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DISSIPATIVITY AND CONTRACTIVITY ANALYSIS
FOR FRACTIONAL FUNCTIONAL DIFFERENTIAL EQUATIONS

AND THEIR NUMERICAL APPROXIMATIONS\ast 

DONGLING WANG\dagger AND JUN ZOU\ddagger 

Abstract. We first present a new delay-dependent fractional generalization of Halanay-like
inequality to characterize the asymptotic behavior of fractional functional differential equations
(F-FDEs). Then we study the dissipativity of F-FDEs with a bounded absorbing set and the asymp-
totic stability and the contractivity of F-FDEs with algebraically contractive rate. Two numerical
schemes are further constructed for F-FDEs based on Gr\"unwald--Letnikov formula and L1 method
for Caputo fractional derivative, together with linear interpolation for the functional terms. These
two schemes are proved to be dissipative and contractive and can preserve the exact decay rate as
the continuous equations. These results can be directly applied to some special cases of F-FDEs,
such as the fractional delay differential equations, fractional integro-differential equations, and frac-
tional delay integro-differential equations. Finally, several numerical examples are given to illustrate
the advantages of the structure-preserving numerical methods. In particular, we shall compare the
numerical performance of our schemes and the popular predictor-corrector algorithms for F-FDEs
and demonstrate that our schemes are more efficient and robust, especially for some stiff systems.
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1. Introduction. Fractional differential equations have found recently many
physics and engineering applications in modeling anomalous transport dynamics [27,
41]. Time fractional differential operators may arise naturally in many models when-
ever the recover time is power-law distribution [2]. Many interesting fractional models
in various practical applications are established, such as fractional model of human
immunodeficiency virus (HIV) infection of CD4+ T cells with time delay [54], frac-
tional order financial delay system [51], and fractional order recovery SIR model [2].
More applications on fractional models may be found in [27, 41]. Practical application
models are mostly nonlinear and involve some time delay or integral terms, and often
have rich and complex dynamical structures. It is usually difficult to find the ana-
lytical solutions of those fractional differential equations. This motivates us to study
the basic theory and efficient numerical methods of fractional functional differential
equations (F-FDEs).

Let \BbbR n be the n-dimensional Euclidian space with the standard inner product \langle \cdot , \cdot \rangle 
and norm | | \cdot | | . Let C(I) (I = [0, T ]) be a Banach space consisting of all continuous
mapping y : I \rightarrow \BbbR n. Consider the initial value problem of F-FDEs
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C
0 D

\alpha 
t y(t) = f(t, y(t), y(\cdot )), 0 < t \leq T,

y(t) = \varphi (t),  - \sigma \leq t \leq 0,
(1)

where 0 < \alpha < 1, T > 0 (T may be +\infty ) and \sigma > 0 is a given constant, \varphi \in C[ - \sigma , 0]
is a given initial function. The Caputo fractional derivative is defined by

C
0 D

\alpha 
t y(t) =

1

\Gamma (1 - \alpha )

\int t

0

y\prime (s)

(t - s)\alpha 
ds, t > 0.(2)

Throughout this work, we assume that f(t, y(t), y(\cdot )) is independent of the values
of the function y(\xi ) for t < \xi \leq T , i.e., f(t, y(t), y(\cdot )) is a Volterra functional; see [30].
The function y(\cdot ) may take several different forms, such as y(t  - \tau (t)) for a variable

delay \tau (t) \geq 0, y(qt) for a proportional delay or
\int t

t - \tau (t)
k(t, s, y(s))ds for a delay of

integral form. And the combinations of these forms are also allowed. Many concrete
examples can be found in [4, 6, 30].

Next, we discuss briefly about the regularity of the solution to the equation F-
FDEs (1). There are two main factors that may affect the regularity, i.e., the Caputo
fractional order operator C

0 D
\alpha 
t and the delay term \tau (t). In general, solutions to

time fractional-order evolution equations, including time fractional-order ODEs and
PDEs, are usually only in C\alpha [0, T ], namely, H\"older continuous, and cannot be in
C1[0, T ] due to the weak singular kernel of the fractional operator. More precisely,
the first derivative of the solution is usually unbounded around the initial time, i.e.,
y\prime (t) \sim C\alpha t

\alpha  - 1 as t \rightarrow 0+, where C\alpha is a nonzero constant. For linear fractional
ordinary differential equations (F-ODEs), a rigorous proof of this regularity of the
solution can be found in [7]. For time fractional semilinear parabolic equations, the
H\"older continuity in time were given in [25]. In particular, the H\"older continuity was
proved in [42] for the solutions to a class of linear delay differential equations.

For functional differential equations with some delay term \tau (t), the solution y(t)
may not be connected smoothly to the initial function \varphi (t) at t0 = 0, i.e., \varphi \prime (0) - \not =
y\prime (0)+ = f(0, y(0), y(\cdot )). This nonsmoothness at t0 may lead to the discontinuity of
the higher derivatives at some later moments. But if we assume that initial function
\varphi (t), delay \tau (t), and f are continuous, then y\prime (t) will exists for t > t0 for classical
functional differential equations (FDEs); see [4]. The local existence for classical
FDEs, i.e., \alpha = 1 in (1), can be proved under the assumption that f(t, y(t), y(\cdot ))
is continuous and locally Lipschitz continuous with respect to the second and third
variables. Furthermore, if the solution is bounded, the solution may exist globally [4].

In view of the above observations, if we consider the fractional order operator
and the delay effect of F-FDEs, we may assume that the equation F-FDEs (1) has
a unique solution y \in C\alpha [0, T ], C

0 D
\alpha 
t y \in C[0, T ], and being piecewise C1, under the

conditions that functions \varphi (t) and \tau (t) are continuous, and f(t, y(t), y(\cdot )) is continuous
and locally Lipschitz continuous with respect to the second and third variables.

We shall consider two types of closely related problems. The first type of problems
assumes the dissipative structural condition for the continuous mapping f : [0, T ) \times 
\BbbR n \times C[ - \sigma , T ) \rightarrow \BbbR n:

2 \langle u, f (t, u, \psi (\cdot ))\rangle \leq \gamma + a\| u\| 2 + b max
t - \mu 2(t)\leq \xi \leq t - \mu 1(t)

\| \psi (\xi )\| 2,(3)

where the constants \gamma , a, and b satisfy that \gamma , b \geq 0, and a+ b < 0, and the functions
\mu 1(t), \mu 2(t) stay in the following range:

0 < \mu 0 \leq \mu 1(t) \leq \mu 2(t) \leq t+ \sigma \forall t > 0.(4)
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Throughout this paper, we make the usual assumptions that the delay \tau (t) = t  - 
\mu 1(t) \geq \mu 0 > 0 to avoid the possible clustering of discontinuous points due to vanishing
delay [4]. Under the condition (3) there exists a bounded absorbing set for the F-FDE
(1) as t goes to infinity; see Lemma 1.

The second type of problems assumes the one-sided Lipschitz condition

2\langle u1  - u2, f(t, u1, \psi (\cdot )) - f(t, u2, \psi (\cdot ))\rangle \leq c\| u1  - u2\| 2,(5)

and the Lipschitz condition

2\| f(t, u, \psi 1(\cdot )) - f(t, u, \psi 2(\cdot ))\| \leq d max
t - \mu 2(t)\leq \xi \leq t - \mu 1(t)

\| \psi 1(\xi ) - \psi 2(\xi )\| (6)

for the continuous mapping f , where the constants c and d satisfy that d \geq 0 and
c + d < 0, and the functions \mu 1(t), \mu 2(t) also stay in the range as in (4). As we will
see in Lemma 1, the F-FDE (1) is contractive and asymptotically stable under the
conditions (5)--(6).

The Volterra F-FDE (1) provides a unified framework for the mathematical study
of several special F-FDEs, including fractional delay differential equations (F-DDEs),
fractional integro-differential equations, and fractional delay integro-differential equa-
tions, and also for the numerical analysis of F-FDEs. Specific examples of F-FDEs
include fractional delay HIV model [54], fractional financial delay system [51], popu-
lation dynamics model [7], and fractional parabolic PDEs with functional terms [43].

For \alpha = 1, the F-FDE (1) reduces to a classical integer-order FDE, for which the
dissipativity was studied in [52] under the assumption (3). It was proved also that
the classical FDE has a bounded absorbing set, which means all trajectories enter
in a finite time and thereafter remain inside. One important special case, the DDE,
was considered in [22], and some natural FDEs were analyzed in [50]. Dissipativity
is a common important feature to many dynamical systems, including many PDEs
[20, 44]. In addition, we remark that all these results on dissipative FDEs have a
common characteristic, i.e., the solutions decay exponentially into a given ball.

For classical FDEs, the strict contractivity and asymptotic stability were sys-
tematically studied in [30] and [4] under conditions (5)--(6), with the help of some
important stability inequalities established in terms of different initial functions. As
pointed out in [31], an important property of conditions (5)--(6) is that they admit
stiffness, i.e., the classical Lipschitz constant of f(t, y(t), y(\cdot )) with respect to y(t)
may be very large. This allows us to deal with some strong stiff FDEs coming from
the space semidiscrete parabolic-like PDEs with functional terms. As in dissipative
FDEs, we emphasize that the decay in contractive FDEs is also exponential, which
often leads to exponential stability for the perturbation with respect to the initial
functions.

