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Abstract We adapt the principle of auxiliary space preconditioning as presented
in [J. Xu, The auxiliary space method and optimal multigrid preconditioning tech-
niques for unstructured grids, Computing, 56 (1996), pp. 215–235.] to H(curl;ω)-
elliptic variational problems discretized by means of edge elements. The focus
is on theoretical analysis within the abstract framework of subspace correction.
Employing a Helmholtz-type splitting of edge element vector fields we can estab-
lish asymptotic h-uniform optimality of the preconditioner defined by our auxiliary
space method.

Mathematics Subject Classifications 65N22 · 65F10 · 65N30 · 65N55

1 Introduction

Given a bounded Lipschitz domain � ⊂ R
3, we are concerned with solving the

boundary value problem
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curl curl u+ u = f in �, ut = 0 on ∂�, (1.1)

where f ∈ (L2(�))3 and ut stands for the tangential trace of the vector field u.
Of course, (1.1) could be supplemented by coefficients with spatial variation and
these will usually occur when (1.1) is used to model, e.g., low frequency electro-
magnetic fields [4]. However, in order to keep the presentation focused, we forgo
the treatment of variable coefficients. This generalization will be discussed in a
few remarks.

The weak formulation of (1.1) is straightforward and reads: seek u ∈ H0(Curl;
�) such that

a(u, v) :=
∫
�

curl u · curl v + u · v dx =
∫
�

f · v dx ∀v ∈ H0(curl;�) .
(1.2)

For the definition and properties of the function spaces used in this paper we refer
to [7, Ch. 1]. In fact, a(·, ·) agrees with the natural inner product of the Hilbert
space H0(curl;�). This ensures existence and uniqueness of solutions of (1.2).

The large sparse symmetric positive definite linear system of equations arising
from a finite element Galerkin discretization of (1.2) calls for efficient precondi-
tioning. The search for preconditioners can be guided by the insight that (1.1) is
close kin to

−�u + u = f in � , u = 0 on �. (1.3)

In fact, both boundary value problems arise from a single formula when stated in
the calculus of differential forms [13]. This suggests that established concepts for
preconditioning in the case of second order elliptic boundary value problems carry
over to (1.1), with some adjustments, though, in order to deal with the kernel of the
curl-operator. This guideline has proved very successful in the case of multigrid
methods [1, 9, 12] and various domain decomposition approaches [8, 16–18, 27].

Now we set out to perform the adaptation for another powerful idea developed
for (1.3): the idea of auxiliary space preconditioning [5, 6, 29]. Taking the cue from
[12], we supplement the raw principle of auxiliary space preconditioning with a
special treatment of curl-free functions. This gives rise to the algorithm discussed
in Section 4. A key tool in its theoretical analysis will be a regular Helmholtz-type
decomposition of H0(curl;�) [14, 15, 21]. Details will be given in Section 5. The
final result is that the new auxiliary space method for (1.1) actually provides an
asymptotically optimal preconditioner, whose performance does not degrade as the
resolution of the mesh is increased.

The relevance of auxiliary space preconditioning is due to the fact that it
targets linear systems of equations that emerge from finite element discretization
on a big unstructured mesh for which no refinement hierarchy is available. This is
exactly the class of problems for which algebraic multigrid (AMG) has been con-
ceived [23, 26]. Very efficient AMG algorithms are available for (1.3), but AMG
approaches to (1.1) fail to deliver the usual mesh-independent multigrid efficiency
[2, 22]. This can only be achieved by geometric multigrid algorithms that rely on
nested meshes [1, 12, 25].

The auxiliary space method manages to harness the power of standard multi-
grid by employing auxiliary meshes that, unlike the original unstructured mesh,
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allow simple geometric coarsening [29]. Hence, in combination with geometric
multigrid, it achieves asymptotically optimal multigrid efficiency. In this respect,
the auxiliary space method is clearly superior to all other preconditioners available
for (1.1) when discretized on large generically unstructured meshes.

2 Auxiliary space theory

Auxiliary space methods extend the idea of subspace correction schemes for sym-
metric positive definite (s.p.d.) variational problems [28]. A general abstract theory
has been developed in [5, 10, 29]. Here, we briefly review a specialized version,
tailored to what is needed for the analysis of our concrete algorithm.

