogonal basis of Vh (with Nh = dim(Vh)) such that (\psi i, \psi j) = \delta ij . Then for any

wh \in Vh, we have wh =
\sum Nh

j=1(wh, \psi j)\psi j , and \| wh\| 2L2(\Omega ) =
\sum Nh

j=1(wh, \psi j)
2. Applying

the Cauchy--Schwarz inequality,

(e, (S  - Sh)wh)
2
n \leq 1

n2

Nh\sum 
j=1

(wh, \psi j)
2
Nh\sum 
j=1

\Biggl( 
n\sum 
i=1

ei(S  - Sh)\psi j(xi)

\Biggr) 2

=
1

n2
\| wh\| 2L2(\Omega )

Nh\sum 
j=1

\Biggl( 
n\sum 
i=1

ei(S  - Sh)\psi j(xi)

\Biggr) 2

,

we derive

\BbbE 
\biggl( 

sup
wh\in Vh

| (e, Swh  - Shwh)n| 2

\| wh\| 2ah

\biggr) 
\leq 1

\lambda nn2

Nh\sum 
j=1

\BbbE 

\Biggl( 
n\sum 
i=1

ei(S  - Sh)\psi j(xi)

\Biggr) 2

(2.38)

=
1

\lambda nn

Nh\sum 
j=1

\sigma 2\| (S  - Sh)\psi j\| 2n \leq C
\sigma 2

\lambda nn
Nhe(h).

This completes the desired estimates by substituting (2.36), (2.37), (2.38) into (2.35)
and using Assumption 2.3 (2) and Theorem 2.3.

Corollary 2.11. Let W be defined as in (2.14). Then it holds under Assump-
tions 2.1--2.3 and \lambda n \geq n - \beta that

\BbbE 
\bigl[ 
\| f\ast  - fh\| 2W \prime 

\bigr] 
\leq C(\lambda 1/2n + e1/2(h))

\lambda n + e(h)

\lambda n
\| f\ast \| 2X

+ C(\lambda 1/2n + e1/2(h))

\biggl[ 
1 +

e(h)

\lambda n
+
Nhe(h)

\lambda 
1 - 1/\alpha 
n

\biggr] 
\sigma 2

n\lambda 
1/\alpha 
n

.

Moreover, if e(h) \leq C\lambda n and Nhe(h) \leq C\lambda 
1 - 1/\alpha 
n , it holds that

\BbbE 
\bigl[ 
\| f\ast  - fh\| 2W \prime 

\bigr] 
\leq C\lambda 1/2n \| f\ast \| 2X + C\sigma 2/(n\lambda 1/2+1/\alpha 

n ).

Proof. By (2.15) and Assumption 2.1 (1), we can derive that

\| f\ast  - fh\| 2W \prime \leq \| Sf\ast  - Sfh\| L2(\Omega )\| f\ast  - fh\| X

\leq C
\Bigl( 
\| Sf\ast  - Sfh\| n + n - \beta /2\| f\ast  - fh\| X

\Bigr) 
\| f\ast  - fh\| X

\leq C
\Bigl( 
\| Sf\ast  - Shfh\| n + \| Shfh  - Sfh\| n + \lambda 1/2n \| f\ast  - fh\| X

\Bigr) 
\| f\ast  - fh\| X .

Then the corollary follows by applying the estimates (2.31), (2.32) and Assumption
2.3 (1) to the above estimate.

2.3.2. Convergence for noisy data being sub-Gaussian random vari-
ables. We consider in this subsection the convergence of the discrete solution in the
case (R2) for the data (2.1). We start by recalling the following lemma in [42, Corol-
lary 2.6] about the estimation of the covering entropy of finite-dimensional subsets.

Lemma 2.12. Let G be a finite-dimensional subspace of X of dimension NG > 0
and GR = \{ f \in G : \| f\| X \leq R\} . Then it holds that

N(\varepsilon ,GR, \| \cdot \| X) \leq (1 + 4R/\varepsilon )NG \forall \varepsilon > 0.
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Lemma 2.13. Let Assumption 2.3 be fulfilled, and let Gh := \{ wh \in Vh : \| wh\| ah \leq 
1\} . Assume that e(h) \leq C\lambda n and Nhe(h) \leq C\lambda 

1 - \gamma /2
n . Then it holds that

\| sup
wh\in Gh

| (e, Swh  - Shwh)n| \| \psi 2 \leq C\sigma n - 1/2\lambda  - \gamma /4n .

Proof. By Lemma 2.6 we know that \{ \^En(vh) := (e, Swh  - Shwh)n \forall wh \in Gh\} 
is a sub-Gaussian random process with respect to the semidistance \^\sansd (vh, wh) =
\sigma n - 1/2\| (Svh  - Shvh) - (Swh  - Shwh)\| n. By Assumption 2.3 and the condition that
e(h) \leq C\lambda n, we derive for any wh \in Gh that \| Swh  - Shwh\| n \leq Ce1/2(h)\| wh\| X \leq 
Ce1/2(h)\lambda 

 - 1/2
n \leq C. This implies that the diameter of Gh is bounded by C\sigma n - 1/2.

Now we deduce by the maximal inequality in Lemma 2.5 that

(2.39) \| sup
wh\in Gh

| (e, Swh  - Shwh)n| \| \psi 2
\leq K

\int C\sigma n - 1/2

0

\sqrt{} 
logN

\Bigl( \varepsilon 
2
, Gh, \^\sansd 

\Bigr) 
d\varepsilon .

By Assumption 2.3, we know

\^\sansd (vh, wh) \leq C\sigma n - 1/2e1/2(h)\| vh  - wh\| X \forall vh, wh \in Vh.

Thus we can see that

(2.40) logN
\Bigl( \varepsilon 
2
, Gh, \^\sansd 

\Bigr) 
= logN

\biggl( 
\varepsilon 

C\sigma n - 1/2e1/2(h)
, Gh, \| \cdot \| X

\biggr) 
.

Now we estimate the covering entropy of Gh. First, we have \| wh\| X \leq \lambda 
 - 1/2
n for any

wh \in Gh. Noting the dimension Nh of Vh, we obtain by Lemma 2.12 and (2.40) that

logN
\Bigl( \varepsilon 
2
, Gh, \^\sansd 

\Bigr) 
\leq CNh(1 + \sigma n - 1/2e1/2(h)\lambda  - 1/2

n /\varepsilon ).

Inserting this estimate into (2.39), we obtain

\| sup
vh\in Gh

| (e, \^vh  - \Pi hvh)n| \| \psi 2
\leq C

\int C\sigma n - 1/2

0

\sqrt{} 
CNh(1 + \sigma n - 1/2e1/2(h)\lambda 

 - 1/2
n /\varepsilon ) d\varepsilon 

\leq C
\sqrt{} 
Nh\sigma n

 - 1/2e1/2(h)\lambda  - 1/2
n .