In comparison with the rich and profound studies of FDEs, not much has been
done yet in the research on qualitative theoretical and numerical analysis of F-FDEs.
The existence, uniqueness, and stability for F-DDEs were established in [29, 39],
and some asymptotic properties of linear F-DDEs were studied in [28]. We notice
that the stability and asymptotic behavior of nonlinear F-ODEs and F-FDEs have
attracted more and more attention recently. The fractional generalization of Lyapunov
theorem and Mittag--Leffler stability was developed in [33], and the dissipativity and
asymptotic stability of nonlinear F-ODEs and F-FDEs were established by Wang et.al
[47, 48] under almost the same assumptions as that for classical integer equations
(\alpha = 1). More precisely, the following results were shown in [48].
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Lemma 1. (i) Let y(t) be a solution of the F-FDE (1); then under the dissipative
condition (3) with limt\rightarrow +\infty (t  - \mu 2(t)) = +\infty , the F-FDE (1) is dissipative, and for

any given \varepsilon > 0, the ball B(0,
\sqrt{} 

 - \gamma 
a+b + \varepsilon ) is an absorbing set.

(ii) Let z(t) be the solution to the F-FDE (1) with another initial function \chi (t).
Then it holds for t > 0 under conditions (5)--(6) that

\| y(t) - z(t)\| 2 \leq c

c+ d
u0 +M0 ,(7)

whereM0 = max - \sigma \leq \xi \leq 0 \| \psi (\xi ) - \chi (\xi )\| 2, u0 = \| \varphi (0) - \chi (0)\| 2. Moreover, limt\rightarrow +\infty (t - 
\mu 2(t)) = +\infty , then for any given \varepsilon > 0, there exists t\ast = t\ast (M0, \varepsilon ) > 0 such that

\| y(t) - z(t)\| 2 \leq c

c+ d
\varepsilon \forall t > t\ast ,

and with the asymptotic stability limt\rightarrow +\infty \| y(t) - z(t)\| = 0.

The first part of Lemma 1 implies that the the F-FDE (1) possesses a bounded
absorbing set, but the trajectories may not necessarily be asymptotic to a fixed point.
The dynamics in the absorbing set can be rather complex, such as chaotic, or with
bifurcation. The second part characterizes the stability and asymptotic stability of
the solutions. Note that the dissipativity and contractivity of ODEs or FDEs are two
classes of closely related but distinct properties. As one typical example, the famous
Lorenz system is dissipative but does not meet the one-sided Lipschitz condition [23].

Lemma 1 provides only the qualitative asymptotic behavior of F-FDEs for t \rightarrow 
+\infty . In fact, the condition that limt\rightarrow +\infty (t  - \mu 2(t)) = +\infty plays a critical role in
its proof. However, from the quantitative point of view, it does not give any hint
on the rate of the evolution process. It is well known that the true solutions of
classical ODEs or FDEs often decay exponentially while the F-ODEs and F-FDEs
decay polynomially. This is a very significant difference between FDEs and F-FDEs.
Hence, as the first objective of this work, we will present a new delay-dependent
fractional Halanay-like inequality, which is used to essentially improve the results of
Lemma 1. The new results not only provide the asymptotic behaviors but also give
the polynomial decay rate of the true solutions of F-FDEs. Special attentions will
be paid to F-DDEs. Different decay rates reveal some essential differences between
FDEs and F-FDEs and reflect the nonlocal nature of fractional derivative in a certain
sense.

Numerical methods have been one of the main tools in the study of fractional
differential equations since it is very difficult or even impossible to obtain the true so-
lutions to most fractional equations, especially when the fractional equations involve
some nonlinear terms or functional parts. In addition to the accuracy and efficiency,
another basic requirement of numerical methods is to preserve some important prop-
erties of the original equations, such as the energy, asymptotic stability, and bounded
absorbing set. The second objective of this paper is to design some numerical schemes
which can inherit the similar dissipativity, contractivity, and asymptotic stability as
the continuous F-FDEs.

We now recall some existing numerical methods for FDEs and F-FDEs in the
literature. In 1975, Dahlquist [14] first introduced the one-sided Lipschitz condition
for classical ODEs to deal with stiff nonlinear systems and proposed the concept of
G-stability for linear multistep methods (LMMs) and one-leg methods. Butcher [8]
considered the contractivity for Runge--Kutta methods and introduced the concept
of B-stability. We refer to the monograph [19] for more details. In 1994, Humphries
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and Stuart [23] first studied the numerical dissipativity of Runge--Kutta methods for
ODEs satisfying dissipative conditions. Numerical dissipativity of LMMs or one-leg
methods for ODEs was analyzed in [21].

The numerical contractivity and dissipativity for ODEs were soon extended to
FDEs. The early study of FDEs mainly focused on delay differential equations (DDEs)
with single constant delay and some low order methods; see [4, 6, 22, 30, 50]. Wen,
Yu, and Li [53] established the dissipativity of Runge--Kutta methods together with
piecewise interpolation operator for FDEs under the condition that limt\rightarrow +\infty (t  - 
\mu 2(t)) = +\infty . In 2012, Li [31] made a breakthrough about numerical contractivity for
FDEs, where a family of high order contractive Runge--Kutta methods were identified
for stiff FDEs, which broke the conjecture of order barrier on contractive numerical
methods for FDEs [4]. Further, Li [32] established the B-convergence of Runge--Kutta
methods for stiff FDEs for long-time stiff computations.

Predictor-corrector methods are among the most popular numerical methods for
F-DDEs [17, 5]. These methods are easy to implement and often have an acceptable
accuracy and stability for nonstiff problems. A spectrally accurate Petrov--Galerkin
method for F-DDEs was developed in [55] based on a new spectral theory for fractional
Sturm--Liouville problems. This method has the advantage of high accuracy and low
storage. Other related methods may be found in [13, 39]. We point out that all the
methods above for F-FDEs do not consider the special structure of the equations.

The rest of the paper is arranged as follows. In section 2, a new delay-dependent
fractional generalization of Halanay-like inequality is presented, which is used to es-
sentially improve the existing results in Lemma 1 about the asymptotic behavior of
F-FDEs. In section 3, the Gr\"unwald--Letnikov (G-L) scheme and L1 method, along
with linear interpolation operators, are employed to construct numerical methods for
F-FDEs. Some important properties of the coefficients in the numerical methods are
derived, and two schemes are shown to be dissipative and contractive, and can pre-
serve the exact decay rate of the continuous equations. Some numerical examples
are presented in section 4, and the numerical performance of the new schemes and
some existed ones are compared. Some concluding remarks, including several possible
extensions, are given in section 5.

2. Improved dissipativity and contractivity. In this section we establish
some quantitative results about the dissipativity and contractivity of solutions to
the F-FDE in (1). For this development, we shall often use the Mittag--Leffler and
generalized Mittag--Leffler functions E\alpha (z) and E\alpha ,\beta (z) defined for all z \in \BbbC :

E\alpha (z) =

\infty \sum 
k=0

zk

\Gamma (\alpha k + 1)
, \alpha > 0; E\alpha ,\beta (z) =

\infty \sum 
k=0

zk

\Gamma (\alpha k + \beta )
, \alpha , \beta > 0.

These functions are the fractional generalization of exponential functions and play a
key role in fractional calculus and have some nice properties as stated below [27].

Lemma 2. The following properties hold for 0 < \alpha < 1 and t \in \BbbR that

(1) E\alpha (t) > 0, E\alpha ,\alpha (t) > 0, lim
t\rightarrow  - \infty 

E\alpha (t) = 0 and lim
t\rightarrow  - \infty 

E\alpha ,\alpha (t) = 0;

(2)
d

dt
E\alpha (t) =

1

\alpha 
E\alpha ,\alpha (t) and

C
0 D

\alpha 
t E\alpha (\lambda t

\alpha ) = \lambda E\alpha (\lambda t
\alpha ) for \lambda \in \BbbC ;

(3) E\alpha ,\beta (\lambda t) =  - 
N\sum 

k=1

1

\Gamma (\beta  - k\alpha )

1

(\lambda t)k
+O

\biggl( 
1

(\lambda t)N+1

\biggr) 
as t\rightarrow +\infty 

for N \in \BbbN + and \lambda < 0.



1450 DONGLING WANG AND JUN ZOU

In [26], the authors proved a very useful fractional comparison principle under
the regularity assumption y \in C[0, T ] \cap C1(0, T ] for some T > 0. We generalize this
result to piecewise continuous and differentiable functions with monotonic properties
at discontinuous points.

Lemma 3. Suppose the function h is piecewise continuous and differentiable on
[0, T ], i.e., h \in C[0, t0] \cap C1(0, t0) and h \in C[t0, T ] \cap C1(t0, T ] for t0 \in (0, T ]. Fur-
thermore, we assume the left and right derivatives of h exists at t0, and it holds that
h(t - 0 ) \geq h(t+0 ). Then if h(t1) = 0 for t1 > t0 and h(t) < 0 for t \in [0, t1), we have
C
0 D

\alpha 
t1h(t1) \geq 0 for \alpha \in (0, 1).

Proof. The proof is similar to Lemma 2.1 in [26], but we replace the first order
derivative in the definition of Caputo operator at the discontinuous point t0 by the
left and right derivatives. Let g(t) = h(t) - h(t1), we define and compute by making
the integral by parts to obtain\int t1

0

(t1  - s) - \alpha g\prime (s)ds :\equiv 
\int t0

0

(t1  - s) - \alpha g\prime (s)ds+

\int t1

t0

(t1  - s) - \alpha g\prime (s)ds

=  - t\alpha 1 g(0) + (t1  - t0)
\alpha 
\bigl( 
g(t - 0 ) - g(t+0 )

\bigr) 
 - \alpha 

\int t1

0

(t1  - s) - \alpha  - 1g(s)ds.

Since g\prime (t) = h\prime (t) for all t except t = t0, which implies that C
0 D

\alpha 
t1h(t1) \geq 0 for

\alpha \in (0, 1).

