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Abstract

Given the flexibility of choosing negative elastic param-
eters, we construct material structures that can induce
two resonance phenomena, referred to as the elasto-
dynamical resonances. They mimic the emerging plas-
mon/polariton resonance and anomalous localized res-
onance in optics for subwavelength particles. However,
we study the peculiar resonance phenomena for linear
elasticity beyond the subwavelength regime. It is shown
that the resonance behaviors possess distinct characters,
with some similar to the subwavelength resonances,
but some sharply different due to the frequency effect.
It is particularly noted that we construct a core-shell
material structure that can induce anomalous localized
resonance as well as cloaking phenomena beyond the
quasistatic limit. The study is boiled down to analyzing
the so-called elastic Neumann-Poincaré (N-P) operator
in the frequency regime. We provide an in-depth anal-
ysis of the spectral properties of the N-P operator on
a circular domain beyond the quasistatic approxima-
tion, and these results are of independent interest to the
spectral theory of layer potential operators.
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1 | INTRODUCTION
1.1 | Mathematical formulation and main findings

We initially focus on the mathematics, not on the physics, and present the Lamé system which
governs the propagation of linear elastic deformation.
For N = 2,3, wewrite C; , = (C; jk,)?’j i 1= s a four-rank elastic material tensor defined by:

Ciji := A6;j6q + u(6ybj1 + 661)s )

where § is the Kronecker delta, and (4, u) are referred to as the Lamé parameters. For a regular
elastic material, the Lamé parameters satisfy the following strong convexity conditions:

i) u>0; ii) 21+ Nu>0. 2)

Next, we introduce a core-shell-matrix material structure for our study. Let D and Q c RY
be two bounded C'%-domains for & € (0,1) such that D € Q, and both Q\D and R \5 are con-
nected. Assume that the matrix RV \5 is occupied by a regular elastic material parameterized by
two Lamé constants (1, i) satisfying (2). The shell Q\D is occupied by a metamaterial whose Lamé
constants are given by (4, f1). It is assumed that A and f can be flexibly chosen and do not nec-
essarily fulfill the strong convexity conditions (2). In fact, they are complex-valued with R4, R
breaking the strong convexity conditions (2) and S, S € R... This is critical in our study and
will be further remarked in what follows. The inner core D is occupied by a regular elastic material
whose Lamé constants (1, [t) satisfy the strong convex conditions (2). We introduce the notation
defined by:

CRN\E,A,M = C/‘L,u)((RN\ﬁ), (3)

where C; , is given in (1) and x(RN\Q) denotes the indicator function of RN\Q. The same
notation applies to the tensors CQ\B in and C, ; - Now, we introduce the following elastic
tensor:

Cy = CRN\E,A,M + CQ\B,/T,/?[ + CD,fL,fl' 4)

The tensor C, describes an elastic material configuration of a core-shell-matrix structure with the
metamaterial located in the shell. We point out that it may happen that D = @ in our subsequent
analysis. In such a case, C, is said to be a metamaterial structure with no core. In what follows,
material structures with a core or without a core can induce different resonance phenomena.
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Letf € Lf;’c([RN \5)N signify an elastic source that is compactly supported in R \5. The elastic
displacement field u = (ul-)fi LEH lloc(RN )N induced by the interaction between the source f and
the medium configuration C, is governed by the following Lamé system:

©)

V- CoViu(x) + w?u(x) = f(x) in RY,
u(x) satisfies the Kupradze radiation condition,

where w € R, signifies an angular frequency. Here and also in what follows, the operator V* is
the symmetric gradient defined by:

Viu := = (Vu+ Vu'), (6)

N =

where Vu denotes the matrix (0 jui)f’j:l and the superscript ¢ signifies the matrix transpose. It
follows from Ref. 1 that the elastic displacement u(x) can be decomposed into u = u,, + uy in

RN \5, where u, and uy are, respectively, referred to as the pressure and shear waves and satisfy
the following equations:

(A+k}2))up=0, Vxu, =0; (A +ki)ug=0, V-u; =0, @)
with
ki :=w/\u and k, :=w/\/A+2pu. (8)
In (5), the Kupradze radiation condition is expressed as:
Vu,x —ikpyu, = O(|x|~W*D/2) and  Vuk - ik, = O(|x|~N+D/2) 9

as |x| — co, which hold uniformly in % = x/|x| € SV~
Next, we recall the quasistatic condition for the above elastic scattering problems:

w - diam(Q) « 1, (10)
which signifies that the size of the material structure Q, that is, the diameter of Q, is much smaller

than the operating wavelength 277 /w. In the current article, we will instead mainly study the case
beyond the quasistatic regime, namely,

w - diam(Q) ~ 1. (11)
For simplicity, it is sufficient for us to require that

w~1 and diam(Q) ~ 1. (12)
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We proceed to introduce the following functional for u,v € (H 1((2\5))1\’ :
P; ﬂ(u, V) :/ Viu : COWdX = / </T(V -a)(V-v)+2aVia : W) dax, 13)
’ Q\D O\D

where C, and V* are defined in (4) and (6), respectively. In (13) and also in what follows, A :
B= ij:l a;;b;; for two matrices A = (aij)g\fj:l and B = (bl-j)f,]j:l. The energy dissipation of the
elastic system (5)—(9) is given by:

E(u) = 3P; ;(u,u). (14)

We are now in a position to give the precise meaning of the elastic resonances for our subsequent
study.

Definition 1. Consider the Lamé system (5)—(9) associated with the material structure C in (4)
under the assumption (12). We say that the near-resonance occurs if it holds that

E(w) > M 5)

for M > 1.1Ifin addition to (15), the displacement field u further fulfills the following boundedness
condition:

lul <C when |x|>R, (16)

for some C € R, and R € R, such that Q C By, then we say that anomalous localized resonance
(ALR) occurs. Here and also in what follows, By signifies a ball of radius R and centered at the
origin, and C, R are constants independent of C, and f.

Remark 1. The terminology near-resonance is defined in (15). However, in order to be consistent
with the relevant studies in the literature, we still call it resonance in what follows. In fact, the
phenomenon of the near-resonance has many important applications. Here, we would like to
mention one example, that is, the so-called anomalous localized resonance (ALR), which can
induce the cloaking effect. The first mathematical work concerning the ALR in Ref. 2 defined the
“resonance,” which is also the limit case. From a practical point of view, it is sufficient to have the
near-cloaking effect via the near-resonance. Nevertheless, in the setting of Ref. 2, it was shown
that the dissipated energy can be made arbitrarily large by controlling some asymptotic parameter.
In contrast, in the current article, the notion of near-resonance depends on the magnitude of M.
Hence, it is a weaker resonance compared to that considered in Ref. 2.

Remark 2. 1t is noted that the resonant condition (15) indicates that the resonant field u exhibits
highly oscillatory behavior. Moreover, in our subsequent study, it allows that M — +o0, which
indicates that in the limiting case, the scattering system (5)-(9) loses its well-posedness. Indeed,
it will be seen in what follows that in the limiting case, the solutions to the scattering system
(5)—(9) are not unique. It is clear that the metamaterials located in Q\E play a critical role for
the occurrence of the resonance. In fact, if C, is a regular elastic material configuration, then the
Lamé system (5)-(9) is well-posed and the resonance does not occur.
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Remark 3. If ALR occurs, one can show that invisibility cloaking phenomenon can be induced.
In fact, by normalization, we set f:=f / \/E, where := SP 1, ﬂ(u, u) > 1. One can see that both
f and the material structure C, are nearly invisible to observations made outside By. Indeed, it is
easily seen that the induced elastic fieldu = u/ \/E < 1in RN\ By; see Refs. 2-5 for more relevant
discussions. Hence, when ALR occurs according to Definition 1, we also say that cloaking due to
anomalous localized resonance (CALR) occurs.

The major findings of this article can be briefly summarized as follows with the technical details
supplied in the sequel; see Theorems 3-5:

Consider the Lamé system (5)—(9) associated with the material structure C, in (4), under the
assumption (12).

(1) Suppose that the material structure has no core, namely, D = {J. There exist generic material
structures of the form (4) such that resonance occurs.

(2) Under the same setup as the above (1), but with Q being radially symmetric, we derive the
explicit construction of all the material structures that can induce resonance. Moreover, we
present a comprehensive analysis on the quantitative behaviors of the resonant field. It is
shown that the resonance behaviors possess distinct characters, with some similar to the
subwavelength resonances, but some sharply different due to the frequency effect.

(3) We construct a core-shell metamaterial structure that can induce CALR beyond the
quasistatic limit.

(4) In establishing the resonance results, we derive comprehensive spectral properties of the
nonstatic elastic Neumann-Poincaré (N-P) operator on a circular domain, which will be intro-
duced in the sequel. These results are of independent interest to the spectral theory of layer
potential operators.

Remark 4. According to our discussion in Remark 2, the main technical ingredient in our study
is to derive some relations satisfied by the material parameters in C, the geometric parameters of
Q/D as well as the frequency w such that the resonance conditions (Definition 1) can be fulfilled.
Itis clear that these conditions are coupled nonlinearly and in fact they are essentially determined
by the infinite-dimensional kernel of the partial differential equation (PDE) system (5), that is, the
set of nontrivial solutions to (5) with f = 0.

Remark 5. We would like to make a remark on the metamaterial parameters in Q\ D, namely, A and
f. As pointed out in Remark 2, RA and R are allowed to break the strong convexity conditions
in (2). This is critical for inducing the resonances. On the other hand, S1 and 4 are required to
be positive. In a certain sense, they play the role of regularization parameters that can retain the
well-posedness of the Lamé system (5)-(9). Moreover, they are also critical physical parameters to
induce the resonances. In fact, 31 and S/ should be delicately chosen according to RA, R, and
w as well as the asymptotic parameter M in (15). This is in sharp contrast to the related studies in
the static/quasistatic case, where 31 and 3 play solely as the regularization parameters which
are asymptotically small generic parameters and converge to zero in the limiting case. This will
become clearer in our subsequent analysis.
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1.2 | Connection to existing studies and discussions

Metamaterials are artificially engineered materials to have properties that are not found in nat-
urally occurring materials. Negative materials are an important class of metamaterials which
possess negative material parameters. Negative materials can be artificially engineered by assem-
bling subwavelength resonators periodically or randomly; see, for example, Refs. 6-8 and the
references cited therein. Negative materials are revolutionizing many industrial applications,
including antennas,’ absorber,'? invisibility cloaking ,>""'> superlens,'®!” and super-resolution
imaging,'®?° to mention just a few.