This completes the proof using the condition that Nhe(h) \leq C\lambda 
1 - \gamma /2
n .

The following theorem presents the main results of this subsection, where W is
the subspace defined in (2.14).

Theorem 2.14. Let Assumptions 2.2 and 2.3 be fulfilled, and let fh \in Vh be
the solution of (2.30). Denote \rho 0 = \| f\ast \| X + \sigma n - 1/2. If we take e(h) \leq C\lambda n,

Nhe(h) \leq C\lambda 
1 - \gamma /2
n , and \lambda 

1/2+\gamma /4
n = O(\sigma n - 1/2\rho  - 1

0 ), then there exists a constant C > 0
such that for any z > 0,

\BbbP (\| Shfh  - Sf\ast \| n \geq \lambda 1/2n \rho 0z) \leq 2e - Cz
2

and \BbbP (\| fh\| X \geq \rho 0z) \leq 2e - Cz
2

.

Moreover, if Assumption 2.1 is satisfied and \lambda n \geq n - \beta , it holds that

\BbbP (\| fh  - f\ast \| W \prime \geq \lambda 1/4n \rho 0z) \leq 2e - Cz
2

.
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Proof. We first derive from (2.35) that

\| \| fn  - fh\| ah\| \psi 2 \leq C
\bigm\| \bigm\| \bigm\| inf
vh\in Vh

\| fn  - vh\| ah
\bigm\| \bigm\| \bigm\| 
\psi 2

+ C
\bigm\| \bigm\| \bigm\| sup
wh\in Vh

| F (wh)| 
\| wh\| ah

\bigm\| \bigm\| \bigm\| 
\psi 2

.

But we know supwh\in Vh
| F (wh)| /\| wh\| ah = supwh\in Gh

| F (wh)| from the proof of Theo-
rem 2.10, and hence it suffices to estimate \| supwh\in Gh

| (e, Swh  - Shwh)n| \| \psi 2 . Then
the first two estimates of the theorem follow readily from (2.22), Lemma 2.13, the

assumption that \sigma n - 1/2 = O(\lambda 
1/2+\gamma /4
n \rho 0), and (2.20).

To show the estimate of \| f\ast  - fh\| W \prime , we use the last inequality in the proof of
Corollary 2.11 to obtain

\| f\ast  - fh\| W \prime \leq C\lambda 1/4n \| f\ast  - fh\| X + C\lambda  - 1/4
n (\| Sf\ast  - Shfh\| n + \| Shfh  - Sfh\| n).

Then the desired estimate follows by using (2.20). We omit the details.

3. An inverse nonstationary source problem. In this section, we apply the
theory developed in the previous section to study the regularized solutions to an
inverse nonstationary source problem associated with the heat conduction system

(3.1)

\Biggl\{ 
ut + Lu = F (x, t) in \Omega \times (0, T ),

u(x, t) = 0 on \partial \Omega \times (0, T ), u(x, 0) = 0 in \Omega ,

where L is a second order elliptic operator of the form Lu =  - \nabla \cdot (a(x)\nabla u)+c(x)u, and
\Omega \subset \BbbR d (d = 1, 2, 3) is a bounded domain with C2 boundary or a convex polyhedral
domain. We assume a \in C1(\=\Omega ), c \in C(\=\Omega ) with c(x) \geq 0 in \Omega , and that the source is
of the separable form F (x, t) = f(x)g(t) for (x, t) \in \Omega \times (0, T ), where the temporal
component g \in H1(0, T ) is known and satisfies that g(t) \geq 0 for all t \in (0, T ), while
f(x) is an unknown to be recovered.

For the subsequent analysis, we first recall some standard results for parabolic
equations (cf., e.g., [17, section 7.1]). For F \in H1(0, T ;L2(\Omega )), we know the solution
u to (3.1) satisfies \partial tu \in C([0, T ];L2(\Omega )) \cap L2(0, T ;H1

0 (\Omega )) and the a priori estimate

\| \partial tu\| C([0,T ];L2(\Omega )) \leq C\| F\| H1(0,T ;L2(\Omega )) \leq C\| f\| L2(\Omega ).

It follows then from (3.1) and the regularity theory of elliptic equations that u \in 
C([0, T ];H2(\Omega )) and there exists a constant C such that

(3.2) \| u\| C([0,T ];H2(\Omega )) \leq C\| f\| L2(\Omega ).

Let X = L2(\Omega ), Y = H2(\Omega ), and the forward operator S : X \rightarrow Y be defined by
Sf = u(\cdot , T ). By (3.2) we know that S : X \rightarrow Y is a bounded operator

\| Sf\| H2(\Omega ) \leq C\| f\| L2(\Omega ) \forall f \in L2(\Omega ) .

We are mainly interested in the following inverse nonstationary source problem:

(TIP) Given the measurement data of u(\cdot , t) at the terminal t = T , recover the
spatial source distribution f\ast (x) in the entire domain \Omega .

We focus on an important physical scenario, i.e., measurement data is collected
pointwise on a set of distributed sensors located at \{ xi\} ni=1 inside the domain \Omega 
[3, 20, 5, 27, 33, 35, 36]. Again, we assume the data is of the noisy form (2.1), where
\{ xi\} ni=1 is quasi-uniformly distributed in the sense of (2.3).

We then look for an approximate solution of the true source f\ast through the
following least-squares regularized minimization:

(3.3) min
f\in X

\| Sf  - m\| 2n + \lambda n\| f\| 2X .
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3.1. Stochastic convergence for the inverse heat source problem. In this
subsection we apply the results in section 2 to study the stochastic convergence of the
solution of problem (3.3) to the exact source f\ast . We first recall an important property
about the eigenvalue distribution for the elliptic operator L [2, 18].

Lemma 3.1. Suppose \Omega is a bounded domain in \BbbR d and a, c \in C0(\=\Omega ), c \geq 0.
Then the eigenvalue problem

(3.4) L\psi = \mu \psi in \Omega , \psi = 0 on \partial \Omega 

has a countable set of positive eigenvalues \mu 1 \leq \mu 2 \leq \cdot \cdot \cdot , with its corresponding
eigenfunctions \{ \phi k\} \infty k=1 forming an orthonormal basis of L2(\Omega ). Moreover, there exist
constants C1, C2 > 0 such that C1k

2/d \leq \mu k \leq C2k
2/d for all k = 1, 2, . . . .

With Lemma 3.1, we can derive the important spectral property of operator S.

