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Abstract
Given the flexibility of choosing negative elastic param-
eters, we construct material structures that can induce
two resonance phenomena, referred to as the elasto-
dynamical resonances. They mimic the emerging plas-
mon/polariton resonance and anomalous localized res-
onance in optics for subwavelength particles. However,
we study the peculiar resonance phenomena for linear
elasticity beyond the subwavelength regime. It is shown
that the resonance behaviors possess distinct characters,
with some similar to the subwavelength resonances,
but some sharply different due to the frequency effect.
It is particularly noted that we construct a core–shell
material structure that can induce anomalous localized
resonance as well as cloaking phenomena beyond the
quasistatic limit. The study is boiled down to analyzing
the so-called elastic Neumann–Poincaré (N-P) operator
in the frequency regime. We provide an in-depth anal-
ysis of the spectral properties of the N-P operator on
a circular domain beyond the quasistatic approxima-
tion, and these results are of independent interest to the
spectral theory of layer potential operators.
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1 INTRODUCTION

1.1 Mathematical formulation and main findings

We initially focus on the mathematics, not on the physics, and present the Lamé system which
governs the propagation of linear elastic deformation.
For𝑁 = 2, 3, we write 𝐂𝜆,𝜇 ∶= (C𝑖𝑗𝑘𝑙)

𝑁
𝑖,𝑗,𝑘,𝑙=1

as a four-rank elastic material tensor defined by:

C𝑖𝑗𝑘𝑙 ∶= 𝜆𝜹𝑖𝑗𝜹𝑘𝑙 + 𝜇(𝜹𝑖𝑘𝜹𝑗𝑙 + 𝜹𝑖𝑙𝜹𝑗𝑘), (1)

where 𝜹 is the Kronecker delta, and (𝜆, 𝜇) are referred to as the Lamé parameters. For a regular
elastic material, the Lamé parameters satisfy the following strong convexity conditions:

i) 𝜇 > 0 ; ii) 2𝜆 + 𝑁𝜇 > 0. (2)

Next, we introduce a core–shell–matrix material structure for our study. Let 𝐷 and Ω ⊂ ℝ𝑁

be two bounded 𝐶1,𝛼-domains for 𝛼 ∈ (0, 1) such that 𝐷 ⋐ Ω, and both Ω∖𝐷 and ℝ𝑁∖Ω are con-
nected. Assume that the matrix ℝ𝑁∖Ω is occupied by a regular elastic material parameterized by
twoLamé constants (𝜆, 𝜇) satisfying (2). The shellΩ∖𝐷 is occupied by ametamaterial whose Lamé
constants are given by (𝜆̂, 𝜇̂). It is assumed that 𝜆̂ and 𝜇̂ can be flexibly chosen and do not nec-
essarily fulfill the strong convexity conditions (2). In fact, they are complex-valued withℜ𝜆̂,ℜ𝜇̂
breaking the strong convexity conditions (2) and ℑ𝜆̂,ℑ𝜇̂ ∈ ℝ+. This is critical in our study and
will be further remarked inwhat follows. The inner core𝐷 is occupied by a regular elasticmaterial
whose Lamé constants (𝜆̆, 𝜇̆) satisfy the strong convex conditions (2). We introduce the notation
defined by:

𝐂ℝ𝑁∖Ω,𝜆,𝜇 = 𝐂𝜆,𝜇𝜒(ℝ
𝑁∖Ω), (3)

where 𝐂𝜆,𝜇 is given in (1) and 𝜒(ℝ𝑁∖Ω) denotes the indicator function of ℝ𝑁∖Ω. The same
notation applies to the tensors 𝐂Ω∖𝐷,𝜆̂,𝜇̂ and 𝐂𝐷,𝜆̆,𝜇̆. Now, we introduce the following elastic
tensor:

𝐂0 = 𝐂ℝ𝑁∖Ω,𝜆,𝜇 + 𝐂Ω∖𝐷,𝜆̂,𝜇̂ + 𝐂𝐷,𝜆̆,𝜇̆. (4)

The tensor𝐂0 describes an elasticmaterial configuration of a core–shell–matrix structurewith the
metamaterial located in the shell. We point out that it may happen that 𝐷 = ∅ in our subsequent
analysis. In such a case, 𝐂0 is said to be a metamaterial structure with no core. In what follows,
material structures with a core or without a core can induce different resonance phenomena.
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718 LI et al.

Let 𝐟 ∈ 𝐿∞
𝑙𝑜𝑐
(ℝ𝑁∖Ω)𝑁 signify an elastic source that is compactly supported inℝ𝑁∖Ω. The elastic

displacement field 𝐮 = (𝑢𝑖)
𝑁
𝑖=1 ∈ 𝐻1

𝑙𝑜𝑐
(ℝ𝑁)𝑁 induced by the interaction between the source 𝐟 and

the medium configuration 𝐂0 is governed by the following Lamé system:{
∇ ⋅ 𝐂0∇

𝑠𝐮(𝐱) + 𝜔2𝐮(𝐱) = 𝐟 (𝐱) in ℝ𝑁,

𝐮(𝐱) satisfies the Kupradze radiation condition,
(5)

where 𝜔 ∈ ℝ+ signifies an angular frequency. Here and also in what follows, the operator ∇𝑠 is
the symmetric gradient defined by:

∇𝑠𝐮 ∶=
1
2

(
∇𝐮 + ∇𝐮𝑡

)
, (6)

where ∇𝐮 denotes the matrix (𝜕𝑗𝑢𝑖)𝑁𝑖,𝑗=1 and the superscript 𝑡 signifies the matrix transpose. It
follows from Ref. 1 that the elastic displacement 𝐮(𝐱) can be decomposed into 𝐮 = 𝐮𝑝 + 𝐮𝑠 in
ℝ𝑁∖Ω, where 𝐮𝑝 and 𝐮𝑠 are, respectively, referred to as the pressure and shear waves and satisfy
the following equations:

(
△+ 𝑘2𝑝

)
𝐮𝑝 = 0, ∇ × 𝐮𝑝 = 0;

(
△+ 𝑘2𝑠

)
𝐮𝑠 = 0, ∇ ⋅ 𝐮𝑠 = 0, (7)

with

𝑘𝑠 ∶= 𝜔∕
√
𝜇 and 𝑘𝑝 ∶= 𝜔∕

√
𝜆 + 2𝜇. (8)

In (5), the Kupradze radiation condition is expressed as:

∇𝐮𝑝𝐱̂ − i𝑘𝑝𝐮𝑝 = (|𝐱|−(𝑁+1)∕2) and ∇𝐮𝑠𝐱̂ − i𝑘𝑠𝐮𝑠 = (|𝐱|−(𝑁+1)∕2) (9)

as |𝐱|→∞, which hold uniformly in 𝐱̂ = 𝐱∕|𝐱| ∈ 𝕊𝑁−1.
Next, we recall the quasistatic condition for the above elastic scattering problems:

𝜔 ⋅ diam(Ω) ≪ 1, (10)

which signifies that the size of thematerial structureΩ, that is, the diameter ofΩ, is much smaller
than the operating wavelength 2𝜋∕𝜔. In the current article, we will instead mainly study the case
beyond the quasistatic regime, namely,

𝜔 ⋅ diam(Ω) ∼ 1. (11)

For simplicity, it is sufficient for us to require that

𝜔 ∼ 1 and diam(Ω) ∼ 1. (12)
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LI et al. 719

We proceed to introduce the following functional for 𝐮, 𝐯 ∈ (𝐻1(Ω∖𝐷))𝑁 :

𝑃𝜆̂,𝜇̂(𝐮, 𝐯) =∫Ω∖𝐷 ∇
𝑠𝐮 ∶ 𝐂0∇𝑠𝐯𝑑𝐱 = ∫Ω∖𝐷

(
𝜆̂(∇ ⋅ 𝐮)(∇ ⋅ 𝐯) + 2𝜇̂∇𝑠𝐮 ∶ ∇𝑠𝐯

)
𝑑𝐱, (13)

where 𝐂0 and ∇𝑠 are defined in (4) and (6), respectively. In (13) and also in what follows, 𝐀 ∶

𝐁 =
∑𝑁
𝑖,𝑗=1 𝑎𝑖𝑗𝑏𝑖𝑗 for two matrices 𝐀 = (𝑎𝑖𝑗)

𝑁
𝑖,𝑗=1 and 𝐁 = (𝑏𝑖𝑗)

𝑁
𝑖,𝑗=1. The energy dissipation of the

elastic system (5)–(9) is given by:

𝐸(𝐮) = ℑ𝑃𝜆̂,𝜇̂(𝐮, 𝐮). (14)

We are now in a position to give the precise meaning of the elastic resonances for our subsequent
study.

Definition 1. Consider the Lamé system (5)–(9) associated with the material structure 𝐂0 in (4)
under the assumption (12). We say that the near-resonance occurs if it holds that

𝐸(𝐮) ≥ 𝑀 (15)

for𝑀 ≫ 1. If in addition to (15), the displacement field𝐮 further fulfills the following boundedness
condition:

|𝐮| ≤ 𝐶 when |𝐱| > 𝑅̃, (16)

for some 𝐶 ∈ ℝ+ and 𝑅̃ ∈ ℝ+ such that Ω ⊂ 𝐵𝑅̃, then we say that anomalous localized resonance
(ALR) occurs. Here and also in what follows, 𝐵𝑅̃ signifies a ball of radius 𝑅̃ and centered at the
origin, and 𝐶, 𝑅̃ are constants independent of 𝐂0 and 𝐟 .

Remark 1. The terminology near-resonance is defined in (15). However, in order to be consistent
with the relevant studies in the literature, we still call it resonance in what follows. In fact, the
phenomenon of the near-resonance has many important applications. Here, we would like to
mention one example, that is, the so-called anomalous localized resonance (ALR), which can
induce the cloaking effect. The first mathematical work concerning the ALR in Ref. 2 defined the
“resonance,” which is also the limit case. From a practical point of view, it is sufficient to have the
near-cloaking effect via the near-resonance. Nevertheless, in the setting of Ref. 2, it was shown
that the dissipated energy can bemade arbitrarily large by controlling some asymptotic parameter.
In contrast, in the current article, the notion of near-resonance depends on the magnitude of𝑀.
Hence, it is a weaker resonance compared to that considered in Ref. 2.

Remark 2. It is noted that the resonant condition (15) indicates that the resonant field 𝐮 exhibits
highly oscillatory behavior. Moreover, in our subsequent study, it allows that 𝑀 → +∞, which
indicates that in the limiting case, the scattering system (5)–(9) loses its well-posedness. Indeed,
it will be seen in what follows that in the limiting case, the solutions to the scattering system
(5)–(9) are not unique. It is clear that the metamaterials located in Ω∖𝐷 play a critical role for
the occurrence of the resonance. In fact, if 𝐂0 is a regular elastic material configuration, then the
Lamé system (5)–(9) is well-posed and the resonance does not occur.
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720 LI et al.

Remark 3. If ALR occurs, one can show that invisibility cloaking phenomenon can be induced.
In fact, by normalization, we set 𝐟 ∶= 𝐟∕

√
𝜶, where 𝜶 ∶= ℑ𝑃𝜆̂,𝜇̂(𝐮, 𝐮) ≫ 1. One can see that both

𝐟 and the material structure 𝐂0 are nearly invisible to observations made outside 𝐵𝑅̃. Indeed, it is
easily seen that the induced elastic field 𝐮̃ = 𝐮∕

√
𝜶 ≪ 1 inℝ𝑁∖𝐵𝑅̃; see Refs. 2–5 formore relevant

discussions. Hence, when ALR occurs according to Definition 1, we also say that cloaking due to
anomalous localized resonance (CALR) occurs.

Themajor findings of this article can be briefly summarized as followswith the technical details
supplied in the sequel; see Theorems 3–5:
Consider the Lamé system (5)–(9) associated with the material structure 𝐂0 in (4), under the

assumption (12).

(1) Suppose that the material structure has no core, namely, 𝐷 = ∅. There exist generic material
structures of the form (4) such that resonance occurs.

(2) Under the same setup as the above (1), but with Ω being radially symmetric, we derive the
explicit construction of all the material structures that can induce resonance. Moreover, we
present a comprehensive analysis on the quantitative behaviors of the resonant field. It is
shown that the resonance behaviors possess distinct characters, with some similar to the
subwavelength resonances, but some sharply different due to the frequency effect.

(3) We construct a core–shell metamaterial structure that can induce CALR beyond the
quasistatic limit.

(4) In establishing the resonance results, we derive comprehensive spectral properties of the
nonstatic elasticNeumann–Poincaré (N-P) operator on a circular domain,whichwill be intro-
duced in the sequel. These results are of independent interest to the spectral theory of layer
potential operators.

Remark 4. According to our discussion in Remark 2, the main technical ingredient in our study
is to derive some relations satisfied by the material parameters in 𝐂0, the geometric parameters of
Ω∕𝐷 as well as the frequency 𝜔 such that the resonance conditions (Definition 1) can be fulfilled.
It is clear that these conditions are coupled nonlinearly and in fact they are essentially determined
by the infinite-dimensional kernel of the partial differential equation (PDE) system (5), that is, the
set of nontrivial solutions to (5) with 𝐟 ≡ 𝟎.

Remark 5. Wewould like tomake a remark on themetamaterial parameters inΩ∖𝐷, namely, 𝜆̂ and
𝜇̂. As pointed out in Remark 2,ℜ𝜆̂ andℜ𝜇̂ are allowed to break the strong convexity conditions
in (2). This is critical for inducing the resonances. On the other hand,ℑ𝜆̂ andℑ𝜇̂ are required to
be positive. In a certain sense, they play the role of regularization parameters that can retain the
well-posedness of the Lamé system (5)–(9). Moreover, they are also critical physical parameters to
induce the resonances. In fact,ℑ𝜆̂ andℑ𝜇̂ should be delicately chosen according toℜ𝜆̂,ℜ𝜇̂, and
𝜔 as well as the asymptotic parameter𝑀 in (15). This is in sharp contrast to the related studies in
the static/quasistatic case, where ℑ𝜆̂ and ℑ𝜇̂ play solely as the regularization parameters which
are asymptotically small generic parameters and converge to zero in the limiting case. This will
become clearer in our subsequent analysis.
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LI et al. 721

1.2 Connection to existing studies and discussions

Metamaterials are artificially engineered materials to have properties that are not found in nat-
urally occurring materials. Negative materials are an important class of metamaterials which
possess negative material parameters. Negative materials can be artificially engineered by assem-
bling subwavelength resonators periodically or randomly; see, for example, Refs. 6–8 and the
references cited therein. Negative materials are revolutionizing many industrial applications,
including antennas,9 absorber,10 invisibility cloaking ,2,11–15 superlens,16,17 and super-resolution
imaging,18–20 to mention just a few.
We aremainly concernedwith the quantitative theoretical understandings of negativemetama-

terials, which have received considerable interest recently in the literature. A variety of peculiar
resonance phenomena form the fundamental basis for many striking applications of negative
metamaterials. Intriguingly, those resonance phenomena are distinct and possess distinguishing
characters. For a typical scenario, let us consider the Lamé system (5) in the static case, namely,
𝜔 ≡ 0. If 𝐂0 is allowed to possess negative material parameters, it is no longer an elliptic tensor,
that is, the strong convexity conditions (2) can be broken. In such a case, the PDE system (5) may
possess (infinitely many) nontrivial solutions even with 𝐟 ≡ 𝟎. Hence, the infinite kernel of the
nonelliptic partial differential operator, namely, ∇ ⋅ 𝐂0∇

𝑠, can induce certain resonances if the
excitation term 𝐟 is properly chosen. Similar resonance phenomena have been more extensively
and intensively investigated for acoustic and electromagnetic metamaterials that are governed by
the Helmholtz and Maxwell systems, respectively. They are referred to as the plasmon/polariton
resonances in the literature; see Refs. 2, 21–25 for the Helmholtz equation, Refs. 19, 26, 27 for the
Maxwell system, and Refs. 3, 5, 28–31 for the Lamé system. Most of the existing studies in the lit-
erature are concerned with the static or quasistatic cases (cf. (10)). A widely studied resonance
phenomenon is induced by the interface of negative and positive materials, which is referred to
as the plasmon/polariton resonance in the literature. It turns out that the plasmon/polariton res-
onant oscillations are localized around the metamaterial interface, and hence are usually called
the surface plasmon/polariton resonances.
It is not surprising that the occurrence of plasmon/polariton resonances strongly depend on

the medium configuration as well as the geometry of the metamaterial structure, which are del-
icately coupled together in certain nonlinear relations. In this article, we for the first time show
the existence of generic metamaterial structures that can induce resonances in elasticity beyond
quasistatic approximations in both 2D and 3D. It turns out that in addition to themediumand geo-
metric parameters of the metamaterial structure, the operating frequency will also play a critical
role and needs to be incorporated into the nonlinear coupling mentioned above. In addition to its
theoretical significance, we would like to emphasize that our study also uncovers two interesting
physical phenomena due to the frequency effect. First, the resonant oscillation outside the mate-
rial structure is localized around themetamaterial interface, but inside thematerial structure, it is
not localized around the interface, which is sharply different from the subwavelength resonances;
see more detailed discussion at the end of Section 3. Second, as already commented in Remark 5,
the loss parametersℑ𝜆̂ andℑ𝜇̂will also play an important role, and they generally are required to
be nonzero constants in the limiting case; see Remark 11 in what follows for more details. Finally,
as noted earlier, negative materials usually occur in the nanoscale, and hence, it is unobjection-
able that many studies are concerned with subwavelength resonances. On the other hand, there
are also conceptual and visionary studies which employ metamaterials for novel applications
beyond the quasistatic limit, say, for example, the superlens.16, 17 The proposed study in this article
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722 LI et al.

follows a similar spirit to the latter class mentioned above, though we are mainly concerned with
the theoretical aspects.
If the metamaterial structure is constructed in the core–shell form, it may induce the cloaking

phenomenon due to the ALR;4, 29, 32 that is, thewhole structure is invisible for an impingingwave.
This is a muchmore delicate and subtle resonance phenomenon: the resonant oscillation is local-
ized within a bounded region, that is, 𝐵𝑅̃ in Definition 1, and moreover, it not only depends on
the material and geometric configurations of the core–shell structure, but also critically depends
on the location of the excitation source. In addition to the invisibility phenomenon mentioned
above, it is observed in that any small objects located near the material structure within the criti-
cal radius are also invisible to faraway observations; see Refs. 14, 15 for related discussions. All of
the existing studies are confined within the radial geometries because on the one hand, one needs
explicit expressions of the spectral system of certain integral operators2,4,11,27,29 and on the other
hand, it seems unnecessary for constructingmaterial structures of general shapes for the cloaking
purpose. The CALR was recently studied in Ref. 3 for 3D elasticity beyond the quasistatic approx-
imation for the spherical structure. Hence, in the current article, we mainly consider the CALR
in two dimensions. Nevertheless, we would like to remark that the derivation in 2D is more subtle
and technically involved. The main reason is that in 3D elasticity there exists a certain class of
shear waves that can be decoupled from the other shear waves and compressional waves.3 The
decoupling property significantly simplifies the analysis of the CALR. However, in 2D elasticity,
all the shear waves and compressional waves are coupled together, which substantially increase
the complexity of the relevant theoretical analysis. In fact, we develop several technically new
ingredients in handling the 2D case in the present article.
Finally, we would like to discuss onemore technical novelty of our study. In studying themeta-

material resonances, one powerful tool is to make use of the layer potential theory to reduce the
underlying PDE system into a system of certain integral operators. In doing so, the resonance
analysis is boiled down to analyzing the spectral properties of the integral operators. In this arti-
cle, we provide an in-depth analysis of the so-called elastic Neumann–Poincaré (N-P) operator
in the frequency regime. In particular, we derive the complete spectral system of the elastic N-P
operator on a circular domain with several interesting observations. These results are new to the
literature and are of independent interest to the spectral theory of elastic layer potential operators
(cf. Refs. 29, 33–35).
The rest of this article is organized as follows. In Section 2,we present several technical auxiliary

results. Section 3 is devoted to resonance analysis formaterial structureswith no core. In Section 4,
we construct a core–shell structure that can induce cloaking due to ALR.