We are mainly concerned with the quantitative theoretical understandings of negative metama-
terials, which have received considerable interest recently in the literature. A variety of peculiar
resonance phenomena form the fundamental basis for many striking applications of negative
metamaterials. Intriguingly, those resonance phenomena are distinct and possess distinguishing
characters. For a typical scenario, let us consider the Lamé system (5) in the static case, namely,
w = 0. If C, is allowed to possess negative material parameters, it is no longer an elliptic tensor,
that is, the strong convexity conditions (2) can be broken. In such a case, the PDE system (5) may
possess (infinitely many) nontrivial solutions even with f = 0. Hence, the infinite kernel of the
nonelliptic partial differential operator, namely, V - C, V¥, can induce certain resonances if the
excitation term f is properly chosen. Similar resonance phenomena have been more extensively
and intensively investigated for acoustic and electromagnetic metamaterials that are governed by
the Helmholtz and Maxwell systems, respectively. They are referred to as the plasmon/polariton
resonances in the literature; see Refs. 2, 21-25 for the Helmholtz equation, Refs. 19, 26, 27 for the
Maxwell system, and Refs. 3, 5, 28-31 for the Lamé system. Most of the existing studies in the lit-
erature are concerned with the static or quasistatic cases (cf. (10)). A widely studied resonance
phenomenon is induced by the interface of negative and positive materials, which is referred to
as the plasmon/polariton resonance in the literature. It turns out that the plasmon/polariton res-
onant oscillations are localized around the metamaterial interface, and hence are usually called
the surface plasmon/polariton resonances.

It is not surprising that the occurrence of plasmon/polariton resonances strongly depend on
the medium configuration as well as the geometry of the metamaterial structure, which are del-
icately coupled together in certain nonlinear relations. In this article, we for the first time show
the existence of generic metamaterial structures that can induce resonances in elasticity beyond
quasistatic approximations in both 2D and 3D. It turns out that in addition to the medium and geo-
metric parameters of the metamaterial structure, the operating frequency will also play a critical
role and needs to be incorporated into the nonlinear coupling mentioned above. In addition to its
theoretical significance, we would like to emphasize that our study also uncovers two interesting
physical phenomena due to the frequency effect. First, the resonant oscillation outside the mate-
rial structure is localized around the metamaterial interface, but inside the material structure, it is
not localized around the interface, which is sharply different from the subwavelength resonances;
see more detailed discussion at the end of Section 3. Second, as already commented in Remark 5,
the loss parameters S4 and S/ will also play an important role, and they generally are required to
be nonzero constants in the limiting case; see Remark 11 in what follows for more details. Finally,
as noted earlier, negative materials usually occur in the nanoscale, and hence, it is unobjection-
able that many studies are concerned with subwavelength resonances. On the other hand, there
are also conceptual and visionary studies which employ metamaterials for novel applications
beyond the quasistatic limit, say, for example, the superlens.'® '’ The proposed study in this article
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follows a similar spirit to the latter class mentioned above, though we are mainly concerned with
the theoretical aspects.

If the metamaterial structure is constructed in the core-shell form, it may induce the cloaking
phenomenon due to the ALR;* ?* 3 that is, the whole structure is invisible for an impinging wave.
This is a much more delicate and subtle resonance phenomenon: the resonant oscillation is local-
ized within a bounded region, that is, B in Definition 1, and moreover, it not only depends on
the material and geometric configurations of the core-shell structure, but also critically depends
on the location of the excitation source. In addition to the invisibility phenomenon mentioned
above, it is observed in that any small objects located near the material structure within the criti-
cal radius are also invisible to faraway observations; see Refs. 14, 15 for related discussions. All of
the existing studies are confined within the radial geometries because on the one hand, one needs
explicit expressions of the spectral system of certain integral operators>*!??° and on the other
hand, it seems unnecessary for constructing material structures of general shapes for the cloaking
purpose. The CALR was recently studied in Ref. 3 for 3D elasticity beyond the quasistatic approx-
imation for the spherical structure. Hence, in the current article, we mainly consider the CALR
in two dimensions. Nevertheless, we would like to remark that the derivation in 2D is more subtle
and technically involved. The main reason is that in 3D elasticity there exists a certain class of
shear waves that can be decoupled from the other shear waves and compressional waves.® The
decoupling property significantly simplifies the analysis of the CALR. However, in 2D elasticity,
all the shear waves and compressional waves are coupled together, which substantially increase
the complexity of the relevant theoretical analysis. In fact, we develop several technically new
ingredients in handling the 2D case in the present article.

Finally, we would like to discuss one more technical novelty of our study. In studying the meta-
material resonances, one powerful tool is to make use of the layer potential theory to reduce the
underlying PDE system into a system of certain integral operators. In doing so, the resonance
analysis is boiled down to analyzing the spectral properties of the integral operators. In this arti-
cle, we provide an in-depth analysis of the so-called elastic Neumann-Poincaré (N-P) operator
in the frequency regime. In particular, we derive the complete spectral system of the elastic N-P
operator on a circular domain with several interesting observations. These results are new to the
literature and are of independent interest to the spectral theory of elastic layer potential operators
(cf. Refs. 29, 33-35).

The rest of this article is organized as follows. In Section 2, we present several technical auxiliary
results. Section 3 is devoted to resonance analysis for material structures with no core. In Section 4,
we construct a core-shell structure that can induce cloaking due to ALR.

2 | AUXILIARY RESULTS

In this section, we derive some key auxiliary results that will be needed for our subsequent anal-
ysis.

Setx = (x; ?’:1 € RY to be the Euclidean coordinates and r = |x|. Let 6, be the angle between
x and x;-axis. If there is no ambiguity, we write 8 instead of 6, for simplicity. Let » signify the
outward unit normal to a boundary Q. If the domain Q is a circle B, then v = (cos(0), sin(8))*
and the direction t = (—sin(0), cos(8))" is the tangential direction on the boundary dBy. Denote
by Vs the surface gradient.
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The Lamé operator £, , associated with the parameters (4, 1) is defined by:
LpyWi=pu AW+ @A+ wVV-w. 17)

The traction (the conormal derivative) of w on the boundary dQ is defined by:

d,w =AUV -w)vy + 2u(Viw)y, (18)

where the operator V¥ is defined in (6). From Ref. 32, the fundamental solution I'* = (1““’ L1 to

the operator £, , + w? in two dimensions is given by:

2 i8;; i
(Fi‘fj)l_,j = —7Ho(k sIX) + —=010; (Ho (Kkp|x|) — Holks|x1)), 19)

where Hy(-) is the Hankel function of the first kind of order 0, and k and k,, are defined in (8).

The corresponding fundamental solution I'” = (F“’ Lol in three dimensions is given by:

Sij 1 eikplXl _ pikslx|
re)> ———elkslxl 0 . 2
T o) = Tt 22019 i (20)
Then, the single-layer potential associated with the fundamental solution I'? is defined as:
300100 = [ Tx-y)pydsty). xR (1)
60

for ¢ € L2(Q)N. On the boundary 4Q, the conormal derivative of the single-layer potential
satisfies the following jump formula:

985, (]
3y ? (%) = (i%I + K;"(’;‘)[go](x) X € 89, (22)
where
Ko [el(x) = pv. aa_()( x — y)e(y)ds(y), (23)

with p.v. standing for the Cauchy principal value and the subscript + indicating the limits from
outside and inside Q, respectively. The operator K * is called the N-P operator associated with
the Lamé system.

Next, we present some properties of the N-P operator K . It is shown in Ref. 33 that the
operator K * is not compact and only polynomially compact 1n the following sense.

Lemma 1. The N-P operator K * is polynomially compact in the sense that in two dimensions, the
operator (K ) — kZI is compact while in three dimensions, the operator K ((K ) - k(Z)I) is
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compact, where

u

ko

Then, we can derive the following lemma for the spectrum of the N-P operator K;"S
(cf. Ref. 36).

. . W, . .
Lemma 2. In two dimensions, the spectrum o(K, ) consists of two nonempty sequences of eigen-

values that converge to k, and —k, respectively; while in three dimensions, the spectrum G(Kf;(’;F )
consists of three nonempty sequences of eigenvalues that converge to 0, k, and —k, respectively.

Let ®(x) be the fundamental solution to the operator /\ + k? in two dimensions given by
i
D) = = Ho(K[x)). 29)

For ¢ € L?(3Q), we define the single-layer potential associated with the fundamental solution
d(x) by:

S [p(x) = / B(x - y)p(y)ds(y), x € RZ. (26)
oQ

LetJ,(t) and H,(t), n € Z, denote the Bessel and Hankel functions of the first kind of order n,
respectively. These functions satisfy the following Bessel differential equation:

2O +f' @)+ (2 —n?) f(1) =0, 27
for f=J, or H,. When n is negative, there hold that J,(t) = (-1)"J_,(t) and H,(t) =
(=1)"H_,(t). Moreover, the Bessel and Hankel functions J,(¢) and H,(t) satisfy the recursion

formulas (cf. Ref. 37):

fn+1 fn

r=fa—(n+1) s fn+1=n7—f,’1, for n>0,
(28)
AT A R L L S
The following asymptotic expansions hold for ¢t <« 1 (cf. Ref. 37),
o 12 5 "
J”(t)_znn! 1—4(n+1)+o(t) , orn >0,
i 29)
—i2"n! t
H,(t) = — ( m+o(t2)>, forn > 2,
and
. 2 .
Hl(t)=—7lr—2t<1—%<lnt—ln2+Eu—1gm>+o(t3)>, (30)
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where Eu is the Euler constant. For larger n, the following asymptotic expansions hold:

140‘9%2%1‘£%+82;f4”{%}}’ AO_naﬁ;{l+£i+°&%}}(“)

The Hankel function H,(t) has the following expansion from Graf’s formula(cf. Ref. 38):

Ho(klx —y[) = )’ Hy(k|x|)e"T, (kly|)e %Y. (32)
nez
We will also need the following single-layer potential SgBR acting on the density e®,
Lemma 3. Let Sg‘BR be defined in (26), then it holds that
k [,iné iZR in6 N
SaBR[e 1x) = ——J Z(kR)H,(k|x])e"™, Vx e R*\By. (33)

Proof. From the definition of the operator SSQ in (26) and the expansion for the function Hy(k|x —
y|) in (32), one has that

S5 [e"1(0) = —7 / D Hnllx])e 1, (ly e " dsy
9Br mez
iR [*" : i imR Y
-7 / D Hy(k|x]e™ox ], (kR)e ™ ds,, = ~—-Ja(kR)H, (k|x|)el"®.
mezZ
This completes the proof. [ |

For further calculations, we need the following identities.