Theorem 3.2. Let g \in H1(0, T ), g \geq 0 but g \not \equiv 0 in (0, T ). Then the null space
N(S) = \{ 0\} and the eigenvalue problem

(3.5) (\psi , v) = \rho (S\psi , Sv) \forall v \in X

has a countable set of positive eigenvalues 0 < \rho 1 \leq \rho 2 \leq \cdot \cdot \cdot . Moreover, there exists
a constant C > 0 such that \rho k \geq Ck4/d for all k = 1, 2, . . . .

Proof. We first consider the eigenvalue problem

(3.6) \psi = \eta S\psi .

Let \{ \phi k\} \infty k=1 be eigenfunctions of problem (3.4) which forms an orthogonal basis of
L2(\Omega ). We write f =

\sum \infty 
k=1 fk\phi k for a set of coefficients fk. Let u =

\sum \infty 
k=1 uk(t)\phi k

be the solution of problem (3.1). Plugging these two expressions of f and u into the
first equation of (3.1), we get by noting the fact that L\phi k = \mu k\phi k and comparing the
coefficients of \phi k on both sides of the equation that uk(0) = 0 and

u\prime k(t) + \mu kuk = fk g(t) in (0, T ) .

We can write the solution as uk(T ) = \alpha k fk, with \alpha k = e - \mu kT
\int T
0
e\mu ksg(s)ds. Since

g \geq 0 in (0, T ), we know \alpha 1 \geq \alpha 2 \geq \cdot \cdot \cdot > 0. Now if Sf = 0 for some f \in L2(\Omega ), then
uk(T ) = \alpha kfk = 0 for all k \geq 1, which implies fk = 0 for all k \geq 1. Hence f = 0, that
is, the null space of S is zero.

Moreover, we can easily see that | \alpha k| \leq C\mu  - 1
k . Noting that Sf = u(\cdot , T ) =\sum \infty 

k=1 uk(T )\phi k, we can formally write

S

\Biggl( \infty \sum 
k=1

fk\phi k

\Biggr) 
=

\infty \sum 
k=1

\alpha kfk\phi k.

Since \{ \phi k\} \infty k=1 is an orthogonal basis of L2(\Omega ), we can readily see that the eigenvalue
problem (3.6) has a countable set of positive eigenvalues \{ \eta k = \alpha  - 1

k \} \infty k=1, with \{ \phi k\} \infty k=1

being their corresponding eigenfunctions. By Lemma 3.1, we have \eta k = \alpha  - 1
k \geq C\mu k \geq 

C1k
2/d. Therefore, the eigenvalue problem (3.5) has a countable set of eigenvalues

\{ \rho k\} \infty k=1 that satisfies \rho k = \eta 2k \geq Ck4/d. This completes the proof.

Within the setting of this section, the abstract subspace W in (2.14) is given by

(3.7) W =

\Biggl\{ 
v \in L2(\Omega ) : v =

\infty \sum 
k=1

vk\phi k, vk = (v, \phi k), and

\infty \sum 
k=1

\rho 
1/2
k v2k <\infty 

\Biggr\} 
,
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and W \prime = H - 1(\Omega ) if g \in H1(0, T ) satisfying g > 0 in [0, T ], as indicated below.

Lemma 3.3. Let g \in H1(0, T ), g \geq 0 but g \not \equiv 0 in (0, T ). Then W is a subspace
of H1

0 (\Omega ) and \| v\| H1(\Omega ) \leq C1\| v\| W for all v \in W . If, in addition, g > 0 in [0, T ],
then W = H1

0 (\Omega ) and \| v\| W \leq C2\| v\| H1(\Omega ) for all v \in H1
0 (\Omega ).

Proof. Since the eigenfunctions \{ \phi k\} \infty k=1 form an orthonormal basis of L2(\Omega ), any
function v \in L2(\Omega ) can be expanded as v =

\sum \infty 
k=1 vk\phi k, where vk = (v, \phi k). From

the definition of \{ \phi k\} \infty k=1 in (3.4), we obtain by integrating by parts that

a(\phi k, q) = \mu k(\phi k, q) \forall q \in H1
0 (\Omega ),

where a(p, q) = (ap, q)+(cp, q). Thus we have a(\phi k, \phi l) = \mu k\delta kl, and that \| v\| H1(\Omega ) \leq 
C\| v\| W , which is a consequence of the estimate by the ellipticity of the operator L:

\| v\| 2H1(\Omega ) \leq Ca(v, v) =

\infty \sum 
k=1

\mu kv
2
k \leq C

\infty \sum 
k=1

\rho 
1/2
k v2k.

Next, since g \in H1(0, T ), we know g \in C[0, T ]. Thus if g > 0 in [0, T ], then
g \geq gmin > 0 in [0, T ] for some constant gmin. With the same notation as in the proof
of Theorem 3.2, we have

\alpha k = e - \mu kT

\int T

0

e\mu ksg(s)ds \geq gmin
1 - e - \mu kT

\mu k
\geq gmin

1 - e - \mu 1T

\mu k
\geq C\mu  - 1

k .

Thus \mu k \geq C\alpha  - 1
k = \rho 

1/2
k . This yields \| v\| W \leq C\| v\| H1(\Omega ).

Verification of Assumptions 2.1 and 2.2. We first know Assumption 2.1 (1)
holds with \beta = 4/d from [41, Theorems 3.3 and 3.4]. This, along with Theorem 3.2,
verifies Assumption 2.1 (2) with \alpha = \beta = 4/d. Assumption 2.2 (with \gamma = d/2) is a
consequence of the following important estimate about the covering entropy [8].

Lemma 3.4. Let Q be the unit cube in Rd, and let SW s,p(Q) be the unit sphere
of space W s,p(Q) for s > 0 and p \geq 1. Then it holds for sufficiently small \varepsilon > 0 that

logN(\varepsilon , SW s,p(Q), \| \cdot \| Lq(Q)) \leq C\varepsilon  - d/s,

where 1 \leq q \leq \infty for sp > d, and 1 \leq q \leq q\ast with q\ast = p(1 - sp/d) - 1 for sp \leq d.

Under Assumptions 2.1 and 2.2, the following two main results are direct conse-
quences of Theorems 2.3 and Corollary 2.4 for the noisy data of type (R1) (random
variables with bounded variance) and Theorem 2.8 and Corollary 2.9 for the noisy
data of type (R2) (sub-Gaussian random variables), respectively,

Theorem 3.5. For the minimizer fn \in L2(\Omega ) to problem (3.3), there exist con-
stants \lambda 0 > 0 and C > 0 such that the following estimates hold for any \lambda n \leq \lambda 0:

\BbbE 
\bigl[ 
\| Sfn  - Sf\ast \| 2n

\bigr] 
\leq C\lambda n\| f\ast \| 2L2(\Omega ) + C\sigma 2/(n\lambda d/4n ),

\BbbE 
\bigl[ 
\| fn\| 2L2(\Omega )

\bigr] 
\leq C\| f\ast \| 2L2(\Omega ) + C\sigma 2/(n\lambda 1+d/4n ).