2 AUXILIARY RESULTS

In this section, we derive some key auxiliary results that will be needed for our subsequent anal-
ysis.
Set 𝐱 = (𝑥𝑗)

𝑁
𝑗=1 ∈ ℝ𝑁 to be the Euclidean coordinates and 𝑟 = |𝐱|. Let 𝜃𝐱 be the angle between

𝐱 and 𝑥1-axis. If there is no ambiguity, we write 𝜃 instead of 𝜃𝐱 for simplicity. Let 𝝂 signify the
outward unit normal to a boundary 𝜕Ω. If the domain Ω is a circle 𝐵𝑅, then 𝝂 = (cos(𝜃), sin(𝜃))𝑡

and the direction 𝐭 = (− sin(𝜃), cos(𝜃))𝑡 is the tangential direction on the boundary 𝜕𝐵𝑅. Denote
by ∇𝕊 the surface gradient.
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LI et al. 723

The Lamé operator 𝜆,𝜇 associated with the parameters (𝜆, 𝜇) is defined by:
𝜆,𝜇𝐰 ∶= 𝜇△𝐰 + (𝜆 + 𝜇)∇∇ ⋅ 𝐰. (17)

The traction (the conormal derivative) of𝐰 on the boundary 𝜕Ω is defined by:

𝜕𝝂𝐰 = 𝜆(∇ ⋅ 𝐰)𝝂 + 2𝜇(∇𝑠𝐰)𝝂, (18)

where the operator∇𝑠 is defined in (6). From Ref. 32, the fundamental solution 𝚪𝜔 = (Γ𝜔𝑖,𝑗)
2
𝑖,𝑗=1 to

the operator 𝜆,𝜇 + 𝜔2 in two dimensions is given by:

(
Γ𝜔𝑖,𝑗

)2
𝑖,𝑗=1

(𝐱) = −
i𝜹𝑖𝑗
4𝜇

𝐻0(𝑘𝑠|𝐱|) + i

4𝜋𝜔2
𝜕𝑖𝜕𝑗

(
𝐻0

(
𝑘𝑝|𝐱|) −𝐻0(𝑘𝑠|𝐱|)), (19)

where 𝐻0(⋅) is the Hankel function of the first kind of order 0, and 𝑘𝑠 and 𝑘𝑝 are defined in (8).
The corresponding fundamental solution 𝚪𝜔 = (Γ𝜔𝑖,𝑗)

3
𝑖,𝑗=1 in three dimensions is given by:

(Γ𝜔𝑖,𝑗)
3
𝑖,𝑗=1(𝐱) = −

𝜹𝑖𝑗
4𝜋𝜇|𝐱|𝑒i𝑘𝑠|𝐱| + 1

4𝜋𝜔2
𝜕𝑖𝜕𝑗

𝑒i𝑘𝑝|𝐱| − 𝑒i𝑘𝑠|𝐱||𝐱| . (20)

Then, the single-layer potential associated with the fundamental solution 𝚪𝜔 is defined as:

𝐒𝜔
𝜕Ω
[𝝋](𝐱) = ∫𝜕Ω 𝚪

𝜔(𝐱 − 𝐲)𝝋(𝐲)𝑑𝑠(𝐲), 𝐱 ∈ ℝ𝑁, (21)

for 𝝋 ∈ 𝐿2(𝜕Ω)𝑁 . On the boundary 𝜕Ω, the conormal derivative of the single-layer potential
satisfies the following jump formula:

𝜕𝐒𝜔
𝜕Ω
[𝝋]

𝜕𝝂
|±(𝐱) = (

±
1
2
𝐈 + 𝐊𝜔,∗

𝜕Ω

)
[𝝋](𝐱) 𝐱 ∈ 𝜕Ω, (22)

where

𝐊𝜔,∗
𝜕Ω
[𝝋](𝐱) = p.v.∫𝜕Ω

𝜕𝚪𝜔

𝜕𝝂(𝐱)
(𝐱 − 𝐲)𝝋(𝐲)𝑑𝑠(𝐲), (23)

with p.v. standing for the Cauchy principal value and the subscript ± indicating the limits from
outside and inside Ω, respectively. The operator 𝐊𝜔,∗

𝜕Ω
is called the N-P operator associated with

the Lamé system.
Next, we present some properties of the N-P operator 𝐊𝜔,∗

𝜕Ω
. It is shown in Ref. 33 that the

operator𝐊𝜔,∗
𝜕Ω

is not compact and only polynomially compact in the following sense.

Lemma 1. The N-P operator𝐊𝜔,∗
𝜕Ω

is polynomially compact in the sense that in two dimensions, the
operator (𝐊𝜔,∗

𝜕Ω
)2 − 𝑘20𝐈 is compact; while in three dimensions, the operator 𝐊

𝜔,∗
𝜕Ω
((𝐊𝜔,∗

𝜕Ω
)2 − 𝑘20𝐈) is
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724 LI et al.

compact, where

𝑘0 ∶=
𝜇

2(𝜆 + 2𝜇)
. (24)

Then, we can derive the following lemma for the spectrum of the N-P operator 𝐊𝜔,∗
𝜕Ω

(cf. Ref. 36).

Lemma 2. In two dimensions, the spectrum 𝜎(𝐊𝜔,∗
𝜕Ω
) consists of two nonempty sequences of eigen-

values that converge to 𝑘0 and −𝑘0, respectively; while in three dimensions, the spectrum 𝜎(𝐊𝜔,∗
𝜕Ω
)

consists of three nonempty sequences of eigenvalues that converge to 0, 𝑘0 and −𝑘0, respectively.

Let Φ(𝐱) be the fundamental solution to the operator△+ 𝑘2 in two dimensions given by

Φ(𝐱) = −
i
4
𝐻0(𝑘|𝐱|). (25)

For 𝜑 ∈ 𝐿2(𝜕Ω), we define the single-layer potential associated with the fundamental solution
Φ(𝐱) by:

𝑆𝑘
𝜕Ω
[𝜑](𝐱) = ∫𝜕Ω Φ(𝐱 − 𝐲)𝜑(𝐲)𝑑𝑠(𝐲), 𝐱 ∈ ℝ2. (26)

Let 𝐽𝑛(𝑡) and𝐻𝑛(𝑡), 𝑛 ∈ ℤ, denote the Bessel and Hankel functions of the first kind of order 𝑛,
respectively. These functions satisfy the following Bessel differential equation:

𝑡2𝑓′′(𝑡) + 𝑡𝑓′(𝑡) +
(
𝑡2 − 𝑛2

)
𝑓(𝑡) = 0, (27)

for 𝑓 = 𝐽𝑛 or 𝐻𝑛. When 𝑛 is negative, there hold that 𝐽𝑛(𝑡) = (−1)𝑛𝐽−𝑛(𝑡) and 𝐻𝑛(𝑡) =
(−1)𝑛𝐻−𝑛(𝑡). Moreover, the Bessel and Hankel functions 𝐽𝑛(𝑡) and 𝐻𝑛(𝑡) satisfy the recursion
formulas (cf. Ref. 37):

𝑓′𝑛+1 = 𝑓𝑛 − (𝑛 + 1)
𝑓𝑛+1
𝑡

, 𝑓𝑛+1 = 𝑛
𝑓𝑛
𝑡
− 𝑓′𝑛, for 𝑛 ≥ 0,

𝑓′𝑛−1 = −𝑓𝑛 + (𝑛 − 1)
𝑓𝑛−1
𝑡

, 𝑓𝑛−1 = 𝑛
𝑓𝑛
𝑡
+ 𝑓′𝑛, for 𝑛 ≥ 1.

(28)

The following asymptotic expansions hold for 𝑡 ≪ 1 (cf. Ref. 37),

𝐽𝑛(𝑡) =
𝑡𝑛

2𝑛𝑛!

(
1 −

𝑡2

4(𝑛 + 1)
+ 𝑜

(
𝑡2
))
, for 𝑛 ≥ 0,

𝐻𝑛(𝑡) =
−i2𝑛𝑛!
𝜋𝑡𝑛

(
1 +

𝑡2

4(𝑛 − 1)
+ 𝑜

(
𝑡2
))
, for 𝑛 ≥ 2,

(29)

and

𝐻1(𝑡) = −
i2
𝜋𝑡

(
1 −

𝑡2

2

(
ln 𝑡 − ln 2 + 𝐸𝑢 −

1 + i𝜋
2

)
+ 𝑜

(
𝑡3
))
, (30)
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LI et al. 725

where 𝐸𝑢 is the Euler constant. For larger 𝑛, the following asymptotic expansions hold:

𝐽𝑛(𝑡) =
(𝑡∕2)𝑛

𝑛!

{
1 −

𝑡2

4𝑛
+
8𝑡2 + 𝑡4

32𝑛2
+ 𝑜

{ 1

𝑛2

}}
, 𝐻𝑛(𝑡) =

−i𝑛!

𝜋(𝑡∕2)𝑛

{ 1
𝑛
+
𝑡2

𝑛2
+ 𝑜

{ 1

𝑛2

}}
. (31)

The Hankel function𝐻0(𝑡) has the following expansion from Graf’s formula(cf. Ref. 38):

𝐻0(𝑘|𝐱 − 𝐲|) = ∑
𝑛∈ℤ

𝐻𝑛(𝑘|𝐱|)𝑒i𝑛𝜃𝐱𝐽𝑛(𝑘|𝐲|)𝑒−i𝑛𝜃𝐲. (32)

We will also need the following single-layer potential 𝑆𝑘
𝜕𝐵𝑅

acting on the density 𝑒i𝑛𝜃.

Lemma 3. Let 𝑆𝑘
𝜕𝐵𝑅

be defined in (26), then it holds that

𝑆𝑘
𝜕𝐵𝑅

[𝑒i𝑛𝜃](𝐱) = −
i𝜋𝑅
2
𝐽𝑛(𝑘𝑅)𝐻𝑛(𝑘|𝐱|)𝑒i𝑛𝜃, ∀ 𝐱 ∈ ℝ2∖𝐵𝑅 . (33)

Proof. From the definition of the operator 𝑆𝑘
𝜕Ω
in (26) and the expansion for the function𝐻0(𝑘|𝐱 −

𝐲|) in (32), one has that
𝑆𝜔
𝜕𝐵𝑅

[𝑒𝑖𝑛𝜃](𝐱) = −
i
4 ∫𝜕𝐵𝑅

∑
𝑚∈ℤ

𝐻𝑚(𝑘|𝐱|)𝑒i𝑚𝜃𝐱𝐽𝑚(𝑘|𝐲|)𝑒−i𝑚𝜃𝐲 𝑒i𝑛𝜃𝐲𝑑𝑠𝐲
= −

i𝑅
4 ∫

2𝜋

0

∑
𝑚∈ℤ

𝐻𝑚(𝑘|𝐱|)𝑒i𝑚𝜃𝐱𝐽𝑚(𝑘𝑅)𝑒i(𝑛−𝑚)𝜃𝐲𝑑𝑠𝐲 = −
i𝜋𝑅
2
𝐽𝑛(𝑘𝑅)𝐻𝑛(𝑘|𝐱|)𝑒i𝑛𝜃. (34)

This completes the proof. ■

For further calculations, we need the following identities.

Lemma 4. There hold that: if𝑚 = 𝑛 − 1,

∫𝕊 𝑒
−i𝑚𝜃𝑒i𝑛𝜃𝝂𝑑𝑠 = 𝜋

(
1
i

)
, ∫𝕊 ∇𝕊𝑒

−i𝑚𝜃𝑒i𝑛𝜃𝑑𝑠 = −(𝑛 − 1)𝜋

(
1
i

)
; (35)

and if𝑚 = 𝑛 + 1,

∫𝕊 𝑒
−i𝑚𝜃𝑒i𝑛𝜃𝝂𝑑𝑠 = 𝜋

(
1
−i

)
, ∫𝕊 ∇𝕊𝑒

−i𝑚𝜃𝑒i𝑛𝜃𝑑𝑠 = (𝑛 + 1)𝜋

(
1
−i

)
. (36)

Proof. Direct calculations yield that

∫𝕊 𝑒
−i𝑚𝜃𝑒i𝑛𝜃𝝂𝑑𝑠 = ∫𝕊 𝑒

i(𝑛−𝑚)𝜃

(
cos(𝜃)
sin(𝜃)

)
𝑑𝑠 = ∫𝕊 𝑒

i(𝑛−𝑚)𝜃
⎛⎜⎜⎝
𝑒i𝜃+𝑒−i𝜃

2
𝑒i𝜃−𝑒−i𝜃

2

⎞⎟⎟⎠𝑑𝑠. (37)
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726 LI et al.

Thus, if𝑚 = 𝑛 − 1, one has that

∫𝕊 𝑒
−i𝑚𝜃𝑒i𝑛𝜃𝝂𝑑𝑠 = 𝜋

(
1
i

)
; (38)

and if𝑚 = 𝑛 + 1, one has that

∫𝕊 𝑒
−i𝑚𝜃𝑒i𝑛𝜃𝝂𝑑𝑠 = 𝜋

(
1
−i

)
. (39)

Furthermore, one can have that

∫𝕊 ∇𝕊𝑒
−i𝑚𝜃𝑒i𝑛𝜃𝝂𝑑𝑠 = −i𝑚 ∫𝕊 𝑒

i(𝑛−𝑚)𝜃

(
−sin(𝜃)
cos(𝜃)

)
𝑑𝑠 = −i𝑚 ∫𝕊 𝑒

i(𝑛−𝑚)𝜃
⎛⎜⎜⎝
𝑒i𝜃−𝑒−i𝜃

−2i
𝑒i𝜃+𝑒−i𝜃

2

⎞⎟⎟⎠𝑑𝑠. (40)

Thus, if𝑚 = 𝑛 − 1, one has that

∫𝕊 ∇𝕊𝑒
−i𝑚𝜃𝑒i𝑛𝜃𝑑𝑠 = −(𝑛 − 1)𝜋

(
1
i

)
; (41)

and if𝑚 = 𝑛 + 1, one has that

∫𝕊 ∇𝕊𝑒
−i𝑚𝜃𝑒i𝑛𝜃𝑑𝑠 = (𝑛 + 1)𝜋

(
1
−i

)
. (42)

This completes the proof. ■

Lemma 5. The following two identities hold for 𝐱 ∈ ℝ2∖𝐵𝑅,

∫𝜕𝐵𝑅
𝐻0(𝑘|𝐱 − 𝐲|)𝑒i𝑛𝜃𝐲𝝂𝐲𝑑𝑠𝐲

= 𝜋𝑅𝐻𝑛−1(𝑘|𝐱|)𝑒i(𝑛−1)𝜃𝐽𝑛−1(𝑘𝑅) ⎛⎜⎜⎝
1
i
⎞⎟⎟⎠ + 𝜋𝑅𝐻𝑛+1(𝑘|𝐱|)𝑒i(𝑛+1)𝜃𝐽𝑛+1(𝑘𝑅) ⎛⎜⎜⎝

1
−i

⎞⎟⎟⎠ , (43)

and

∫𝜕𝐵𝑅
𝐻0(𝑘|𝐱 − 𝐲|)𝑒i𝑛𝜃𝐲 𝐭𝐲𝑑𝑠𝐲

= −i𝜋𝑅𝐻𝑛−1(𝑘|𝐱|)𝑒i(𝑛−1)𝜃𝐽𝑛−1(𝑘𝑅)⎛⎜⎜⎝
1
i
⎞⎟⎟⎠ + i𝜋𝑅𝐻𝑛+1(𝑘|𝐱|)𝑒i(𝑛+1)𝜃𝐽𝑛+1(𝑘𝑅)⎛⎜⎜⎝

1
−i
⎞⎟⎟⎠. (44)
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LI et al. 727

Proof. From the expansion of the function 𝐻0(𝑘|𝐱 − 𝐲|) in (32), and with the help of Lemma 4,
one has that

∫𝜕𝐵𝑅
𝐻0(𝑘|𝐱 − 𝐲|)𝑒i𝑛𝜃𝐲𝝂𝐲𝑑𝑠𝐲 = ∫𝜕𝐵𝑅

∑
𝑚∈ℤ

𝐻𝑚(𝑘|𝐱|)𝑒i𝑚𝜃𝐱𝐽𝑚(𝑘|𝐲|)𝑒−i𝑚𝜃𝐲 𝑒i𝑛𝜃𝐲𝝂𝐲𝑑𝑠𝐲
=

∑
𝑚∈ℤ

𝐻𝑚(𝑘|𝐱|)𝑒i𝑚𝜃𝐱𝑅 ∫𝕊 𝐽𝑚(𝑘|𝐲|)𝑒−i𝑚𝜃𝐲 𝑒i𝑛𝜃𝐲𝝂𝐲𝑑𝑠𝐲
= 𝜋𝑅𝐻𝑛−1(𝑘|𝐱|)𝑒i(𝑛−1)𝜃𝐽𝑛−1(𝑘𝑅)(1i

)
+ 𝜋𝑅𝐻𝑛+1(𝑘|𝐱|)𝑒i(𝑛+1)𝜃𝐽𝑛+1(𝑘𝑅)( 1

−i

)
.

(45)

Thus, the first identity is proved. Then, noticing that ∇𝕊𝑒
i𝑛𝜃 = i𝑛𝑒i𝑛𝜃𝐭, and following the same

deduction, one can obtain the other identity, which completes the proof. ■

Based on the previous two lemmas, we can further have following identities.

Lemma 6. There holds the following identity for 𝐱 ∈ ℝ2∖𝐵𝑅,

∫𝜕𝐵𝑅
∇𝐱∇𝐱𝐻0(𝑘|𝐱 − 𝐲|)𝑒i𝑛𝜃𝐲𝝂𝐲𝑑𝑠𝐲

=
𝜋𝐻𝑛−1(𝑘|𝐱|)𝑒i(𝑛−1)𝜃

𝑅

((
𝑛(𝑛 − 1) − 𝑘2𝑅2

)
𝐽𝑛−1(𝑘𝑅) − 𝑛𝑘𝑅𝐽′𝑛−1(𝑘𝑅)

)(1
i

)

+
𝜋𝐻𝑛+1(𝑘|𝐱|)𝑒i(𝑛+1)𝜃

𝑅

((
𝑛(𝑛 + 1) − 𝑘2𝑅2

)
𝐽𝑛+1(𝑘𝑅) + 𝑛𝑘𝑅𝐽′𝑛+1(𝑘𝑅)

)( 1
−i

)
.