Lemma 4. There hold that: ifm =n — 1,

/e‘imeeinevds = ﬂ(i), / Vge_i’"@ei”eds =—(n- 1)7‘[(1); (35)
S S

andifm=n+1,

/e_imeei"@vds _ ﬂ-< 1i>’ / Vee mein9qds = (n + 1)7T< 1i>' (36)
S - S B

Proof. Direct calculations yield that

o—im8,gindygs — [ iln—m)e cos(0) ds = [ eit=m8| 2 |gs. (37)
s S sin(8) s eP—e
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Thus, if m = n — 1, one has that

/ e”imBeindydy = 7T<}>; (38)
s

and if m = n + 1, one has that

/e—imeeinevds = ﬂ(—li)' (39)
S

Furthermore, one can have that

/Vge_imeei”evds = —im/ei("_m)6<_Sln(e)>ds= —im/ei(”_m)e 672l |ds. (40)
s cos(8) S ePte

S
2
Thus, if m = n — 1, one has that
—im8 ,ind Ly,
Vse MPeldg = —(n — 1) Bk (41)
S
and if m = n + 1, one has that
—im8 ,ind 1
Vse e"ds=m+ 1 .- (42)
< —
This completes the proof. [ |
Lemma 5. The following two identities hold for x € R?\By,
Hy(k|x — yl)ei”eyvydsy
aBR
1 1

= 7RH,_1 (k|x])e!" 10T, (kR)| i |+ 7RH, 11 (k|xDel V01, (kR)| i |,  (43)

and
Hy(k|x — yl)einsytydsy
0By

1 1
= —imRH,_,(k|x)el*=V0], _ (kR)| i | + irRH, 1 (k|x])e!"+1°], . (kR)| —i|  (44)
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Proof. From the expansion of the function Hy(k|x — y|) in (32), and with the help of Lemma 4,
one has that

Hy(k|x — yl)einswydsy = / Z Hm(k|X|)eim@"]m(k|y|)e_im9Yei"9Y11ydsy

9Br 0BR meZ

= 3 H, (xR /S Tn(KlyDe s ey, ds, 45)

meZ

= ﬂ'RHn_l(k|X|)ei(n_1)ejn_1(kR) <:1l> + 7TRH}’L+1(k|X|)ei(n+1)e‘]n+1(kR) <_11> N

Thus, the first identity is proved. Then, noticing that Vsel®® = ine'"®t, and following the same
deduction, one can obtain the other identity, which completes the proof. [ |

Based on the previous two lemmas, we can further have following identities.

Lemma 6. There holds the following identity for x € R?\Bg,

/ V4 ViHy(k|x — yl)einayvydsy
6BR

_ wH,_(k|x|)ei=1°
- R

((n(n —1) — k*R*)J,,_1(kR) — nkRJ! _,(kR)) C) (46)

7H,p, (K|x])el+D0
R

((n(n +1) = k*R?)J, 41 (kR) + nkRT" , (kR)) < 1 )
Proof. First, note that V, V Hy(k|x —y|) = Vy Vi H(k[x — y|). Then, one has that
/ Vi ViHy(k|x — y e vyds, = / Vy VyHo(klx — y e vy ds,
3By a

Br

= /a ’ (VsVyHo(klx —yD)/ly| + 0, VyHo(klx — y)vy )" vy ds, (47)
'R

=/ (6,VyH0(k|x—yl))ei"QYdsy.
0Bg

Furthermore, from the expansion of the function Hy(k|x — y|) in (32), one can have that

9rVyHo(klx —yl) = 6rVy< 2 Hn<k|x|)ei"9x1n<k|y|>e—i"@y>

nez

=) Hn<k|x|)ei"6xa,(kf,z(k|y|>e—i"9vvy +Jn(k|y|>vse—i"9v/|y|) (48)
nez
-y H,, (k|x])e"s

3, =g (IR GetyDe oy + (e kiy) =T (kly D) Vse ™" ).
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From the identities (47) and (48), and together with the help of Lemma 4, one can obtain that

/ Vy ViHo(k|x — y|)ei"9Y71ydsy
By

_ mH,_ (k|x|)el=19
- R

(k2R2J"_ (kR) — (kRJ! _ (kR) —J,_1(kR))(n — 1)) (i) (49)

TH (klxl)ei(n+1)9 1
w2 (K2R, (kR) + (KRT,, (kR) = J1 (kR)) (n + D) . ).

Now, using the identity (27), we can simplify the last equation as:

/ VyViHy(k|x — yl)eineyvydsy

H k i(n—1)0
_r n-1( ;‘De ((n(n —1) = kK*R?*)J,,_1(kR) — nkRJ! _,(kR)) C) (50)
H k i(n+1)0
TH 1 ( Zil)e ((n(n+1) = k*R*)J,41(kR) + nkRJ/,  (kR)) <_11>
The proof is completed. [ |

Lemma 7. There holds the following identity for x € R?\Bg:

/ Vi ViHy(k|x — yl)ei”QYtydsy
0B

—inmH,_ (k|x|)el*~1)?

= R (kRJ" _ (kR) = J,,_1(kR)(n — 1)) C) (5D

i(n+1)6

N —il’l7THn+1(§|X|)e (kRJ! . (kR) + J 41 (kR)(n + 1)) <_11>

Proof. First, note that V, V H(k|x —y|) = V{ VyH(k|x —y|). Then, one has that

/53 Vi ViHo(k|x — yl)eineytydsy = / VyVyHy(k|x — yl)ei”eytydsy
R

0Bg

1 )
= [ (VaVHolkix = 3/ Iy1+ 8,V Holklx = yivy) - Ve dsy
9Bg -

1 .
=—E/S(VyHO(k|x—y|))ASe‘”9Ydsy

= —in/VyHO(k|x - yl)ei”QYdsy.
s
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Then, from the expansion of the function Hy(k|x — y|) in (32), it holds that

VyHo(klx—yl) = Vy< > Hn(k|x|)ei"6"]n(k|y|)e‘i”6y)

nez
(53)
(k|x|)e1"9 . ~
-y e (kly 17 CklyDe "% vy + 7, (klyDVse e ).
nez
From Equations (52) and (53), and together with the help of Lemma 4, one can obtain that
/ VaVxHo(klx = y ety ds,
9By
—inH,_,(k|x|)e!"~1° 1
= R (KRT,_, (eR) = I, (kR)(n = D) (54)
—inH,, (kIx)el+e .
+ R (KR}, (KR) + T (kRY(n + D)
|

With these preparations, we can present the expressions of the single-layer potentials S;’BR with
two densities e®v and e!"°t, and the proof follows directly from the definition of the single-layer
potential operator S;”BR in (21) and Lemmas 5-7.

Theorem 1. The single-layer potentials S;”BR [e"®v] and S‘a"BR [e"®t]have the following expressions
forx € R?\Bg,

5 ino _iﬂei(n—l)e ,
SaBR [e"v](x) = 40)—2R (an—l(kslxl)((n = DJp_1(ksR) — ksRJn_l(ksR))

4 Hyy (k1) (K2R2 = 12 + n) Ty (kpR) + kBRI (K,R))) <}>

(55)
izel(n+1e

+ W(an-‘-l(k |X|)((Vl + 1)]n+1(k R) +k RJn+1(ksR))

 Hy (1) (R = 2 = )Ty () = kg7 (R ),
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and

_nei(n—l)e

) iné —
82, [0 =

(Hy—q (ks |x)((k§R? = n? + n)J,_; (ksR) + nksRI"_ (ksR))
1 (O 1) (= -1, R) = R () )

(56)
rel(n+1)e

t R (Hpp1 (kX)) ( (k3R = n* — n)J 11 (ksR) — nkRT | (kR))

1
4 nHy (K %1) (1 + Wi (kR) + KoRT . (kyR))) (_i>.
Remark 6. With the help of the recursion formulas in (28), the single-layer potentials S;’BR [e"]

and Sg’BR [e"°t] can be expressed as follows for x € R?\Bg:

i -1
S5, [e"®v](x) = TR (nkyRT, (ksR)QG (ks X]) + kZRAT), (K, R) P (K, |X1)),
i -7
Sk, [e"tI(x) = TR (k$R2T, (ks R)Qy (ks |X|) + nk R, (k, R)Py (kX)) (57)
where
2nH,(k . .
0 (ks|x]) =we‘”9v + 2iH, (k¢ |x|)e'™°t,

kg |x|
21nH,,(kp|x|)eimet

kp|x| (58)

P (k, |x]) =2H; (k, |xD)e"v +

Moreover, these two functions Q9 (k,|x|) and PZ(kplxl) are radiating solutions to the equa-
tion (£, + wHu=01in x € IRZ\ER. The function QY (ks|x|) belongs to the s-wave and the
function P;(k,|x]|) belongs to the p-wave.

Following similar deductions to the above, one can derive the following proposition.

Proposition 1. For x € By, the single-layer potentials S;"BR [e"®v] and SS’BR [e"®t] have the
following expressions:

—ir
4w2R

S%s, [e"Cp](x) = (nkyRH, (ksR)Qj,(k|x]) + kpR?H}, (k,R) P}, (kp|x])),

. —7T . .
S5, [e"t1(x) = 102 (kI R*H}, (ks R)Qy, (ks |x]) + nk ,RH,, (k, R)P (K, |x1)),

where

2nJ (ks |x1)

ey + 21" (k. |x|)el"°t, 59
kS|X| }’l( Sl |) ( )

(k| x]) =
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2ind ,(kp |x|) e
—e¢

i — ino
PkplxD) =273 plxDe" +

(60)

Moreover, these two functions Q',(kg|x|) and Pfq(kp |x|) are entire solutions to the equation (L; , +
w?)u = 0inx € By. The function Q.,(k,|x|) belongs to the s-wave and the function P, (kp|x|) belongs
to the p-wave.