Moreover, if \lambda n \geq n - 4/d and g > 0 in [0, T ], then

\BbbE 
\bigl[ 
\| fn  - f\ast \| 2H - 1(\Omega )

\bigr] 
\leq C\lambda 1/2n \| f\ast \| 2L2(\Omega ) + C\sigma 2/(n\lambda 1/2+d/4n ).
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Theorem 3.6. Let fn \in L2(\Omega ) be the solution of (3.3) and \rho 0 = \| f\ast \| L2(\Omega ) +

\sigma n - 1/2. If we take \lambda n such that \lambda 
1/2+d/8
n = O(\sigma n - 1/2\rho  - 1

0 ), then the following esti-
mates hold for some constant C > 0:

\BbbP (\| Sfn  - Sf\ast \| n \geq \lambda 1/2n \rho 0z) \leq 2e - Cz
2

, \BbbP (\| fn\| L2(\Omega ) \geq \rho 0z) \leq 2e - Cz
2

.

Moreover, if \lambda n \geq n - 4/d and g > 0 in [0, T ], then

\BbbP (\| fn  - f\ast \| H - 1(\Omega ) \geq \lambda 1/4n \rho 0z) \leq 2e - Cz
2

.

We remark that \lambda 
1/2+d/8
n = O(\sigma n - 1/2\rho  - 1

0 ) implies \lambda n \geq Cn - 4/(d+4). Thus the
condition \lambda n \geq n - 4/d is not very restrictive in the applications.

3.2. Finite element method for the inverse heat source problem. In this
section we consider a finite element approximation to the optimal control problem
(3.3) associated with the inverse heat source problem (TIP). For convenience, we
assume \Omega is a polygonal or polyhedral domain in Rd (d = 2, 3). Let \scrM h be a family
of shape-regular and quasi-uniform finite element meshes over the domain \Omega , and let
Vh \subset H1

0 (\Omega ) be the conforming linear finite element space over the mesh \scrM h. We
divide the time interval (0, T ) into a uniform grid with time step size \tau = T/N and
write ti = i\tau for i = 0, 1, . . . , N .

We will use the backward Euler scheme in time and the linear finite element
method in space to approximate the heat conduction problem (3.1): Find uih \in Vh,
i = 1, 2, . . . , N , such that

(3.8)

\Biggl( 
uih  - ui - 1

h

\tau 
, vh

\Biggr) 
+ a(uih, vh) = (fgi, vh) \forall vh \in Vh,

where a(v, w) = (a\nabla v,\nabla w) + (cv, w) for any v, w \in H1
0 (\Omega ). We approximate the

forward solution Sf by S\tau ,hf = uNh . The inverse problem (3.3) can be approximated
by the least-squares problem

(3.9) min
f\in Vh

\| S\tau ,hf  - m\| 2n + \lambda n\| f\| 2L2(\Omega ).

We shall make use of the results in section 3.1 to study the stochastic convergence of
the solution f\tau ,h of the problem (3.9) to the true solution f\ast \in L2(\Omega ).

Verification of Assumption 2.3. Let Ph : L2(\Omega ) \rightarrow Vh be the orthogonal
projection operator in the L2 inner product. For any f \in X = L2(\Omega ), we know from
(3.8) that S\tau ,hf = S\tau ,h(Phf). Therefore, Assumption 2.3 (2) is trivially satisfied. It
remains to check Assumption 2.3 (1), which amounts to deriving the error estimate
of the fully discrete method (3.8). The classical theory for the implicit Euler scheme
in time and finite element method in space for solving parabolic equations requires
the regularity \partial ttu \in L1(0, T ;L2(\Omega )) of the solution of problem (3.1) (see, e.g., [40,
Chapter 1]). This regularity requires the compatibility condition F (x, 0) = f(x)g(0) =
0 on \partial \Omega , which may not be convenient to meet in practice. Instead, we will derive
an error estimate in the remaining part of this section, without this compatibility
condition, by adapting some arguments in [40, Chapter 3] for the error estimates of
finite element solutions to parabolic equations with rough initial data.

We start with the weak W 2,1(0, T ;L2(\Omega )) regularity for the solution to (3.1).



STOCHASTIC ANALYSIS OF INVERSE SOURCE PROBLEMS 769

Lemma 3.7. Let F (x, t) = f(x)g(t) for (x, t) \in \Omega \times (0, T ), with g \in H2(0, T ).
Then there exists a generic constant C such that the solution u to (3.1) satisfies

\| \partial tu\| C([0,T ];L2(\Omega )) \leq C\| F (\cdot , 0)\| L2(\Omega ) + C

\int T

0

\| \partial tF\| L2(\Omega )dt,

\| t\partial ttu\| C([0,T ];L2(\Omega )) \leq C\| F (\cdot , 0)\| L2(\Omega ) + C

\int T

0

(\| \partial tF\| L2(\Omega ) + t\| \partial ttF\| L2(\Omega ))dt .

Proof. The proof follows from the standard energy argument, so only an outline is
given here. We differentiate the first equation in (3.1) in time to see that v(x, t) = \partial tu
satisfies the conditions that v = 0 on \partial \Omega \times (0, T ) and v(x, 0) = F (x, 0) in \Omega , and

(3.10) \partial tv + Lv = \partial tF (x, t) in \Omega \times (0, T ).

Then the first estimate in the lemma follows by multiplying both sides of (3.10) by v
and integrating by parts.

Next we multiply both sides of (3.10) by t\partial tv, then integrate by parts and apply
the first estimate in the lemma to get
(3.11)\int t

0

t\| \partial tv\| 2L2(\Omega )dt \leq C\| F (\cdot , 0)\| 2L2(\Omega )+C

\Biggl( \int T

0

\| \partial tF\| L2(\Omega )dt

\Biggr) 2

+C

\int T

0

t\| \partial tF\| 2L2(\Omega )dt.

Finally, we differentiate (3.10) in time to get

\partial ttv + L(\partial tv) = \partial ttF (x, t) in \Omega \times (0, T ).