(46)

Proof. First, note that ∇𝐱∇𝐱𝐻0(𝑘|𝐱 − 𝐲|) = ∇𝐲∇𝐲𝐻0(𝑘|𝐱 − 𝐲|). Then, one has that
∫𝜕𝐵𝑅

∇𝐱∇𝐱𝐻0(𝑘|𝐱 − 𝐲|)𝑒i𝑛𝜃𝐲𝝂𝐲𝑑𝑠𝐲 = ∫𝜕𝐵𝑅
∇𝐲∇𝐲𝐻0(𝑘|𝐱 − 𝐲|)𝑒i𝑛𝜃𝐲𝝂𝐲𝑑𝑠𝐲

= ∫𝜕𝐵𝑅
(
∇𝕊∇𝐲𝐻0(𝑘|𝐱 − 𝐲|)∕|𝐲| + 𝜕𝑟∇𝐲𝐻0(𝑘|𝐱 − 𝐲|)𝝂𝐲)𝑒i𝑛𝜃𝐲𝜈𝐲𝑑𝑠𝐲

= ∫𝜕𝐵𝑅
(
𝜕𝑟∇𝐲𝐻0(𝑘|𝐱 − 𝐲|))𝑒i𝑛𝜃𝐲𝑑𝑠𝐲.

(47)

Furthermore, from the expansion of the function𝐻0(𝑘|𝐱 − 𝐲|) in (32), one can have that
𝜕𝑟∇𝐲𝐻0(𝑘|𝐱 − 𝐲|) = 𝜕𝑟∇𝐲

(∑
𝑛∈ℤ

𝐻𝑛(𝑘|𝐱|)𝑒i𝑛𝜃𝐱𝐽𝑛(𝑘|𝐲|)𝑒−i𝑛𝜃𝐲)

=
∑
𝑛∈ℤ

𝐻𝑛(𝑘|𝐱|)𝑒i𝑛𝜃𝐱𝜕𝑟(𝑘𝐽′𝑛(𝑘|𝐲|)𝑒−i𝑛𝜃𝐲𝝂𝐲 + 𝐽𝑛(𝑘|𝐲|)∇𝕊𝑒
−i𝑛𝜃𝐲∕|𝐲|)

=
∑
𝑛∈ℤ

𝐻𝑛(𝑘|𝐱|)𝑒i𝑛𝜃𝐱|𝐲|2 (
𝑘2|𝐲|2𝐽′′𝑛 (𝑘|𝐲|)𝑒−i𝑛𝜃𝐲𝝂𝐲 + (

𝑘|𝐲|𝐽′𝑛(𝑘|𝐲|) − 𝐽𝑛(𝑘|𝐲|))∇𝕊𝑒
−i𝑛𝜃𝐲

)
.

(48)

 14679590, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sapm

.12555 by T
he C

hinese U
niversity of H

ong K
ong, W

iley O
nline L

ibrary on [28/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



728 LI et al.

From the identities (47) and (48), and together with the help of Lemma 4, one can obtain that

∫𝜕𝐵𝑅
∇𝐱∇𝐱𝐻0(𝑘|𝐱 − 𝐲|)𝑒i𝑛𝜃𝐲𝝂𝐲𝑑𝑠𝐲

=
𝜋𝐻𝑛−1(𝑘|𝐱|)𝑒i(𝑛−1)𝜃

𝑅

(
𝑘2𝑅2𝐽′′𝑛−1(𝑘𝑅) −

(
𝑘𝑅𝐽′𝑛−1(𝑘𝑅) − 𝐽𝑛−1(𝑘𝑅)

)
(𝑛 − 1)

)(1
i

)

+
𝜋𝐻𝑛+1(𝑘|𝐱|)𝑒i(𝑛+1)𝜃

𝑅

(
𝑘2𝑅2𝐽′′𝑛+1(𝑘𝑅) +

(
𝑘𝑅𝐽′𝑛+1(𝑘𝑅) − 𝐽𝑛+1(𝑘𝑅)

)
(𝑛 + 1)

)( 1
−i

)
.

(49)

Now, using the identity (27), we can simplify the last equation as:

∫𝜕𝐵𝑅
∇𝐱∇𝐱𝐻0(𝑘|𝐱 − 𝐲|)𝑒i𝑛𝜃𝐲𝝂𝐲𝑑𝑠𝐲

=
𝜋𝐻𝑛−1(𝑘|𝐱|)𝑒i(𝑛−1)𝜃

𝑅

((
𝑛(𝑛 − 1) − 𝑘2𝑅2

)
𝐽𝑛−1(𝑘𝑅) − 𝑛𝑘𝑅𝐽′𝑛−1(𝑘𝑅)

)(1
i

)

+
𝜋𝐻𝑛+1(𝑘|𝐱|)𝑒i(𝑛+1)𝜃

𝑅

((
𝑛(𝑛 + 1) − 𝑘2𝑅2

)
𝐽𝑛+1(𝑘𝑅) + 𝑛𝑘𝑅𝐽′𝑛+1(𝑘𝑅)

)( 1
−i

)
.

(50)

The proof is completed. ■

Lemma 7. There holds the following identity for 𝐱 ∈ ℝ2∖𝐵𝑅:

∫𝜕𝐵𝑅
∇𝐱∇𝐱𝐻0(𝑘|𝐱 − 𝐲|)𝑒i𝑛𝜃𝐲 𝐭𝐲𝑑𝑠𝐲

=
−i𝑛𝜋𝐻𝑛−1(𝑘|𝐱|)𝑒i(𝑛−1)𝜃

𝑅

(
𝑘𝑅𝐽′𝑛−1(𝑘𝑅) − 𝐽𝑛−1(𝑘𝑅)(𝑛 − 1)

)(1
i

)

+
−i𝑛𝜋𝐻𝑛+1(𝑘|𝐱|)𝑒i(𝑛+1)𝜃

𝑅

(
𝑘𝑅𝐽′𝑛+1(𝑘𝑅) + 𝐽𝑛+1(𝑘𝑅)(𝑛 + 1)

)( 1
−i

)
.

(51)

Proof. First, note that ∇𝐱∇𝐱𝐻0(𝑘|𝐱 − 𝐲|) = ∇𝐲∇𝐲𝐻0(𝑘|𝐱 − 𝐲|). Then, one has that
∫𝜕𝐵𝑅

∇𝐱∇𝐱𝐻0(𝑘|𝐱 − 𝐲|)𝑒i𝑛𝜃𝐲 𝐭𝐲𝑑𝑠𝐲 = ∫𝜕𝐵𝑅
∇𝐲∇𝐲𝐻0(𝑘|𝐱 − 𝐲|)𝑒i𝑛𝜃𝐲 𝐭𝐲𝑑𝑠𝐲

= ∫𝜕𝐵𝑅
(
∇𝕊∇𝐲𝐻0(𝑘|𝐱 − 𝐲|)∕|𝐲| + 𝜕𝑟∇𝐲𝐻0(𝑘|𝐱 − 𝐲|)𝜈𝐲) 1i𝑛∇𝕊𝑒

i𝑛𝜃𝐲𝑑𝑠𝐲

= −
1
i𝑛 ∫𝕊

(
∇𝐲𝐻0(𝑘|𝐱 − 𝐲|))Δ𝑆𝑒i𝑛𝜃𝐲𝑑𝑠𝐲

= −i𝑛 ∫𝕊 ∇𝐲𝐻0(𝑘|𝐱 − 𝐲|)𝑒i𝑛𝜃𝐲𝑑𝑠𝐲.

(52)
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LI et al. 729

Then, from the expansion of the function𝐻0(𝑘|𝐱 − 𝐲|) in (32), it holds that
∇𝐲𝐻0(𝑘|𝐱 − 𝐲|) = ∇𝐲

(∑
𝑛∈ℤ

𝐻𝑛(𝑘|𝐱|)𝑒i𝑛𝜃𝐱𝐽𝑛(𝑘|𝐲|)𝑒−i𝑛𝜃𝐲)

=
∑
𝑛∈ℤ

𝐻𝑛(𝑘|𝐱|)𝑒i𝑛𝜃𝐱|𝐲| (
𝑘|𝐲|𝐽′𝑛(𝑘|𝐲|)𝑒−i𝑛𝜃𝐲𝝂𝐲 + 𝐽𝑛(𝑘|𝐲|)∇𝕊𝑒

−i𝑛𝜃𝐲
)
.

(53)

From Equations (52) and (53), and together with the help of Lemma 4, one can obtain that

∫𝜕𝐵𝑅
∇𝐱∇𝐱𝐻0(𝑘|𝐱 − 𝐲|)𝑒i𝑛𝜃𝐲 𝐭𝐲𝑑𝑠𝐲

=
−i𝑛𝜋𝐻𝑛−1(𝑘|𝐱|)𝑒i(𝑛−1)𝜃

𝑅

(
𝑘𝑅𝐽′𝑛−1(𝑘𝑅) − 𝐽𝑛−1(𝑘𝑅)(𝑛 − 1)

)(1
i

)

+
−i𝑛𝜋𝐻𝑛+1(𝑘|𝐱|)𝑒i(𝑛+1)𝜃

𝑅

(
𝑘𝑅𝐽′𝑛+1(𝑘𝑅) + 𝐽𝑛+1(𝑘𝑅)(𝑛 + 1)

)( 1
−i

)
.

(54)

■

With these preparations, we can present the expressions of the single-layer potentials 𝐒𝜔
𝜕𝐵𝑅

with
two densities 𝑒i𝑛𝜃𝝂 and 𝑒i𝑛𝜃𝐭, and the proof follows directly from the definition of the single-layer
potential operator 𝐒𝜔

𝜕𝐵𝑅
in (21) and Lemmas 5–7.

Theorem 1. The single-layer potentials 𝐒𝜔
𝜕𝐵𝑅

[𝑒i𝑛𝜃𝝂] and 𝐒𝜔
𝜕𝐵𝑅

[𝑒i𝑛𝜃𝐭]have the following expressions
for 𝐱 ∈ ℝ2∖𝐵𝑅,

𝐒𝜔
𝜕𝐵𝑅

[𝑒i𝑛𝜃𝝂](𝐱) =
−i𝜋𝑒i(𝑛−1)𝜃

4𝜔2𝑅

(
𝑛𝐻𝑛−1(𝑘𝑠|𝐱|)((𝑛 − 1)𝐽𝑛−1(𝑘𝑠𝑅) − 𝑘𝑠𝑅𝐽

′
𝑛−1(𝑘𝑠𝑅)

)
+ 𝐻𝑛−1

(
𝑘𝑝|𝐱|)((𝑘2𝑝𝑅2 − 𝑛2 + 𝑛

)
𝐽𝑛−1

(
𝑘𝑝𝑅

)
+ 𝑛𝑘𝑝𝑅𝐽

′
𝑛−1

(
𝑘𝑝𝑅

)))(1
i

)
+
−i𝜋𝑒i(𝑛+1)𝜃

4𝜔2𝑅

(
𝑛𝐻𝑛+1(𝑘𝑠|𝐱|)((𝑛 + 1)𝐽𝑛+1(𝑘𝑠𝑅) + 𝑘𝑠𝑅𝐽

′
𝑛+1(𝑘𝑠𝑅)

)
+ 𝐻𝑛+1

(
𝑘𝑝|𝐱|)((𝑘2𝑝𝑅2 − 𝑛2 − 𝑛

)
𝐽𝑛+1

(
𝑘𝑝𝑅

)
− 𝑛𝑘𝑝𝑅𝐽

′
𝑛+1

(
𝑘𝑝𝑅

)))( 1
−i

)
,

(55)
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730 LI et al.

and

𝐒𝜔
𝜕𝐵𝑅

[𝑒i𝑛𝜃𝐭](𝐱) =
−𝜋𝑒i(𝑛−1)𝜃

4𝜔2𝑅

(
𝐻𝑛−1(𝑘𝑠|𝐱|)((𝑘2𝑠 𝑅2 − 𝑛2 + 𝑛

)
𝐽𝑛−1(𝑘𝑠𝑅) + 𝑛𝑘𝑠𝑅𝐽

′
𝑛−1(𝑘𝑠𝑅)

)
+ 𝑛𝐻𝑛−1

(
𝑘𝑝|𝐱|)((𝑛 − 1)𝐽𝑛−1

(
𝑘𝑝𝑅

)
− 𝑘𝑝𝑅𝐽

′
𝑛−1

(
𝑘𝑝𝑅

)))(1
i

)
+
𝜋𝑒i(𝑛+1)𝜃

4𝜔2𝑅

(
𝐻𝑛+1(𝑘𝑠|𝐱|)((𝑘2𝑠 𝑅2 − 𝑛2 − 𝑛

)
𝐽𝑛+1(𝑘𝑠𝑅) − 𝑛𝑘𝑠𝑅𝐽

′
𝑛+1(𝑘𝑠𝑅)

)
+ 𝑛𝐻𝑛+1

(
𝑘𝑝|𝐱|)((𝑛 + 1)𝐽𝑛+1

(
𝑘𝑝𝑅

)
+ 𝑘𝑝𝑅𝐽

′
𝑛+1

(
𝑘𝑝𝑅

)))( 1
−i

)
.

(56)

Remark 6. With the help of the recursion formulas in (28), the single-layer potentials 𝐒𝜔
𝜕𝐵𝑅

[𝑒i𝑛𝜃𝝂]

and 𝐒𝜔
𝜕𝐵𝑅

[𝑒i𝑛𝜃𝐭] can be expressed as follows for 𝐱 ∈ ℝ2∖𝐵𝑅:

𝐒𝜔
𝜕𝐵𝑅

[𝑒i𝑛𝜃𝝂](𝐱) =
−i𝜋

4𝜔2𝑅

(
𝑛𝑘𝑠𝑅𝐽𝑛(𝑘𝑠𝑅)𝐐

𝑜
𝑛(𝑘𝑠|𝐱|) + 𝑘2𝑝𝑅

2𝐽′𝑛
(
𝑘𝑝𝑅

)
𝐏𝑜𝑛(𝑘𝑝|𝐱|)),

𝐒𝜔
𝜕𝐵𝑅

[𝑒i𝑛𝜃𝐭](𝐱) =
−𝜋

4𝜔2𝑅

(
𝑘2𝑠 𝑅

2𝐽′𝑛(𝑘𝑠𝑅)𝐐
𝑜
𝑛(𝑘𝑠|𝐱|) + 𝑛𝑘𝑝𝑅𝐽𝑛(𝑘𝑝𝑅)𝐏

𝑜
𝑛(𝑘𝑝|𝐱|)), (57)

where

𝐐𝑜
𝑛(𝑘𝑠|𝐱|) =2𝑛𝐻𝑛(𝑘𝑠|𝐱|)

𝑘𝑠|𝐱| 𝑒i𝑛𝜃𝝂 + 2i𝐻′
𝑛(𝑘𝑠|𝐱|)𝑒i𝑚𝜃𝐭,

𝐏𝑜𝑛(𝑘𝑝|𝐱|) =2𝐻′
𝑛(𝑘𝑝|𝐱|)𝑒i𝑛𝜃𝝂 + 2i𝑛𝐻𝑛(𝑘𝑝|𝐱|)

𝑘𝑝|𝐱| 𝑒i𝑚𝜃𝐭. (58)

Moreover, these two functions 𝐐𝑜
𝑛(𝑘𝑠|𝐱|) and 𝐏𝑜𝑛(𝑘𝑝|𝐱|) are radiating solutions to the equa-

tion (𝜆,𝜇 + 𝜔2)𝐮 = 0 in 𝐱 ∈ ℝ2∖𝐵𝑅. The function 𝐐𝑜
𝑛(𝑘𝑠|𝐱|) belongs to the s-wave and the

function 𝐏𝑜𝑛(𝑘𝑝|𝐱|) belongs to the p-wave.
Following similar deductions to the above, one can derive the following proposition.

Proposition 1. For 𝐱 ∈ 𝐵𝑅, the single-layer potentials 𝐒𝜔𝜕𝐵𝑅 [𝑒
i𝑛𝜃𝝂] and 𝐒𝜔

𝜕𝐵𝑅
[𝑒i𝑛𝜃𝐭] have the

following expressions:

𝐒𝜔
𝜕𝐵𝑅

[𝑒i𝑛𝜃𝝂](𝐱) =
−i𝜋

4𝜔2𝑅

(
𝑛𝑘𝑠𝑅𝐻𝑛(𝑘𝑠𝑅)𝐐

𝑖
𝑛(𝑘𝑠|𝐱|) + 𝑘2𝑝𝑅

2𝐻′
𝑛

(
𝑘𝑝𝑅

)
𝐏𝑖𝑛(𝑘𝑝|𝐱|)),

𝐒𝜔
𝜕𝐵𝑅

[𝑒i𝑛𝜃𝐭](𝐱) =
−𝜋

4𝜔2𝑅

(
𝑘2𝑠 𝑅

2𝐻′
𝑛(𝑘𝑠𝑅)𝐐

𝑖
𝑛(𝑘𝑠|𝐱|) + 𝑛𝑘𝑝𝑅𝐻𝑛(𝑘𝑝𝑅)𝐏

𝑖
𝑛(𝑘𝑝|𝐱|)),

where

𝐐𝑖
𝑛(𝑘𝑠|𝐱|) =2𝑛𝐽𝑛(𝑘𝑠|𝐱|)𝑘𝑠|𝐱| 𝑒i𝑛𝜃𝝂 + 2i𝐽′𝑛(𝑘𝑠|𝐱|)𝑒i𝑛𝜃𝐭, (59)
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LI et al. 731

𝐏𝑖𝑛(𝑘𝑝|𝐱|) =2𝐽′𝑛(𝑘𝑝|𝐱|)𝑒i𝑛𝜃𝝂 + 2i𝑛𝐽𝑛(𝑘𝑝|𝐱|)
𝑘𝑝|𝐱| 𝑒i𝑛𝜃𝐭. (60)

Moreover, these two functions 𝐐𝑖
𝑛(𝑘𝑠|𝐱|) and 𝐏𝑖𝑛(𝑘𝑝|𝐱|) are entire solutions to the equation (𝜆,𝜇 +

𝜔2)𝐮 = 0 in𝐱 ∈ 𝐵𝑅 . The function𝐐𝑖
𝑛(𝑘𝑠|𝐱|) belongs to the s-wave and the function𝐏𝑖𝑛(𝑘𝑝|𝐱|) belongs

to the p-wave.

Because the function 𝐒𝜔
𝜕𝐵𝑅

[𝝍](𝐱) with 𝝍 ∈ 𝐿2(𝜕𝐵𝑅)
2 is continuous from ℝ2∖𝐵𝑅 to ℝ2∖𝐵𝑅, by

letting |𝐱| = 𝑅 in Theorem 1 and together with the help of recursion formulas given in (28), one
has the following lemma.