Lemma 4 (fractional Halanay inequality). Assume that the non-negative contin-
uous function y(t) satisfies that\left\{   

C
0 D

\alpha 
t y(t) \leq \gamma + ay(t) + b max

t - \tau (t)\leq \xi \leq t
y(\xi ), 0 < t \leq T,

y(t) = | \varphi (t)| ,  - \sigma \leq t \leq 0,
(8)

where the constants \gamma , b \geq 0, a + b < 0, \sigma =  - inf
t\geq 0

(t  - \tau (t)) > 0, and the delay

\tau (t) \geq \mu 0 > 0. Then the following estimate holds

y(t) \leq  - \gamma 

a+ b
+ME\alpha (\lambda 

\ast t\alpha )(9)

for all t such that t \geq \tau (t), where M = \| \varphi (t)\| \infty := max
t\in [ - \delta ,0]

| \varphi (t)| , and the parameter

\lambda \ast is defined by

\lambda \ast = sup
t - \tau (t)\geq 0

\{ \lambda : \lambda  - a - b (E\alpha (\lambda (t - \tau (t))\alpha )/E\alpha (\lambda t
\alpha )) = 0\} ,(10)

and it holds that \lambda \ast \in [a+ b, 0].
Further, if the delay is bounded, i.e., \tau (t) \leq \tau 0 for some constant \tau 0 > 0, then the

parameter \lambda \ast defined by

\lambda \ast = sup
t - \tau (t)\geq 1

\{ \lambda : \lambda  - a - b (E\alpha (\lambda (t - \tau (t))\alpha )/E\alpha (\lambda t
\alpha )) = 0\} 

is strictly negative, namely, there exists some positive constant \epsilon 0 satisfying a+b <  - \epsilon 0
such that \lambda \ast \in [a+b, - \epsilon 0], and the estimate in (9) holds for all t such that t \geq \tau (t)+1.
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Before proving this lemma, we give a heuristic comment on how to justify our
important estimate (9). Let us consider the equation

C
0 D

\alpha 
t y(t) = \gamma + ay(t) + b max

t - \tau (t)\leq \xi \leq t
y(\xi ), for t > 0.(11)

The difficulty in finding a solution to this equation lies in the maximum term involved.
But under the assumption \gamma , b \geq 0, and a+b < 0, we know the solution decays in time.
On the other hand, we notice the nice property of the fractional derivative of Mittag--
Leffler function in part (ii) of Lemma 2, so we guess there should exist some negative
constant \lambda < 0 such that the solution of (11) may involve a term like E\alpha (\lambda t

\alpha ). If it is
the case, then the maximum term involved in (11) can be simplified, as it holds that
maxt - \tau (t)\leq \xi \leq tE\alpha (\lambda \xi 

\alpha ) = E\alpha (\lambda (t - \tau (t))\alpha ). This is because the function E\alpha (\lambda \xi 
\alpha ) is

monotone decreasing with respect to \xi \geq 0 for \alpha \in (0, 1) and \lambda < 0. Furthermore, we
know from our early result in [48] that the limit of the solution is  - \gamma /(a+ b). These
facts suggest us to consider a solution of the form y(t) =  - \gamma /(a + b) +ME\alpha (\lambda t

\alpha ).
We substitute this solution into (11) to obtain

M\lambda E\alpha (\lambda t
\alpha ) =\gamma + a

\biggl( 
 - \gamma 

a+ b
+ME\alpha (\lambda t

\alpha )

\biggr) 
+ b

\biggl( 
 - \gamma 

a+ b
+ME\alpha (\lambda (t - \tau (t))\alpha )

\biggr) 
,

which shows the crucial parameter \lambda may be given by the solutions to the equation

\lambda  - a - b (E\alpha (\lambda (t - \tau (t))\alpha )/E\alpha (\lambda t
\alpha )) = 0.

Proof of Lemma 4. We write h(\lambda ) = \lambda  - a  - b (E\alpha (\lambda (t - \tau (t))\alpha )/E\alpha (\lambda t
\alpha )). For

any fixed t \geq 0, we first show that there exists some root \lambda \in [a + b, 0) such that
h(\lambda ) = 0.

In fact, we first see h(0) =  - a  - b > 0. Let e\alpha = E\alpha (\lambda (t  - \tau (t))\alpha )/E\alpha (\lambda t
\alpha ).

We know that for \lambda < 0, the function E\alpha (\lambda \xi 
\alpha ) is positive and monotone decreasing

with respect to \xi \geq 0. This implies that E\alpha (\lambda (t  - \tau (t))\alpha ) \geq E\alpha (\lambda t
\alpha ) by noting that

t \geq t - \tau (t) \geq 0, namely, we have e\alpha \geq 1 for \lambda < 0. Therefore h(\lambda ) = \lambda  - a - be\alpha \leq 
\lambda  - a - b for \lambda < 0, which implies h(a+ b) \leq 0.

Similarly, we can derive that 0 < e\alpha \leq 1 for \lambda \geq 0, which implies that h(\lambda ) =
\lambda  - a - be\alpha \geq \lambda  - a - b > 0. Therefore, there exists no positive roots for the equation
h(\lambda ) = 0, so concluding that the roots of h(\lambda ) = 0 satisfy that \lambda \in [a+ b, 0). Clearly,
it then follows from the definition of \lambda \ast in (10) that \lambda \ast \in [a+ b, 0].

Now we show that the parameter \lambda \ast defined in (10) is strictly less than zero for
the case where the delay \tau (t) is bounded, i.e., there exists positive constant \tau 0 such
that \tau (t) \leq \tau 0. Noting the fact that h(0) =  - a  - b > 0, it suffices to prove that
h\prime (\lambda )| \lambda =0 is bounded. By direct computing, we have

h\prime (0) = 1 - 

b
(t - \tau (t))\alpha E\alpha (\lambda t

\alpha )E\alpha ,\alpha (\lambda (t - \tau (t))\alpha ) - t\alpha E\alpha (\lambda (t - \tau (t))\alpha )E\alpha ,\alpha (\lambda t
\alpha )

\alpha E2
\alpha (\lambda t

\alpha )

\bigm| \bigm| \bigm| \bigm| 
\lambda =0

= 1 +
b

\alpha \Gamma (\alpha )
(t\alpha  - (t - \tau (t))\alpha ) = 1 +

b

\Gamma (\alpha )

\tau (t)

\xi 1 - \alpha 
t

\leq 1 +
b\tau 0
\Gamma (\alpha )

< +\infty ,

where we have used the assumption that t  - \tau (t) \geq 1 and the fact that 1 \leq \xi t \in 
(t - \tau (t), t). By the Taylor expansion, we can write

h( - \epsilon ) = h(0) - h\prime (0)\epsilon +O(\epsilon 2)
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for \epsilon > 0. The facts that h(0) =  - a  - b > 0 and h\prime (0) is bounded allow us to
choose some small positive constant \epsilon 0 > 0 such that h( - \epsilon 0) \geq 0, which implies that
\lambda \ast \in [a+ b, - \epsilon 0].

Finally we come to prove our main estimate (9). This estimate follows from
Lemma 2.3 of [48] for the case that M = 0. Now we consider M > 0. For any given
\varepsilon > 0, we prove that

y(t) <  - \gamma + \varepsilon 

a+ b
+ME\alpha (\lambda 

\ast t\alpha ) \forall t \geq \tau (t).(12)

In fact, if this is not true, then there exists some t such that t \geq \tau (t) and

y(t) \geq z(t) :\equiv  - \gamma + \varepsilon 

a+ b
+ME\alpha (\lambda 

\ast t\alpha ).(13)

Let t\ast be the first time for z(t) = y(t), namely,

t\ast = inf\{ t \geq \tau (t) : y(t) \geq z(t)\} .(14)

To continue our proof, we set \delta (t) = y(t)  - z(t). Then we know from the definition
that \delta (t\ast ) = 0, and \delta (t) < 0 for t\ast  - \tau (t\ast ) \leq t < t\ast . On the interval [0, t\ast  - \tau (t\ast )],
we may define the function z(t) appropriately, e.g., z(t) = y(t) + \varepsilon \ast for a sufficiently
small \varepsilon \ast > 0, so that z(t) > y(t) for all t \in [0, t\ast ). Now we can apply the fractional
comparison principle in Lemma 3 and conclude that C

0D
\alpha 
t\ast \delta (t\ast ) \geq 0.

On the other hand, we can estimate

C
0D

\alpha 
t\ast \delta (t\ast ) =

C
0D

\alpha 
t\ast y(t\ast ) - 

C
0D

\alpha 
t\ast z(t\ast )

\leq 
\biggl( 
\gamma + ay(t\ast ) + b max

t\ast  - \tau (t\ast )\leq \xi \leq t\ast 
y(\xi )

\biggr) 
 - M\lambda \ast E\alpha (\lambda 

\ast t\alpha \ast )

\leq 
\biggl( 
\gamma + a

\biggl( 
 - \gamma + \varepsilon 

a+ b
+ME\alpha (\lambda 

\ast t\alpha \ast )

\biggr) 
+ b max

t\ast  - \tau (t\ast )\leq \xi \leq t\ast 
y(\xi )

\biggr) 
 - M\lambda \ast E\alpha (\lambda 

\ast t\alpha \ast ).

(15)

In view of t\ast  - \tau (t\ast ) \geq 0, we have that

max
t\ast  - \tau (t\ast )\leq \xi \leq t\ast 

y(\xi ) \leq max
t\ast  - \tau (t\ast )\leq \xi \leq t\ast 

z(\xi ) =  - \gamma + \varepsilon 

a+ b
+ME\alpha (\lambda 

\ast (t\ast  - \tau (t\ast ))
\alpha ).