By multiplying both sides of the equation by t2\partial tv, integrating by parts again, and
applying (3.11), we obtain

t\| \partial tv\| L2(\Omega ) \leq C\| F (\cdot , 0)\| L2(\Omega ) + C

\int T

0

(\| \partial tF\| L2(\Omega ) + t\| \partial ttF\| L2(\Omega ))dt

+ C

\Biggl( \int T

0

t\| \partial tF\| 2L2(\Omega )dt

\Biggr) 1/2

,

which implies the second estimate of the lemma by noticing that\int T

0

t\| \partial tF\| 2L2(\Omega )dt \leq sup
t\in (0,T )

\| t\partial tF\| L2(\Omega ) \cdot 
\int T

0

\| \partial tF\| L2(\Omega )dt

= sup
t\in (0,T )

\bigm\| \bigm\| \bigm\| \bigm\| \int t

0

\partial s(s\partial sF (s))ds

\bigm\| \bigm\| \bigm\| \bigm\| 
L2(\Omega )

\cdot 
\int T

0

\| \partial tF\| L2(\Omega )dt

\leq 
\int T

0

\bigl( 
\| \partial tF\| L2(\Omega ) + t\| \partial ttF\| L2(\Omega )

\bigr) 
dt \cdot 

\int T

0

\| \partial tF\| L2(\Omega )dt.

This completes the proof.

Lemma 3.8. Let uh \in H1(0, T ;Vh) be the following semidiscrete finite element
solution of problem (3.1):

(3.12) (\partial tuh, vh) + a(uh, vh) = (F, vh) \forall vh \in Vh a.e. in (0, T ).
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Then there exists a constant C independent of the mesh size h such that

\| u - uh\| C([0,T ];L2(\Omega ))\leq Ch2 max
t\in [0,T ]

(\| \partial tu\| L2(\Omega )+\| t\partial ttu\| L2(\Omega )+\| F\| L2(\Omega )+\| t\partial tF\| L2(\Omega )),

where h = maxK\in \scrM hK and hK is the diameter of the element K \in \scrM .

Proof. We follow the argument in [40, Chapter 3]. Define G : L2(\Omega ) \rightarrow H1
0 (\Omega )

and Gh : L2(\Omega ) \rightarrow Vh such that for any w \in L2(\Omega ), Gw \in H1
0 (\Omega ) and Ghw \in Vh

satisfy

a(Gw, v) = (w, v) \forall v \in H1
0 (\Omega ); a(Ghw, vh) = (w, vh) \forall vh \in Vh.

Equations (3.1) and (3.12) can be reformulated as

\partial t(Gu) + u = GF, \partial t(Ghuh) + uh = GhF.

Writing e = u - uh, then we know e satisfies

Gh(\partial te) + e = \rho a.e. in (0, T ), (Ghe)(\cdot , 0) = 0 in \Omega ,

where \rho = (Gh  - G)(\partial tu) + (G - Gh)F . By the argument in the proof of Lemma 3.7
we can obtain (see [40, Lemma 3.4]) that

max
t\in [0,T ]

\| e\| L2(\Omega ) \leq C max
t\in [0,T ]

(\| \rho (t)\| L2(\Omega ) + \| t\partial t\rho (t)\| L2(\Omega )).

This completes the proof by noting that \| Gw  - Ghw\| L2(\Omega ) \leq Ch2\| w\| L2(\Omega ) for all
w \in L2(\Omega ), which follows by the Aubin--Nitsche argument since the domain \Omega is
convex.

The following lemma for the error estimate of the fully discrete finite element
method was not covered by the general results in [40, Chapter 8] since we do not have
the condition that F (x, 0) = 0 on \partial \Omega here, which was critical in [40].

Lemma 3.9. Let uh \in H1(0, T ;Vh) be the solution of problem (3.12), and let
uih \in Vh, i = 1, 2, . . . , N , be the solution of problem (3.8). Then there exists a constant
C independent of h, \tau such that

max
1\leq i\leq N

\| uh(\cdot , ti) - uih\| L2(\Omega ) \leq C\tau (1 + lnN)(\| F\| C([0,T ];L2(\Omega )) + \| \partial tF\| C([0,T ];L2(\Omega ))).

Proof. Let \{ \lambda j\} Mj=1 be the eigenvalues of the eigenvalue problem

a(\phi h, vh) = \lambda (\phi h, vh) \forall vh \in Vh,

and let \{ \phi j\} Mi=1 be the corresponding eigenfunctions which form an orthonormal basis
of Vh in the L2(\Omega )-norm. By the Poincar\'e inequality, we know that \lambda j \geq C, j =
1, 2, . . . ,M , for some constant C independent of the mesh size h.

We write uh(x, t) =
\sum M
j=1 uj(t)\phi j(x) and F (x, t) =

\sum M
j=1 Fj(t)\phi j(x), where

uj(t) = (uh(\cdot , t), \phi j) and Fj(t) = (F (\cdot , t), \phi j). Then it follows from (3.12) that

u\prime j(t) + \lambda juj = Fj(t) a.e. in (0, T ),

whose solution can be written as

(3.13) uj(t
i) =

\int ti

0

e\lambda j(s - ti)Fj(s)ds =

\int ti

0

e - \lambda jtFj(t
i  - t)dt.



STOCHASTIC ANALYSIS OF INVERSE SOURCE PROBLEMS 771

Similarly, we write uih =
\sum M
j=1 U

i
j\phi j , where U ij = (uih, \phi j), i = 1, 2, . . . , N , j =

1, 2, . . . ,M . From (3.8) we know that

1

\tau 
(U ij  - U i - 1

j ) + \lambda jU
i
j = F ij := Fj(t

i), i = 1, 2, . . . , N, j = 1, 2, . . . ,M.

This implies that U ij = r(\lambda j)U
i - 1
j + \tau r(\lambda j\tau )F

i
j , where r(t) = (1 + t) - 1 for all t \geq 0,

and hence

(3.14) U ij =

i\sum 
k=1

\tau r(\lambda j\tau )
kF i - k+1

j .

For any j = 1, . . . ,M , we distinguish two cases. If \lambda j\tau \geq 1, we know from (3.13) that

| uj(ti)| \leq \| Fj\| C[0,T ]

\int ti

0

e - \lambda jtdt = \lambda  - 1
j (1 - e - \lambda jt

i

)\| Fj\| C[0,T ] \leq \tau \| Fj\| C[0,T ].

On the other hand, we obtain from (3.14) that

| U ij | \leq 

\Biggl( 
i\sum 

k=1

2 - k

\Biggr) 
\tau \| Fj\| C[0,T ] \leq 2\tau \| Fj\| C[0,T ].

Therefore, we derive for \lambda j\tau \geq 1 that

(3.15) | uij(ti) - U ij | \leq C\tau \| Fj\| C[0,T ].