Lemma 8. The single-layer potentials 𝐒𝜔
𝜕𝐵𝑅

[𝑒i𝑛𝜃𝝂] and 𝐒𝜔
𝜕𝐵𝑅

[𝑒i𝑛𝜃𝐭] have the following expressions
for |𝐱| = 𝑅:

𝐒𝜔
𝜕𝐵𝑅

[𝑒i𝑛𝜃𝝂](𝐱) = 𝛼1𝑛𝑒
i𝑛𝜃𝝂 + 𝛼2𝑛𝑒

i𝑚𝜃𝐭 and 𝐒𝜔
𝜕𝐵𝑅

[𝑒i𝑛𝜃𝐭](𝐱) = 𝛼3𝑛𝑒
i𝑛𝜃𝝂 + 𝛼4𝑛𝑒

i𝑚𝜃𝐭, (61)

where

𝛼1𝑛 = −
i𝜋

2𝜔2𝑅

(
𝑛2𝐽𝑛(𝑘𝑠𝑅)𝐻𝑛(𝑘𝑠𝑅) + 𝑘2𝑝𝑅

2𝐽′𝑛(𝑘𝑝𝑅)𝐻
′
𝑛(𝑘𝑝𝑅)

)
,

𝛼2𝑛 =
𝑛𝜋

2𝜔2
(
𝑘𝑠𝐽𝑛(𝑘𝑠𝑅)𝐻

′
𝑛(𝑘𝑠𝑅) + 𝑘𝑝𝐽

′
𝑛(𝑘𝑝𝑅)𝐻𝑛(𝑘𝑝𝑅)

)
,

𝛼3𝑛 = −
𝑛𝜋

2𝜔2
(
𝑘𝑠𝐽

′
𝑛(𝑘𝑠𝑅)𝐻𝑛(𝑘𝑠𝑅) + 𝑘𝑝𝐽𝑛(𝑘𝑝𝑅)𝐻

′
𝑛(𝑘𝑝𝑅)

)
,

𝛼4𝑛 = −
i𝜋

2𝜔2𝑅

(
𝑘2𝑠 𝑅

2𝐽′𝑛(𝑘𝑠𝑅)𝐻
′
𝑛(𝑘𝑠𝑅) + 𝑛2𝐽𝑛(𝑘𝑝𝑅)𝐻𝑛(𝑘𝑝𝑅)

)
. (62)

Next, we calculate the tractions 𝜕𝝂S𝜔𝜕𝐵𝑅 [𝑒
i𝑛𝜃𝝂]|± and 𝜕𝝂S

𝜔
𝜕𝐵𝑅

[𝑒i𝑛𝜃𝐭]|± on the boundary 𝜕𝐵𝑅,
where the traction operator 𝜕𝝂 is defined in (18). First, we notice that

𝜕
𝜕𝑥1

(
𝐻𝑛(𝑘|𝐱|)𝑒i𝑛𝜃) = 𝑝1𝑛 and 𝜕

𝜕𝑥2

(
𝐻𝑛(𝑘|𝐱|)𝑒i𝑛𝜃) = 𝑝2𝑛, (63)

where

𝑝1𝑛 = 𝑘𝐻′
𝑛(𝑘|𝐱|)𝑒i𝑛𝜃 cos(𝜃) − i𝑛𝐻𝑛(𝑘|𝐱|)𝑒i𝑛𝜃 sin(𝜃)∕|𝐱|,

𝑝2𝑛 = 𝑘𝐻′
𝑛(𝑘|𝐱|)𝑒i𝑛𝜃 sin(𝜃) + i𝑛𝐻𝑛(𝑘|𝐱|)𝑒i𝑛𝜃 cos(𝜃)∕|𝐱|. (64)

Hence, for

𝐠 = 𝑒i𝑛𝜃𝐻𝑛(𝑘|𝐱|)(𝑎𝑏
)
, (65)

where 𝑎 and 𝑏 are two constants, one has that

∇ ⋅ 𝐠 = 𝑎𝑝1𝑛 + 𝑏𝑝2𝑛, 2∇𝑠𝐠 =

(
2𝑎𝑝1𝑛 𝑎𝑝2𝑛 + 𝑏𝑝1𝑛

𝑎𝑝2𝑛 + 𝑏𝑝1𝑛 2𝑏𝑝2𝑛

)
, (66)
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732 LI et al.

where 𝑝1𝑛 and 𝑝2𝑛 are defined in (63). During the simplification, we have used the recursion
formulas given in (28). Then, we can obtain the following lemma.

Lemma 9. There hold the following relations:

𝜕𝝂𝐒
𝜔
𝜕𝐵𝑅

[
𝑒i𝑚𝜃𝝂

]|+ = 𝑔1,𝑚(|𝐱|)𝑒i𝑚𝜃𝝂 + 𝑔2,𝑚(|𝐱|)𝑒i𝑚𝜃𝐭,
𝜕𝝂𝐒

𝜔
𝜕𝐵𝑅

[
𝑒i𝑚𝜃𝐭

]|+ = 𝑔3,𝑚(|𝐱|)𝑒𝑖𝑚𝜃𝝂 + 𝑔4,𝑚(|𝐱|)𝑒𝑖𝑚𝜃𝐭, (67)

where

𝑔1,𝑚(|𝐱|) = i𝜋

2𝜔2𝑅2
(
2𝜇𝑚2𝐽𝑚(𝑘𝑠𝑅)

(
𝐻𝑚(𝑘𝑠|𝐱|) − 𝑘𝑠𝑅𝐻

′
𝑚(𝑘𝑠|𝐱|))+

𝐽′𝑚
(
𝑘𝑝𝑅

)
𝑘𝑝𝑅

(
𝐻𝑚

(
𝑘𝑝|𝐱|)(𝜔2𝑅2 − 2𝜇𝑚2

)
+ 2𝑘𝑝𝜇𝑅𝐻

′
𝑚

(
𝑘𝑝|𝐱|))),

𝑔2,𝑚(|𝐱|) = −
𝑚𝜇𝜋

2𝜔2𝑅2
(
𝐽𝑚(𝑘𝑠𝑅)𝐻𝑚(𝑘𝑠|𝐱|)(𝑘2𝑠 𝑅2 − 2𝑚2

)
+

2𝑅
(
𝑘𝑠𝐽𝑚(𝑘𝑠𝑅)𝐻

′
𝑚(𝑘𝑠|𝐱|) + 𝑘𝑝𝐽

′
𝑚

(
𝑘𝑝𝑅

)(
𝐻𝑚

(
𝑘𝑝|𝐱|) − 𝑘𝑝𝑅𝐻

′
𝑚

(
𝑘𝑝|𝐱|)))), (68)

𝑔3,𝑚(|𝐱|) = 𝑚𝜋

2𝜔2𝑅2
(
𝐽𝑚

(
𝑘𝑝𝑅

)
𝐻𝑚

(
𝑘𝑝|𝐱|)((𝜆 + 2𝜇)𝑘2𝑝𝑅

2 − 2𝜇𝑚2
)
+

2𝜇𝑅
(
𝑘𝑝𝐽𝑚

(
𝑘𝑝𝑅

)
𝐻′
𝑚

(
𝑘𝑝|𝐱|) + 𝑘𝑠𝐽

′
𝑚(𝑘𝑠𝑅)

(
𝐻𝑚(𝑘𝑠|𝐱|) − 𝑘𝑠𝑅𝐻

′
𝑚(𝑘𝑠|𝐱|)))),

𝑔4,𝑚(|𝐱|) = i𝜇𝜋

2𝜔2𝑅2
(
2𝑚2𝐽𝑚

(
𝑘𝑝𝑅

)(
𝐻𝑚

(
𝑘𝑝|𝐱|) − 𝑘𝑝𝑅𝐻

′
𝑚

(
𝑘𝑝|𝐱|))+

𝐽′𝑚(𝑘𝑠𝑅)𝑘𝑠𝑅
(
𝑘2𝑠 𝑅

2𝐻𝑚(𝑘𝑠|𝐱|) + 2𝑘𝑠𝑅𝐻
′
𝑚(𝑘𝑠|𝐱|) − 2𝑚2𝐻𝑚(𝑘𝑠|𝐱|))). (69)

Remark 7. Taking the traction of the function𝐐𝑖
𝑛 and 𝐏𝑖𝑛 defined in (59) and (60) on the boundary

𝜕𝐵𝑅 gives that

𝜕𝝂𝐐
𝑖
𝑛 = 𝛾1𝑛𝑒

i𝑛𝜃𝝂 + 𝛾2𝑛𝑒
i𝑛𝜃𝐭, 𝜕𝝂𝐏

𝑖
𝑛 = 𝛾3𝑛𝑒

i𝑛𝜃𝝂 + 𝛾4𝑛𝑒
i𝑛𝜃𝐭, (70)

where

𝛾1𝑛 =
4𝑛𝜇

𝑘𝑠𝑅2
(
𝑘𝑠𝑅𝐽

′
𝑛(𝑘𝑠𝑅) − 𝐽𝑛(𝑘𝑠𝑅)

)
, 𝛾2𝑛 =

2i𝜇

𝑘𝑠𝑅2
((
2𝑛2 − 𝑘2𝑠 𝑅

2
)
𝐽𝑛(𝑘𝑠𝑅) − 2𝑘𝑠𝑅𝐽

′
𝑛(𝑘𝑠𝑅)

)
, (71)

𝛾3𝑛 =
2𝜇

𝑘𝑝𝑅2
((
2𝑛2 − 𝑘2𝑠 𝑅

2
)
𝐽𝑛
(
𝑘𝑝𝑅

)
− 2𝑘𝑝𝑅𝐽

′
𝑛(𝑘𝑝𝑅)

)
, 𝛾4𝑛 =

4i𝑛𝜇

𝑘𝑝𝑅2
(
𝑘𝑝𝑅𝐽

′
𝑛(𝑘𝑝𝑅) − 𝐽𝑛(𝑘𝑝𝑅)

)
.

(72)

With the help of Lemma 9 and the jump formula in (22), one can conclude the following lemma.

Lemma 10. There hold that

𝐊𝜔,∗
𝜕𝐵𝑅

[
𝑒i𝑛𝜃𝝂

]
= 𝑎1𝑛𝑒

i𝑛𝜃𝝂 + 𝑎2𝑛𝑒
i𝑛𝜃𝐭 and 𝐊𝜔,∗

𝜕𝐵𝑅

[
𝑒i𝑛𝜃𝐭

]
= 𝑏1𝑛𝑒

i𝑛𝜃𝝂 + 𝑏2𝑛𝑒
i𝑛𝜃𝐭, (73)

where

𝑎1𝑛 = −
1
2
+ 𝑔1,𝑛(𝑅), 𝑎2𝑛 = 𝑔2,𝑛(𝑅), 𝑏1𝑛 = 𝑔3,𝑛(𝑅), 𝑏2𝑛 = −

1
2
+ 𝑔4,𝑛(𝑅); (74)
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LI et al. 733

with the functions 𝑔𝑖,𝑛(|𝐱|), 1 ≤ 𝑖 ≤ 4 given in Lemma 9.

Finally, we obtain the eigensystem for the N-P operator𝐊𝜔,∗
𝜕𝐵𝑅

.

Theorem 2. Let 𝑎1𝑛, 𝑎2𝑛, 𝑏1𝑛, 𝑏2𝑛 be given in Lemma 10. The eigensystem for the N-P operator𝐊𝜔,∗
𝜕𝐵𝑅

is given as follows:
1) if 𝑎2𝑛 ≠ 0, the eigenvalues are

𝜉1𝑛 =
1
2

(
𝑎1𝑛 + 𝑏2𝑛 −

√
𝑎21𝑛 − 2𝑎1𝑛𝑏2𝑛 + 4𝑎2𝑛𝑏1𝑛 + 𝑏22𝑛

)
,

𝜉2𝑛 =
1
2

(
𝑎1𝑛 + 𝑏2𝑛 +

√
𝑎21𝑛 − 2𝑎1𝑛𝑏2𝑛 + 4𝑎2𝑛𝑏1𝑛 + 𝑏22𝑛

)
,

(75)

and the corresponding eigenfunctions are

𝐩1𝑛 =

⎛⎜⎜⎜⎝
𝑎1𝑛 − 𝑏2𝑛 −

√
𝑎21𝑛 − 2𝑎1𝑛𝑏2𝑛 + 4𝑎2𝑛𝑏1𝑛 + 𝑏22𝑛

2𝑎2𝑛

⎞⎟⎟⎟⎠𝑒
i𝑛𝜃𝝂 + 𝑒i𝑛𝜃𝒕,

𝐩2𝑛 =

⎛⎜⎜⎜⎝
𝑎1𝑛 − 𝑏2𝑛 +

√
𝑎21𝑛 − 2𝑎1𝑛𝑏2𝑛 + 4𝑎2𝑛𝑏1𝑛 + 𝑏22𝑛

2𝑎2𝑛

⎞⎟⎟⎟⎠𝑒
i𝑛𝜃𝝂 + 𝑒i𝑛𝜃𝒕;

(76)

2) if 𝑎2𝑛 = 0, and 𝑎1𝑛 ≠ 𝑏2𝑛, the eigenvalues are

𝜉1𝑛 = 𝑎1𝑛, 𝜉2𝑛 = 𝑏2𝑛, (77)

and the corresponding eigenfunctions are

𝐩1𝑛 = 𝑒i𝑛𝜃𝝂, 𝐩2𝑛 =

(
𝑏1𝑛

𝑏2𝑛 − 𝑎1𝑛

)
𝑒i𝑛𝜃𝝂 + 𝑒i𝑛𝜃𝐭; (78)

3) if 𝑎2𝑛 = 0, 𝑎1𝑛 = 𝑏2𝑛, and 𝑏1𝑛 = 0, the eigenvalues are

𝜉1𝑛 = 𝑎1𝑛, 𝜉2𝑛 = 𝑎1𝑛, (79)

and the corresponding eigenfunctions are

𝐩1𝑛 = 𝑒i𝑛𝜃𝝂, 𝐩2𝑛 = 𝑒i𝑛𝜃𝐭; (80)

4) if 𝑎2𝑛 = 0, 𝑎1𝑛 = 𝑏2𝑛, and 𝑏1𝑛 ≠ 0, the eigenvalues are

𝜉1𝑛 = 𝑎1𝑛, 𝜉2𝑛 = 𝑎1𝑛, (81)

there is only one eigenfunction

𝐩1𝑛 = 𝑒i𝑛𝜃𝝂, (82)
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734 LI et al.

and another one is the generalized eigenfunction,

𝐩2𝑛 =
1
𝑏1𝑛

𝑒i𝑛𝜃𝐭, (83)

namely, 𝐩2𝑛 satisfies (
𝐊𝜔,∗
𝜕𝐵𝑅

− 𝜉1𝑛
)
𝐩2𝑛 = 𝐩1𝑛. (84)

Proof. We first know from Lemma 10 that

𝐊𝜔,∗
𝜕𝐵𝑅

[𝝂, 𝐭] = (𝝂, 𝐭)𝑇𝑛, (85)

where𝑇𝑛 is a 2 × 2matrix given by𝑇𝑛 = (𝑎1𝑛, 𝑏1𝑛; 𝑎2𝑛, 𝑏2𝑛)Thus,we focus ourself on investigating
the eigensystem of the matrix 𝑇𝑛, which could further lead to the eigensystem of the operator
𝐊𝜔,∗
𝜕𝐵𝑅

. Specifically, we like to find the matrix 𝑃𝑛 = (𝐩1𝑛, 𝐩2𝑛) such that

𝑇𝑛𝑃𝑛 = 𝑃𝑛Λ𝑛, (86)

where thematrixΛ𝑛 is a diagonal matrix, namely,Λ𝑛 = (𝜉1𝑛, 0; 0, 𝜉2𝑛). A direct calculation shows
that if 𝑎2𝑛 ≠ 0, one has that

𝐩1𝑛 =

⎛⎜⎜⎜⎝
𝑎1𝑛 − 𝑏2𝑛 −

√
𝑎21𝑛 − 2𝑎1𝑛𝑏2𝑛 + 4𝑎2𝑛𝑏1𝑛 + 𝑏22𝑛

2𝑎2𝑛
, 1

⎞⎟⎟⎟⎠
𝑡

,

𝐩2𝑛 =

⎛⎜⎜⎜⎝
𝑎1𝑛 − 𝑏2𝑛 +

√
𝑎21𝑛 − 2𝑎1𝑛𝑏2𝑛 + 4𝑎2𝑛𝑏1𝑛 + 𝑏22𝑛

2𝑎2𝑛
, 1

⎞⎟⎟⎟⎠
𝑡

,

(87)

𝜉1𝑛 =
1
2

(
𝑎1𝑛 + 𝑏2𝑛 −

√
𝑎21𝑛 − 2𝑎1𝑛𝑏2𝑛 + 4𝑎2𝑛𝑏1𝑛 + 𝑏22𝑛

)
, (88)

𝜉2𝑛 =
1
2

(
𝑎1𝑛 + 𝑏2𝑛 +

√
𝑎21𝑛 − 2𝑎1𝑛𝑏2𝑛 + 4𝑎2𝑛𝑏1𝑛 + 𝑏22𝑛

)
. (89)

For the case 𝑎2𝑛 = 0 and 𝑎1𝑛 ≠ 𝑏2𝑛, one has that

𝐩1𝑛 = (1, 0)𝑡, 𝐩2𝑛 =

(
𝑏1𝑛

𝑏2𝑛 − 𝑎1𝑛
, 1

)𝑡

and 𝜉1𝑛 = 𝑎1𝑛, 𝜉2𝑛 = 𝑏2𝑛. (90)

Moreover, if 𝑎2𝑛 = 0, 𝑎1𝑛 = 𝑏2𝑛, and 𝑏1𝑛 = 0, one has that

𝐩1𝑛 = (0, 1)𝑡, 𝐩2𝑛 = (1, 0)𝑡, 𝜉1𝑛 = 𝑎1𝑛, 𝜉2𝑛 = 𝑎1𝑛. (91)

For the last case 𝑎2𝑛 = 0, 𝑎1𝑛 = 𝑏2𝑛, and 𝑏1𝑛 ≠ 0, the situation is different. The matrix Λ𝑛 given in
(86) is not a diagonal matrix anymore, but a Jordan matrix, given as follows:

Λ𝑛 =

(
𝑎1𝑛 1
0 𝑎2𝑛

)
. (92)
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LI et al. 735

Then, the generalized eigenvectors are given as 𝐩1𝑛 = (1, 0)𝑡 and 𝐩2𝑛 = (0, 1∕𝑏1𝑛)
𝑡. Finally, with

the help of the relationship (85), one can prove the statement of the theorem and the proof is
completed. ■

Remark 8. We present the asymptotic expansion for the eigenvalues when the frequency 𝜔 ≪ 1.
From the asymptotic expansions of the Bessel function and Hankel function in (29) and (30) for
𝜔 ≪ 1, one has that when |𝑛| ≥ 2,

|𝑎2𝑛| = 𝜇

2(𝜆 + 2𝜇)
+ (𝜔) ≠ 0, (93)

which is the first case in Theorem 2, thus the eigenvalues are

𝜉1𝑛 = −
𝜇

2(𝜆 + 2𝜇)
+ (𝜔2), 𝜉2𝑛 =

𝜇

2(𝜆 + 2𝜇)
+ (𝜔2). (94)

When |𝑛| = 1, one has that

|𝑎2𝑛| = 𝜇

2(𝜆 + 2𝜇)
+ (𝜔) ≠ 0, (95)

which is the first case in Theorem 2, thus the eigenvalues are

𝜉1𝑛 =
𝜇

2(𝜆 + 2𝜇)
+ 𝑜(𝜔), 𝜉2𝑛 =

1
2
+ (𝜔2). (96)

When 𝑛 = 0, one has that

𝑎2𝑛 = 𝑏1𝑛 = 0, and 𝑎1𝑛 ≠ 𝑏2𝑛, (97)

which is the second case in Theorem 2, thus the eigenvalues are

𝜉1𝑛 = −
𝜆

2(𝜆 + 2𝜇)
+ 𝑜(𝜔), 𝜉2𝑛 =

1
2
+ (𝜔2). (98)

These conclusions recover the results concerning the spectrum of the N-P operator in the static
regime (cf. Refs. 4, 39 ).