Write Vh for the finite element trial space used to discretize a variational
problem with s.p.d. bilinear form a : Vh×Vh �→ R, which induces the energy norm
‖·‖A := a(·, ·) 1

2 . The essential ingredients for an auxiliary space preconditioner is
the auxiliary space Va also equipped with a s.p.d. bilinear form b(·, ·) (inducing

norm ‖·‖B := b(· ·) 1
2 ) and a linear prolongation operator Ih : Va �→ Vh . In addi-

tion, following [5], the algorithm involves a local smoothing operation based on a
decomposition of Vh into subspaces

Vh = V1 + · · · + VN , N ∈ N. (2.1)

When splitting a function according to (2.1), the combined energies of the parts
must bound the energy of the function, that is, we assume

∃c0 > 0 : ‖vh‖2A ≤ c0

N∑
i=1

‖vi‖2A ∀vh =
N∑

i=1

vi ∈ Vh, vi ∈ Vi . (2.2)

Let us write V ′h for the dual space of Vh , V ′i for the dual space of Vi (1 ≤
i ≤ N ), and let Ah : Vh �→ V ′h be the operator associated with a(·, ·). Then the
corresponding additive preconditioner Mh : V ′h �→ Vh for operator Ah is defined by

Mh :=
N∑

i=1

Ii A−1
i I ′i + Ih B−1

a I ′h , (2.3)

where Ai : Vi �→ V ′i and Ba : Va �→ V ′a denote, respectively, the local opera-
tor associated with a(·, ·) on Vi and the operator induced by b(·, ·) on Va , while
Ii : Vi �→ Vh represents the natural embedding, I ′i : V ′h �→ V ′i and I ′h : V ′h �→ V ′a
are, respectively, the adjoint operators of Ii and Ih .

Two constants are crucial in the abstract convergence theory presented in [5].
The first measures the stability of the splitting (2.1) plus the auxiliary space

K0 := sup
vh∈Vh\{0}

inf
{∑N

i=1 ‖vi‖2A+‖va‖2B , vi ∈Vi , va ∈Va,
∑N

i=1 vi+ Ihva=vh

}

‖vh‖2A
.

(2.4)
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The second agrees with the operator norm of the prolongation

ω0 := max
{

1, sup
va∈Va\{0}

‖Ihva‖A

‖va‖B

}
. (2.5)

Lemma 2.1 The spectral condition number of Mh Ah from (2.3) is bounded by

κ(Mh Ah) ≤ (c0 + ω2
0)K0 .

Proof To begin with, we note a useful identity: for all vh ∈ Vh

b(B−1
a I ′h Ahvh, B−1

a I ′h Ahvh) =
〈
I ′h Ahvh, B−1

a I ′h Ahvh
〉 = a(vh, Ih B−1

a I ′h Ahvh) .

(2.6)

Next, we pick any vh ∈ Vh and write vh = Ihva +∑N
i=1 vi for a decomposition

in (2.4) that realizes the infimum. Applying the Cauchy-Schwarz inequality twice,
we obtain the estimate ≥ K−1

0 for the smallest eigenvalue of Mh Ah :

a(vh, vh) = a(vh, Ihva +
N∑

i=1

vi ) = b(B−1
a I ′h Ahvh, va)+

N∑
i=1

a(Pivh, vi )

≤ ‖va‖B

∥∥B−1
a I ′h Ahvh

∥∥
B +

N∑
i=1

‖Pivh‖A ‖vi‖A

(2.6)≤
(
‖va‖2B +

N∑
i=1

‖vi‖2A
) 1

2

a(Mh Ahvh, vh)
1
2 .

Here, Pi : Vh �→ Vi denotes the a(·, ·)-orthogonal projection. Further, we can
separately estimate the summands in

a(Mh Ahvh, vh) = a(Ih B−1
a I ′h Ahvh, vh)+ a

(
N∑

i=1

Pivh, vh

)
,

For the first, we use (2.6) and get

a(Ih B−1
a I ′h Ahvh, vh) =

∥∥B−1
a I ′h Ahvh

∥∥2
B = sup

wa∈Va\{0}
b(B−1

a I ′h Ahvh, wa)
2

‖wa‖2B
= sup

wa∈Va\{0}
〈Ahvh, Ihwa〉2
‖wa‖2B

≤ sup
wa∈Va\{0}

‖vh‖2A ‖Ihwa‖2A
‖wa‖2B

≤ ω2
0 ‖vh‖2A .
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The second can be tackled by the Cauchy-Schwarz inequality, inequality (2.2), and
exploiting the properties of the a(·, ·)-orthogonal projectors Pi :

a

(
N∑

i=1

Pivh, vh

)
≤ a

(
N∑

i=1

Pivh,

N∑
i=1

Pivh

) 1
2

‖vh‖A

≤ c0

(
N∑

i=1

a(Pivh, Pivh)

) 1
2

‖vh‖A

= c0a

(
N∑

i=1

Pivh, vh

) 1
2

· ‖vh‖A .