Now it follows from (15) that

C
0D

\alpha 
t\ast \delta (t\ast ) \leq \gamma  - a

a+ b
(\gamma + \varepsilon ) + aME\alpha (\lambda 

\ast t\alpha \ast )

+ b

\biggl( 
 - \gamma + \varepsilon 

a+ b
+ME\alpha (\lambda 

\ast (t\ast  - \tau (t\ast ))
\alpha )

\biggr) 
 - M\lambda \ast E\alpha (\lambda 

\ast t\alpha \ast )

= - ME\alpha (\lambda 
\ast t\alpha \ast )

\biggl( 
\lambda \ast  - a - b

E\alpha (\lambda 
\ast (t\ast  - \tau (t\ast ))

\alpha )

E\alpha (\lambda \ast t\alpha \ast )

\biggr) 
 - \varepsilon 

\leq  - \varepsilon < 0,

which contradicts with the fact that C
0D

\alpha 
t\ast \delta (t\ast ) \geq 0. This completes the proof of

Lemma 4.

Earlier in [48], we proved a fractional Halanaly inequality under the condition
that limt\rightarrow +\infty (t - \tau (t)) = +\infty , and only asymptotic limit was achieved there, without
any hints on the decay rate of the solution. However, the polynomial decay rate of
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the solutions is an important characteristic for fractional differential equations and
is also the main difference between fractional and integer differential equations. The
case that \tau (t) \leq \tau 0 for some constant \tau 0 > 0 in Lemma 4 is quite appropriate for most
F-FDEs, which excludes a class of unbounded delay differential equations, namely,
the so-called proportion DDEs, for which it holds that \tau (t) = qt for q \in (0, 1). But
we will see in our numerical Example 4.2 that the decay rate estimation (as stated
in (21)) still holds for the proportion DDEs. One of the direct applications of our
new fractional Halanaly inequality is to help us establish the fractional dissipativity
and contractivity below for F-FDEs, which also improve essentially our early results
[48]. For our later analysis, we now introduce an important fractional version of the
Leibniz formula [1, 15].

Lemma 5. The following equality holds for 0 < \alpha < 1 and any two absolutely
continuous functions x(t) and y(t) \in \BbbR n for n \geq 1 on [0, T ]:

xT (t) \cdot C
0 D

\alpha 
t y(t) + yT (t) \cdot C

0 D
\alpha 
t x(t) =

C
0 D

\alpha 
t

\bigl( 
xT (t) \cdot y(t)

\bigr) 
+

\alpha 

\Gamma (1 - \alpha )

\int t

0

1

(t - \xi )1 - \alpha 

\Biggl( \int \xi 

0

x\prime (\eta )d\eta 

(t - \eta )\alpha 
\cdot 
\int \xi 

0

y\prime (s)ds

(t - s)\alpha 

\Biggr) 
d\xi ,

where the sign `` \cdot "" is the usual vector product between vectors in \BbbR n for n \geq 1.

We readily see from the identity in Lemma5 by taking x(t) = y(t) that

C
0 D

\alpha 
t

\bigl( 
yT (t) \cdot y(t)

\bigr) 
\leq 2yT (t) \cdot C

0 D
\alpha 
t y(t) for 0 < \alpha < 1 .(16)

This inequality and its discrete version given in Lemma 9 later are crucial for our
subsequent analysis. This inequality can be viewed as the fractional extension of
the Leibniz formula in classical calculus for the product of two functions and enable
us to multiply both sides of the F-FDEs (1) and its discrete scheme by appropriate
functions and derive some desired a priori bounds of the solution and the approximate
solution.

Theorem 6. Let y(t) is a solution to the F-FDE (1) and \mu 2(t) be the function
in (3) or (6) satisfying that \mu 2(t) \leq \mu \ast for a constant \mu \ast > 0.

(i) Under the dissipative condition (3), it holds that

\| y(t)\| 2 \leq  - \gamma 

a+ b
+ME\alpha (\lambda 

\ast t\alpha )(17)

for all t such that t \geq \mu 2(t)+1, whereM = \| \varphi (t)\| \infty and the parameter \lambda \ast \in [a+b, - \epsilon 1]
is given by

\lambda \ast = sup
t - \mu 2(t)\geq 1

\{ \lambda : \lambda  - a - b (E\alpha (\lambda (t - \mu 2(t))
\alpha )/E\alpha (\lambda t

\alpha )) = 0\} ,(18)

where \epsilon 1 is some positive constant such that a+ b <  - \epsilon 1 < 0. Moreover, the F-FDE
(1) is dissipative, i.e., the ball B(0,

\sqrt{} 
 - \gamma /(a+ b) + \varepsilon ) is an absorbing set as t\rightarrow +\infty 

for any given \varepsilon > 0, and follows the dissipative rate

\| y(t)\| 2 \leq  - \gamma 

a+ b
+M

C\alpha 

t\alpha 
as t\rightarrow +\infty ,

where C\alpha > 0 is a constant independent of t.
(ii) Under the conditions (5)--(6), the stability inequality holds

\| y(t) - z(t)\| 2 \leq M0E\alpha (\lambda 
\ast \ast t\alpha )(19)
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for all t such that t \geq \mu 2(t) + 1, where M0 = max - \sigma \leq \xi \leq 0 \| \psi (\xi )  - \chi (\xi )\| 2 and z(t)
is the solution to the F-FDE (1) with initial function \chi (t), and the parameter \lambda \ast \ast \in 
[c+ d, - \epsilon 2] is given by

\lambda \ast \ast = sup
t - \mu 2(t)\geq 1

\{ \lambda : \lambda  - c - d (E\alpha (\lambda (t - \mu 2(t))
\alpha )/E\alpha (\lambda t

\alpha )) = 0\} ,(20)

where \epsilon 2 is some positive constant such that c + d <  - \epsilon 2 < 0. And as t \rightarrow +\infty , we
have the following asymptotic contractive rate

\| y(t) - z(t)\| 2 \leq M0
C\alpha 

t\alpha 
,(21)

where C\alpha > 0 is a constant independent of t.

Proof. We first show (i). It follows from the condition (3) that

2yT (t) \cdot C
0 D

\alpha 
t y(t) \leq \gamma + a\| y(t)\| 2 + b max

t - \mu 2(t)\leq \xi \leq t - \mu 1(t)
\| y(\xi )\| 2 ,

using this we readily derive from Lemma 5 that

C
0 D

\alpha 
t

\bigl( 
\| y(t)\| 2

\bigr) 
\leq \gamma + a\| y(t)\| 2 + b max

t - \mu 2(t)\leq \xi \leq t
\| y(\xi )\| 2.

Now the desired results follow directly from the fractional Halanay inequality and the
asymptotic expansion of Mittag--Leffler function given in Lemma 2.

Next we prove (ii). By the definition of y(t) and z(t) from the F-FDEs (1), we
can write \bigl\langle 

C
0 D

\alpha 
t (y(t) - z(t)), y(t) - z(t)

\bigr\rangle 
= \langle f(t, y(t), y(\cdot )) - f(t, z(t), z(\cdot )), y(t) - z(t)\rangle 
= \langle f(t, y(t), y(\cdot )) - f(t, y(t), z(\cdot )), y(t) - z(t)\rangle 
+ \langle f(t, y(t), z(\cdot )) - f(t, z(t), z(\cdot )), y(t) - z(t)\rangle .

Using the Cauchy--Schwarz inequality and conditions (5)--(6), we derive

2
\bigl\langle 

C
0 D

\alpha 
t (y(t) - z(t)), y(t) - z(t)

\bigr\rangle 
\leq d max

t - \mu 2(t)\leq \xi \leq t - \mu 1(t)
\| y(\xi ) - z(\xi )\| \cdot \| y(t) - z(t)\| + c\| y(t) - z(t)\| 2.

This implies that u(t) = y(t) - z(t) satisfies

2uT (t) \cdot C
0 D

\alpha 
t u(t) \leq d max

t - \mu 2(t)\leq \xi \leq t - \mu 1(t)
\| u(\xi )\| \cdot \| u(t)\| + c\| u(t)\| 2.

But using Lemma 5, we can further deduce

C
0 D

\alpha 
t

\bigl( 
\| u(t)\| 2

\bigr) 
\leq 2uT (t) \cdot C

0 D
\alpha 
t u(t)

\leq d max
t - \mu 2(t)\leq \xi \leq t - \mu 1(t)

\| u(\xi )\| \cdot \| u(t)\| + c\| u(t)\| 2

\leq d max
t - \mu 2(t)\leq \xi \leq t

\| u(\xi )\| \cdot \| u(t)\| + c\| u(t)\| 2

\leq d max
t - \mu 2(t)\leq \xi \leq t

\| u(\xi )\| 2 + c\| u(t)\| 2.

Now the result (19) follows directly from Lemma 4, while the estimate (21) of the
decay rate is a consequence of the asymptotic expansion of Mittag--Leffler function
given in Lemma 2.
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3. Numerical approximations for F-FDEs. In this section we propose two
numeric schemes for the F-FDE (1) and investigate their numerical dissipativity and
contractivity. To do so, we consider a partition of the interval [0, T ], tn = nh, n =
0, 1, 2, 3, . . ., with h > 0 being the step-size. We shall write yn for the approximation
of y(tn), and employ the canonical interpolation operator \Pi h introduced by Li [31] to
approximate the true solution y(t), which satisfies the canonical condition

max
t\leq t\leq tn

\bigm\| \bigm\| \Pi h(t, \varphi , y0, y1, . . . , yn) - \Pi h(t, \chi , z0, z1, . . . , zn)
\bigm\| \bigm\| 

\leq 

\left\{       
c\pi max

\eta (t)\leq j\leq n
\| yj  - zj\| for  - \tau \leq t \leq tn, \eta 

\bigl( 
t
\bigr) 
\geq 0,

c\pi max

\biggl\{ 
max
1\leq j\leq n

\| yj  - zj\| , max
 - \tau \leq t\leq 0

\| \phi (t) - \chi (t)\| 
\biggr\} 
for  - \tau \leq t \leq tn, \eta 

\bigl( 
t
\bigr) 
< 0,

where the function \eta (t) is defined by

\eta (t) = min\{ m : the integer m \geq 0, tm \geq t\}  - p,

with p being a non-negative integer depending only on the procedure of interpolation,
and the canonical constant c\pi \geq 1 is independent of t, n, yj , zj , \phi and \chi . The general
method of construction a high order interpolation operator \Pi h based on Lagrangian
polynomial can be found in [31]. We will consider in this work only the piecewise
linear interpolation of first order defined by

\Pi h(t, \varphi , y0, y1, ...yn) =

\left\{   
\phi (t) for t \in [ - \tau , 0],
(tj  - t)yj - 1 + (t - tj - 1)yj

h
for t \in (tj - 1, tj ]

(22)

for j = 1, 2, . . . , n. It is easy to check that the canonical condition is satisfied with
c\pi = 1 and p = 1.