3 ELASTIC RESONANCES FORMATERIAL STRUCTURESWITH
NO CORE

In this section, we construct a broad class of elastic structures of the form 𝐂0 in (4) with no core,
namely,𝐷 = ∅ that can induce resonances. All the notations below are carried over fromSections 1
and 2. Suppose that a source term 𝐟 is supported outside Ω. In such a case, the elastic system (5)
can be reduced into the following transmission problem:

⎧⎪⎪⎨⎪⎪⎩
𝜆̂,𝜇̂𝐮(𝐱) + 𝜔2𝐮(𝐱) = 0, 𝐱 ∈ Ω,

𝜆,𝜇𝐮(𝐱) + 𝜔2𝐮(𝐱) = 𝐟 , 𝐱 ∈ ℝ𝑁∖Ω,
𝐮(𝐱)|− = 𝐮(𝐱)|+, 𝐱 ∈ 𝜕Ω,
𝜕𝝂̂𝐮(𝐱)|− = 𝜕𝝂𝐮(𝐱)|+, 𝐱 ∈ 𝜕Ω .

(99)
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736 LI et al.

3.1 Existence of resonances in generic scenarios

Using the single-layer potential in (21), the solution to this system can be written as:

𝐮 =

{
𝐒̂𝜔
𝜕Ω
[𝝍1](𝐱), 𝐱 ∈ Ω,

𝐒𝜔
𝜕Ω
[𝝍2](𝐱) + 𝐅, 𝐱 ∈ ℝ𝑁∖Ω,

(100)

where 𝐅 is called the Newtonian potential of the source 𝐟 and 𝝍1, 𝝍2 ∈ 𝐿2(𝜕Ω)𝑁 :

𝐅(𝐱) ∶= ∫ℝ𝑁 𝚪
𝜔(𝐱 − 𝐲)𝐟 (𝐲)𝑑𝐲, 𝐱 ∈ ℝ𝑁 . (101)

One can readily verify that the solution defined in (100) satisfies the first two conditions in (99).
For the third and fourth conditions in (99) across 𝜕Ω, namely, the transmission conditions, one
can obtain that {

𝐒̂𝜔
𝜕Ω
[𝝍1] − 𝐒𝜔

𝜕Ω
[𝝍2] = 𝐅,

𝜕𝝂̂ 𝐒̂
𝜔
𝜕Ω
[𝝍1]|− − 𝜕𝝂𝐒

𝜔
𝜕Ω
[𝝍2]|+ = 𝜕𝝂𝐅,

𝐱 ∈ 𝜕Ω. (102)

With the help of the jump formula (22), Equation (102) can be rewritten as:

𝐀𝜔

[
𝝍1
𝝍2

]
=

[
𝐅
𝜕𝝂𝐅

]
, (103)

where

𝐀𝜔 =

[
𝐒̂𝜔
𝜕Ω

−𝐒𝜔
𝜕Ω

−1∕2𝐼 + 𝐊̂𝜔,∗
𝜕Ω

−1∕2𝐼 − 𝐊𝜔,∗
𝜕Ω

]
. (104)

Next,we show that the resonance could occur even for the domainΩ to be of a generic geometry.
It is noted that 𝐒̂𝜔

𝜕Ω
and 𝐒𝜔

𝜕Ω
are compact operators on 𝐿2(𝜕Ω)𝑁 (cf. Ref. 32). Following the similar

argument as that in the proof of Lemma 2, one can readily show that the spectrum of the operator
𝐀𝜔 consists of the point spectrum only. Denoting by𝑗 the generalized eigenspace of 𝐀𝜔 for the
eigenvalue 𝜉𝑗 , we can obtain the following result, by applying the Jordan theory directly to the
operator 𝐀𝜔

𝛿
|𝑗

∶ 𝑗 → 𝑗 .

Lemma 11. The generalized eigenspace𝑗 = {𝚿𝑗,𝑙,𝑘}, 1 ≤ 𝑙 ≤ 𝑚𝑗 , 1 ≤ 𝑘 ≤ 𝑛𝑗,𝑙 satisfies

𝐀𝜔
(
𝚿𝑗,1,1, … ,𝚿𝑗,𝑚𝑗,𝑛𝑗,𝑚𝑗

)
=
(
𝚿𝑗,1,1, … ,𝚿𝑗,𝑚𝑗,𝑛𝑗,𝑚𝑗

)⎛⎜⎜⎝
𝐽𝑗,1

⋱
𝐽𝑗,𝑚𝑗

⎞⎟⎟⎠, (105)

where 𝐽𝑗,𝑙 is the canonical Jordan matrix of size 𝑛𝑗,𝑙 in the form

𝐽𝑗,𝑙 =

⎛⎜⎜⎜⎜⎝
𝜉𝑗 1

⋱ ⋱
𝜉𝑗 1

𝜉𝑗

⎞⎟⎟⎟⎟⎠
. (106)

The following theorem presents the existence of resonances in generic scenarios.
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LI et al. 737

Theorem 3. Let (𝜉𝑗,𝚿) be the eigenpair defined in Lemma 11. Assume that the source term is chosen
as follows: [

𝐅
𝜕𝝂𝐅

]
=

𝑝𝑗∑
𝑘=1

𝑓𝑘𝚿𝑗,1,𝑘, (107)

where 𝑓𝑘 are the coefficients and 𝑝𝑗 = max{𝑛𝑗,𝑙}
𝑚𝑗

𝑙=1
with 𝑛𝑗,𝑙 defined in Lemma 11. If the parameters

are properly chosen such that for𝑀 ≫ 1,

𝑓2𝑝𝑗

𝜉
2𝑝𝑗
𝑗

ℑ

(
∫𝜕Ω 𝐒̂

𝜔
𝜕Ω
[𝚿𝑗,1,1] ⋅ 𝜕𝝂̂ 𝐒̂

𝜔
𝜕Ω
[𝚿𝑗,1,1]|−) > 𝑀, (108)

then the resonance occurs in the sense of Definition 1.

Proof. From Lemma 11 and the choice of the source in (107), the density function can be written
as: [

𝝍1
𝝍2

]
=

𝑝𝑗∑
𝑘=1

𝑔𝑘𝚿𝑗,1,𝑘, (109)

where 𝑔𝑘 are the coefficients to be determined.With the help of (103) and Lemma 11, one has that

𝑔𝑘 =
1

𝜉
𝑝𝑗−𝑘+1

𝑗

𝑝𝑗∑
𝑖=𝑘

(𝑓𝑖𝜉
𝑝𝑗−𝑖

𝑗 (−1)𝑖−𝑘+1). (110)

Thus, 𝑔1 has the following expression:

𝑔1 =
𝑓𝑝𝑗

𝜉
𝑝𝑗
𝑗

(−1)𝑝𝑗 + (𝜉1−𝑝𝑗𝑗 ). (111)

Then, we have the following estimate for the dissipation energy:

𝐸(𝐮) = ℑ𝑃𝜆̂,𝜇̂(𝐮, 𝐮) = ℑ

(
𝜔2 ∫Ω |𝐮|2𝑑𝐱 + ∫𝜕Ω 𝐮 ⋅ 𝜕𝝂𝐮

)
≥ |𝑔1|2ℑ(∫𝜕Ω 𝐒̂𝜔𝜕Ω[𝚿𝑗,1,1] ⋅ 𝜕𝝂̂ 𝐒̂

𝜔
𝜕Ω
[𝚿𝑗,1,1]|−)

≥ 𝑓2𝑝𝑗

𝜉
2𝑝𝑗
𝑗

ℑ

(
∫𝜕Ω 𝐒̂

𝜔
𝜕Ω
[𝚿𝑗,1,1] ⋅ 𝜕𝝂̂ 𝐒̂

𝜔
𝜕Ω
[𝚿𝑗,1,1]|−).

(112)

This completes the proof following from the condition (108). ■

Remark 9. The condition (108) generally can be satisfied. In fact, because the Lamé parameters
(𝜆̂, 𝜇̂) in the domain Ω can break the strong convexity conditions in (2), hence the system (99)
is allowed to lose the ellipticity. Thus, there exists a certain eigenvalue satisfying the condition
𝜉𝑗 ≪ 1. Next, we choose the domain Ω to be a circle to strictly verify the statement in Theorem 3
in two dimensions. For the three dimensions, readers may refer to the article.3
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738 LI et al.

3.2 Resonance and its quantitative behavior for circular domain

In this subsection, we consider the specific case that the domain Ω is a circle 𝐵𝑅. In such a case,
we can have a deep understanding of the occurrence of the resonance as well as its quantitative
behaviors. Because the source term 𝐟 is supported outside 𝐵𝑅, there exists 𝜖 > 0 such that when
𝐱 ∈ 𝐵𝑅+𝜖, the Newtonian potential 𝐅 defined in (101) satisfies

𝜆,𝜇𝐅 + 𝜔2𝐅 = 0. (113)

Thus, 𝐅 can be written as:

𝐅 =
∞∑

𝑛=−∞

(
𝜅1,𝑛𝑘𝑠𝑅

𝑛𝐽𝑛(𝑘𝑠𝑅)
𝐐𝑖
𝑛 +

𝜅2,𝑛𝑘𝑝𝑅

𝑛𝐽𝑛(𝑘𝑝𝑅)
𝐏𝑖𝑛

)
, (114)

where 𝜅1,𝑛, 𝜅2,𝑛 are the coefficients, and the functions𝐐𝑖
𝑛 and𝐏𝑖𝑛 are defined in (59) and (60). Here,

𝑘𝑠𝑅

𝑛𝐽𝑛(𝑘𝑠𝑅)
and 𝑘𝑝𝑅

𝑛𝐽𝑛(𝑘𝑝𝑅)
are the normalization constants. From the expressions for the functions 𝐐𝑖

𝑛

and 𝐏𝑖𝑛 in (59) and (60), one has that on the boundary 𝜕𝐵𝑅:

𝐅 =
∞∑

𝑛=−∞

𝐛𝑡𝑛𝐟𝑛, (115)

where

𝐛𝑛 =

(
𝑒i𝑛𝜃𝝂
𝑒i𝑛𝜃𝐭

)
, 𝐟𝑛 =

(
𝑓1,𝑛
𝑓2,𝑛

)
=

(
𝜅1,𝑛𝜂1,𝑛 + 𝜅2,𝑛𝜂3,𝑛
𝜅1,𝑛𝜂2,𝑛 + 𝜅2,𝑛𝜂4,𝑛

)
, (116)

with

𝜂1,𝑛 = 2, 𝜂2,𝑛 =
2i𝑘𝑠𝑅𝐽

′
𝑛(𝑘𝑠𝑅)

𝑛𝐽𝑛(𝑘𝑠𝑅)
, 𝜂3,𝑛 =

2𝑘𝑝𝑅𝐽
′
𝑛(𝑘𝑝𝑅)

𝑛𝐽𝑛(𝑘𝑝𝑅)
, 𝜂4,𝑛 = 2i. (117)

Moreover, from (70), one has that on the boundary 𝜕𝐵𝑅:

𝜕𝝂𝐅 =
∞∑

𝑛=−∞

𝐛𝑡𝑛𝐟𝑛, (118)

where

𝐟𝑛 =

(
𝑓1,𝑛
𝑓2,𝑛

)
=
⎛⎜⎜⎝
𝜅1,𝑛𝛾1,𝑛𝑘𝑠𝑅

𝑛𝐽𝑛(𝑘𝑠𝑅)
+

𝜅2,𝑛𝛾3,𝑛𝑘𝑝𝑅

𝑛𝐽𝑛(𝑘𝑝𝑅)
𝜅1,𝑛𝛾2,𝑛𝑘𝑠𝑅

𝑛𝐽𝑛(𝑘𝑠𝑅)
+

𝜅2,𝑛𝛾4,𝑛𝑘𝑝𝑅

𝑛𝐽𝑛(𝑘𝑝𝑅)

⎞⎟⎟⎠, (119)

with 𝛾𝑖,𝑛, 1 ≤ 𝑖 ≤ 4 given in (70).
From Lemmas 8 and 9, one has that under the basis (𝑒i𝑛𝜃𝝂, 𝑒i𝑛𝜃𝐭), the operators

𝐒𝜔
𝜕Ω
, 𝐒̂𝜔

𝜕Ω
, 𝜕𝝂𝐒

𝜔
𝜕Ω
[𝝍2]|+, 𝜕𝝂̂ 𝐒̂𝜔𝜕Ω[𝝍1]|− have the following expressions:
𝐒𝜔
𝜕Ω

= 1𝑛, 𝐒̂𝜔
𝜕Ω

= ̂1𝑛, 𝜕𝝂𝐒
𝜔
𝜕Ω
[𝝍2]|+ = 2𝑛, 𝜕𝝂̂ 𝐒̂

𝜔
𝜕Ω
[𝝍1]|− = ̂2𝑛, (120)

where
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LI et al. 739

1𝑛 =
⎛⎜⎜⎝
𝛼1,𝑛 𝛼3,𝑛
𝛼2,𝑛 𝛼4,𝑛

⎞⎟⎟⎠, ̂1𝑛 =
⎛⎜⎜⎝
𝛼̂1,𝑛 𝛼̂3,𝑛
𝛼̂2,𝑛 𝛼̂4,𝑛

⎞⎟⎟⎠,
2𝑛 =

⎛⎜⎜⎝
𝑔1,𝑛 𝑔3,𝑛
𝑔2,𝑛 𝑔4,𝑛

⎞⎟⎟⎠, ̂2𝑛 =
⎛⎜⎜⎝
𝑔̂1,𝑛 − 1 𝑔̂3,𝑛
𝑔̂2,𝑛 𝑔̂4,𝑛 − 1

⎞⎟⎟⎠. (121)

In the last equation, 𝛼𝑖𝑛 and 𝑔𝑖,𝑛 with 𝑖 = 1, 2, 3, 4 are given in Lemmas 8 and 9, and 𝛼̂𝑖𝑛 and 𝑔̂𝑖,𝑛
with 𝑖 = 1, 2, 3, 4 are also given in Lemmas 8 and 9 with (𝜇, 𝜆) replaced by (𝜇̂, 𝜆̂).
Hence, the density functions 𝝍1 and 𝝍2 can be expressed by:

𝝍1 =
∞∑

𝑛=−∞

𝐛𝑡𝑛𝝍1,𝑛, 𝝍2 =
∞∑

𝑛=−∞

𝐛𝑡𝑛𝝍2,𝑛, (122)

where

𝐛𝑛 =

(
𝑒i𝑛𝜃𝝂
𝑒i𝑛𝜃𝐭

)
, 𝝍1,𝑛 =

(
𝜓1,1,𝑛
𝜓1,2,𝑛

)
, 𝝍2,𝑛 =

(
𝜓2,1,𝑛
𝜓2,2,𝑛

)
, (123)

and the coefficients 𝜓𝑖,𝑗,𝑛, 1 ≤ 𝑖, 𝑗 ≤ 2 are needed to be determined. Thus, the system (102) can be
written as for −∞ < 𝑛 < ∞:

{̂1𝑛𝝍1,𝑛 = 1𝑛𝝍2,𝑛 + 𝐟𝑛,

̂2𝑛𝝍1,𝑛 = 2𝑛𝝍2,𝑛 + 𝐟𝑛.
(124)

Directly solving Equation (124) gives that

𝜓1,1,𝑛 =
𝑐1,𝑛
𝑑𝑛

, 𝜓1,2,𝑛 =
𝑐2,𝑛
𝑑𝑛

, (125)

where

𝑐1,𝑛 = (𝑓2,𝑛𝛼̂3,𝑛 − 𝑓1,𝑛𝛼̂4,𝑛)(𝑔3,𝑛𝑔2,𝑛 − 𝑔1,𝑛𝑔4,𝑛) + (𝑓2,𝑛(𝑔̂4,𝑛 − 1) − 𝑓2,𝑛𝛼̂4,𝑛)(𝑔1,𝑛𝛼3,𝑛 − 𝑔3,𝑛𝛼1,𝑛)

+ (𝑓2,𝑛𝑔̂3,𝑛 − 𝑓1,𝑛𝛼̂4,𝑛)(𝑔4,𝑛𝛼1,𝑛 − 𝑔2,𝑛𝛼3,𝑛) + (𝑓1,𝑛(𝑔̂4,𝑛 − 1) − 𝑓2,𝑛𝛼̂3,𝑛)(𝑔3,𝑛𝛼2,𝑛 − 𝑔1,𝑛𝛼4,𝑛)

+ (𝑓1,𝑛𝑔̂3,𝑛 − 𝑓1,𝑛𝛼̂3,𝑛)(𝑔2,𝑛𝛼4,𝑛 − 𝑔4,𝑛𝛼2,𝑛) + (𝑓1,𝑛(𝑔̂4,𝑛 − 1) − 𝑓2,𝑛𝑔̂3,𝑛)(𝛼1,𝑛𝛼4,𝑛 − 𝛼3,𝑛𝛼2,𝑛),

(126)

𝑐2,𝑛 = (𝑓2,𝑛𝛼̂1,𝑛 − 𝑓1,𝑛𝛼̂2,𝑛)(𝑔1,𝑛𝑔4,𝑛 − 𝑔3,𝑛𝑔2,𝑛) + (𝑓2,𝑛(𝑔̂1,𝑛 − 1) − 𝑓1,𝑛𝑔̂2,𝑛)(𝛼1,𝑛𝛼4,𝑛 − 𝛼3,𝑛𝛼2,𝑛)

+ (𝑓1,𝑛𝑔̂2,𝑛 − 𝑓2,𝑛𝛼̂1,𝑛)(𝑔1,𝑛𝛼4,𝑛 − 𝑔3,𝑛𝛼2,𝑛) + (𝑓2,𝑛(𝑔̂1,𝑛 − 1) − 𝑓1,𝑛𝛼̂2,𝑛)(𝑔2,𝑛𝛼3,𝑛 − 𝑔4,𝑛𝛼1,𝑛)

+ (𝑓2,𝑛𝑔̂2,𝑛 − 𝑓2,𝑛𝛼̂2,𝑛)(𝑔3,𝑛𝛼1,𝑛 − 𝑔1,𝑛𝛼3,𝑛) + (𝑓1,𝑛(𝑔̂1,𝑛 − 1) − 𝑓1,𝑛𝛼̂1,𝑛)(𝑔4,𝑛𝛼2,𝑛 − 𝑔2,𝑛𝛼4,𝑛),

(127)
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740 LI et al.

and

𝑑𝑛 = (𝛼̂1,𝑛𝛼̂4,𝑛 − 𝛼̂3,𝑛𝛼̂2,𝑛)(𝑔1,𝑛𝑔4,𝑛 − 𝑔3,𝑛𝑔2,𝑛)

+ (𝑔̂3,𝑛𝛼̂2,𝑛 − 𝛼̂4,𝑛(𝑔̂1,𝑛 − 1))(𝑔4,𝑛𝛼1,𝑛 − 𝑔2,𝑛𝛼3,𝑛)

+ (𝑔̂3,𝑛𝛼̂2,𝑛 − 𝛼̂4,𝑛(𝑔̂1,𝑛 − 1))(𝛼1,𝑛𝑔4,𝑛 − 𝑔2,𝑛𝛼3,𝑛)

+ (𝛼̂3,𝑛𝑔̂2,𝑛 − 𝛼̂1,𝑛(𝑔̂4,𝑛 − 1))(𝑔1,𝑛𝛼4,𝑛 − 𝑔3,𝑛𝛼2,𝑛)

+ (𝛼̂1,𝑛𝑔̂3,𝑛 − 𝛼̂3,𝑛(𝑔̂1,𝑛 − 1))(𝑔2,𝑛𝛼4,𝑛 − 𝑔4,𝑛𝛼2,𝑛)

+ (𝑔̂2,𝑛𝑔̂3,𝑛(𝑔̂4,𝑛 − 1)(𝑔̂1,𝑛 − 1))(𝛼3,𝑛𝛼2,𝑛 − 𝛼1,𝑛𝛼4,𝑛).