Now we consider the case when \lambda j\tau \leq 1. By (3.13) we have

uj(t
i) =

i\sum 
k=1

\int tk

tk - 1

e - \lambda jt(Fj(t
i  - t) - F (ti  - tk - 1))dt+

i\sum 
k=1

\int tk

tk - 1

e - \lambda jtF i - k+1
j dt

=

i\sum 
k=1

\int tk

tk - 1

e - \lambda jt(Fj(t
i  - t) - F (ti  - tk - 1))dt+

i\sum 
k=1

\tau 
e\lambda j\tau  - 1

\lambda j\tau 
e - k\lambda j\tau F i - k+1

j ,

which, together with (3.14), yields

uj(t
i) - U ij =

i\sum 
k=1

\tau 

\biggl( 
e\lambda j\tau  - 1

\lambda j\tau 
e - k\lambda j\tau  - r(\lambda j\tau )

k

\biggr) 
F i - k+1
j

+

i\sum 
k=1

\int tk

tk - 1

e - \lambda jt(Fj(t
i  - t) - F (ti  - tk - 1))dt := I + II.(3.16)

Recalling the following elementary estimate in [40, (7.22)],

| e - kt  - r(t)k| \leq Ck - 1 \forall t \geq 0, \forall k = 1, 2, . . . ,

and using the fact that (t - 1(et  - 1) - 1)/(1 - e - t) is bounded for 0 \leq t \leq 1, we obtain

| I| \leq 
i\sum 

k=1

\tau 

\bigm| \bigm| \bigm| \bigm| \biggl( e\lambda j\tau  - 1

\lambda j\tau 
 - 1

\biggr) 
e - k\lambda j\tau + (e - k\lambda j\tau  - r(\lambda j\tau )

k)

\bigm| \bigm| \bigm| \bigm| | F i - k+1
j | 

\leq C\tau 

\Biggl[ \biggl( 
e\lambda j\tau  - 1

\lambda j\tau 
 - 1

\biggr) 
1

1 - e - \lambda j\tau 
+

i\sum 
k=1

k - 1

\Biggr] 
\| Fj\| C[0,T ]

\leq C(1 + ln i)\tau \| Fj\| C[0,T ] .
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The term II can be bounded by the standard argument as follows:

II \leq C\tau \| \partial tFj\| C[0,T ]

\int ti

0

e - \lambda jtdt \leq C\lambda  - 1
j \tau \| \partial tFj\| C[0,T ] \leq C\tau \| \partial tFj\| C[0,T ],

where we have used the fact that \lambda j \geq C for some constant C independent of h.
Combining (3.15), (3.16) and the above two estimates, we obtain

| uj(ti) - U ij | \leq C\tau (1 + lnN)(\| Fj\| C[0,T ] + \| \partial tFj\| C[0,T ]).

This completes the proof.

By Lemmas 3.7--3.9, we know that under the condition g \in H2(0, T ),

(3.17) \| S\tau ,hf  - Sf\| L2(\Omega ) \leq C(h2 + \tau | ln \tau | )\| f\| L2(\Omega )

for some constant C which depends possibly on T , \| g\| H2(0,T ) but is independent of
h and \tau .

Assumption 2.3 (1) is now a consequence of the following lemma.

Lemma 3.10. If g \in H2(0, T ), S\tau ,hf = uNh with uNh being the solution of the
problem (3.8), then for any f \in L2(\Omega ), there exists a constant C independent of h
and \tau such that

\| Sf  - S\tau ,hf\| n \leq C(h2 + \tau | ln \tau | )\| f\| L2(\Omega ).

Proof. Let \Pi h : C(\=\Omega ) \rightarrow Vh be the canonical finite element interpolant. Then we
know from the standard interpolation theory of finite element methods [13] that

\| Sf  - \Pi h(Sf)\| L\infty (K) \leq Ch2 - d/2\| Sf\| H2(K) \forall K \in \scrM h,

\| Sf  - \Pi h(Sf)\| L2(K) \leq Ch2\| Sf\| H2(K) \forall K \in \scrM h.

Let \BbbT K = \{ xi : xi \in K, 1 \leq i \leq n\} . By the assumption that \{ xi\} ni=1 is quasi-
uniformly distributed and the mesh \scrM h is quasi-uniform, we know that the cardinal
\#\BbbT K \leq Cnhd. Thus we have

\| Sf  - \Pi h(Sf)\| 2n \leq 1

n

\sum 
K\in \scrM h

\#\BbbT K\| Sf  - \Pi h(Sf)\| 2L\infty (K) \leq Ch4\| Sf\| 2H2(\Omega ).

On the other hand, we can derive by making use of inverse estimates that

\| S\tau ,hf  - \Pi h(Sf)\| 2n \leq 1

n

\sum 
K\in \scrM h

\#\BbbT K\| S\tau ,hf  - \Pi h(Sf)\| 2L\infty (K)

\leq 1

n

\sum 
K\in \scrM h

\#\BbbT K | K|  - 1\| S\tau ,hf  - \Pi h(Sf)\| 2L2(K)

\leq C\| S\tau ,hf  - \Pi h(Sf)\| 2L2(\Omega )

\leq C\| S\tau ,hf  - Sf\| 2L2(\Omega ) + C\| \Pi h(Sf) - Sf\| 2L2(\Omega )

\leq C\| S\tau ,hf  - Sf\| 2L2(\Omega ) + Ch4\| Sf\| 2H2(\Omega ).

Therefore,

\| Sf  - S\tau ,hf\| n \leq C\| S\tau ,hf  - Sf\| L2(\Omega ) + Ch2\| f\| L2(\Omega ).

This completes the proof by (3.17).
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After the verification of Assumption 2.3, the following stochastic convergence of
the finite element method to the inverse heat source problem follows readily from
Theorem 2.10 and Corollary 2.11.

Theorem 3.11. Let g \in H2(0, T ), and let the measurement data (2.1) be of the
type (R1). Then there exist constants \lambda 0 > 0 and C > 0 such that for any \lambda n \leq \lambda 0
and \tau | ln \tau | = O(h2), the following estimates hold for the solutions fn \in L2(\Omega ) to
(3.3) and fh \in Vh to (3.9):

\BbbE 
\bigl[ 
\| Sf\ast  - S\tau ,hfh\| 2n

\bigr] 
\leq C(\lambda n + h4)\| f\ast \| 2L2(\Omega ) + C

\biggl( 
1 +

h4

\lambda n

\biggr) 
\sigma 2

n\lambda 
d/4
n

,

\BbbE 
\bigl[ 
\| f\ast  - fh\| 2L2(\Omega )

\bigr] 
\leq C

\biggl( 
1 +

h4

\lambda n

\biggr) 
\| f\ast \| 2L2(\Omega ) + C

\biggl( 
1 +

h4

\lambda n

\biggr) 
\sigma 2

n\lambda 
1+d/4
n

.