In the numerical treatment of F-ODEs, methods based on the discretization of the
fractional derivative are referred as backward differentiation formulas (BDFs). BDFs
are often implicit and have good stability. Combining BDFs for Caputo derivative and
canonical interpolation operator for functional term lead to the following numerical
method for the F-FDE (1) in the full-term recursion:\left\{       

yh(t) = \Pi h(t, \varphi , y0, y1, . . . , yn),
n\sum 

j=0

\omega n - jyj = h\alpha f(tn, yn, y
h(\cdot )), n = 1, 2, 3, . . . .

(23)

There are several different approaches to construct the weights \{ \omega n\} \infty n=0 in (23) in
literature, resulting in a wide variety of schemes with different accuracy and stability.
We will consider only two popular schemes: the weights are given by G-L formula [27]
and L1 method [34, 45], while the piecewise linear interpolation is given in (22).

3.1. Gr\"unwald--Letnikov formula. For 0 < \alpha < 1, the G-L fractional deriva-
tive GL

0 D
\alpha 
t y(t) is defined by

GL
0 D

\alpha 
t y(t) = lim

h\rightarrow 0+

(\Delta \alpha 
h) y(t)

h\alpha 
= lim

h\rightarrow 0+

1

h\alpha 

m=[t/h]\sum 
k=0

( - 1)k
\biggl( 
\alpha 
k

\biggr) 
y(t - kh).(24)
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If we do not perform the limit operation h \rightarrow 0+ but let h > 0 be the step-size,
then we get the discretized version of the operator GL

0 D
\alpha 
t y(t):

GL
0 D

\alpha 
t y(tn) =

1

h\alpha 

n\sum 
k=0

( - 1)k
\biggl( 
\alpha 
k

\biggr) 
yn - k +O(h) =

1

h\alpha 

n\sum 
k=0

\omega kyn - k +O(h),

where \omega k = ( - 1)k(
\alpha 
k

). For well-behaved functions, the G-L derivative is equiv-

alent to the Riemann--Liouville (R-L) fractional derivative defined by RL
0D

\alpha 
t y(t) :=

1
\Gamma (1 - \alpha )

d
dt

\int t

0
y(s)

(t - s)\alpha ds for t > 0. Hence, the G-L scheme is also a good first order

approximation of the R-L derivative, i.e., RL
0D

\alpha 
t y(tn) =

1
h\alpha 

\sum n
k=0 \omega kyn - k +O(h). By

making use of the relationship that C
0 D

\alpha 
t y(t) = RL

0D
\alpha 
t (y(t) - y(0)) between the

Caputo and R-L fractional derivatives, we can see that it is natural to present the
first order numerical approximation C

0 D
\alpha 
tny(tn) =

RL
0D

\alpha 
tn (y(tn) - y(0)) = 1

h\alpha 

\sum n
k=0

\omega k(yn - k  - y0) +O(h), which can be rewritten as

C
0 D

\alpha 
tny(tn) =

1

h\alpha 

\Biggl( 
n\sum 

k=1

\omega n - kyk + \delta ny0

\Biggr) 
+O(h).(25)

This choice also yields good numerical stability [18]. For any fixed n \geq 1, the weights
\omega k can be recursively evaluated as\left\{           

\omega 0 = 1, \omega k =

\biggl( 
1 - \alpha + 1

k

\biggr) 
\omega k - 1, k = 1, 2, . . . , n - 1,

\delta n =  - 
n - 1\sum 
j=0

\omega j .

(26)

The G-L formula is a simple and effective numerical scheme with first order ac-
curacy. It has a wide range of applications and can be used to construct a variety of
high order and shifted schemes. The weights \omega k are the coefficients of the generating
function \omega (\xi ) = (1 - \xi )\alpha and have the following properties [18].

Lemma 7. For 0 < \alpha < 1, it holds for the coefficients \omega k = ( - 1)k(
\alpha 
k

) that

(i) \omega 0 = 1, \omega n < 0, | \omega n+1| < | \omega n| , n = 1, 2, . . .;

(ii) \omega 0 =  - 
\infty \sum 
j=1

\omega j >  - 
n\sum 

j=1

\omega j , n \geq 1;

(iii) \omega n = O(n - 1 - \alpha ), \delta n = O(n - \alpha ) as n\rightarrow \infty .

3.2. \bfitL 1 method. The L1 method is a very popular algorithm for the numer-
ical treatment of Caputo derivatives and can be written as the discrete convolution
quadrature of the form

C
0 D

\alpha 
t y(t)| t=tn =

1

h\alpha 

n\sum 
k=0

\omega n - kyk +O(hq),(27)

where the parameter q is the order of the local truncation error and determined by
the regularity of the solution, and the coefficients are given by

\omega 0 =
1

\Gamma (2 - \alpha )
, \omega n =

1

\Gamma (2 - \alpha )

\bigl( 
(n - 1)1 - \alpha  - n1 - \alpha 

\bigr) 
,
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\omega k =
1

\Gamma (2 - \alpha )

\bigl( 
(k + 1)1 - \alpha  - 2k1 - \alpha + (k  - 1)1 - \alpha 

\bigr) 
, k = 1, . . . , n - 1 .

The L1 method often leads to unconditionally stable algorithms and has the accuracy
O(h2 - \alpha ) for smooth data and solutions (see, e.g., [34, 45]) but only a first order
convergence for nonsmooth initial data [24].

By direct computing, we can derive the following properties about the coefficients
in (27).

Lemma 8. The coefficients of the L1 method satisfy the following relations:

(i) \omega 0 > 0, \omega 1 < \omega 2 < \cdot \cdot \cdot < \omega n - 1 < 0 \omega n < 0for any n \geq 1;

(ii) k1+\alpha \omega k \rightarrow  - \alpha 

\Gamma (1 - \alpha )
as k \rightarrow \infty for k \not = n,

and n\alpha \omega n \rightarrow  - 1

\Gamma (1 - \alpha )
as n\rightarrow \infty .

Other important numerical approximations to Caputo or R-L fractional deriva-
tives in the literature include fractional LMMs [18, 35, 36], shifted Gr\"unwald differ-
ence operators [38, 46], fourth order weighted and shifted difference operators [11],
Diethelm's method [16], high-order schemes according to polynomial interpolation
[9], and numerical methods based on the rational approximation of the generating
functions of F-BDFs [40], etc.

In general, we can combine some proper numerical methods for F-ODEs and in-
terpolation operators for functional terms to get the corresponding numerical methods
for F-FDEs. But in this work, we consider only the two numerical schemes we de-
scribed earlier, due to two main reasons. First, higher order schemes often have poor
stability. Generally speaking, the order of an A-stable F-LMMs cannot exceed two
[36]. Second, the analysis for the global F-LMMs will be much more technical and
complicated than that for classical LMMs in the framework of G-norm.

3.3. Numerical dissipativity and contractivity analysis. We know that
the Dahlquist's G-stability plays a core role in the dissipativity and contractivity of
LMMs and one-leg methods for classical ODEs and FDEs [14, 19, 21]. For a fixed k,
let Xm = (xm+k - 1, xm+k - 2, . . . , xm)T , and consider the inner product norm in \BbbR n\cdot k:

\| Xm\| 2G =

k\sum 
i=1

k\sum 
j=1

gij \langle xm+i - 1, xm+j - 1\rangle ,(28)

where the matrix G = (gij)i,j=1,2,...,k is assumed to be real, symmetric, and positive
definite. Then all the analysis for classical LMMs will be performed under the G-
norm. In essence, G-norm concept can change the LMMs into the corresponding
one-leg methods so that one may make use of the dissipativity and contractivity
conditions. A key feature of the analysis for classical k-step LMMs under the G-norm
is that the dimension of the matrix G is fixed all the time, namely, it is equal to k,
i.e., the number of steps of the corresponding LMMs. However, due to the nonlocal
nature of fractional operators and the growth of the matrix size along with time, the
G-norm can not be applied to F-LMMs. It is still a fundamental issue how to develop
an effective novel analysis framework for global F-LMMs for nonlinear F-ODEs and
F-FDEs.

We intend to make some initial efforts in this direction. For this purpose, we
first introduce several auxiliary results. The first one is the discrete version of the
inequality (16) we established earlier in [49].
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Lemma 9. If the weights \{ \omega n\} \infty n=0 from some numerical approximation to the
Caputo fractional derivative in (2) have the following properties\left\{       

(i) \omega 0 > 0,
(ii) \omega j < 0 \forall j \geq 1,

(iii)
n\sum 

j=0

\omega j \geq 0 for any given n \geq 1,

then the following inequality holds:

n\sum 
j=0

\omega n - j\| xj\| 2 \leq 

\Biggl\langle 
2xn,

n\sum 
j=0

\omega n - jxj

\Biggr\rangle 
, n \geq 1.(29)

It is easy to check that both G-L formula and L1 method satisfy the conditions
in Lemma 9. For the proof of the numerical dissipativity of the F-FDEs, we shall
first establish the boundedness of the solutions to a Volterra difference equation, by
applying the discrete variant of a Paley--Wiener theorem, which was first introduced
by Lubich [35].