(128)

Theorem4. Consider the configuration𝐂0 with𝐷 = ∅ defined in (4) and a source term 𝐟 supported
outside the domain Ω. If the Lamé parameters (𝜆̂, 𝜇̂) inside the domain Ω are chosen such that for
any𝑀 ∈ ℝ+:

|𝜓1,1,𝑛|2ℑ(∫𝜕Ω 𝐒̂𝜔𝜕Ω[𝑒i𝑛𝜃𝝂] ⋅ 𝜕𝝂̂ 𝐒̂𝜔𝜕Ω[𝑒i𝑛𝜃𝝂]|−
)
> 𝑀, (129)

for some 𝑛0 ∈ ℕ, where 𝜓1,1,𝑛0 is defined in (125), then the elastic resonance occurs.

Proof. With the help of the Green’s formula, the dissipation energy defined in (14) can be written
as:

𝐸(𝐮) = ℑ𝑃𝜆̂,𝜇̂(𝐮, 𝐮) = ℑ

(
𝜔2 ∫Ω |𝐮|2𝑑𝐱 + ∫𝜕Ω 𝐮 ⋅ 𝜕𝝂𝐮

)
= ℑ

(
∫𝜕Ω 𝐮 ⋅ 𝜕𝝂𝐮

)
≥ |𝜓1,1,𝑛|2ℑ(∫𝜕Ω 𝐒̂𝜔𝜕Ω[𝑒i𝑛𝜃𝝂] ⋅ 𝜕𝝂̂ 𝐒̂𝜔𝜕Ω[𝑒i𝑛𝜃𝝂]|−

)
,

(130)

which shows that the resonance occurs thanks to (129) and completes the proof. ■

Remark 10. If the Lamé parameters (𝜆̂, 𝜇̂) inside the domain Ω are chosen as follows:

(𝜆̂, 𝜇̂) = 𝑐(𝜆, 𝜇), (131)

where (𝜆, 𝜇) are the Lamé parameters inℝ2∖Ω. For a large order𝑛 such that the asymptotic expan-
sions (31) hold, the parameter 𝑐 should have the following asymptotic expansion such that the
condition (129) holds:

𝑐 = −
𝜆 + 3𝜇

𝜆 + 𝜇
+ 𝜗𝑛, (132)

where 𝜗𝑛 = (1∕𝑛). In fact, for a large order 𝑛, the solutions of the equation (124) have the
following asymptotic expansions:

𝜓1,1,𝑛 =
𝜀1,𝑛

((1 + 𝑐)𝜆 + (3 + 𝑐)𝜇)𝜚 + (1∕𝑛) , 𝜓1,2,𝑛 =
𝜀2,𝑛

((1 + 𝑐)𝜆 + (3 + 𝑐)𝜇)𝜚 + (1∕𝑛) , (133)

where 𝜚 is a constant not depending on 𝑛 and
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LI et al. 741

-1.9643772 -1.96437716 -1.96437712

0.5

1

1.5

2
1013F IGURE 1 The value of the LHS in (129)

with respect toℜ𝑐. Horizontal axis: value of
ℜ𝑐; Vertical axis: value of the LHS in (129)

𝜀1,𝑛 =
(
(𝑐 − 1)𝜔2𝑅2(𝜆 + 𝜇)(𝜆 + 3𝜇) − 8𝑐𝜇(𝜆 + 2𝜇)((𝑐 + 3)𝜆 + (𝑐 + 7)𝜇)

)
× 256𝑐𝜇2𝑛(𝑐1 + 𝑐2)(𝜆 + 2𝜇)3

(
1 + 

(
1
𝑛

))
,

(134)

𝜀2,𝑛 = −
(
(𝑐 − 1)𝜔2𝑅2(𝜆 + 𝜇)(𝜆 + 3𝜇) + 8𝑐𝜇(𝜆 + 2𝜇)(3𝑐𝜆 + (3𝑐 + 5)𝜇 + 𝜆)

)
× 256i𝑐𝜇2𝑛(𝑐1 + 𝑐2)(𝜆 + 2𝜇)3

(
1 + 

(
1
𝑛

))
.

(135)

Thus, one can readily conclude that the parameter 𝑐 should have the following asymptotic
expansion:

𝑐 = −
𝜆 + 3𝜇

𝜆 + 𝜇
+ 

(
1
𝑛

)
, (136)

such that the condition (129) holds.

Next, we show that the condition (129) can be achieved. The Lamé parameters inside the
domain Ω are chosen as those in (131). The other parameters are chosen as follows:

𝑛 = 5, 𝜆 = 𝜇 = 𝜔 = 𝑅 = 1, ℑ𝑐 = 2.08 × 10−9. (137)

This is the case beyond the quasistatic approximation from the values of 𝜔 and 𝑅. The value of the
LHS in (129) with respect to the real part of 𝑐, that is,ℜ𝑐, is plotted in Figure 1. This clearly shows
that the condition (129) is fulfilled and thus the resonance occurs.

Remark 11. To ensure the occurrence of the resonance, that is, the condition (15) is fulfilled, in the
quasistatic case, the condition ℑ𝑐 → 0 is required (cf. Refs. 13, 29). However, in our current case
beyond the quasistatic regime, one usually requires ℑ𝑐 → 𝑐∗ with 𝑐∗ ≠ 0. This is a sharp differ-
ence from the quasistatic case. Next, we conduct a numerical simulation to verify this statement.
The parameters are chosen as follows:

𝑛 = 5, 𝜆 = 𝜇 = 𝜔 = 𝑅 = 1, ℜ𝑐 = −1.9643, (138)
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742 LI et al.

2.06 2.07 2.08 2.09 2.1 2.11

10-9

0.5

1

1.5

2

2.5

3

3.5

1019 F IGURE 2 The value of the LHS in (129)
with respect to ℑ𝑐. Horizontal axis: value ofℑ𝑐;
Vertical axis: value of the LHS in (129)

which is the case beyond the quasistatic approximation from the values of 𝜔 and 𝑅. The value of
the LHS in (129) with respect to the imaginary part of 𝑐, that is, ℑ𝑐, is plotted in Figure 2. This
clearly shows that the resonance occurs and the critical value ℑ𝑐 ≠ 0.

Finally, we consider the quantitative behaviors of the resonant fields when resonance occurs.
It is recalled that in the static/quasistatic regime, the plasmon/polariton resonances are local-
ized around the metamaterial interface. However, we will show that in the frequency regime
beyond the quasistatic approximation, the resonant oscillation outside the material structure is
localized around the metamaterial interface, but inside the material structure, it is not localized
around the interface, which is in sharp contrast to the subwavelength resonance. In fact, from the
expression of the solution in (100) and the density functions in (122), it is sufficient to analyze the
properties of single-layer potentials 𝐒𝜔

𝜕𝐵𝑅
[𝑒i𝑛𝜃𝝂](𝐱) and 𝐒𝜔

𝜕𝐵𝑅
[𝑒i𝑛𝜃𝐭](𝐱) expressed in Theorem 1 and

Proposition 1 for 𝐱 lying in different regions. Here, we only take the term 𝐒𝜔
𝜕𝐵𝑅

[𝑒i𝑛𝜃𝝂](𝐱) to illus-
trate the phenomenon as the discussion is the same for the term 𝐒𝜔

𝜕𝐵𝑅
[𝑒i𝑛𝜃𝐭](𝐱). The parameters

are chosen as follows:

𝑛 = 5, 𝜆 = 𝜇 = 𝑅 = 1, 𝜔 = 20, (139)

which is the case beyond the quasistatic approximation from the values of𝜔 and𝑅. The amplitude
of the single-layer potential 𝐒𝜔

𝜕𝐵𝑅
[𝑒i𝑛𝜃𝝂](𝐱) for |𝐱| ≤ 1 and 1 < |𝐱| < 3 is plotted in Figure 3A and

B, respectively. From the plot, one can conclude that the field outside 𝐵1 is localized around the
surface 𝜕𝐵1, while the field inside 𝐵1 is not localized around the boundary.
If we choose the parameters as follows:

𝑛 = 5, 𝜆 = 𝜇 = 𝑅 = 1, 𝜔 = 0.1, (140)

which is the case of the quasistatic approximation. The amplitude of the single-layer potential
𝐒𝜔
𝜕𝐵𝑅

[𝑒i𝑛𝜃𝝂](𝐱) for |𝐱| ≤ 1 and 1 < |𝐱| < 2 is plotted in Figure 4A and B, respectively. From the
plot, one can conclude that the fields both inside and outside 𝐵1 are localized around the surface
𝜕𝐵1. Finally, we would like to remark that by using the relevant results in Ref. 29, one can show
that the elastodynamical resonances in 3D reveal similar behaviors as the 2D case discussed above.
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LI et al. 743
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F IGURE 3 The amplitude of the single-layer potential 𝐒𝜔𝜕𝐵𝑅 [𝑒
i𝑛𝜃𝝂](𝐱) with parameters chosen in (139) for

(A) |𝐱| ≤ 1; (B) 1 < |𝐱| ≤ 3
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F IGURE 4 The amplitude of the single-layer potential 𝐒𝜔𝜕𝐵𝑅 [𝑒
i𝑛𝜃𝝂](𝐱) with parameters chosen in (140) for

(A) |𝐱| ≤ 1; (B) 1 < |𝐱| ≤ 2

4 CALR FOR A CORE–SHELL STRUCTURE BEYOND THE
QUASISTATIC APPROXIMATION

In this section, we construct a core–shell elastic structure that can induce ALR; see Definition 1.
We confine our study in two dimensions and as mentioned earlier, we refer to Ref. 3 for related
studies in the three-dimensional case. In what follows, we let𝐷 = 𝐵𝑟𝑖 andΩ = 𝐵𝑟𝑒 , 𝑟𝑒 > 𝑟𝑖 . More-
over, we let 𝜆̆,𝜇̆, 𝜕𝝂̆ , 𝐒̆𝜕𝐷, and (𝐊̆𝜔

𝜕𝐷
)∗, respectively, denote the Lamé operator, the associated

conormal derivative, the single-layer potential operator, and the N-P operator associated with the
Lamé parameters (𝜆̆, 𝜇̆).
Assume that the source 𝐟 is supported outside Ω. Associated with the material structure 𝐂0 in

(4) with 𝐷 and Ω given above, the elastic system (5) becomes

⎧⎪⎪⎨⎪⎪⎩

𝜆̆,𝜇̆𝐮(𝐱) + 𝜔2𝐮(𝐱) = 0, in 𝐷,

𝜆̂,𝜇̂𝐮(𝐱) + 𝜔2𝐮(𝐱) = 0, in Ω∖𝐷,

𝜆,𝜇𝐮(𝐱) + 𝜔2𝐮(𝐱) = 𝐟 , in ℝ2∖Ω,
𝐮|− = 𝐮|+, 𝜕𝝂̆𝐮|− = 𝜕𝝂̂𝐮|+ on 𝜕𝐷,
𝐮|− = 𝐮|+, 𝜕𝝂̂𝐮|− = 𝜕𝝂𝐮|+ on 𝜕Ω.

(141)
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744 LI et al.

With the help of the potential theory, the solution to the equation system (141) can be
represented by:

𝐮(𝐱) =

⎧⎪⎨⎪⎩
𝐒̆𝜔
𝜕𝐷
[𝝋1](𝐱), 𝐱 ∈ 𝐷,

𝐒̂𝜔
𝜕𝐷
[𝝋2](𝐱) + 𝐒̂𝜔

𝜕Ω
[𝝋3](𝐱), 𝐱 ∈ Ω∖𝐷,

𝐒𝜔
𝜕Ω
[𝝋4](𝐱) + 𝐅(𝐱), 𝐱 ∈ ℝ2∖Ω,

(142)

where 𝝋1, 𝝋2, 𝝋3, 𝝋4 ∈ 𝐿2(𝜕𝐷)2 and 𝐅 is the Newtonian potential of the source 𝐟 defined in (101).
One can easily see that the solution given (142) satisfies the first three conditions in (141) and the
last two conditions on the boundary yield that

⎧⎪⎪⎨⎪⎪⎩
𝐒̆𝜔
𝜕𝐷
[𝝋1] = 𝐒̂𝜔

𝜕𝐷
[𝝋2] + 𝐒̂𝜔

𝜕Ω
[𝝋3], on 𝜕𝐷,

𝜕𝝂̆ 𝐒̆
𝜔
𝜕𝐷
[𝝋1|− = 𝜕𝝂̂(𝐒̂

𝜔
𝜕𝐷
[𝝋2] + 𝐒̂𝜔

𝜕Ω
[𝝋3])|+, on 𝜕𝐷,

𝐒̂𝜔
𝜕𝐷
[𝝋2] + 𝐒̂𝜔

𝜕Ω
[𝝋3] = 𝐒𝜔

𝜕Ω
[𝝋4] + 𝐅, on 𝜕Ω,

𝜕𝝂̂(𝐒̂
𝜔
𝜕𝐷
[𝝋2] + 𝐒̂𝜔

𝜕Ω
[𝝋3])|− = 𝜕𝝂(𝐒

𝜔
𝜕Ω
[𝝋4] + 𝐅)|+, on 𝜕Ω.

(143)

With the help of the jump formula in (22), the equation system (143) further yields the following
integral system:

⎡⎢⎢⎢⎢⎢⎣

𝐒̆𝜔
𝜕𝐷

−𝐒̂𝜔
𝜕𝐷,𝑖

−𝐒̂𝜔
𝜕Ω,𝑖

0

−
1

2
+ (𝐊̆𝜔

𝜕𝐷
)∗ −

1

2
− (𝐊̂𝜔

𝜕𝐷
)∗ −𝜕𝝂̂𝑖 𝐒̂

𝜔
𝜕Ω

0

0 𝐒̂𝜔
𝜕𝐷,𝑒

𝐒̂𝜔
𝜕Ω,𝑒

−𝐒𝜔
𝜕Ω

0 𝜕𝝂̂𝑒 𝐒̂
𝜔
𝜕𝐷

−
1

2
+ (𝐊̂𝜔

𝜕Ω
)∗ −

1

2
− (𝐊𝜔

𝜕Ω
)∗

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
𝝋1
𝝋2
𝝋3
𝝋4

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
0
0
𝐅
𝜕𝝂𝐅

⎤⎥⎥⎥⎥⎦
, (144)

where 𝜕𝝂̂𝑖 and 𝜕𝝂̂𝑒 signify the conormal derivatives on the boundaries of 𝐷 and Ω, respectively.
Following similar arguments as those in the previous section, there exists 𝜖 > 0 such that when

𝐱 ∈ 𝐵𝑟𝑒+𝜖 the Newtonian potential 𝐅 can be written as:

𝐅 =
∑
𝑛≥𝑁

(
𝜅1,𝑛𝑘𝑠𝑟𝑒
𝑛𝐽𝑛(𝑘𝑠𝑟𝑒)

𝐐𝑖
𝑛

)
, (145)

where 𝜅1,𝑛 are the coefficients, the functions 𝐐𝑖
𝑛 are defined in (59), and 𝑁 is large enough such

that the spherical Bessel and Hankel functions, 𝐽𝑛(𝑡) and𝐻𝑛(𝑡), fulfill the asymptotic expansions
shown in (29).Wewould like to remark that the Newtonian potential𝐅 only contains the term𝐐𝑖

𝑛.
Indeed, one can also include the term 𝐏𝑖𝑛 and the analysis will be similar. To ease the exposition,
we only consider the case that the Newtonian potential 𝐅 contains the term 𝐐𝑖

𝑛 only. From the
expressions for the functions 𝐐𝑖

𝑛 in (59), one has that on the boundary 𝜕𝐵𝑅:

𝐅 =
∑
𝑛≥𝑁

𝐛𝑡𝑛𝐟𝑛, (146)

where

𝐛𝑛 =

(
𝑒i𝑛𝜃𝝂
𝑒i𝑛𝜃𝐭

)
, 𝐟𝑛 =

(
𝑓1,𝑛
𝑓2,𝑛

)
=

(
𝜅1,𝑛𝜂1,𝑛
𝜅1,𝑛𝜂2,𝑛

)
, (147)
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with

𝜂1,𝑛 = 2, 𝜂2,𝑛 =
2i𝑘𝑠𝑟𝑒𝐽

′
𝑛(𝑘𝑠𝑟𝑒)

𝑛𝐽𝑛(𝑘𝑠𝑟𝑒)
. (148)

Moreover, from the identities in (70), one has that on the boundary 𝜕𝐵𝑟𝑒 :

𝜕𝝂𝐅 =
∑
𝑛≥𝑁

𝐛𝑡𝑛𝐟𝑛, (149)

where

𝐟𝑛 =

(
𝑓1,𝑛
𝑓2,𝑛

)
=
⎛⎜⎜⎝
𝜅1,𝑛𝛾1,𝑛𝑘𝑠𝑟𝑒

𝑛𝐽𝑛(𝑘𝑠𝑟𝑒)
𝜅1,𝑛𝛾2,𝑛𝑘𝑠𝑟𝑒

𝑛𝐽𝑛(𝑘𝑠𝑟𝑒)

⎞⎟⎟⎠, (150)

with 𝛾𝑖,𝑛, 1 ≤ 𝑖 ≤ 2 given in (70) with 𝑅 replaced by 𝑟𝑒.
Lemmas 8 and 9 show that based on the basis (𝑒i𝑛𝜃𝝂, 𝑒i𝑛𝜃𝐭), the operators in the system (144)

have the following expressions:

𝐒̆𝜔
𝜕𝐷

= 11𝑛, 𝐒̂𝜔
𝜕𝐷,𝑖

= 12𝑛, 𝐒̂𝜔
𝜕Ω,𝑖

= 13𝑛, (𝐊̆𝜔
𝜕𝐷
)∗ = 21𝑛,

(𝐊̂𝜔
𝜕𝐷
)∗ = 22𝑛, 𝜕𝝂̂𝑖 𝐒̂

𝜔
𝜕Ω

= 23𝑛, 𝐒̂𝜔
𝜕𝐷,𝑒

= 32𝑛, 𝐒̂𝜔
𝜕Ω,𝑒

= 33𝑛,

𝐒𝜔
𝜕Ω

= 34𝑛, 𝜕𝝂̂𝑒 𝐒̂
𝜔
𝜕𝐷

= 42𝑛, (𝐊̂𝜔
𝜕Ω
)∗ = 43𝑛, (𝐊𝜔

𝜕Ω
)∗ = 44𝑛,

(151)

where

11𝑛 =
⎛⎜⎜⎝
𝛼̆1𝑛𝑖 𝛼̆3𝑛𝑖
𝛼̆2𝑛𝑖 𝛼̆4𝑛𝑖

⎞⎟⎟⎠, 12𝑛 =
⎛⎜⎜⎝
𝛼̂1𝑛𝑖 𝛼̂3𝑛𝑖
𝛼̂2𝑛𝑖 𝛼̂4𝑛𝑖

⎞⎟⎟⎠, 13𝑛 =
⎛⎜⎜⎝
𝜂1𝑛𝑖 𝜂3𝑛𝑖
𝜂2𝑛𝑖 𝜂4𝑛𝑖

⎞⎟⎟⎠, (152)