Moreover, if \lambda n \geq n - 4/d and g > 0 in [0, T ], we have

\BbbE 
\bigl[ 
\| f\ast  - fh\| 2H - 1(\Omega )

\bigr] 
\leq C(\lambda 1/2n +h2)

\biggl( 
1+

h4

\lambda n

\biggr) 
\| f\ast \| 2L2(\Omega )+C(\lambda 

1/2
n +h2)

\biggl( 
1+

h4

\lambda n

\biggr) 
\sigma 2

n\lambda 
1+d/4
n

.

Proof. Since the mesh is assumed to be quasi-uniform, the dimension Nh of the
linear finite element space Vh is bounded by Nh \leq Ch - d. By Theorem 3.2, we know
that \alpha = 4/d. Take \tau | ln \tau | = O(h2); then we know from Theorem 2.10 that

\BbbE 
\bigl[ 
\| Sf\ast  - S\tau ,hfh\| 2n

\bigr] 
\leq C(\lambda n + h4)\| f\ast \| 2L2(\Omega ) + C

\Biggl[ 
1 +

h4

\lambda n
+

\biggl( 
h4

\lambda n

\biggr) 1 - d
4

\Biggr] 
\sigma 2

n\lambda 
1+d/4
n

.

We can easily check that (h4/\lambda n)
1 - d

4 \leq 1 for h4/\lambda n \leq 1, and (h4/\lambda n)
1 - d

4 \leq h4/\lambda n for

h4/\lambda n \geq 1. Therefore, we have (h4/\lambda n)
1 - d

4 \leq 1+h4/\lambda n. This leads to the conclusions
of Theorem 3.11.

We end this section with the following convergence of the finite element method
to the inverse heat source problem (TIP), directly following from Theorem 2.14 by

noticing that Nh \leq Ch - d \leq C\lambda 
 - \gamma /2
n with \gamma = d/2.

Theorem 3.12. Let g \in H2(0, T ), let the measurement data (2.1) be of type

(R2), and let \rho 0 = \| f\ast \| L2(\Omega ) + \sigma n - 1/2. If we take h = O(\lambda 
1/4
n ), \tau | ln \tau | = O(\lambda 

1/2
n ),

and \lambda 
1/2+d/8
n = O(\sigma n - 1/2\rho  - 1

0 ), then there exists a constant C > 0 such that for any
z > 0,

\BbbP (\| S\tau ,hfh  - Sf\ast \| n \geq \lambda 1/2n \rho 0z) \leq 2e - Cz
2

, \BbbP (\| fh\| L2(\Omega ) \geq \rho 0z) \leq 2e - Cz
2

.

Moreover, if \lambda n \geq n - 4/d and g > 0 in [0, T ], it holds that

\BbbP (\| fh  - f\ast \| H - 1(\Omega ) \geq \lambda 1/4n \rho 0z) \leq 2e - Cz
2

.

4. Numerical examples. In this section, we present several numerical examples
to confirm the theoretical results in previous sections. We take the domain \Omega =
(0, 1) \times (0, 1) and a set of uniformly distributed measurement locations \{ xi\} ni=1 in
\Omega . In all examples below, we take the coefficients a(x) = 1, c(x) = 0, which fulfills
the uniform ellipticity condition, and g(t) \equiv 1, T = 1. The finite element mesh \scrM h
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of \Omega is constructed by first dividing \Omega into h - 1 \times h - 1 uniform rectangles and then
connecting the lower left and upper right vertices of each rectangle. We set the noise
e1, . . . , en in the dataset (2.1) to be the normal random variables with variance \sigma .

Motivated by Theorem 3.5, we propose a self-consistent algorithm to determine
the regularization parameter \lambda n in (3.9) based on the following heuristic rule:

(4.1) \lambda 1/2+d/8n = \sigma n - 1/2\| f\ast \|  - 1
L2(\Omega ),

which balances the two terms in the error due to bias and variance, and also balances
the error between the exact solution and the reconstructed one in the H - 1-norm. This
choice requires the knowledge of the true source function f\ast and the noise level \sigma .
We now propose a self-consistent algorithm to determine the parameter \lambda n, without
knowing the true source function f\ast and the noise level \sigma . To do so, we estimate
\| f\ast \| L2(\Omega ) by \| fh\| L2(\Omega and \sigma by \| S\tau ,hfh  - m\| n since \| Sf\ast  - m\| n = \| e\| n. This is
expected to yield a good estimate of the variance by the law of large numbers.

Algorithm 4.1 (computing an estimate of the regularization parameter \lambda n).
1\circ Given an initial guess of \lambda n,0; for j = 0, 1, . . . , do the following:
2\circ Solve (3.9) for fh with \lambda n replaced by \lambda n,j over the mesh \scrM h;

3\circ Update \lambda n,j+1: \lambda 
1/2+d/8
n,j+1 = n - 1/2\| S\tau ,hfh  - m\| n \| fh\|  - 1

L2(\Omega ).

A natural choice of the initial guess is \lambda n,0 = n - 4/(d+4) since f\ast and \sigma are
unknown, which is used in our numerical examples. In the following examples, the
negative norm \| f\ast  - fh\| H - 1(\Omega ) is estimated using the same technique as developed
in [26, section 6] which estimates \| f\ast  - fh\| H - 1(\Omega ) by \| Phf\ast  - fh\| H - 1(\Omega ), where Ph
is the L2-projection to the finite element space Vh.

Example 4.1. This example is used to verify the near optimality of the choice
of the smoothing parameter \lambda n suggested by (4.1). We choose n = 104, \sigma = 0.1 or
\sigma = 0.01, and the mesh size h = 0.05 and the time step size \tau = 0.01, which are
sufficiently small so that the finite element errors are negligible. We take the true
source f\ast to be the function whose surface is given as in Figure 4.1.

Example 4.1 demonstrates the near optimality of the choice of the smoothing
parameter \lambda n suggested by (4.1). In fact, we have \| f\ast \| L2(\Omega ) \approx 0.54; then (4.1)
suggests \lambda n \approx 2.3\times 10 - 4 (for \sigma = 0.1) and \lambda n \approx 1.1\times 10 - 5 (for \sigma = 0.01). These two
approximate \lambda n's are indeed very close to the optimal \lambda n = 1 \times 10 - 4 (for \sigma = 0.1)
and \lambda n = 1 \times 10 - 5 (for \sigma = 0.01), which we have estimated by computing the
errors \| Sf\ast  - S\tau ,hfh\| n and \| fh - f\ast \| H - 1(\Omega ) with 10 different choices of regularization

parameter: \lambda n,k = 10 - k (k = 1, 2, . . . , 10). In order to show the near optimality of
the choice (4.1) more clearly, we take partial data around the global minimum to plot
the dependence of the errors on k; see Figure 4.2.