Lemma 10. Consider the discrete Volterra equation

xn = pn +

n\sum 
j=0

qn - jxj , n \geq 0,(30)

where the kernel \{ qn\} \infty n=0 belongs to l1, i.e.,
\sum \infty 

j=0 | qj | < \infty . Then xn \rightarrow 0 (resp.,
bounded) whenever pn \rightarrow 0 (resp., bounded) as n\rightarrow \infty if and only if the Paley--Wiener
condition is satisfied, i.e.,

\infty \sum 
j=0

qj\zeta 
j \not = 1 for | \zeta | \leq 1.(31)

Moreover, let \{ rn\} \infty n=0 be the coefficients defined by the relation

\infty \sum 
j=0

rj\zeta 
j =

\left(  1 - 
\infty \sum 
j=0

qj\zeta 
j

\right)   - 1

.(32)

Then if \{ qn\} \infty n=0 belongs to l1 and the condition (31) holds, \{ rn\} \infty n=0 is in l1 and has
the estimate \| x\| l\infty \leq \| r\| l1\| p\| l\infty .

Generally speaking, it is much more difficult to derive the exact decay rates for a
numerical method than to achieve only the qualitative properties such as the stability
and asymptotic stability of some equilibrium solutions. Wang, Xiao, and Zou [49]
provided an exact convergence rate for the solutions to a Volterra difference equation
based on some recent qualitative analysis of the discrete Volterra equation [3].

Lemma 11. Consider the Volterra difference equation

xn+1 = fn +

n\sum 
j=0

Fn - jxj , n \geq 1,

satisfying the spectral condition \rho =
\sum \infty 

j=0 | Fj | < 1.

(i) If lim
n\rightarrow \infty 

fn = f\infty , then lim
n\rightarrow \infty 

xn = (1 - \rho )
 - 1
f\infty [3].

(ii) If fn \rightarrow c1
n\alpha as n \rightarrow \infty for some c1 > 0 and 0 < \alpha < 1, then xn \rightarrow 

c1 (1 - \rho )
 - 1
/n\alpha as n\rightarrow \infty [49].
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We are now in the position to prove the main results of this section, which can
be seen as the discrete version of Theorem 6.

Theorem 12. Consider the numerical method (23) for the F-FDE (1), where
the weights \{ \omega k\} \infty n=0 are given by either the G-L formula or L1 method, and the
interpolation operator yh = \Pi h is given by the piecewise linear interpolation (22).
Assume that \eta (\^tn) \geq 1 with \^tn = tn  - \mu 2(tn).

(i) The numerical solutions are dissipative under the dissipative condition (3),
i.e., for any given initial value y0 and \varepsilon > 0, there is a bounded set B (0, r) and
n0 \in N+ such that \| yn\| \in B (0, r) for all n > n0, with r =

\sqrt{} 
 - \gamma /(a+ b) + \varepsilon .

(ii) Under the one-sided Lipschitz and Lipschitz condition (5)--(6), the numerical
solutions are contractive and can preserve the exact contractivity rate towards zero
like n - \alpha as n \rightarrow \infty , i.e., the estimate \| yn  - zn\| 2 \leq c\alpha /n

\alpha holds for some constant
c\alpha > 0 independent of n, where yn and zn are two numerical solutions given by (23)
with initial functions \varphi and \chi , respectively.

Proof. We first prove part (i). Using the dissipativity condition (3), we easily see\Biggl\langle 
2yn,

n\sum 
j=0

\omega n - jyj

\Biggr\rangle 
= 2h\alpha 

\bigl\langle 
yn, f(tn, yn, y

h(\cdot ))
\bigr\rangle 

\leq h\alpha 
\biggl( 
\gamma + a\| yn\| 2 + b max

tn - \mu 2(tn)\leq t\leq tn - \mu 1(tn)
\| yh(t)\| 2

\biggr) 
.

But applying Lemma 9 and the canonical condition satisfied by the linear interpolation
defined in (22) with canonical constant c\pi = 1, we derive

n\sum 
j=0

\omega n - j\| yj\| 2 \leq h\alpha 
\biggl( 
\gamma + a\| yn\| 2 + b max

\eta (\^tn)\leq j\leq n
\| yj(t)\| 2

\biggr) 
,

which can be written in the following equivalent convolution Volterra inequality:

\| yn\| 2 \leq h\alpha \gamma 

\omega 0  - h\alpha a
+

n - 1\sum 
j=0

| \omega n - j | 
\omega 0  - h\alpha a

\| yj\| 2 +
h\alpha b

\omega 0  - h\alpha a
max

\eta (\^tn)\leq j\leq n
\| yj\| 2.(33)

For the sake of simplicity, we introduce the coefficients

A =
h\alpha \gamma 

\omega 0  - h\alpha a
, Cn - j =

| \omega n - j | 
\omega 0  - h\alpha a

, B =
h\alpha b

\omega 0  - h\alpha a
.

We now consider (33) in two cases:

(a) max
\eta (\^tn)\leq j\leq n

\| yj\| 2 = \| yn\| 2; (b) max
\eta (\^tn)\leq j\leq n

\| yj\| 2 = max
\eta (\^tn)\leq j\leq n - 1

\| yj\| 2.

For case (a), the inequality (33) is equivalent to

\| yn\| 2 \leq A+

n - 1\sum 
j=0

Cn - j \| yj\| 2 +B \| yn\| 2 .(34)

By setting z0 := \| y0\| 2, q0 := B \in (0, 1), and zn := \| yn\| 2, pn := A, qn := Cn for
n \geq 1, we can rewrite (34) to

zn \leq pn +

n\sum 
j=0

qn - jzj , n \geq 1 .(35)
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To derive a desired bound of \| yn\| , we further define a sequence \{ xn\} by

xn = pn +

n\sum 
j=0

qn - jxj , n \geq 0 .(36)

For convenience, we have included the case n = 0 in (36), for which we need to choose
x0 such that 0 \leq z0 \leq x0 and then set p0 = (1 - q0)x0. This is feasible as z0 = \| y0\| 2
is given. Now using the facts that 0 \leq z0 \leq x0 and p0 = (1  - q0)x0, we can see that
(35) holds also for n = 0.

Next we claim that zn \leq xn for n \geq 1. In fact, we readily see from (35)--(36)
with n = 1 that z1  - x1 \leq q1(z0  - x0) + q0(z1  - x1). Therefore, (1  - q0)(z1  - x1) \leq 
q1(z0  - x0) \leq 0, which implies that z1 \leq x1. Similarly we can derive from (35)--(36)

for n > 1 that (1 - q0)(zn - xn) \leq 
\sum n - 1

j=0 qn - j(zj - xj) \leq 0, which concludes our claim.
Now we apply Lemma 10, i.e., the discrete Paley--Wiener theorem, to the sequence

\{ xn\} in (36), to get the bound of \{ xn\} , which then implies our desired bound of
zn = \| yn\| 2. To do so, we need to verify two conditions in Lemma 10, i.e., the Paley--
Wiener condition (31) and the sequence \{ rn\} defined by (32) lying in l1. For the
condition (31), it suffices to show that \rho =

\sum \infty 
j=0 qj < 1, which comes from the direct

computing:

\rho =

\infty \sum 
j=0

qj =

\infty \sum 
j=1

Cj +B =

\left\{       
1 + h\alpha b

1 - h\alpha a
< 1 for GL formula,

1 + \Gamma (2 - \alpha )h\alpha b

1 - \Gamma (2 - \alpha )h\alpha a
< 1 for L1 method.

(37)

To estimate the sequence \{ rn\} , we first notice the convergence of the sequence (32)
for | \zeta | \leq 1 by using the Paley--Wiener condition (37). Now taking \zeta = 1 in (32) and
using our above established fact that \rho =

\sum \infty 
j=0 qj \in (0, 1), we know rj \geq 0 for j \geq 0.

This implies that \| r\| l1 =
\sum \infty 

j=0 rj = (1 - 
\sum \infty 

j=0 qj)
 - 1 = (1  - \rho ) - 1; then a direct

application of Lemma 10 yields

zn = \| yn\| 2 \leq xn \leq A

1 - \rho 
=

\left\{     
 - \gamma 

a+ b
for GL formula,

 - \gamma 

a+ b
for L1 method

(38)

as n\rightarrow \infty , which gives our desired bound.
For case (b), we can easily see that (33) is equivalent to

\| yn\| 2 \leq A+

n - 1\sum 
j=0

Cn - j \| yj\| 2 +B max
\eta (\^tn)\leq j\leq n - 1

\| yj\| 2

\leq A+

n - 1\sum 
j=0

Cn - j \| yj\| 2 +B max
0\leq j\leq n - 1

\| yj\| 2.

(39)

Define the characteristic function \chi j = 1 if max\eta (\^tn)\leq j\leq n - 1 \| yj\| 2 = \| yj\| 2 and \chi j = 0
otherwise. Then the inequality (39) is equivalent to

\| yn\| 2 \leq A+

n - 1\sum 
j=0

(Cn - j +B\chi j) \| yj\| 2 .(40)
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Now we can derive the desired estimate that \| yn\| 2 \leq  - \gamma 
a+b by following the same

argument as we bounded the sequence \{ yn\} satisfying (34) in case (a) above, but
using Lemma 11 (i) now instead of Lemma 10. We omit the detailed argument here.