21𝑛 =
⎛⎜⎜⎝
𝑎̆1𝑛𝑖 𝑏̆1𝑛𝑖
𝑎̆2𝑛𝑖 𝑏̆2𝑛𝑖

⎞⎟⎟⎠, 22𝑛 =
⎛⎜⎜⎝
𝑎̂1𝑛𝑖 𝑏̂1𝑛𝑖
𝑎̂2𝑛𝑖 𝑏̂2𝑛𝑖

⎞⎟⎟⎠, 23𝑛 =
⎛⎜⎜⎝
𝜁1𝑛𝑖 𝜁3𝑛𝑖
𝜁2𝑛𝑖 𝜁4𝑛𝑖

⎞⎟⎟⎠, (153)

32𝑛 =
⎛⎜⎜⎝
𝜂1𝑛𝑒 𝜂3𝑛𝑒
𝜂2𝑛𝑒 𝜂4𝑛𝑒

⎞⎟⎟⎠, 33𝑛 =
⎛⎜⎜⎝
𝛼̂1𝑛𝑒 𝛼̂3𝑛𝑒
𝛼̂2𝑛𝑒 𝛼̂4𝑛𝑒

⎞⎟⎟⎠, 34𝑛 =
⎛⎜⎜⎝
𝛼1𝑛𝑒 𝛼3𝑛𝑒
𝛼2𝑛𝑒 𝛼4𝑛𝑒

⎞⎟⎟⎠, (154)

42𝑛 =
⎛⎜⎜⎝
𝜁1𝑛𝑒 𝜁3𝑛𝑒
𝜁2𝑛𝑒 𝜁4𝑛𝑒

⎞⎟⎟⎠, 43𝑛 =
⎛⎜⎜⎝
𝑎̂1𝑛𝑒 𝑏̂1𝑛𝑒
𝑎̂2𝑛𝑒 𝑏̂2𝑛𝑒

⎞⎟⎟⎠, 44𝑛 =
⎛⎜⎜⎝
𝑎1𝑛𝑒 𝑏1𝑛𝑒
𝑎2𝑛𝑒 𝑏2𝑛𝑒

⎞⎟⎟⎠. (155)

In the above expressions, 𝛼̆𝑗𝑛𝑖 with 𝑗 = 1, 2, 3, 4 are given in Lemma 8 with 𝑅 replaced by 𝑟𝑖
and with (𝜇, 𝜆) replaced by (𝜇̆, 𝜆̆), and 𝑎̆𝑗𝑛𝑖 𝑏̆𝑗𝑛𝑖 with 𝑗 = 1, 2 are given in Lemma 10 with
𝑅 replaced by 𝑟𝑖 and with (𝜇, 𝜆) replaced by (𝜇̆, 𝜆̆). The same principle holds for parameters
𝛼̂𝑗𝑛𝑖, 𝑎̂𝑗𝑛𝑖, 𝑏̂𝑗𝑛𝑖, 𝛼̂𝑗𝑛𝑒, 𝑎̂𝑗𝑛𝑒, 𝑏̂𝑗𝑛𝑒, 𝛼𝑗𝑛𝑒, 𝑎𝑗𝑛𝑒, 𝑏𝑗𝑛𝑒 and the other parameters are given as follows:

𝜂1𝑛𝑖 = −
i𝜋

2𝜔2𝑟𝑖

(
𝑛2𝐽𝑛(𝑘̂𝑠𝑟𝑖)𝐻𝑛(𝑘̂𝑠𝑟𝑒) + 𝑘̂2𝑝𝑟𝑖𝑟𝑒𝐽

′
𝑛(𝑘̂𝑝𝑟𝑖)𝐻

′
𝑛(𝑘̂𝑝𝑟𝑒)

)
, (156)
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746 LI et al.

𝜂2𝑛𝑖 =
𝑛𝜋

2𝜔2𝑟𝑖

(
𝑘̂𝑠𝑟𝑖𝐽

′
𝑛(𝑘̂𝑠𝑟𝑖)𝐻𝑛(𝑘̂𝑠𝑟𝑒) + 𝑘̂𝑝𝑟𝑒𝐽𝑛(𝑘̂𝑝𝑟𝑖)𝐻

′
𝑛(𝑘̂𝑝𝑟𝑒)

)
, (157)

𝜂3𝑛𝑖 = −
𝑛𝜋

2𝜔2𝑟𝑖

(
𝑘̂𝑠𝑟𝑒𝐽𝑛(𝑘̂𝑠𝑟𝑖)𝐻

′
𝑛(𝑘̂𝑠𝑟𝑒) + 𝑘̂𝑝𝑟𝑖𝐽

′
𝑛(𝑘̂𝑝𝑟𝑖)𝐻𝑛(𝑘̂𝑝𝑟𝑒)

)
, (158)

𝜂4𝑛𝑖 = −
i𝜋

2𝜔2𝑟𝑖

(
𝑘̂2𝑠 𝑟𝑒𝑟𝑖𝐽

′
𝑛(𝑘̂𝑠𝑟𝑖)𝐻

′
𝑛(𝑘̂𝑠𝑟𝑒) + 𝑛2𝐽𝑛(𝑘̂𝑝𝑟𝑖)𝐻𝑛(𝑘̂𝑝𝑟𝑒)

)
; (159)

𝜂1𝑛𝑒 = −
i𝜋

2𝜔2𝑟𝑒

(
𝑛2𝐽𝑛(𝑘̂𝑠𝑟𝑖)𝐻𝑛(𝑘̂𝑠𝑟𝑒) + 𝑘̂2𝑝𝑟𝑖𝑟𝑒𝐽

′
𝑛(𝑘̂𝑝𝑟𝑖)𝐻

′
𝑛(𝑘̂𝑝𝑟𝑒)

)
, (160)

𝜂2𝑛𝑒 =
𝑛𝜋

2𝜔2𝑟𝑒

(
𝑘̂𝑠𝑟𝑒𝐽𝑛(𝑘̂𝑠𝑟𝑖)𝐻

′
𝑛(𝑘̂𝑠𝑟𝑒) + 𝑘̂𝑝𝑟𝑖𝐽

′
𝑛(𝑘̂𝑝𝑟𝑖)𝐻𝑛(𝑘̂𝑝𝑟𝑒)

)
, (161)

𝜂3𝑛𝑒 = −
𝑛𝜋

2𝜔2𝑟𝑒

(
𝑘̂𝑠𝑟𝑖𝐽

′
𝑛(𝑘̂𝑠𝑟𝑖)𝐻𝑛(𝑘̂𝑠𝑟𝑒) + 𝑘̂𝑝𝑟𝑒𝐽𝑛(𝑘̂𝑝𝑟𝑖)𝐻

′
𝑛(𝑘̂𝑝𝑟𝑒)

)
, (162)

𝜂4𝑛𝑒 = −
i𝜋

2𝜔2𝑟𝑒

(
𝑘̂2𝑠 𝑟𝑒𝑟𝑖𝐽

′
𝑛(𝑘̂𝑠𝑟𝑖)𝐻

′
𝑛(𝑘̂𝑠𝑟𝑒) + 𝑛2𝐽𝑛(𝑘̂𝑝𝑟𝑖)𝐻𝑛(𝑘̂𝑝𝑟𝑒)

)
; (163)

𝜁1𝑛𝑖 =
i𝜋

2𝜔2𝑟22

(
2𝜇̂𝑛2𝐽𝑛(𝑘̂𝑠𝑟1)

(
𝐻𝑛(𝑘̂𝑠𝑟2) − 𝑘̂𝑠𝑟2𝐻

′
𝑛(𝑘̂𝑠𝑟2)

)
+

𝐽′𝑛(𝑘̂𝑝𝑟1)𝑘̂𝑝𝑟1
(
𝐻𝑛(𝑘̂𝑝𝑟2)

(
𝜔2𝑟22 − 2𝜇̂𝑛2

)
+ 2𝑘̂𝑝𝜇̂𝑟2𝐻

′
𝑛(𝑘̂𝑝𝑟2)

))
,

(164)

𝜁2𝑛𝑖 =
𝑛𝜇̂𝜋

2𝜔2𝑟22

(
𝐻𝑛(𝑘̂𝑠𝑟2)𝐽𝑛(𝑘̂𝑠𝑟1)

(
2𝑛2 − 𝑘̂2𝑠 𝑟2

2
)
− 2𝐽′𝑛(𝑘̂𝑝𝑟1)𝑘̂𝑝𝑟1×

(
𝐻𝑛(𝑘̂𝑝𝑟2) − 𝐻′

𝑛(𝑘̂𝑝𝑟2)𝑘̂𝑝𝑟2
)
− 2𝐻′

𝑛(𝑘̂𝑠𝑟2)𝐽𝑛(𝑘̂𝑠𝑟1)𝑘̂𝑠𝑟2
)
,

(165)

𝜁3𝑛𝑖 =
−𝑛𝜋

2𝜔2𝑟22

(
𝐻𝑛(𝑘̂𝑝𝑟2)𝐽𝑛(𝑘̂𝑝𝑟1)

(
2𝜇̂𝑛2 − 𝜔2𝑟2

2
)
− 2𝜇̂𝐽′𝑛(𝑘̂𝑠𝑟1)𝑘̂𝑠𝑟1×

(
𝐻𝑛(𝑘̂𝑠𝑟2) − 𝐻′

𝑛(𝑘̂𝑠𝑟2)𝑘̂𝑠𝑟2
)
− 2𝜇̂𝐻′

𝑛(𝑘̂𝑝𝑟2)𝐽𝑛(𝑘̂𝑝𝑟1)𝑘̂𝑝𝑟2
)
,

(166)

𝜁4𝑛𝑖 =
i𝜇̂𝜋

2𝜔2𝑟22

(
2𝑛2𝐽𝑛(𝑘̂𝑝𝑟1)

(
𝐻𝑛(𝑘̂𝑝𝑟2) − 𝑘̂𝑝𝑟2𝐻

′
𝑛(𝑘̂𝑝𝑟2)

)
+

𝐽′𝑛(𝑘̂𝑠𝑟1)𝑘̂𝑠𝑟1
(
𝐻𝑛(𝑘̂𝑠𝑟2)

(
𝑘2𝑠 𝑟

2
2 − 2𝑛2

)
+ 2𝑘̂𝑠𝑟2𝐻

′
𝑛(𝑘̂𝑠𝑟2)

))
;

(167)

𝜁1𝑛𝑒 =
i𝜋

2𝜔2𝑟21

(
2𝜇̂𝑛2𝐻𝑛(𝑘̂𝑠𝑟2)

(
𝐽𝑛(𝑘̂𝑠𝑟1) − 𝑘̂𝑠𝑟1𝐽

′
𝑛(𝑘̂𝑠𝑟1)

)
+

𝐻′
𝑛(𝑘̂𝑝𝑟2)𝑘̂𝑝𝑟2

(
𝐽𝑛(𝑘̂𝑝𝑟1)

(
𝜔2𝑟21 − 2𝜇̂𝑛2

)
+ 2𝑘̂𝑝𝜇̂𝑟1𝐻

′
𝑛(𝑘̂𝑝𝑟1)

))
,

(168)

𝜁2𝑛𝑒 =
𝑛𝜇̂𝜋

2𝜔2𝑟22

(
𝐽𝑛(𝑘̂𝑠𝑟1)𝐻𝑛(𝑘̂𝑠𝑟2)

(
2𝑛2 − 𝑘̂2𝑠 𝑟1

2
)
− 2𝐻′

𝑛(𝑘̂𝑝𝑟2)𝑘̂𝑝𝑟2×

(
𝐽𝑛(𝑘̂𝑝𝑟1) − 𝐽′𝑛(𝑘̂𝑝𝑟1)𝑘̂𝑝𝑟1

)
− 2𝐽′𝑛(𝑘̂𝑠𝑟1)𝐻𝑛(𝑘̂𝑠𝑟2)𝑘̂𝑠𝑟1

)
,

(169)

𝜁3𝑛𝑒 =
−𝑛𝜋

2𝜔2𝑟21

(
𝐽𝑛(𝑘̂𝑝𝑟1)𝐻𝑛(𝑘̂𝑝𝑟2)

(
2𝜇̂𝑛2 − 𝜔2𝑟1

2
)
− 2𝜇̂𝐻′

𝑛(𝑘̂𝑠𝑟2)𝑘̂𝑠𝑟2×

(
𝐽𝑛(𝑘̂𝑠𝑟1) − 𝐽′𝑛(𝑘̂𝑠𝑟1)𝑘̂𝑠𝑟1

)
− 2𝜇̂𝐽′𝑛(𝑘̂𝑝𝑟1)𝐻𝑛(𝑘̂𝑝𝑟2)𝑘̂𝑝𝑟1

)
,

(170)
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LI et al. 747

𝜁4𝑛𝑒 =
i𝜇̂𝜋

2𝜔2𝑟21

(
2𝑛2𝐽𝑛(𝑘̂𝑝𝑟2)

(
𝐻𝑛(𝑘̂𝑝𝑟1) − 𝑘̂𝑝𝑟1𝐻

′
𝑛(𝑘̂𝑝𝑟1)

)
+

𝐽′𝑛(𝑘̂𝑠𝑟2)𝑘̂𝑠𝑟2
(
𝐻𝑛(𝑘̂𝑠𝑟1)

(
𝑘2𝑠 𝑟

2
1 − 2𝑛2

)
+ 2𝑘̂𝑠𝑟1𝐻

′
𝑛(𝑘̂𝑠𝑟1)

))
.

(171)

The density functions 𝝋𝑖 with 𝑖 = 1, 2, 3, 4 can be written as:

𝝋𝑖 =
∞∑

𝑛=−∞

𝐛𝑡𝑛𝝋𝑖,𝑛, (172)

where

𝐛𝑛 =

(
𝑒i𝑛𝜃𝝂
𝑒i𝑛𝜃𝐭

)
, 𝝋𝑖,𝑛 =

(
𝜓𝑖,1,𝑛
𝜓𝑖,2,𝑛

)
, (173)

and the coefficients 𝜓𝑖,𝑗,𝑛, 1 ≤ 𝑖 ≤ 4, 𝑗 = 1, 2 are needed to be determined from the system (144).
Based on the discussion above, the system (144) is equivalent to solving the system

𝐌

⎡⎢⎢⎢⎢⎣
𝝋1,𝑛
𝝋2,𝑛
𝝋3,𝑛
𝝋4,𝑛

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
0
0
𝐟𝑛
𝐟𝑛

⎤⎥⎥⎥⎥⎦
(174)

where 𝐟 and 𝐟 are given in (146) and (149), respectively, and the matrix𝐌 is given by:

𝐌 =

⎡⎢⎢⎢⎢⎣
11𝑛 12𝑛 13𝑛 0
21𝑛 22𝑛 23𝑛 0
0 32𝑛 33𝑛 34𝑛

0 42𝑛 43𝑛 44𝑛

⎤⎥⎥⎥⎥⎦
. (175)

Theorem5. Consider the configuration (𝐂0, 𝐟 )where𝐂0 is given in (4) and theNewtonian potential
𝐅 of the source term 𝐟 has the expression shown in (145). If the parameters in𝐂0 are chosenas follows:

𝜆̆ = 𝜆, 𝜇̆ = 𝜇, 𝜇̂ =

(
−
𝜆 + 𝜇

𝜆 + 3𝜇
+ i𝛿 + 𝑝𝑛0

)
𝜇, 𝜆̂ =

(
−
𝜆 + 𝜇

𝜆 + 3𝜇
+ i𝛿 + 𝑝𝑛0

)
𝜆, 𝛿 = 𝜌𝑛0 , (176)

for some 𝑛0, where 𝜌 = 𝑟𝑖∕𝑟𝑒 and 𝑝𝑛0 = (1∕𝑛0) are chosen such that
det𝐌 = (𝜌4𝑛0∕𝑛0), (177)

then ALR occurs if the source 𝐟 is supported inside the critical radius 𝑟∗ =
√
𝑟3𝑒∕𝑟𝑖 . Moreover, if the

source is supported outside 𝐵𝑟∗ , then no resonance occurs.

Proof. The proof of this theorem is divided into three parts. In the first part, we solve the system
(174) to obtain the coefficients 𝜑𝑖,𝑗,𝑛, 2 ≤ 𝑖 ≤ 4, 𝑗 = 1, 2 of the density functions 𝝋𝑖,𝑛. In the second
part, we show that the ALR occurs if the source 𝐟 is supported inside the critical radius. In the
third part, we prove the nonresonance result.
Part 1:
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748 LI et al.

To ease the exposition, we first introduce some notations. We write 𝑎 ≲ 𝑏 and 𝑎 ≃ 𝑏 to denote
𝑎 ≤ 𝑐1𝑏 and 𝑎 = 𝑐2𝑏, respectively, where 𝑐1 and 𝑐2 are constants depending on parameters
𝜆, 𝜇, 𝑟𝑖, 𝑟𝑒, 𝜔 and independent of the order 𝑛.
To solve the system (174), the inverse of the matrix𝐌, that is,𝐌−1 = {𝑚̃𝑖𝑗∕ det𝐌}1≤𝑖,𝑗≤8, needs

be calculated. If the parameters in 𝐂0 are chosen as in (176), by tedious calculation and together
with the help of the asymptotic expansion in (31), the determinant of the matrix 𝐌 has the
following asymptotic expansion:

det𝐌 ≃ 𝜌2𝑛
(
𝛿2 + 𝜌2𝑛 + 𝑝𝑛0 + 𝑞𝑛

)
∕𝑛, (178)

where 𝑞𝑛 = (1∕𝑛). Clearly, if 𝑝𝑛0 is chosen such that the term 𝑝𝑛0 + 𝑞𝑛0 vanishes for some 𝑛0,
that is, the condition (177) is fulfilled, we have that

det𝐌 ≃

{
𝜌2𝑛0

(
𝛿2 + 𝜌2𝑛0

)
∕𝑛0, 𝑛 = 𝑛0,

𝜌2𝑛
(
𝑝𝑛0 + 𝑞𝑛

)
∕𝑛(1 + 𝑜(1)), 𝑛 ≠ 𝑛0.