This yields the bound (c0 + ω2
0) for the largest eigenvalue of Mh Ah . �

In practice, a “semi-multiplicative” variant of the auxiliary space method is
usually more efficient. It gives rise to the following modified preconditioner

Mm
h Ah :=

(
Id −

1∏
i=N

(Id −Pi ) ·
N∏

i=1

(Id −Pi )

)
+ ωIh B−1

a I ′h Ah, (2.7)

where ω > 0 is a damping parameter, which may be set to 1. From [30, Sect. 4]
we learn that an analogue of Lemma 2.1 will still hold for Mm

h Ah .

3 Edge elements

Let� be polyhedral and equipped with an oriented unstructured regular tetrahedral
mesh T h in the sense of [14, Def. 3]. We gauge the quality of Th by means of its
shape regularity measure [5, Sect. 3]

ρ(Th) := max
K∈Th

hK

rK
,

hK := max{|x − y| : x, y ∈ K } ,
rK := max{r > 0 : ∃x ∈ K ; |x − y| < r ⇒ y ∈ K }.

(3.1)

The locally constant meshwidth function h ∈ L∞(�) of Th is defined by

h(x) := hK , if x ∈ K . (3.2)

Note that, if ρ(Th) is small, then the mesh has to be locally uniform in the sense
that two adjacent elements K , K ′ ∈ Th have about the same size1 hK =∼ hK ′ .

Moreover, a bound for ρ(Th) also imposes a limit on the number of tetrahedra
sharing a vertex.

1 Here and in the sequel, we use the symbols<∼,>∼, and=∼ to indicate one-sided and two-sided

estimates, respectively, whose constants may only depend on � and the shape regularity of the
finite element meshes involved.
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A suitable trial space Eh ⊂ H0(curl;�) for the Galerkin discretization of
(1.2) is supplied by lowest order edge elements of the first family [14, 19], that is,

Eh := {vh ∈ H0(curl;�) : vh |K (x) = aK + bK × x, aK ,bK ∈ R
3, ∀K ∈ Th}.

Writing Eh for the set of interior edges of Th , the global degrees of freedom for Eh
are given by the path integrals

vh �→
∫

e
vh · d�s , e ∈ Eh . (3.3)

They induce the finite element interpolation operator Ih : C0(�̄) �→ Eh , which can
be extended to a continuous operator Ih : (H1(�)∩{v : curl v ∈ L∞(�)}) �→ Eh
[14, Sect. 3.6]. Moreover, we remind that edge elements are an affine equivalent
family of finite elements with respect to the pullback transformation, see [14,
Sect. 2.2],

v̂( x̂ ) := BT v(x) , x = B x̂ + t , B ∈ R
3,3, t ∈ R

3. (3.4)

Affine equivalence techniques can be used to establish the L2-stability of the finite
element basis {be}e∈Eh of Eh [14, Sect. 3.6]

∥∥∥∑
e∈Eh

αebe

∥∥∥2

L2(�)

=∼
∑

e∈Eh
α2

e ‖be‖2L2(�)
∀αe ∈ R. (3.5)

The standard finite element space Sh ⊂ H1
0 (�) of piecewise linear finite

element functions on Th plays an important role as the space of discrete scalar
potentials for Eh :

gradSh ⊂ {vh ∈ Eh : curl vh = 0} . (3.6)

We adopt the notation Vh for the set of interior vertices of Th and {ψp}p∈Vh
for

the standard nodal basis of Sh . It enjoys L2-stability similar to (3.5). It will be
important that Ih and the standard nodal interpolation operator	h : C0(�̄) �→ Sh
are linked by the commuting diagram property [14, Sect. 3.2]

Ih ◦ grad = grad ◦	h on C1(�̄). (3.7)

Of course, (3.7) can be extended to the maximal domains of definition of the
involved interpolation operators. There is another relevant commuting diagram
property and it involves the space Fh of H0(div;�)-conforming lowest order face
elements, see [14, Sect. 3.2]:

Fh := {vh ∈ H0(div;�) : vh |K (x) = a + βx, a ∈ R
3, β ∈ R, ∀K ∈ Th}.