It remains to prove part (ii). Let vj = yj  - zj ; then it follows from (5)--(6) that\Biggl\langle 
2vn,

n\sum 
j=0

\omega n - jvj

\Biggr\rangle 
=2h\alpha 

\bigl\langle 
vn, f(tn, yn, y

h(\cdot )) - f(tn, zn, z
h(\cdot ))

\bigr\rangle 
=2h\alpha 

\bigl\langle 
vn, f(tn, yn, y

h(\cdot )) - f(tn, zn, y
h(\cdot ))

\bigr\rangle 
+ 2h\alpha 

\bigl\langle 
vn, f(tn, zn, y

h(\cdot )) - f(tn, zn, z
h(\cdot ))

\bigr\rangle 
\leq h\alpha 

\biggl( 
c\| vn\| 2 + d max

tn - \mu 2(tn)\leq t\leq tn - \mu 1(tn)
\| vh(t)\| 2

\biggr) 
.

But applying Lemma 9 and the canonical condition for linear interpolation given in
(22) with canonical constant c\pi = 1, we deduce that

n\sum 
j=0

\omega n - j\| vj\| 2 \leq h\alpha 
\biggl( 
c\| vn\| 2 + d max

\eta (\^tn)\leq j\leq n
\| vj\| 2

\biggr) 
,

which can be written in the following equivalent convolution Volterra inequality:

\| vn\| 2 \leq 
n - 1\sum 
j=0

| \omega n - j | 
\omega 0  - h\alpha c

\| vj\| 2 +
h\alpha d

\omega 0  - h\alpha c
max

\eta (\^tn)\leq j\leq n
\| vj\| 2

\leq 
n - 1\sum 
j=0

Hn - j \| vj\| 2 +G max
1\leq j\leq n

\| vj\| 2,

(41)

where we have made use of the assumption \eta (\^tn) \geq 1, and Hn - j = | \omega n - j | /(\omega 0  - h\alpha c),
G = h\alpha d/(\omega 0  - h\alpha c). Note that coefficients Hn - j and G are non-negative. Then as
we carried out in part (i), we can also continue our argument with (41) in two cases:

(a) max
1\leq j\leq n

\| vj\| 2 = \| vn\| 2; (b) max
1\leq j\leq n

\| vj\| 2 = max
1\leq j\leq n - 1

\| vj\| 2.

For case (a), we can easily see that inequality (41) is equivalent to

\| vn\| 2 \leq Hn

1 - G
\| v0\| 2 +

n - 1\sum 
j=1

Hn - j

1 - G
\| vj\| 2 .(42)

We can check that \rho 1 = 1
1 - G

\sum \infty 
j=1Hj =

\omega 0

\omega 0 - h\alpha (c+d) < 1 by noting that c+ d < 0.

For case (b), the same as we derived (39) earlier, we can obtain

\| vn\| 2 \leq Hn \| v0\| 2 +
n - 1\sum 
j=1

(Hn - j +G\chi j) \| vj\| 2.(43)

It is easy to check that

\rho 2 =

+\infty \sum 
j=1

Hj +G =

\left\{       
1 + h\alpha d

1 - h\alpha c
< 1 for GL formula,

1 + \Gamma (2 - \alpha )h\alpha d

1 - \Gamma (2 - \alpha )h\alpha c
< 1 for L1 method.

(44)

On the other hand, we know from Lemmas 7 and 8 that there exists c\alpha > 0 such
that Hn \leq c\alpha /n

\alpha . Using this, we can derive the desired estimate that \| vn\| 2 \leq c\alpha /n
\alpha 
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for both cases (a) and (b), by following the same argument as we bounded the sequence
\{ yn\} satisfying (34) or (40) in part (i), but using Lemma 11 (ii) now instead of
Lemma 10 or Lemma 11 (i). We omit the detailed argument here.

4. Numerical experiments. In this section, we present some numerical ex-
periments to validate our analytical results in previous sections. We will verify the
numerical dissipativity and contractivity of F-FDEs, also reveal different decay rates
between F-FDEs and integer FDEs. More importantly, we will compare the perfor-
mance of our methods and the popular predictor-corrector type method proposed in
[17].

4.1. Delay fractional financial system. Consider the system\left\{     
C
0D

\alpha 
t x(t) = z(t) + (y(t - \tau ) - 3)x(t),

C
0D

\alpha 
t y(t) = 1 - 0.1y(t) - x2(t - \tau ),

C
0D

\alpha 
t z(t) =  - x(t - \tau ) - z(t),

(45)

where \tau \geq 0 is the delay parameter. The nondelay fractional financial system (i.e.,
\tau = 0) was proposed, and its complex dynamical behaviors were studied in [12]. Note
that the system is dissipative for \tau = 0, and there exist a global absorbing set. For
\tau > 0, we will observe numerically that there exist also bounded chaotic absorbing
sets. Time delay in a financial system means that one policy form being made to take
effect has to go through certain time, and its influence can not be negligible in many
cases.

The system (45) was studied in [51] by using the fractional Adams--Bashforth--
Moulton method. We shall mainly compare the numerical performance of our method
and the popular predictor-corrector type method for this example. The initial values
are taken as x(t) = 0.1, y(t) = 4, z(t) = 0.5 for t \leq 0.

Figure 1 plots the numerical solutions for different delay \tau and Figure 2 presents
numerical solutions for different fractional order \alpha . They are computed by G-L for-
mula with the step size h = 0.05 and T = 100. We can see that both the delay \tau and
fractional order \alpha can significantly affect the shape and size of the solution phase.
Some appropriate modifications in delay or fractional order can enhance or suppress
the emergence of chaotic or periodic motions.
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Fig. 1. Numerical solutions for \alpha = 0.7, h = 0.05 with delay \tau = 0.8, 0.4, 0.2, and 0.1.
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Fig. 2. Numerical solutions for \tau = 0.2, h = 0.05 with fractional order \alpha = 0.3, 0.6, 0.9, and 0.98.

Our numerical method can correctly simulate various different qualitative char-
acteristics of this system for all the delay \tau \geq 0 and fractional order \alpha \in (0, 1)
with accepted step size. If the fractional Adams--Bashforth--Moulton method is used
to simulate this system, the step size must be restricted, i.e., h < h0(\alpha ) for some
h0(\alpha ) > 0 to ensure numerical stability. Moreover, when the order \alpha is small, this
limitation becomes very demanding and heavily restricts long time computation; see
Table 1.

Table 1
Numerical performances of the fractional Adams--Bashforth--Moulton method for \tau = 20h.

\alpha = 0.98 \alpha = 0.8 \alpha = 0.6 \alpha = 0.3 \alpha = 0.1
Blowup for h = 0.02 0.02 0.005 0.0002 0.0000000002
Stable for h = 0.01 0.01 0.002 0.0001 0.0000000001

As for integer DDEs, a good numerical scheme for F-DDEs should be mostly
\tau (0)-stable [22]. We guess that the two difference schemes constructed in this work
are fractional \tau (0)-stable while the fraction predictor-corrector type method proposed
in [17] is not. In the next article we will further study the fractional \tau (0)-stability of
fractional linear multistep methods for F-DDEs.

4.2. Fractional stiff F-DDE I. We consider the F-DDE\left\{                     

C
0D

\alpha 
t y1(t) =

\bigl( 
8 \cdot 107 + 2

\bigr) 
y1(t) - 

\bigl( 
4 \cdot 107  - 4

\bigr) 
y2(t)

+
2

5
sin(t/2) ( - y1(t/2) + 2y2(t/2)) + 10 sin(t) + 1,

C
0D

\alpha 
t y2(t) =

\bigl( 
4 \cdot 107  - 4

\bigr) 
y1(t) - 

\bigl( 
2 \cdot 107 + 8

\bigr) 
y2(t)

+
2

5
sin(t/2) (2y1(t/2) - 4y2(t/2)) - 20 sin(t) - 2,

y1(0) = 2, y2(0) = 1.

(46)
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It is easy to check that this problem satisfies the condition (5)--(6) with c =  - 10,
d = 2, and \mu 1(t) = \mu 2(t) =

t
2 , so it is strictly contractive. When \alpha = 1, this system

admits a unique true solution [31]:

y1(t) = sin(t) + 2 exp( - 108t), y2(t) =  - 2 sin(t) + 2 exp( - 108t).

We note that this DDE for \alpha = 1 is not stiff in the transient phase, namely,
0 \leq t \leq 10 - 7, but becomes stiff beyond this phase. The true solution is unknown
for 0 < \alpha < 1. However, the transient phase interval depends strongly on the order
\alpha . We have tried to solve this problem in the interval 0 \leq t \leq t0(\alpha ) with extremely
small step size to show this characteristics; see Figure 3.
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Fig. 3. Numerical solutions for \alpha = 0.4, 0.6, 0.8, and 0.99 in the transient phase 0 \leq t \leq t0(\alpha ).

Figure 4 plots the numerical solutions obtained by G-L formula for \alpha = 0.2 and
0.8 with h = 0.1. It shows that the new method is efficient and robust for this strong
stiff F-DDEs uniformly for all \alpha in (0, 1). The results for the stability of the corrector-
predictor method in [17] versus mesh size h and order \alpha for various cases are listed
in Table 2, which shows the fractional explicit corrector-predictor method does not
work for stiff F-DDEs.
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Fig. 4. Numerical solutions for \alpha = 0.2 and 0.8 with h = 0.1.

Figure 5 presents the contractivity e(t) = \| y(t) - z(t)\| of the difference between
two solutions y(t) and z(t) with two initial functionals \psi and \phi . We take \phi = (5, - 3)T .
It clearly shows that the contractivity rate depends on the order parameter \alpha . The
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Table 2
Numerical performances of the fractional Adams--Bashforth--Moulton method for strongly stiff

F-DDEs.