Example 4.2. This example is presented to verify whether the probability density
functions of the empirical error \| Sf\ast  - S\tau ,hfh\| n and the error \| fh  - f\ast \| H - 1(\Omega ) have
exponentially decaying tails. We set the variance \sigma = 0.001, n = 25 \times 104, and
choose the mesh size h and time step size \tau to be small enough so that the finite
element errors are negligible. We take 10,000 samples and compute the empirical
error \| Sf\ast  - S\tau ,hfh\| n and the error \| fh  - f\ast \| H - 1(\Omega ) for each sampling.

In Example 4.2, we can compute that \| Sf\ast \| L\infty (\Omega ) \approx 0.04, so the relative noise
level \sigma /\| Sf\ast \| L\infty (\Omega ) is about 2.5\% for this example. Figures 4.3(a) and (c) show the
histogram plot of the corresponding errors, while Figures 4.3(b) and (d) show the
quantile-quantile (Q-Q) plot to compare the sample distribution of the error with the
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Fig. 4.1. The surface plot of the exact solution f\ast .
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Fig. 4.2. (a) and (b) are the empirical errors \| Sf\ast  - S\tau ,hfh\| n with \lambda n = 10 - k (k = 1, . . . , 7)

for \sigma = 0.1 (left) and with \lambda n = 10 - k (k = 3, . . . , 8) for \sigma = 0.01 (right). (c) and (d) are the errors
\| f\ast  - fh\| H - 1(\Omega ) with \lambda n = 10 - k (k = 1, . . . , 7) for \sigma = 0.1 (left) and with \lambda n = 10 - k (k = 3, . . . , 8)

for \sigma = 0.01 (right).

standard normal distribution. The Q-Q plot is a standard graphic tool in statistics to
check the data distribution [45]. If the sample distribution is indeed normal, the Q-Q
plot should give a scattered plot, where the points show a linear relationship between
the sample and the theoretical quantiles. We can observe from Figure 4.3 (right) that
almost all the points are concentrated around the dotted line, which implies that the
overall distribution of the error is very close to a normal distribution. Moreover, the
points around the two ends are also not far from the line, which indicates that the tail
distribution of the error is also close to a Gaussian tail, as indicated in Theorem3.12.
The probability density function is computed by the MATLAB function qqplot.
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(a) (b)

(c) (d)

Fig. 4.3. (a) and (b) are the histogram (left) and quantile-quantile (right) plots of the empirical
error \| S\tau ,hfh - Sf\ast \| n with 10, 000 samples. (c) and (d) are the histogram (left) and quantile-quantile
(right) plots of the error \| fh  - f\ast \| H - 1(\Omega ) with 10, 000 samples.

Example 4.3. This example is to confirm Theorems 3.11 and 3.12, namely, to
verify if the empirical error \| Sf\ast  - S\tau ,hfh\| n and the error \| f\ast  - fh\| H - 1(\Omega ) depend

linearly on \lambda 
1/2
n when the regularization parameter \lambda n is taken by the optimal choice

(4.1). The mesh size h = \lambda 
1/4
n and the time step size \tau | ln \tau | = \lambda 

1/2
n are chosen

according to Theorems 3.11 and 3.12. We take the true source f\ast to be the function
given in Figure 4.1, and n to change from 25\times 102 to 25\times 104.

We can see from Figure 4.4 clearly the linear dependences of the empirical error

\| Sf\ast  - S\tau ,hfh\| n and the error \| f\ast  - fh\| H - 1(\Omega ) on \lambda 
1/2
n for \sigma = 0.01 and 0.04. We

can compute that \| Sf\ast \| L\infty (\Omega ) \approx 0.04, so the relative noise levels \sigma /\| Sf\ast \| L\infty (\Omega ) are
about 25\% and 100\% for \sigma = 0.01 and 0.04, respectively.

Through the previous 3 examples, we have verified the optimality of the choice
rule (4.1) for \lambda n, the stochastic convergence (Theorem 3.12), and the convergence
order of the finite element method. But we do not know the exact solution and
the variance of the noise in most applications, so we use the next example to show
the efficiency of Algorithm 4.1 to determine an optimal regularization parameter \lambda n
iteratively, without the knowledge of f\ast and \sigma .

Example 4.4. We choose n = 25\times 104 and set the noise e1, . . . , en in the dataset
(2.1) to be independent normal random variables with variance \sigma = 0.001. Algorithm
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Fig. 4.4. (a) and (b) are the linear dependences of the empirical error \| Sf\ast  - S\tau ,hfh\| n on

\lambda 
1/2
n with \sigma = 0.01 (left) and \sigma = 0.04 (right), respectively. (c) and (d) are the linear dependences

of the error \| f\ast  - fh\| H - 1(\Omega ) on \lambda 
1/2
n with \sigma = 0.01 (left) and \sigma = 0.04 (right), respectively.
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Fig. 4.5. The relative empirical error \| Sf\ast  - S\tau ,hfh\| n at each iteration (left); the computed
solution fh at the end of iterations (right).

4.1 is terminated when the absolute difference between two consecutive iterates \lambda n,k
and \lambda n,k+1 is less than 10 - 10.

We can compute that \| Sf\ast \| L\infty (\Omega ) \approx 0.04, so the relative noise level \sigma /\| Sf\ast \| L\infty (\Omega )

is about 2.5\% in this example. Figure 4.5 shows clearly the convergence of the se-
quence \{ \lambda n,k\} generated by Algorithm 4.1. The numerical computation gives \lambda n,4 =
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(a) (b) (c) (d)

Fig. 4.6. (a)--(d) are the computed solutions fh when T = 1, 0.1 , 0.01, 0.001, respectively.

5.53\times 10 - 8 that agrees very well with the optimal choice 5.33\times 10 - 8 given by (4.1).
Furthermore, \| m  - S\tau ,hfh\| n = 9.99 \times 10 - 4 provides also a good estimate of the
variance \sigma .

Example 4.5. In this example, we show the influence of T on the ill-posedness
of the inverse problem. We take T = 1, 0.1, 0.01, 0.001, choose n = 25 \times 104, and
set the variance \sigma = 0.01. We choose the regularization parameter \lambda n by the optimal
rule (4.1).

We observe from Figure 4.6 that the numerical reconstruction deteriorates as T
decreases. This fact can be interpreted by using the notation in Theorem 3.2 as
follows: the singular value of S : L2(\Omega ) \rightarrow L2(\Omega ), which is the eigenvalue of (S\ast S)1/2,

approaches 0 as T \rightarrow 0, i.e., \rho 
 - 1/2
k = \alpha k \leq \mu  - 1

k (1 - e - \mu kT )\| g\| C[0,T ] \rightarrow 0 for all k \geq 1.
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