Because the function S, [$](x) with ¢ € L2(6Bg) is continuous from R2\By, to R2\Bg, by
letting |x| = R in Theorem 1 and together with the help of recursion formulas given in (28), one
has the following lemma.

jl:emma 8. The single-layer potentials Sg"BR [e"®v] and S;"BR [¢"°t] have the following expressions
or |x| =R:

S5s, [e"99](x) = a1,"v + ay,e™t  and S35, [e"0t](X) = a3,y + ay,e™t,  (61)
where
i
dp == m (n1,(kR)H ,(ksR) + k3 R2T},(k,R)H,(kpR)),

nmw
Ay = 2—a)2(ksf,,(ksR)H;l(ksR) + kJh(kp,R)H,(k,R)),

nmw
A3p = _2_(1)2 (ksJ;{z(ksR)Hn(ksR) + kan(kpR)H;{z(kpR)),
i
Uy = —M—ZR(kSZRZJ;(kSR)H;,(kSR) + n?J,(k,R)H,(kpR)). (62)

Next, we calculate the tractions 6,,S§°BR [einev]lir and 6,,SS’BR [ei”et]lir on the boundary dBg,
where the traction operator d,, is defined in (18). First, we notice that

%(Hn<k|x|)ei"@) = piy and %(Hn<k|x|>ei"9) = P ©3)
where
Pin = kH! (k|x|)el"® cos(8) — inH,, (k|x|)e"® sin(8)/ x|,
Pan = kH,(k|x|)e"® sin(6) + inH,,(k|x|)e"® cos(6)/|x|. (64)
Hence, for
8= e"l@Hn(k|x|><Z>, (65)

where a and b are two constants, one has that

2apln apop + bp1n>

66
apan + bpln 2bp2n ( )

V.-g=apy, +bpy, 2Vig = <
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where p;, and p,, are defined in (63). During the simplification, we have used the recursion
formulas given in (28). Then, we can obtain the following lemma.

Lemma 9. There hold the following relations:

8,52, [679] 1, = g1 m(IXDE™ + g3 (XD,

9,85, [€™t] 1+ = g3,m(IXD)e™™ v + g4 m(Ixe™t, "
where
g1m(x]) = sz (2um?J (e R) (H (ks 1) — kRHy, (K |X1)) +
T (kpR)kpR(Hy, (kp|X]) (0?R? — 2um?) + 2k ,uRH,, (kp|x]))),
&om (1) = = 220 (1 e RH,p (U 1) (KZR? — 2m2) +

2R (kyJ py(ksR)H, (ks |X[) + kpT 1y (KpR) (Hp, (K |X|) — kpRH), (kp1x1)))),  (68)

gm(1X1) =520 (T (kpR) H (kpIx1) (2 + 200k3R2 = 24am?) +

2R (kpJ i (kpR)Hy, (K |X[) + k) (ksR) (Hp (ks X)) — ksRH,, (ks |X1)) ) ),

am(Ix0) =55 (227 (k) (L (K 1) = K REL (K 1)) +

T}, (ksR)ksR(KZR*H,,, (ks |X|) + 2k,RH}, (ks |X|) — 2m*H,, (ks|x1)))- (69)

Remark 7. Taking the traction of the function QL and Pil defined in (59) and (60) on the boundary
0Bg, gives that

an;I = 71nein67 + VZneinet’ avP; = Y3neinev + J/4neinet= (70)
where

2]
=5 (2% — I2R)1,(6R) — 2K RT06R)), (1)
A

2 (kRIL(R) = Ty(kR)), 72n =

)/1}’! k Rz

41n/x

2
Yan = o= ((20% = KZR2)J,, (kpR) — 2k, RI,(kpR)), Van = R

Kk R2 —— (k,RT} (k,R) — J,,(k,R)).
p

(72)
With the help of Lemma 9 and the jump formula in (22), one can conclude the following lemma.

Lemma 10. There hold that
K;”g; [¢"°v] = a1,y + a, et and K3 [e”’@t] = b1,y + b,,e"t, (73)
where

1 1
ay, = _5 + gl,n(R): Qyp = gz,n(R)7 bln = g3,n(R)’ b2n = _E + g4,n(R); (74)
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with the functions g; ,(|x|),1 < i < 4 given in Lemma 9.

Finally, we obtain the eigensystem for the N-P operator K;’]’;.

Theorem 2. Let ay,, ayy,, b1y, by, be given in Lemma 10. The eigensystem for the N-P operator Kg‘g;
is given as follows:
Difa,, # 0, the eigenvalues are

1
En = 3 <a1n + by, — \/a%n — 2a1,by, + 4az,b1, + b%n)’

(75)
§on = %(aln + by + \/afn = 2a1,by, + 4az,byy + b§n>,
and the corresponding eigenfunctions are
. ay, — by — \/a%n — 2a1,byy, + 40a5,by, + b3, o, indy
e 2ay, ’
(76)
Gy = by + /@, = 2a1bsy +Aarbry + 03, |
Pon = 24y, "%y + el"0t;
2)ifay, =0, and a,, # b,,, the eigenvalues are
§1n = a1, §on = bap, (77)
and the corresponding eigenfunctions are
iné bin iné in6y.
P =€"v, py, = <m>e v + e'"t; (78)
3)ifay, = 0,ay, = by, and by, = 0, the eigenvalues are
§in =01, §on =, (79)
and the corresponding eigenfunctions are
P =", Py, =" (80)
4)if ay, = 0,ay, = by, and by, # 0, the eigenvalues are
§1n =01, §on =, (81)
there is only one eigenfunction
Py, = ey, (82)
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and another one is the generalized eigenfunction,

Po = ——eint, (83)
bln
namely, p,, satisfies
(K;Uigz - §1n>p2n = Pin- (84)

Proof. We first know from Lemma 10 that
K;Uf}; [V,t] = (vat)Tl’la (85)

where T, is a 2 X 2 matrix given by T,, = (a;,,, b1,,; @2p, by, ) Thus, we focus ourself on investigating
the eigensystem of the matrix T,,, which could further lead to the eigensystem of the operator
K;Ué: Specifically, we like to find the matrix P, = (p;,, P2,) such that

T,P, =P,A,, (86)

where the matrix A,, is a diagonal matrix, namely, A,, = (§;,,,0;0, £,,,). A direct calculation shows
that if a,, # 0, one has that

2 2
ay, — by, — \/aln —2ay,by, + 40ay,by, + b5,

= 1
Pin 2a2n ) s
t (87)
ay, — by, + \/afn — 2ay,by, + 4ay,by, + b3
= 9 1 9
Pon 2a2n
1
§in = 2 (aln + byy — \/a%n = 2a1,by, + 4az,byy + b%n)’ (88)
1
§on = D) <a1n + by + \/a%n —2a1,bayy + 4a3,by, + b§n> (89)
For the case a,, = 0 and a,,, # b,,, one has that
b t
1
Pin = (170)t’ P = <b—n’ 1> and gln = Qp, §2n = byp. (90)
2n — Q1p
Moreover, if a,, = 0, a;, = by, and by, = 0, one has that
Pin = (0,1, P2 =(1,0), & =01, & =ap,. (9D

For the last case a,, = 0,a;, = b, and by, # 0, the situation is different. The matrix A, given in
(86) is not a diagonal matrix anymore, but a Jordan matrix, given as follows:

_ ayy, 1
e (1) o
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Then, the generalized eigenvectors are given as py, = (1,0)" and p,, = (0,1/b;,,)". Finally, with
the help of the relationship (85), one can prove the statement of the theorem and the proof is
completed. [ |

Remark 8. We present the asymptotic expansion for the eigenvalues when the frequency w <« 1.
From the asymptotic expansions of the Bessel function and Hankel function in (29) and (30) for
w < 1, one has that when |n| > 2,

7

|a2n| =
which is the first case in Theorem 2, thus the eigenvalues are

___H 2 _ K 2

When |n| = 1, one has that

7

m + O(w) # 0, (95)

|a2n| =
which is the first case in Theorem 2, thus the eigenvalues are
= =t to@), &= +0(w?). (96)
1n 2(/1 + 2/1) ’ 2n 2
When n = 0, one has that
ay, = by, =0, and ay, # by, (97)

which is the second case in Theorem 2, thus the eigenvalues are

§in = (), &= % + (9(602). (98)

_L + 0

24 + 2w)
These conclusions recover the results concerning the spectrum of the N-P operator in the static
regime (cf. Refs. 4, 39 ).

3 | ELASTIC RESONANCES FOR MATERIAL STRUCTURES WITH
NO CORE

In this section, we construct a broad class of elastic structures of the form C, in (4) with no core,
namely, D = @ that can induce resonances. All the notations below are carried over from Sections 1
and 2. Suppose that a source term f is supported outside Q. In such a case, the elastic system (5)
can be reduced into the following transmission problem:

Lju) +w’ux) =0, x€Q,

Ly ux) +o’ux) =f, xe€ RN\Q,
ux)|_ =u®®)|,, X € 0Q,
Jyux)|_ = dyux)|,, X €0Q.

99)
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3.1 | Existence of resonances in generic scenarios

Using the single-layer potential in (21), the solution to this system can be written as:

s , €Q,
_ [, xea (100)
S5ol$2]®) +F, xeRM\Q,
where F is called the Newtonian potential of the source f and %,,%, € L>(0Q)":
F(x) := / r“x—-yf(y)dy, xeRN. (101)
RN

One can readily verify that the solution defined in (100) satisfies the first two conditions in (99).
For the third and fourth conditions in (99) across dQ, namely, the transmission conditions, one
can obtain that

{Sgug[lpl] - S(C;thZ] =F, x € 3Q. (102)

0585 (9111 — 8,85, (2114 = 6, F,

With the help of the jump formula (22), Equation (102) can be rewritten as:

F
<[l -1
v
where
s® —s¢
A = [ 90 B (0,5 90 cuv] (104)
—1/2I + K4 —1/2I — Kio

Next, we show that the resonance could occur even for the domain Q to be of a generic geometry.
It is noted that Sg"ﬂ and SS’Q are compact operators on L2(9Q)N (cf. Ref. 32). Following the similar
argument as that in the proof of Lemma 2, one can readily show that the spectrum of the operator
A consists of the point spectrum only. Denoting by 7{; the generalized eigenspace of A” for the
eigenvalue £;, we can obtain the following result, by applying the Jordan theory directly to the
operator AY le; * Hj = Hj.

Lemma 11. The generalized eigenspace H; = {¥;;}, 1 <1 <mj, 1 <k < n; satisfies

J

1
A“ (lpjyl,l,...,lpj,mj,njvmj) - (Wj,l,ly---’wj,mj,nj,mj) , (105)
Tim,
where J | is the canonical Jordan matrix of size nj in the form
§ 1
Ji = o ) (106)

The following theorem presents the existence of resonances in generic scenarios.
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Theorem 3. Let (&, W) be the eigenpair defined in Lemma 11. Assume that the source term is chosen
as follows:

F|] <
[6 F] = ka‘l’j,l,k, (107)
v k=1

where f are the coefficients and p; = max{n;, l}l 1 ' with n;, defined in Lemma 1. If the parameters
are properly chosen such that for M > 1,

I X -
g;;,ljs</msf§)[ e 55 ol ]1,1]|_>>M, (108)

J

then the resonance occurs in the sense of Definition 1.