\alpha = 0.99 \alpha = 0.8 \alpha = 0.6 \alpha = 0.3
Blowup for h = 2e-8 2e-10 1e-13 1e-26
Stable for h = 1e-8 1e-10 1e-14 1e-27

greater the order \alpha is, the faster the difference function e(t) becomes contractive. But
they all keep the contractivity of polynomial type, rather than of exponential type as
for the integer ODEs (\alpha = 1).
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Fig. 5. Errors for \alpha = 0.2, 0.4, 0.6, 0.8, and 0.99 in interval [0, 2] (left) and [2, 50] (right).

As in [49], we introduce an index function p\alpha to measure the quantitative behavior
of the contractivity rate corresponding to two different initial functionals \psi and \phi :

p\alpha =
ln
\bigl( 
\| \psi  - \phi \| 2C\alpha 

\bigr) 
 - ln

\bigl( 
\| y(t) - z(t)\| 2

\bigr) 
ln(t)

, t > 1.(47)

The index p\alpha is used to characterize the polynomial decay rate of e(t), i.e., e(t) =
O(1/tp\alpha ), which is derived from the estimation given in (21). Obviously, the index
p\alpha \rightarrow  - ln(\| y(t) - z(t)\| 2)/ln(t) as t \rightarrow +\infty and is independent of the initial value
\| \psi  - \phi \| 2C\alpha . In the numerical simulations, we take \| y(1) - z(1)\| 2 = \| \psi  - \phi \| 2C\alpha .

Table 3
The observed index function p\alpha for Example 4.2 with h = 0.1.

t \alpha = 0.2 \alpha = 0.4 \alpha = 0.6 \alpha = 0.8 \alpha = 0.99
10 0.1758 0.5733 0.9992 1.4426 1.7276
20 0.2611 0.6660 1.0939 1.5325 1.8125
30 0.4185 0.8427 1.2939 1.7558 2.0698
40 0.4729 0.9153 1.3902 1.8895 2.2637
50 0.3256 0.7342 1.1640 1.6043 1.9154

The observed index function p\alpha is presented in Table 3. The results show that
the contractivity rate is about \| e(t)\| 2 = O(t - 2\alpha ), which is about two times our ana-
lytically predicted rate. This should be mainly due to the linear equation. Indeed, for
scalar F-ODE or essentially decoupled linear systems, we showed in [49] that the con-
tractivity rate can be optimal as \| e(t)\| 2 = O(t - 2\alpha ) both theoretically and numerically,
as demonstrated in the current example. But for more general nonlinear vector-valued
F-ODEs, the theoretical contractivity rate can only be \| e(t)\| 2 = O(t - \alpha ); see [49] for
more details and a simple example. The main reason for this phenomenon is that we
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have used the energy-like estimate to bound \| y(tn)\| 2 or \| yn\| 2 by E\alpha (2\lambda t
\alpha 
n). But we

do not have the identity that
\sqrt{} 
E\alpha (2\lambda t\alpha ) = E\alpha (\lambda t

\alpha ) for the Mittag--Leffler function,

unlike the identity
\surd 
e2\lambda t = e\lambda t for the classical exponential function. However, we

can easily find that the general contractivity rate of \| e(t)\| remains to be polynomial,
instead of the exponential decay for classical integer FDEs.

4.3. Fractional stiff F-FDE II. We consider a time fractional parabolic PDE
with functional term of the form\left\{               

C
0D

\alpha 
t u(x, t) = 4uxx(x, t) - u(x, t - \pi /2) + 32 sin(t)

+

\int t

t - \pi /2

cos(\theta ) cos(2\theta )u(x, \theta )d\theta , 0 < x < 1, 0 < t < +\infty ,

u(0, t) = u(1, t) = 0,  - \pi /2 \leq t < +\infty ,

u(x, t) = 4x(1 - x) sin(t), 0 < x < 1,  - \pi /2 \leq t \leq 0.

(48)

We discretize the second spatial derivative by the standard central difference scheme
on a grid of points xi = i/M, i = 1, . . . ,M  - 1 to get the spatial semidiscrete F-FDE:\left\{                 

C
0D

\alpha 
t ui(t) =

4

\Delta x2
(ui+1(t) - 2ui(t) + ui - 1(t)) - ui(t - \pi /2) + 32 sin(t)

+

\int t

t - \pi /2

cos(\theta ) cos(2\theta )ui(\theta )d\theta , 0 < t < +\infty ,

u0(t) = uM (t) = 0,  - \pi /2 \leq t < +\infty ,

ui(t) = 4i\Delta x(1 - i\Delta x) sin(t),  - \pi /2 \leq t \leq 0,

(49)

where ui(t) = u(xi, t) and \Delta x = 1/M . We take M = 100 in our simulations. It is
easy to check the semidiscrete F-FDEs meet the condition (5)--(6).

In this example, we take the L1 method for the simulations. Figure 6 reports the
numerical solutions for \alpha = 0.6, h = \pi /20. Figure 7 presents the contractivity of the
error e(t) = \| u(t)  - v(t)\| for \alpha = 0.2, 0.4, 0.6, 0.8, and 0.99 in the interval [2\pi , 15\pi ]
with h = \pi /32, where v(t) is the solution of (49) with the perturbed initial functional
given by \phi = 4x(1 - x) sin(4t) for  - \pi /2 \leq t \leq 0.
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Fig. 6. Numerical solutions.
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Fig. 7. The errors e(t).

It is also observed that the contractivity rate depends on the order parameter \alpha 
polynomially. The greater the order \alpha , the faster the difference function e(t) becomes
contractive. Similarly to the index function p\alpha we introduced for the previous Example
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4.2, we list its values also for the current example (see Table 4), from which we see
the contractivity rate is much better than our theoretically predicted one. We guess
this may be due to the homogeneous initial condition for the linear F-FDEs, i.e.,
\phi (0) = \psi (0) = 0, and e(0) = \phi (0) - \psi (0) = 0. This can be roughly seen form the facts
below. The equation of the error function e(t) of the solution to the numerical scheme
(49) can be written in the vectorial system C

0D
\alpha 
t e(t) = Ae(t) + \scrE (\cdot ) + g(t), where A

is a constant coefficient matrix, and \scrE (\cdot ) =
\int t

t - \pi /2
cos(\theta ) cos(2\theta )U(\theta )d\theta  - U(t - \pi /2)

is a functional term. We can represent the solution e(t) by [27]

e(t) = e(0)E\alpha (At
\alpha ) +

\int t

0

(t - s)\alpha  - 1E\alpha ,\alpha (A(t - s)\alpha ) (\scrE (\cdot ) + g(s)) ds.(50)

The first term on the right-hand side of (50) has a polynomial decay rate by using
the facts that the eigenvalues of matrix A are negative and that \| e(0)E\alpha (At

\alpha )\| \leq 
C\| e(0)\| t - \alpha as t \rightarrow +\infty . Hence, when the initial condition is homogeneous as in the
current example the term e(0)E\alpha (At

\alpha ) drops and it may lead to higher contractivity
rate of e(t).

Table 4
The observed index function p\alpha for Example 4.3 with h = \pi /32.

t \alpha = 0.2 \alpha = 0.4 \alpha = 0.6 \alpha = 0.8 \alpha = 0.99
10 6.6611 6.6047 6.9245 7.6262 10.411
20 5.6924 5.7409 6.0797 6.7116 8.9393
30 5.2708 5.3612 5.7075 6.3117 8.3185
40 5.0613 5.1765 5.5278 6.1166 7.9968
50 4.9041 5.0355 5.3896 5.9676 7.7273

We emphasize that the new method works well for the semi-discrete F-FDEs with
relatively good step size of h = 0.1 and is much better than the explicit predictor-
corrector method [17].

5. Concluding remarks. We have presented a new delay-dependent fractional
generalization of the Halanay-like inequality to characterize the asymptotic behavior
of F-FDEs, with which we have established the dissipativity and contractivity of the
F-FDEs under the assumptions that are quite similar to the ones for classical integer
FDEs. Moreover, we have worked out an estimate of the polynomial decay rate for
the solutions to the F-FDEs, very different from the exponential decay rate for the
classical integer FDEs. We have constructed two numerical schemes for the F-FDEs
and demonstrated that they are both dissipative and contractive and can preserve
the exact contractivity rate as that for the continuous F-FDEs. To the best of our
knowledge, this is the first work about the analytical and numerical dissipativity and
asymptotic behavior of nonlinear F-FDEs. Several numerical examples have shown
that the new schemes are much more efficient and robust than the popular predictor-
corrector algorithms for F-FDEs, especially for some strongly stiff systems.

There are a few possible and interesting extensions. For the R-L F-FDEs, the dis-
sipativity and contractivity of our presented two difference schemes can be established
similarly as we have done here. The contractivity rate for the R-L F-FDEs should be
changed to \| U(t) - V (t)\| 2 = O(t - 1 - \alpha ) as t \rightarrow +\infty , and the numerical contractivity
rate for the R-L F-FDEs to \| Un  - V n\| 2 = O(n - 1 - \alpha ) as n\rightarrow \infty accordingly. For the
multi-order fractional systems with \alpha = (\alpha 1, \alpha 2, . . . , \alpha n)

T , \alpha i \in (0, 1), i = 1, 2, . . . , n,
the corresponding dissipativity and contractivity of those difference schemes can be
studied in a similar manner.
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We have studied in this work only two low order numerical schemes for F-FDEs
and proved the numerical contractivity (or stability). Although high order schemes
for F-FDEs may suffer from the low regularity of the true solutions of F-FDEs, we
guess some second order schemes, such as second order fractional BDFs and fractional
trapezoidal methods, may be derived. Several new techniques about the construction
and analysis of high order schemes for F-ODEs proposed in [10, 11, 24, 37, 46, 56] could
be helpful to our further study. It would be very interesting to study F-FDEs with
nonsmooth solutions, propose some second order schemes for F-FDEs, and analyze
their contractivity (or stability).
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