(179)

Further tedious calculation shows that the terms 𝑚̃𝑖𝑗 with 3 ≤ 𝑖 ≤ 8, 5 ≤ 𝑗 ≤ 8 have the following
asymptotic expansion:

𝑚̃35 =
𝜌3𝑛𝑛(𝜆 + 𝜇)𝜛1

𝑟2

(
1 + 

(
1
𝑛

))
, 𝑚̃36 =

−i𝜌3𝑛𝑛(𝜆 + 𝜇)𝜛1

𝑟2

(
1 + 

(
1
𝑛

))
,

𝑚̃37 =
𝜌3𝑛(𝜆 + 3𝜇)𝜛1

2𝜇

(
1 + 

(
1
𝑛

))
, 𝑚̃38 =

−i𝜌3𝑛(𝜆 + 3𝜇)𝜛1

2𝜇

(
1 + 

(
1
𝑛

))
,

(180)

𝑚̃45 =
−i𝜌3𝑛𝑛(𝜆 + 𝜇)𝜛1

𝑟2

(
1 + 

(
1
𝑛

))
, 𝑚̃46 =

−𝜌3𝑛𝑛(𝜆 + 𝜇)𝜛1

𝑟2

(
1 + 

(
1
𝑛

))
,

𝑚̃47 =
−i𝜌3𝑛(𝜆 + 3𝜇)𝜛1

2𝜇

(
1 + 

(
1
𝑛

))
, 𝑚̃48 =

−𝜌3𝑛(𝜆 + 3𝜇)𝜛1

2𝜇

(
1 + 

(
1
𝑛

))
,

(181)

𝑚̃55 =
i𝛿𝜌2𝑛(𝜆 + 𝜇)𝜛2

𝑛

(
1 + 

(
1
𝑛

))
, 𝑚̃56 =

𝛿𝜌2𝑛(𝜆 + 𝜇)𝜛2

𝑛

(
1 + 

(
1
𝑛

))
,

𝑚̃57 =
i𝛿𝜌2𝑛(𝜆 + 3𝜇)𝜛2

2𝜇

(
1 + 

(
1
𝑛

))
, 𝑚̃58 =

𝛿𝜌2𝑛(𝜆 + 3𝜇)𝜛2

2𝜇

(
1 + 

(
1
𝑛

))
,

(182)

𝑚̃65 =
𝛿𝜌2𝑛(𝜆 + 𝜇)𝜛3

𝑟2

(
1 + 

(
1
𝑛

))
, 𝑚̃66 =

i𝛿𝜌2𝑛(𝜆 + 𝜇)𝜛3

𝑛

(
1 + 

(
1
𝑛

))
,

𝑚̃67 =
𝛿𝜌2𝑛(𝜆 + 3𝜇)𝜛3

2𝜇𝑛

(
1 + 

(
1
𝑛

))
, 𝑚̃68 =

i𝛿𝜌2𝑛(𝜆 + 3𝜇)𝜛3

2𝜇𝑛

(
1 + 

(
1
𝑛

))
,

(183)
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LI et al. 749

𝑚̃75 =
i𝛿𝜌2𝑛(𝜆 + 𝜇)𝜛4

𝑟2

(
1 + 

(
1
𝑛

))
, 𝑚̃76 =

𝛿𝜌2𝑛(𝜆 + 𝜇)𝜛4

𝑟2

(
1 + 

(
1
𝑛

))
,

𝑚̃77 =
i𝛿𝜌2𝑛(𝜆 + 3𝜇)𝜛4

2𝜇𝑛

(
1 + 

(
1
𝑛

))
, 𝑚̃78 =

𝛿𝜌2𝑛(𝜆 + 3𝜇)𝜛4

2𝜇𝑛

(
1 + 

(
1
𝑛

))
,

(184)

𝑚̃85 =
𝛿𝜌2𝑛(𝜆 + 𝜇)𝜛5

𝑟2

(
1 + 

(
1
𝑛

))
, 𝑚̃86 =

i𝛿𝜌2𝑛(𝜆 + 𝜇)𝜛5

𝑟2

(
1 + 

(
1
𝑛

))
,

𝑚̃87 =
𝛿𝜌2𝑛(𝜆 + 3𝜇)𝜛5

2𝜇𝑛

(
1 + 

(
1
𝑛

))
, 𝑚̃88 =

i𝛿𝜌2𝑛(𝜆 + 3𝜇)𝜛5

2𝜇𝑛

(
1 + 

(
1
𝑛

))
,

(185)

where

𝜛1 =
(𝜆 + 𝜇)2

𝜇𝑟21(𝜆 + 3𝜇)3
𝜛6, 𝜛2 = −

(𝜆 + 3𝜇)5
(
𝑟21 − 𝑟22

)2
512𝜇3𝑟2(𝜆 + 2𝜇)5(𝜆 + 𝜇)

, (186)

𝜛3 =
−1

𝜇(𝜆 + 2𝜇)
𝜛6, 𝜛4 =

1

(𝜆 + 𝜇)(𝜆 + 2𝜇)
𝜛6, 𝜛5 =

1

𝜇(𝜆 + 𝜇)
𝜛6, (187)

with

𝜛6 =

(𝜆 + 3𝜇)5
(√

𝜆 + 2𝜇 −

√
−
𝜆2+3𝜆𝜇+2𝜇2

𝜆+3𝜇

)(
𝑟22 − 𝑟21

)
512𝜇𝜔2(𝜆 + 𝜇)(𝜆 + 2𝜇)9∕2

. (188)

Moreover, from (146) and (149), the coefficients of the source term in (174) have the following
asymptotic expansions:

𝑓1,𝑛 = 2𝜅1,𝑛, 𝑓2,𝑛 = 2i𝜅1,𝑛(1 + (1∕𝑛)),
𝑓1,𝑛 = 4𝜇𝑛𝜅1,𝑛∕𝑟2(1 + (1∕𝑛)), 𝑓1,𝑛 = 4𝜇𝑛𝜅1,𝑛∕𝑟2(1 + (1∕𝑛)). (189)

Thus, from Equations (179) to (189), we have that the coefficients 𝜑𝑖,𝑗,𝑛, 2 ≤ 𝑖 ≤ 4, 𝑗 = 1, 2 in (174)
enjoy the following asymptotic expressions for 𝑛 = 𝑛0,

𝜑2,1,𝑛 ≃
−𝜅1,𝑛𝜌

𝑛𝑛2

(𝛿2 + 𝜌2𝑛)

(
1 + 

(
1
𝑛

))
, 𝜑2,2,𝑛 ≃

i𝜅1,𝑛𝜌
𝑛𝑛2

(𝛿2 + 𝜌2𝑛)

(
1 + 

(
1
𝑛

))
,

𝜑3,1,𝑛 ≃
i𝜅1,𝑛𝛿

(𝛿2 + 𝜌2𝑛)

(
1 + 

(
1
𝑛

))
, 𝜑3,2,𝑛 ≃

−𝜅1,𝑛𝛿𝑛

(𝛿2 + 𝜌2𝑛)

(
1 + 

(
1
𝑛

))
,

𝜑4,1,𝑛 ≃
−i𝜅1,𝑛𝛿𝑛

(𝛿2 + 𝜌2𝑛)

(
1 + 

(
1
𝑛

))
, 𝜑4,2,𝑛 ≃

𝜅1,𝑛𝛿𝑛

(𝛿2 + 𝜌2𝑛)

(
1 + 

(
1
𝑛

))
,

(190)
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750 LI et al.

and for 𝑛 ≠ 𝑛0

||𝜑2,1,𝑛|| ≲ ||||| 𝜅1,𝑛𝜌
𝑛𝑛2

(𝛿2 + 𝜌2𝑛)

|||||
(
1 + 

(
1
𝑛

))
, ||𝜑2,2,𝑛|| ≲ ||||| i𝜅1,𝑛𝜌

𝑛𝑛2

(𝛿2 + 𝜌2𝑛)

|||||
(
1 + 

(
1
𝑛

))
,

||𝜑3,1,𝑛|| ≲ ||||| i𝜅1,𝑛𝛿

(𝛿2 + 𝜌2𝑛)

|||||
(
1 + 

(
1
𝑛

))
, ||𝜑3,2,𝑛|| ≲ ||||| 𝜅1,𝑛𝛿𝑛

(𝛿2 + 𝜌2𝑛)

|||||
(
1 + 

(
1
𝑛

))
,

||𝜑4,1,𝑛|| ≲ ||||| i𝜅1,𝑛𝛿𝑛

(𝛿2 + 𝜌2𝑛)

|||||
(
1 + 

(
1
𝑛

))
, ||𝜑4,2,𝑛|| ≲ ||||| 𝜅1,𝑛𝛿𝑛

(𝛿2 + 𝜌2𝑛)

|||||
(
1 + 

(
1
𝑛

))
.

(191)

We would like to point out that in (190), the terms on the LHS share the same sign with the
expression on the RHS.
Part 2: In this part, we show that the polarition resonance could occur when the source is

located inside the critical radius 𝑟∗. Denote by

𝐮𝑛 =
∑
𝑛≥𝑁

(
𝐒̂𝜔
𝜕𝐷
[𝜑2,1,𝑛𝑒

i𝑛𝜃𝝂 + 𝜑2,2,𝑛𝑒
i𝑛𝜃𝐭](𝐱) + 𝐒̂𝜔

𝜕Ω
[𝜑3,1,𝑛𝑒

i𝑛𝜃𝝂 + 𝜑3,2,𝑛𝑒
i𝑛𝜃𝐭](𝐱)

)
, (192)

where the coefficients 𝜑𝑖,𝑗,𝑛, 2 ≤ 𝑖 ≤ 4, 𝑗 = 1, 2 satisfy the asymptotic expansions in (191). Thus,
from (142), the displacement field 𝐮 to the system (141) in the shell Ω∖𝐷 can be represented as:

𝐮 =
∑
𝑛≥𝑁

𝐮𝑛 = 𝐮̃𝑛0 + 𝐮𝑛0 , (193)

where

𝐮̃𝑛0 =
∑

𝑛≥𝑁,𝑛≠𝑛0
𝐮𝑛. (194)

With the help of Green’s formula, the orthogonality of (𝑒i𝑛𝜃𝝂, 𝑒i𝑛𝜃𝐭) on 𝐿2(𝜕𝐵1)2, and Lemmas 8
as well as 10, the dissipation energy 𝐸(𝐮) defined in (14) can be written as:

𝐸(𝐮) = ℑ𝑃𝜆̂,𝜇̂(𝐮, 𝐮) = ℑ

(
∫
𝜕Ω

𝜕𝝂̂𝐮𝐮𝑑𝑠 − ∫
𝜕𝐷

𝜕𝝂̂𝐮𝐮𝑑𝑠

)
= ℑ

(
∫
𝜕Ω

𝜕𝝂̂𝐮𝑛0𝐮𝑛0𝑑𝑠 − ∫
𝜕𝐷

𝜕𝝂̂𝐮𝑛0𝐮𝑛0𝑑𝑠

)
+ℑ

(
∫
𝜕Ω

𝜕𝝂̂ 𝐮̃𝑛0 𝐮̃𝑛0𝑑𝑠 − ∫
𝜕𝐷

𝜕𝝂̂ 𝐮̃𝑛0 𝐮̃𝑛0𝑑𝑠

)
≥ ℑ

(
∫
𝜕Ω

𝜕𝝂̂𝐮𝑛0𝐮𝑛0𝑑𝑠 − ∫
𝜕𝐷

𝜕𝝂̂𝐮𝑛0𝐮𝑛0𝑑𝑠

)
.

(195)

In the derivation of the last equation, we have used the following fact

ℑ

(
∫𝜕Ω 𝜕𝝂̂ 𝐮̃𝑛0 𝐮̃𝑛0𝑑𝑠 − ∫𝜕𝐷 𝜕𝝂̂ 𝐮̃𝑛0 𝐮̃𝑛0𝑑𝑠

)
= ℑ𝑃𝜆̂,𝜇̂(𝐮̃𝑛0 , 𝐮̃𝑛0) > 0, (196)
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LI et al. 751

which follows from the definition of 𝑃𝜆̂,𝜇̂(𝐮̃𝑛0 , 𝐮̃𝑛0) in (13) andℑ𝜆̂,ℑ𝜇̂ ∈ ℝ+. By Lemmas 8 as well
as 10, the asymptotic expansion in (31), and tedious calculation, we have that

ℑ

(
∫𝜕Ω 𝜕𝝂̂𝐮𝑛0𝐮𝑛0𝑑𝑠

)
≃ ℑ

(|||𝜑3,1,𝑛0 |||2 ∫𝜕Ω 𝜕𝝂̂ 𝐒̂𝜔𝜕Ω[𝑒i𝑛0𝜃𝝂] ⋅ 𝐒̂𝜔𝜕Ω[𝑒i𝑛0𝜃𝝂]𝑑𝑠
)

+ℑ

(|||𝜑3,2,𝑛0 |||2 ∫𝜕Ω 𝜕𝝂̂ 𝐒̂𝜔𝜕Ω[𝑒i𝑛0𝜃𝐭] ⋅ 𝐒̂𝜔𝜕Ω[𝑒i𝑛0𝜃𝐭]𝑑𝑠
)

+ℑ

(
𝜑3,2,𝑛0𝜑3,1,𝑛0 ∫𝜕Ω 𝜕𝝂̂ 𝐒̂

𝜔
𝜕Ω
[𝑒i𝑛0𝜃𝐭] ⋅ 𝐒̂𝜔

𝜕Ω
[𝑒i𝑛0𝜃𝝂]𝑑𝑠

)
+ℑ

(
𝜑3,1,𝑛0𝜑3,2,𝑛0 ∫𝜕Ω 𝜕𝝂̂ 𝐒̂

𝜔
𝜕Ω
[𝑒i𝑛0𝜃𝝂] ⋅ 𝐒̂𝜔

𝜕Ω
[𝑒i𝑛0𝜃𝐭]𝑑𝑠

)

≃ |||𝜅1,𝑛0 |||2
(

𝛿2

(𝛿2 + 𝜌2𝑛0)2
𝛿
𝑛0

+
𝛿2𝑛20

(𝛿2 + 𝜌2𝑛0)2
𝛿
𝑛0

+
𝛿2𝑛0

(𝛿2 + 𝜌2𝑛0)2
𝛿
𝑛0

+
𝛿2𝑛0

(𝛿2 + 𝜌2𝑛0)2
𝛿
𝑛0

)

≃ |||𝜅1,𝑛0 |||2 𝛿3𝑛0
(𝛿2 + 𝜌2𝑛0)2

.

(197)

Following similar discussion, we have that

ℑ

(
−∫𝜕𝐷 𝜕𝝂̂𝐮𝑛0𝐮𝑛0𝑑𝑠

)
≃ |||𝜅1,𝑛0 |||2 𝜌2𝑛0𝛿𝑛30

(𝛿2 + 𝜌2𝑛0)2
. (198)

Combining (195), (197), and (198) yields that

𝐸(𝐮) ≥ |||𝜅1,𝑛0 |||2 𝜌2𝑛0𝛿𝑛30
(𝛿2 + 𝜌2𝑛0)2

≥ |||𝜅1,𝑛0 |||2
(
𝑟𝑒
𝑟𝑖

)𝑛0

. (199)

If the source 𝐟 is supported inside the critical radius 𝑟∗ =
√
𝑟3𝑒∕𝑟𝑖 , by (145) and the asymptotic

properties of 𝐽𝑛(𝑡) and𝐻𝑛(𝑡) in (31), one can verify that there exists 𝜏1 ∈ ℝ+ such that

lim sup
𝑛→∞

(
𝜅1,𝑛
𝑟𝑛𝑒

)1∕𝑛

=

√
𝑟𝑖

𝑟3𝑒
+ 𝜏1. (200)

Combining (195) and (200), one can obtain that

𝐸(𝐮) ≥
(
𝑟𝑖
𝑟𝑒
+ 𝜏1𝑟

2
𝑒

)𝑛0(𝑟𝑒
𝑟𝑖

)𝑛0

=

(
1 +

𝜏1𝑟
3
𝑒

𝑟𝑖

)𝑛0

, (201)

which exactly shows that the polariton resonance occurs, namely, the condition (15) is fulfilled.
Then, we prove the boundedness of the solution 𝐮 when |𝑥| > 𝑟2𝑒∕𝑟𝑖; that is, the bounded con-

dition (16) is satisfied. From (142) and (172), the displacement field 𝐮 inℝ2∖Ω can be represented
as:

𝐮 =
∑
|𝑛|≥𝑁

(
𝐒𝜔
𝜕Ω
[𝝋4,1,𝑛𝑒

i𝑛𝜃𝝂 + 𝝋4,2,𝑛𝑒
i𝑛𝜃𝐭](𝐱)

)
+ 𝐅(𝐱). (202)
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F IGURE 5 The absolute value of (det𝐌) given in (177) with respect to 𝑝𝑛0 . Horizontal axis: value of| det𝐌|; Vertical axis: absolute value of 𝑝𝑛0
Moreover, from (191) and Theorem 1, one can obtain that

|𝐮| ≤ ∑
|𝑛|≥𝑁 ||𝜅1,𝑛||𝑟2𝑛𝑒𝑟𝑛𝑖 1

𝑟𝑛
+ |𝐅| ≤ 𝐶, (203)

when |𝑥| > 𝑟2𝑒∕𝑟𝑖 . Thus, from (201) and (203), one can directly conclude that the CALR could

occur when the source is located inside the radius 𝑟∗ =
√
𝑟3𝑒∕𝑟𝑖 .

Part 3: In this part, we show that there is no resonance when the source is supported outside
the critical radius 𝑟∗. From (145) and the asymptotic properties of 𝐽𝑛(𝑡) and𝐻𝑛(𝑡) in (31), one can
show that there exists 𝜏2 > 0 such that

lim sup
𝑛→∞

(
𝜅1,𝑛
𝑟𝑛𝑒

)1∕𝑛

≤ 1
𝑟∗ + 𝜏2

, (204)

and the dissipation energy 𝐸(𝐮) can be estimated as follows:

𝐸(𝐮) ≤ ∑
𝑛≥𝑁

𝜅21,𝑛

(
𝑟𝑒
𝑟𝑖

)𝑛

≤ ∑
𝑛≥𝑁

(
1

(𝑟∗ + 𝜏2)2
𝑟𝑒
𝑟𝑖

)𝑛

≤ ∑
𝑛≥𝑁

⎛⎜⎜⎜⎜⎝
1(√

𝑟3𝑒∕𝑟𝑖 + 𝜏2

)2

𝑟3𝑒
𝑟𝑖

⎞⎟⎟⎟⎟⎠

𝑛

≤ 𝐶, (205)

which means that the polariton resonance does not occur. This completes the proof. ■

Remark 12. The choice of 𝑛0 in Theorem 5 is such that the dissipation energy 𝐸(𝐮) expressed in
(201) satisfies 𝐸(𝐮) ≥ 𝑀, for some𝑀 ≫ 1; that is, the resonance occurs from the definition (15).
Because the base term 1 +

𝜏1𝑟
3
𝑒

𝑟𝑖
> 1, the value of 𝑛0 may not be large.

Remark 13. We can verify the condition (177) numerically. For this, we choose the following
parameters:

𝑛0 = 25, 𝜔 = 5, 𝑟𝑖 = 0.8, 𝑟𝑒 = 1, 𝜇̆ = 𝜆̆ = 𝜆 = 𝜇 = 1, 𝛿 = (𝑟𝑖∕𝑟𝑒)
𝑛0 = 0.0038. (206)
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From the values of the parameters 𝜔 and 𝑟𝑒, one can readily verify that this is the case beyond
quasistatic approximation. The value of | det𝐌| given in (177) in terms of the parameter 𝑝𝑛0 is
plotted in Figure 5, which apparently demonstrates that the condition (177) is satisfied.
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