Proof. From Lemma 11 and the choice of the source in (107), the density function can be written
as:

$]
ij = kZ:‘; %1k (109)

where g, are the coefficients to be determined. With the help of (103) and Lemma 11, one has that

g = Z(fl &7 (e, (110)

Dj pi—k+1
J

Thus, g; has the following expression:

fa) .
g = g—ﬁ;(—l)w +oE, ™). (1)
J

Then, we have the following estimate for the dissipation energy:

E(u) = SP; ,(u,u) = S(a)z/ |u|2dx+/ u-6,,ﬁ>
’ Q o)

|g1|25</aQ SO 111 3585, 1]l > 112)

I ) Y r—
>0 3< [ w01 aﬁsgg[wj,l,ln_).
gj 0Q

This completes the proof following from the condition (108). [ |

\%

Remark 9. The condition (108) generally can be satisfied. In fact, because the Lamé parameters
(4, t) in the domain Q can break the strong convexity conditions in (2), hence the system (99)
is allowed to lose the ellipticity. Thus, there exists a certain eigenvalue satisfying the condition
§; < 1. Next, we choose the domain € to be a circle to strictly verify the statement in Theorem 3
in two dimensions. For the three dimensions, readers may refer to the article.’
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3.2 | Resonance and its quantitative behavior for circular domain

In this subsection, we consider the specific case that the domain Q is a circle Bk. In such a case,
we can have a deep understanding of the occurrence of the resonance as well as its quantitative
behaviors. Because the source term f is supported outside By, there exists € > 0 such that when
X € Bg,., the Newtonian potential F defined in (101) satisfies

L; ,F+w’F=0. (113)
Thus, F can be written as:
it kR . Ky ,k,R .
F= Y (2 Qi+ p), (114)
pe=t \ nJ, (ksR) nJ,(k,R)

wherex; ,, x, , are the coefficients, and the functions Qin and Pil are defined in (59) and (60). Here,
k,R kR

”]n(ksR) nJVl(kPR)

and P}, in (59) and (60), one has that on the boundary dBg:

are the normalization constants. From the expressions for the functions Q},

[s]
F= ) bif, (115)
n=—oo
where
bn — <eii’;997’>’ fn — (fl,n) — (Kl,nr)l,n + Kz,nr)3,n>’ (116)
et f2,n Kl,nnz,n + Kz,nr)4,n
with
2ikgRJ} (ksR) 2k,RJ ;l(kpR) _
= 2’ =, = = 21. 117
nl,n 772,n I’l]n(ksR) 773,11 I’Lfn(kpR) 774,11 ( )
Moreover, from (70), one has that on the boundary dBg:
[s]
3,F= ) bif, (118)
n=—oo
where
B Kl,nyl,nksR K2,n73,nkpR
= I, nin(ksR)  nly(kpR)
fn = <f2: = Kl,nyz,nksR + K2,n74,npkpR ’ (119)
’ nJ,(ksR) nJ,(kpR)
with y; ,, 1 < i < 4 given in (70).
ind

From Lemmas 8 and 9, one has that under the basis (e"“v, ei"@t), the operators

%850 0585, [$2114, 8585, [ 1] - have the following expressions:
SgUQ = Tln’ Sg)Q = Tln’ avsgg[¢2]|+ = TZn’ aﬁgcaoﬂ[zpl]'— = 7—2n’ (120)

where
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al,n ‘x3,n N al,n a3,n
Tln =1%n Qnl Tln = &Z,n d4,n s
gl,n g3,n N 81n — 1 g3,n
TZn =18n 84n) 7V2n = gz,n §4,n 1) (121)

In the last equation, «;, and g; , with i = 1,2, 3,4 are given in Lemmas 8 and 9, and &;,, and §; ,
with i = 1,2, 3,4 are also given in Lemmas 8 and 9 with (u, A) replaced by (&, ).
Hence, the density functions 4; and %, can be expressed by:

=D b, = ) b, (122)
n=—oo0 n=—oo
where
eine”> <¢11 > (¢21 >
b = i ) = or ’ = ik ’ (123)
" <em6t P Y120 Y2 Y22

and the coefficients ¢; ; ,, 1 < i, j < 2 are needed to be determined. Thus, the system (102) can be
written as for —oco < n < oo:

7:'1n§b1,n = 7'1n¢2,n + {‘n’ (124)
TZn¢1,n = En¢2,n + fn-

Directly solving Equation (124) gives that

CZ,n
d,’

Cl,n

_ G 12
Yiin d,’ (125)

¢1,2,n =

where

C1n = (Fon@sn = F1n@an)€308on = 81n8an) + (Frn(Gan — 1) = FrnCun)(@nGan — E3.0%1)
+ (fon8sn = F1nCan)(€unin = 820%30) + (f1a(8an — 1) = fonls,)(€30%p — 81a%n)  (126)
+ (frnsn = Fra8:)@2nap = 8an) + (F1a(8an = 1) = Frndsn) (@1 nun — X300 0),

Con = (Fan@in = Frn®20)(€1n8an = 83082n) + (Fon(rn — 1) = F1n820) (@1 nGan — X3 0% )
+ (frn8on = Fan1)@1n%un = 83n%m) + (F24(E1n = 1) = Fru@on) (@2 — antin)  (127)

+ (fz,ngZ,n - fz,ndz,n)(gS,nal,n - gl,na3,n) + (fl,n(gl,n - 1) - fl,nafl,n)(gzt,naln - g2,na4,n),
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and
dy = (b, nan — &306010)(&1,n84n — &3,n82,n)
+ (g3,n&2,n - éC4,n(gﬂl,n - 1))(g4,na1,n - g2,na3,n)
+ (gS,n&Z,n - &4,n(g1,n - 1))(al,ng4,n - g2,n“3,n)
(128)
+ (&3,ng2,n - &l,n(gzl,n - 1))(g1,na4,n - g3,no‘2,n)
+ (&l,ngln - &3,n(g1,n - 1))(g2,na4,n - g4,na2,n)

+ (g2,ng3,n(g4,n - 1)(g1,n - 1))(“3,71“2,;’1 - al,na4,n)-

Theorem 4. Consider the configuration Cy with D = @ defined in (4) and a source term f supported
outside the domain Q. If the Lamé parameters (4, ft) inside the domain Q are chosen such that for
anyM € R,:

I¢1,1,n|25< / 85, [e"v] -51933‘)9[61”91)“_) > M, (129)
00

for some ny € N, where i, ; , is defined in (125), then the elastic resonance occurs.

Proof. With the help of the Green’s formula, the dissipation energy defined in (14) can be written

as:

E(u) = 3P ,(u,u) = S(a)z/ |u|2dx+/ u- a,,a) = S(/ u- 5,,ﬁ>

| Q Elo) Elo)
(130)
> WaalPS( [ Sl 385l ),
oQ

which shows that the resonance occurs thanks to (129) and completes the proof. [ |

Remark 10. If the Lamé parameters (4, /1) inside the domain Q are chosen as follows:
(4 ) = (4, ), 13y

where (4, u) are the Lamé parameters in Rz\ﬁ. For alarge order n such that the asymptotic expan-
sions (31) hold, the parameter ¢ should have the following asymptotic expansion such that the
condition (129) holds:

A+3u
A+u

+ 9y, (132)
where 8, = O(1/n). In fact, for a large order n, the solutions of the equation (124) have the
following asymptotic expansions:

52,11
A+ +@+o)we +001/n)’

£1,n
((Q+)l+B+o)we+001/n)’

Yiin = Yion = (133)

where ¢ is a constant not depending on n and
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FIGURE 1 The value of the LHS in (129) %1018
with respect to Re. Horizontal axis: value of 2
Rc; Vertical axis: value of the LHS in (129)
157
1 L
0.5r
-1.9643772 -1.96437716 -1.96437712

€10 =((c = Dw?R* (A + WA + 31) — 8cp(A + 2p)((c + 3)A + (¢ + T)w))
) (134)
x 256cu’n(c; + ¢;)(A + 2u)? <1 + O<E> >
en =— ((c = Dw?R*(A + )4 + 31) + 8cu(d + 2u)(3cd + (3¢ + S)u + 1))

1 (135)
x 256icu’n(cy + ¢;)(A + 2u)? <1 + 0(;) )

Thus, one can readily conclude that the parameter ¢ should have the following asymptotic
expansion:

A+3u 1
R +(9<—), (136)

such that the condition (129) holds.

Next, we show that the condition (129) can be achieved. The Lamé parameters inside the
domain Q are chosen as those in (131). The other parameters are chosen as follows:

n=5 A=u=w=R=1, Jc=208x10". (137)

This is the case beyond the quasistatic approximation from the values of w and R. The value of the
LHS in (129) with respect to the real part of c, that is, Re, is plotted in Figure 1. This clearly shows
that the condition (129) is fulfilled and thus the resonance occurs.

Remark 11. To ensure the occurrence of the resonance, that is, the condition (15) is fulfilled, in the
quasistatic case, the condition Sc¢ — 0 is required (cf. Refs. 13, 29). However, in our current case
beyond the quasistatic regime, one usually requires Sc — ¢* with ¢* # 0. This is a sharp differ-
ence from the quasistatic case. Next, we conduct a numerical simulation to verify this statement.
The parameters are chosen as follows:

n=5 A=u=w=R=1, Rc=-1.9643, (138)
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><1019 FIGURE 2 The value of the LHS in (129)
with respect to Jc. Horizontal axis: value of Sc;
3.5¢ 1 Vertical axis: value of the LHS in (129)
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2.06 2.07 2.08 2.09 2.1 2.11

%1070

which is the case beyond the quasistatic approximation from the values of w and R. The value of
the LHS in (129) with respect to the imaginary part of c, that is, Sc, is plotted in Figure 2. This
clearly shows that the resonance occurs and the critical value Sc # 0.

Finally, we consider the quantitative behaviors of the resonant fields when resonance occurs.
It is recalled that in the static/quasistatic regime, the plasmon/polariton resonances are local-
ized around the metamaterial interface. However, we will show that in the frequency regime
beyond the quasistatic approximation, the resonant oscillation outside the material structure is
localized around the metamaterial interface, but inside the material structure, it is not localized
around the interface, which is in sharp contrast to the subwavelength resonance. In fact, from the
expression of the solution in (100) and the density functions in (122), it is sufficient to analyze the
properties of single-layer potentials SB"BR [¢"®](x) and S;“BR [e"9t](x) expressed in Theorem 1 and
Proposition 1 for x lying in different regions. Here, we only take the term S;"BR [e"®v](x) to illus-

trate the phenomenon as the discussion is the same for the term S‘;BR [¢"®t](x). The parameters
are chosen as follows:

n=5 A=u=R=1, w=20, (139)

which is the case beyond the quasistatic approximation from the values of w and R. The amplitude
of the single-layer potential S;"BR [e"®v](x) for |x| < 1and 1 < |x| < 3 is plotted in Figure 3A and
B, respectively. From the plot, one can conclude that the field outside B, is localized around the
surface dB;, while the field inside B, is not localized around the boundary.

If we choose the parameters as follows:

n=5 A=u=R=1, w=0.1, (140)

which is the case of the quasistatic approximation. The amplitude of the single-layer potential
S;"BR [e"®v](x) for |x| <1 and 1 < |x| < 2 is plotted in Figure 4A and B, respectively. From the
plot, one can conclude that the fields both inside and outside B; are localized around the surface
0B;. Finally, we would like to remark that by using the relevant results in Ref. 29, one can show
that the elastodynamical resonances in 3D reveal similar behaviors as the 2D case discussed above.
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FIGURE 3 The amplitude of the single-layer potential SZ?JBR [¢"6](x) with parameters chosen in (139) for
WX <1,B)1<[x/<3
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FIGURE 4 The amplitude of the single-layer potential Sg’BR [e"®v](x) with parameters chosen in (140) for
WX <1LB)1<[x/<2

4 | CALRFOR A CORE-SHELL STRUCTURE BEYOND THE
QUASISTATIC APPROXIMATION

In this section, we construct a core-shell elastic structure that can induce ALR; see Definition 1.
We confine our study in two dimensions and as mentioned earlier, we refer to Ref. 3 for related
studies in the three-dimensional case. In what follows, we let D = B, and Q = B, ,r, > r;. More-
over, we let £; Iz 05, SaD, and (Kg’D *, respectively, denote the Lamé operator, the associated
conormal derivative, the single-layer potential operator, and the N-P operator associated with the
Lamé parameters (1, j1).

Assume that the source f is supported outside Q. Associated with the material structure C; in

(4) with D and Q given above, the elastic system (5) becomes

Ly u) + w?u(x) =0, in D,

L3 ux) +w*ux) =0, in Q\D,

L; u(x) + o*u(x) = f, in R2\Q, (141)
u|_=u|,, Jyu|l_=7dzul, on dD,

ul_=ul|,, Jdzul_=7d,ul, ondQ.
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With the help of the potential theory, the solution to the equation system (141) can be
represented by:

S5ple1 1), X€D,
u(x) = 185,91 + 85, [931®), x € Q\D, (142)
S, pal (%) + F(x), x € RA\Q,

where @;, 95, 93, ¢4 € L?(0D)? and F is the Newtonian potential of the source f defined in (101).
One can easily see that the solution given (142) satisfies the first three conditions in (141) and the
last two conditions on the boundary yield that

82, Le1] = 82921 + 85 [, on 4D,
95551 1- = 05(55, [pa2] + 85, [@3 DI+ on 4D,
&0 & s (143)
SaD[¢2] + Sag[qo?)] = Sag[¢4] +F, on 0Q,

0585, [p2] + 85, [p3 D= = 8,(85,[pa] + P4, on 3Q.

With the help of the jump formula in (22), the equation system (143) further yields the following
integral system:

. sg)zg . _Sg)l?,i _Sg)p,i 0 N 0
=7 (K5p)" T2 (K5p)* _?ﬂscaug 0 f2(_| O (144)
0 S?D,e Sg)(z,e _S?Q $3 F [
0 95.8%p _% + (R _% — (K5 || #4 S F

where d; and J;, signify the conormal derivatives on the boundaries of D and Q, respectively.
Following similar arguments as those in the previous section, there exists € > 0 such that when
X € B, ,. the Newtonian potential F can be written as:

_ Kl,nksre i >
r=2 <n1n<ksre>Q" ’ (149
where «; , are the coefficients, the functions Q}, are defined in (59), and N is large enough such
that the spherical Bessel and Hankel functions, J,,(t) and H,(t), fulfill the asymptotic expansions
shown in (29). We would like to remark that the Newtonian potential F only contains the term Q;.
Indeed, one can also include the term Pin and the analysis will be similar. To ease the exposition,
we only consider the case that the Newtonian potential F contains the term Q!, only. From the
expressions for the functions Qil in (59), one has that on the boundary dBy:

F= ) bif, (146)
n>N
where
eine”> <f1 > <K1 m >
b,=( 6 |, fu.=2")=(_""") 147
" <e1n6t " fz,n Kl,nr)z,n ( )
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with

_ 2ikgr Ty (kgre)

=2, = 148
771,n 772,n njn(ksre) ( )

Moreover, from the identities in (70), one has that on the boundary 9B,

3,F = ) bif, (149)
n>N
where
~ Kl,nyl,nksre
f, = (f) = | gk | (150)
2.n LA LA
nJp(kgre)

with y; ,, 1 < i < 2 given in (70) with R replaced by r,.
Lemmas 8 and 9 show that based on the basis (e"%v, "°t), the operators in the system (144)
have the following expressions:

S5p = Rins S5, =Rizns S50, = Rizns (K" = Rory,

W \k _ dw _ Qw _ Qw —
K5p)" =Raom, 95550 =Razns S35, =Raons S5, = Razns
(151)
W Qw _ ik _ W Vk
SaQ - R34n’ aﬁesap - 7?'4211’ (KBQ) - R43ns (Kdﬂ) - R44n’
where
5‘1ni 5‘3ni aClni &3ni ﬁlni 773ni
Rin =|8ni Qani |, Rion =|%ni Qani |y Razn =|Toni Dani | (152)
dini bini Qini bini Sini $3ni
Rotn =|Gani boni |y Roon =[G banil Rozn =|Soni Sani | (153)
7'71ne 77A3ne CA‘lne 5‘3ne X1ne X3ne
Rison =|fone Tane|s Razn =|@mne Gane|s Rizan =|%me Aane|s (154)
glne §3ne dlne blne A1ne blne
Rin =|Cone Sane| Razn =|0me bane | Raan =|02me bone | (155)

In the above expressions, &;,; with j =1,2,3,4 are given in Lemma 8 with R replaced by r;
and with (u, 1) replaced by (#,4), and d;,; bj,; with j=1,2 are given in Lemma 10 with
R replaced by r; and with (u, 1) replaced by (i, 4). The same principle holds for parameters
&jnis Ajnis Djnis @jnes Ajnes Djnes A jnes Ajnes bjne and the other parameters are given as follows:

i
2w?r;

7'71m' == (nzjn(lesri)Hn(ksre) + I%f,r,-rel,’q(lépri)H;l(I%pre)), (156)
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~ nw ~ ~ ~ ~ ~ ~
Noni = m (ksri];z(ksri)Hn(ksre) + kpre]n(kpri)H;{;(kpre))’ (157)
i
. nwo - . oo A R
N3ni = _m (ksreJn(ksri)Hn(ksre) + kpriJn(kpri)Hn(kpre))» (158)
1
" ir » - - . .
Nani = 5wl (kszrerij;{z(ksri)H;z(ksre) + nz-]n(kpri)Hn(kpre))§ (159)
L
N i A - . . R
Nine = _2602}’ (nzjn(ksri)Hn(ksre) + klzarireJ;(kpri)H;,q(kpre))a (160)
e
A nmw ~ ~ ~ ~ ~ ~
None = 2(0—2?' (ksrejn(ksri)H;(ksre) + kpriJZ(kpri)Hn(kpre)), (161)
e
- nToo ., on . . X Lo
N3ne = _m (ksri]n(ksri)Hn(ksre) + kpre-]n(kpri)Hn(kpre))’ (162)
e
R iT s N N N N
Nane = _m(kszrerijrlz(ksri)Hr,z(ksre) + nzjn(kpri)Hn(kpre)); (163)
e
{lm = 2 (zlunz‘]n(lesrl)(Hn(lesrz) - I%srzHiz(l%s’é))‘i'
2w2r (164)
J! (I% rokyry (Hy(kpry)(w?r? = 2an?) + 2k, fir, H)y(kprs)) ),
{2)11 = 2 (H (k rz)Jn(k rl)(2n - kzrzz) U;l(l%prl)l%prlx
20, (165)
(H,(kyry) — H)(kprk,yry) — 2H, (ks )T, (ksrykgrs ),
: —nz - . . o n
$ani ZF(Hn(kpré)Jn(kprl)(z:unz — w?ry?) — 207} (kgry kg X
"2 (166)
(H, (I% ry) — Hyy(kgro)ksry) — 2pHp (kpyro)T o (kprk,prs),
§4n1 = (2n2] (k 1’1)( (’%prz) - lepr2H;,1(I€pr2))+
20°r) (167)
T} (kgry)kgry (Hy(kgry) (k2r2 — 2n?) + 2kgr,H) (kgrs)) );
o i . .\ .\ N N
{lne zﬁ (2:“”2Hn(ksr2)(‘]n(ksr1) - ksrl‘];z(ksrl))-i-
0T (168)
H!\(k rz)leprz (Jn(léprl)(wzrf —2fn?) + 21€p,zr1H,g(l€pr1))),
A n
Sane =L( Ta(kgr)H, (kgry) (2n% — kiry?) — 2Hy, (kpry)kprox
2 (169)
(] (I% r)—=1J! (IE rl)lg ry) = 205 (kgr)H, (ksry)kgry ),
Cape =—— (J (k ’”1)Hn(k ry)(2an? — w’r,?) — 2fH], (kgr)kryx
1 (170)

(Tullgry) = Th(kgr)kgry ) = 2007, (kpr)H,, (kprokyr ),
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s i19%,4 N N A N
Eune == (2020, k) (H, (R pry) = Ry HY (k) +
2w rl (171)

T (kgry)ksry (Hy(kgry) (K2r? — 2n%) + 2kgr  Hy(kgry))).
The density functions ¢; with i = 1, 2, 3,4 can be written as:
@i= ), bipin, (172)
n=—oo

where

ein6v> (z,b

b =(". Lo, = TR, (173)
" <€met Pin Yion

and the coefficients ; i 1<i<4,j=1,2are needed to be determined from the system (144).
Based on the discussion above, the system (144) is equivalent to solving the system

Pin 0
0

M| %2 | = (174)
¢3,n f:n
¢4,n n

where f and f are given in (146) and (149), respectively, and the matrix M is given by:
Ritn Rizn Rizn O
M = Roin Ron Rapzn O @175)

Theorem 5. Consider the configuration (C, ) where C is given in (4) and the Newtonian potential
F of the source term f has the expression shown in (145). If the parameters in C are chosen as follows:

5 . . A+ ) A A+ .
A=A,#=:u’ #=<_/1+3f:1+15+pn°>#’/1=<_/1+?’::,¢+15+pn0>/1’ 5=Pn0, (176)

for some ny, where p = r;/r, and p,, = O(1/n,) are chosen such that

detM = O(p*™ /ny), 77

then ALR occurs if the source f is supported inside the critical radius r,, = 1/r2 /r;. Moreover, if the
source is supported outside B, , then no resonance occurs.

Proof. The proof of this theorem is divided into three parts. In the first part, we solve the system
(174) to obtain the coefficients ¢;  ,, 2 < i < 4, j = 1,2 of the density functions g; ,. In the second
part, we show that the ALR occurs if the source f is supported inside the critical radius. In the
third part, we prove the nonresonance result.

Part 1:
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To ease the exposition, we first introduce some notations. We write a < b and a ~ b to denote
a <c1b and a = c,b, respectively, where c; and c, are constants depending on parameters
A, u,ri, 1., w and independent of the order n.

To solve the system (174), the inverse of the matrix M, that is, M~! = {m; j/ det M} ¢ j<g needs
be calculated. If the parameters in C, are chosen as in (176), by tedious calculation and together
with the help of the asymptotic expansion in (31), the determinant of the matrix M has the
following asymptotic expansion:

detM =~ p*" (8% + p™ + p,, +q,) /7, 178)

where g, = O(1/n). Clearly, if p,, is chosen such that the term p,, + g, vanishes for some ny,
that is, the condition (177) is fulfilled, we have that

P2n0(52 +P2n0)/n0’ n = ny,

P2 (Pny + @n) /(1L +0(1)), 1 # ng. (179)

detM ~ {

Further tedious calculation shows that the terms m;; with 3 <i <8, 5 < j < 8 have the following
asymptotic expansion:

- (A + 1 __ —ipn(a +
m35:P (rz :u)wl <1+(9 H , Mzg = P n(rz Iu)aq 1+0 % s
- MA+3u)w 1 — —ip3"(1+3 1 180
iy, = P ( zMM) 1<1+0<E>>’ g = 2P (2# M)W1<1+(9(E>>, (180)
_ —ipn(A+ —p*"n(A +
Mys = 10 l’l(rz wyw, 1+0 %) , ﬁ46=w 1+0<%>)’
_ —ip"(A+3 —p¥"(A +3
T P (2” ’u)w1<1+(9<%>>, @Sz—p (2,u #)w1<1+0<%>>, (181)
i5p2"(1 + Sp* (A
n’iss=1p (n W@, 1+ 0 % g = oP (n+u)wZ(1+0<%>>’
_ 1602 (1 + 3 _ 5o (A +3 182
i, = 9P (2# /«l)w2<1+(9<%>>’ iy = P (2u M)w2<1+(9<%>>, (182)
Sp¥ (A + i5p2"(1
Figs = 2P AT RT3 (r DCEY B % | g = 2P AT (n+“)w3<1+(9<%>>,
2
80U+ 3w 1 _ i5p2"(1 + 3 1 1
i, = 9P (2;mm 3<1+0<;>>’ iy = 0P (2/m u)w3(1+0<ﬁ>>’ (183)
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is 2n y ) 2n 1
e = 9P~ +#)w4<1+@<1 i = 2P +u)w4(1+0<1>>’
r2 n rZ n
i50°"(A + 3 Sp*(A+3
i = 1P (-+;Ow4<1+0<1>>’ i, = 2P (-+;0w4<1+0<1>>, (184)
2un n 2un n
) 2n ) is 2n 1
gy = P (+#m%<1+0<1 g = 9P (+uh&<1+0<1>>
ry n Ty n
5o (A+3 i602"(1 +3
g, = 5P (4-uﬁ%<1+0<1>>,,%8=1p (4-#ﬁ%<1+0<1>> (185)
2un n 2un n
where
2
S G ) (o . Ol U k) (136)
Gy C T s12@n+ 205 A+ )
—1 1 1
Wy = ———Wg, Wy=——"—" W, W5=——T0, (187)
B T R O T ) R V) R
with
AZ43u+2u?
(A+3ﬂ)5<\//1+2 - —W)(rg—r%)

512uw?(A + w)(A + 2u)°/2

Moreover, from (146) and (149), the coefficients of the source term in (174) have the following

asymptotic expansions:

fl,n = 2K1,n’ f2,n = Zikl,n(l + (9(1/”))’

fin =4unx, ,/r,(1+ 01 /n)), fi,=4unx,,/r,(1+01/n)).

(189)

Thus, from Equations (179) to (189), we have that the coefficients ¢; j ,,2 <i < 4, j = 1,21in (174)

enjoy the following asymptotic expressions for n = ny,
_Kl,nlonn2 1 iKl,nPnn2 1
n =i (1+0(5)) e i (0o(3))
ix; ,6 1 —%1,,00 1
e (o)) e (4o(3))

—ix; ,6n 1 X1 ,0n 1
Pain = m(l + 0(5))’ Papn = m(l + O<ﬁ>>’

(190)
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and for n # n

lP21.0| S

lP310| S

|Pa1n| S

u, = Z (8%, [92,1,0€"Y + 932 1 ](X) + 8%, [#31,26"V + @35 ,e"°t] (X)),

n>N

K101
@ +p™)

ixl,n5
(82 + p21)

ix; ,0n

@+ )

(oo
(oo

1
n

S|

>>’ |©220] S
>>, |@320| S

1
<1 + O<Z>>’ |Pa2n| S

We would like to point out that in (190), the terms on the LHS share the same sign with the
expression on the RHS.

Part 2: In this part, we show that the polarition resonance could occur when the source is
located inside the critical radius r*. Denote by

: N2
ixy pp"n

@+ )

x1,0N

(82 + p)

x1.,00

@+ )

(oo
oo
(oo

i)
5) e
5)

(192)

where the coefficients ¢; ; ,, 2 <i < 4, j = 1,2 satisfy the asymptotic expansions in (191). Thus,
from (142), the displacement field u to the system (141) in the shell Q\D can be represented as:

where

u= Z u, = U, +u,,
n>N

u,

0

- Y
n>N,n#ng

(193)

(194)

With the help of Green’s formula, the orthogonality of (e, e"°t) on L2(8B;)?, and Lemmas 8
as well as 10, the dissipation energy E(u) defined in (14) can be written as:

E(u) = 3P; ,(u,u) = S(/ d;uuds —/ 6,;uﬁds>
£ oD

> 5(/ 6,;u,,oﬁ,,0ds—/ aﬁunoﬁnods>.
Ex D

In the derivation of the last equation, we have used the following fact

s( /6 35T, Uy, ds — /a aﬁﬁnoﬁnods> =GPy @y, Tiy,) > 0,
Q D

u ﬁnods>

= S(/ 5,;unoﬁn0ds—/ 6ﬁunoﬁn0ds> + o(/ o, unou ds—/ 9,1,
90 )

(195)

(196)
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which follows from the definition of P; ﬂ(ﬁno, u, )in(13)and S4, S € R,. By Lemmas 8 as well
as 10, the asymptotic expansion in (31), and tedious calculation, we have that

3(/ aﬁunoﬁnods> [a S<|¢3,1,n0
0Q

2 . —
/cm 6,;Sfa°ﬂ[e1"09t] . S;"Q[emoet]ds>

2 . —_—
/ 3583, [e"%v] - Sg"ﬂ[emosv]ds>
80

+3 <'(P3,2,n0

+ 5(903,2,n0§03,1,n0 / 0585, e™°t] -S?Q[ei”oev]dS>
Ele)

- (197)
+3 <§03,1,n0¢’3,2,n0 /ag 3,82, [emCy] - S?Q[ei”‘)@t]ds>
N 2 2 5, &’n; 5 ny & ny &
- |K1’n0 (52 + p2n0)2 Ny (52 + p2n0)2 ny (52 + p2n0)2 ny (52 + p2n0)2 Ny
2 &3n,
- |K1’”0 (82 + p2no)y2’
Following similar discussion, we have that
o _ 2 p*8n;
\S<— </aD aﬁunounods> ~ |‘K1’n0 m (198)
Combining (195), (197), and (198) yields that
2 p2n05n(3) 2 r ny
> _ > — .
E(u) > ‘K1,n0 @ 1oy 2 |K1,n0 <Vi> (199)
If the source f is supported inside the critical radius r, = 1/r2 /r;, by (145) and the asymptotic
properties of J,,(¢t) and H,,(t) in (31), one can verify that there exists 7; € R, such that
% 1/n -
lim sup <%> =,/5+1 (200)
n—oo I r,

Combining (195) and (200), one can obtain that

r; "\ o3\
E(u) > <—l +Tlr§) <—e> = <1 + = e) , (201)
Fe ¥i Fi

which exactly shows that the polariton resonance occurs, namely, the condition (15) is fulfilled.

Then, we prove the boundedness of the solution u when |x| > r2/r;; that L is, the bounded con-
dition (16) is satisfied. From (142) and (172), the displacement field u in R?\Q can be represented
as:

u= Z (S?Q [¢4,1,neine7’ + ¢4,2,neinet](x)) + F(x). (202)
[n|>N
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1.5

0.5

0 0.05 0.1

FIGURE 5 The absolute value of (det M) given in (177) with respect to p, . Horizontal axis: value of
| det M|; Vertical axis: absolute value of p,,,

Moreover, from (191) and Theorem 1, one can obtain that

rezn 1
lu| < MZ‘,N |x1,n|7r—n +|F| <C, (203)

when |x| > r2/r;. Thus, from (201) and (203), one can directly conclude that the CALR could

occur when the source is located inside the radius r, = /13 /r;.

Part 3: In this part, we show that there is no resonance when the source is supported outside
the critical radius r,.. From (145) and the asymptotic properties of J,,(t) and H,(t) in (31), one can
show that there exists 7, > 0 such that

1/n

x
lim sup < 1,’ln > < ! (204)

9
n— oo e r,+ 1,

and the dissipation energy E(u) can be estimated as follows:

n n :

r Z 1 T ! .

o< () < _ 1 ey L — | <c, (205
E(u) < 2‘, 1,n<l’i> - <(V*+Tz)2"i> _nz;\r ) -

o
n>N 3
(\/"e/"i+fz>

which means that the polariton resonance does not occur. This completes the proof. [ |

Remark 12. The choice of ny in Theorem 5 is such that the dissipation energy E(u) expressed in
(201) satisfies E(u) > M, for some M > 1; that is, the resonance occurs from the definition (15).

3
Because the base term 1 + =< > 1, the value of n, may not be large.

Ti

Remark 13. We can verify the condition (177) numerically. For this, we choose the following
parameters:

ng=25 w=5 r=08 r,=1, i=A=1=pu=1, 6 =(r;/r.)™ = 0.0038. (206)

35UB017 SUOWILLIOD B8O 3[R0t jdde aup Aq pausenob ae S3fole YO ‘SN JO S3nJ 0y AreiqI8UIIUO AB]IM UO (SUORIPUOD-PUR-SLLBIALIOD A 1M AReiq 1 jeuUO//:SHNL) SUORIPLOD Pue SWB | 84} 88S *[202/20/82] Uo Ariqiauliuo A8|im ‘Buoyt BuoH Jo AisieAlun ssaulyDd 8y L Ag SSS2T Wides/TTTT 0T/I0p/W00 A8 1M AeIq BUIIUO//SANY WOl papeo|umoq '€ ‘€202 ‘065697 T



LIETAL. | 753

From the values of the parameters w and r,, one can readily verify that this is the case beyond
quasistatic approximation. The value of | det M| given in (177) in terms of the parameter p, is
plotted in Figure 5, which apparently demonstrates that the condition (177) is satisfied.

ACKNOWLEDGMENTS

The work of H. Li was supported by a Direct Grant for Research, CUHK (project 4053518). The
work of H. Liu was supported by the Hong Kong RGC General Research Funds (projects 12302919,
12301420, and 11300821), the NSFC/RGC Joint Research Fund (project N_CityU 101/21), and the
France-Hong Kong ANR/RGC Joint Research Grant, A-CityU203/19. The work of J. Zou was
substantially supported by the Hong Kong RGC General Research Fund (projects 14306921 and
14306719).

DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data were created or analyzed in this study.

ORCID
Hongyu Liu (® https://orcid.org/0000-0002-2930-3510

REFERENCES

1. Kupradze VD. Three-dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity.
Amsterdam: North-Holland; 1979.
2. Ammari H, Ciraolo G, Kang H, Lee H, Milton GW. Spectral theory of a Neumann-Poincaré-type operator and
analysis of cloaking due to anomalous localized resonance. Arch Ration Mech Anal. 2013;208:667-692.
3. Deng, Li H, Liu H. Spectral properties of Neumann-Poincaré operator and anomalous localized resonance
in elasticity beyond quasi-static limit. J Elasticity. 2020;140:213-242.
4. Li H, Liu H. On anomalous localized resonance for the elastostatic system. SIAM J Math Anal. 2016;48:3322-
3344.
5. LiH,LiJ, Liu H. On novel elastic structures inducing polariton resonances with finite frequencies and cloaking
due to anomalous localized resonance. J Math Pures Appl. 2018;120:195-219.
6. Ammari H, Zhang H. Effective medium theory for acoustic waves in bubbly fluids near Minnaert resonant
frequency. SIAM J Math Anal. 2017;49:3252-3276.
7. LiH, Liu H, Zou J. Minnaert resonances for bubbles in soft elastic materials. SITAM J Appl Math. 2022;82(1):119-
141.
8. Smith DR, Padilla W, Vier D, Nemat-Nasser S, Schultz S. Composite medium with simultaneously negative
permeability and permittivity. Phys Rev Lett. 2000;84:4184.
9. Enoch S, Tayeb G, Sabouroux P, Guérin N, Vincent P. A metamaterial for directive emission. Phys Rev Lett.
2002;89:213902.
10. Li W, Valentine J. Metamaterial perfect absorber based hot electron photodetection. Nano Lett. 2014;14:351-
3514.
11. LiH, Liu H. On anomalous localized resonance and plasmonic cloaking beyond the quasistatic limit. Proc Roy
Soc A. 474:20180165.
12. Li H. Recent progress on the mathematical study of anomalous localized resonance in elasticity. Electron Res
Archive. 2020;28:1257-1272.
13. Li H, LiJ, Liu H. On quasi-static cloaking due to anomalous localized resonance in R*. SIAM J Appl Math.
2015;75:1245-1260.
14. Milton GW, Nicorovici NAP. On the cloaking effects associated with anomalous localized resonance. Proc R
Soc A. 2006;462:3027-3059.
15. Nicorovici NAP, McPhedran RC, Milton GW. Optical and dielectric properties of partially resonant composites.
Phys Rev B. 1994;49:8479-8482.
16. Fang N, Lee H, Sun C, Zhang X. Sub-diffraction-limited optical imaging with a silver superlens. Science.
2005;308:53-537.

35UB017 SUOWILLIOD B8O 3[R0t jdde aup Aq pausenob ae S3fole YO ‘SN JO S3nJ 0y AreiqI8UIIUO AB]IM UO (SUORIPUOD-PUR-SLLBIALIOD A 1M AReiq 1 jeuUO//:SHNL) SUORIPLOD Pue SWB | 84} 88S *[202/20/82] Uo Ariqiauliuo A8|im ‘Buoyt BuoH Jo AisieAlun ssaulyDd 8y L Ag SSS2T Wides/TTTT 0T/I0p/W00 A8 1M AeIq BUIIUO//SANY WOl papeo|umoq '€ ‘€202 ‘065697 T


https://orcid.org/0000-0002-2930-3510
https://orcid.org/0000-0002-2930-3510

754

LIET AL.

—_
~

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.
34.

35.

36.

37.

38.

39.

. Pendry JB. Negative refraction makes a perfect lens. Phys Rev Lett. 2000;85:3966-3969.
18.

Ammari H, Chow YT, Liu H, Sunkula M. Quantum integrable systems and concentration of plasmon
resonance. J Eur Math Soc. 2022.

Ammari H, Deng Y, Millien P. Surface plasmon resonance of nanoparticles and applications in imaging. Arch
Ration Mech Anal. 2016;220(1):109-153.

Ding M, Liu H, Zheng G. Shape reconstructions by using plasmon resonances. ESAIM: Math Model Numer
Anal. 2022;56(2):705-726.

Ando K, Kang H, Liu H. Plasmon resonance with finite frequencies: a validation of the quasi-static
approximation for diametrically small inclusions. SIAM J Appl Math. 2016;76:731-749.

Blasten E, Li H, Liu H, Wang Y. Localization and geometrization in plasmon resonances and geometric
structures of Neumann-Poincaré¢ eigenfunctions. ESAIM: Math Model Numer Anal. 2020;54:957-976.

Deng Y, Liu H, Zheng G. Mathematical analysis of plasmon resonances for curved nanorods. J Math Pures
Appl. 2021;153:248-280.

Fang X, Deng Y, Liu H. Sharp estimate of electric field from a conductive rod and application. Stud Appl Math.
2021;146:279-297.

Zheng G. Mathematical analysis of plasmonic resonance for 2-D photonic crystal. J Differ Equ.
2019;266(8):5095-5117.

Deng Y, Liu H, Zheng G. Plasmon resonances of nanorods in transverse electromagnetic scattering. J Differ
Equ. 2022;318:502-536.

Li H, Li S, Liu H, Wang X. Analysis of electromagnetic scattering from plasmonic inclusions at optical
frequencies and applications. ESAIM: Math Model Numer Anal. 2018;53(4):1351-1371.

Chen B, Gao Y, Liu H. Modal approximation for time-domain elastic scattering from metamaterial
quasiparticles. J Math Pures Appl. 2022;165:148-189.

Deng Y, Li H, Liu H. On spectral properties of Neumann-Poincaré operator and plasmonic resonances in 3D
elastostatics. J Spectr Theory. 2019;9(3):767-789.

DengY, Li H, Liu H. Analysis of surface polariton resonance for nanoparticles in elastic system. SIAM J Math
Anal. 2020;52:1786-1805.

Li H, Liu H. On three-dimensional plasmon resonances in elastostatics. Ann Mat Pura Appl. 2017;196(3):1113-
1135.

Ammari H, Bretin E, Garnier J, Kang H, Lee H, Wahab A. Mathematical Methods in Elasticity Imaging,
Princeton University Press; 2015.

Ando K, Kang H, Miyanishi Y, Putinar M. Spectral Analysis of Neumann-Poincaré Operator, arXiv:2003.14387.
Miyanishi Y, Rozenblum G. Spectral properties of the Neumann-Poincaré operator in 3D elasticity. Int Math
Res Not IMRN. 2021;11:8715-8740.

Rozenblum G. Eigenvalue asymptotics for polynomially compact pseudodifferential operators and applica-
tions. Algebra i Analiz. 2021;33(2):215-232.

Konvalinka M. Triangularizability of polynomially compact operators. Integr Equ Oper Theory. 2005;52:271-
284.

Colton D, Kress R. Inverse Acoustic and Electromagnetic Scattering Theory. 2nd ed. Berlin: Springer-Verlag;
1998.

Fang X, Deng Y, Chen X. Asymptotic behavior of spectral of Neumann-Poincaré operator in Helmholtz
system. Math Meth Appl Sci. 2019;42:942-953.

Ando K, Ji Y, Kang H, Kim K, Yu S. Spectral properties of the Neumann-Poincaré operator and cloaking by
anomalous localized resonance for the elasto-static system. European J Appl Math. 2018;29(2):189-225.

How to cite this article: Li H, Liu H, Zou J. Elastodynamical resonances and cloaking
of negative material structures beyond quasistatic approximation. Stud Appl Math.
2023;150:716-754. https://doi.org/10.1111/sapm.12555

35UB017 SUOWILLIOD B8O 3[R0t jdde aup Aq pausenob ae S3fole YO ‘SN JO S3nJ 0y AreiqI8UIIUO AB]IM UO (SUORIPUOD-PUR-SLLBIALIOD A 1M AReiq 1 jeuUO//:SHNL) SUORIPLOD Pue SWB | 84} 88S *[202/20/82] Uo Ariqiauliuo A8|im ‘Buoyt BuoH Jo AisieAlun ssaulyDd 8y L Ag SSS2T Wides/TTTT 0T/I0p/W00 A8 1M AeIq BUIIUO//SANY WOl papeo|umoq '€ ‘€202 ‘065697 T


https://doi.org/10.1111/sapm.12555

	Elastodynamical resonances and cloaking of negative material structures beyond quasistatic approximation
	1 | INTRODUCTION
	1.1 | Mathematical formulation and main findings
	1.2 | Connection to existing studies and discussions

	2 | AUXILIARY RESULTS
	3 | ELASTIC RESONANCES FOR MATERIAL STRUCTURES WITH NO CORE
	3.1 | Existence of resonances in generic scenarios
	3.2 | Resonance and its quantitative behavior for circular domain

	4 | CALR FOR A CORE-SHELL STRUCTURE BEYOND THE QUASISTATIC APPROXIMATION
	ACKNOWLEDGMENTS
	DATA AVAILABILITY STATEMENT

	ORCID
	REFERENCES