(3.8)

Its global degrees of freedom boil down to evaluating fluxes through the interior
faces of Th . They give rise to an interpolation operator Jh : C0(�̄) �→ Fh that
satisfies

Jh ◦ curl = curl ◦Ih on C1(�̄). (3.9)
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The implementation of the auxiliary space method relies on the so-called sec-
ond family of edge elements [20]. The corresponding H0(curl;�)-conforming
finite element space on Th reads

Ẽh := {vh ∈ H0(curl;�) : vh |K ∈ (P1(K ))
3 ∀K ∈ Th}, (3.10)

where P1(K ) is the space of affine linear functions on K . There are two global
degrees of freedom associated with each edge in Eh : beside (3.3) they comprise
the first moments

vh �→
∫

e
(1− 2t)vh(t) · d�s(t) , e ∈ Eh,

with 0 ≤ t ≤ 1 designating a normalized edge coordinate. Let Ĩh : C0(�̄) �→ Ẽh
denote the induced finite element interpolation operator.

On a tetrahedron K with barycentric coordinates λ1, . . . , λ4 the local shape
functions of Ẽh are given by

λi gradλ j − λ j gradλi , grad(3λiλ j ) , 1 ≤ i < j ≤ 4. (3.11)

They can be assembled into a basis {̃bi , i = 1, . . . , 2�Eh} of Ẽh . The second group
of basis functions from (3.11) agree with the gradients of “quadratic edge bubble
functions”. This points to a close relationship of Ẽh with the space S̃h ⊂ H1

0 (�)
of piecewise quadratic continuous finite element functions on Th . In fact, there is
a direct sum decomposition corresponding to (3.11)

Ẽh = Eh ⊕ grad(Id −	h)S̃h . (3.12)

Local scaling arguments immediately confirm that this decomposition is L2(�)-
stable: For any Th-piecewise constant positive weighting function w ∈ L∞(�)

‖wṽh‖2L2(�)
=∼ ‖wvh‖2L2(�)

+ ‖wgradφ̃h‖2L2(�), (3.13)

for all ṽh = vh + gradφ̃h ∈ Ẽh , vh ∈ Eh , φ̃h ∈ (Id −	h)S̃h .

Besides, there is another connection between S̃h and Ẽh , which can be expressed
by the commuting diagram property

Ĩh ◦ grad = grad ◦ 	̃h on C1(�̄) , (3.14)

where 	̃h is nodal interpolation onto S̃h .

4 Algorithm

Beside Th , we introduce an oriented semi-structured regular tetrahedral auxiliary
mesh Ta such that

�̄a :=
⋃
{K̄a : Ka ∈ Ta} ⊂ �̄. (4.1)
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(a) Mesh Th of � (b) Mesh Ta of �a (c) Strip B (shaded)

Fig. 4.1 Different quasi-uniform meshes used to specify auxiliary space method

Writing ha for its meshwidth function, see (3.2), we demand matching local mesh-
widths in the sense that there is a small constant Ca > 0 such that

C−1
a h ≤ ha ≤ Cah a.e. in �a . (4.2)

Moreover, we expect Ta to cover� except for a “thin” strip along ∂�. Let V∂ stand
for the vertices of Th located on ∂�. For p ∈ V∂ we introduce

hp := 1

�Tp

∑
K∈Tp

hK , Tp := {K ∈ Th : p ∈ K̄ } , (4.3)

in order to refer to the average size of tetrahedra adjacent to p. Hence, hp can be read
as local meshwidth at p. The boundary strip (see Fig. 4.1(c) for a 2D illustration)

B̄ :=
⋃
{K̄ ∈ Th : K �⊂ �a} (4.4)

has to be slim, expressed by the requirement that there must exist a small constant
C∂ > 0 such that

B ⊂
⋃

p∈V∂
Bp , Bp := {x ∈ B : |x − p| < C∂hp}. (4.5)

For the remainder of this paper we will admit that the constants hidden in the
symbols <∼, >∼, and =∼ may also depend on Ca and C∂ .

Apart from (4.2) and (4.5), no further requirements are imposed on Ta . In par-
ticular, the cells of Th and Ta can have arbitrary relative positions. Fig. 4.1 depicts
a typical two-dimensional situation, where the meshes are rather structured and
the auxiliary space is based on a mesh that allows geometric coarsening, cf. [29].
Fig. 4.2 illustrates a particular choice of Ta in the case of local refinement: both
meshes undergo refinement in the same part of �.

The auxiliary space Va from Sect. 2 will be chosen as the finite element sub-
space2 Ẽa of H0(curl;�a) generated by the second family of edge elements (3.10)
on Ta . Why not the first family of edge elements as used in Eh on Th ? The reason

2 We will consistently tag entities associated with Ta by a subscript a, whereas relationship
with Th is expressed by a subscript h.
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(a) Mesh Th of � (b) Mesh Ta of �a (c) Strip B (shaded)

Fig. 4.2 Auxiliary mesh and boundary strip B for locally refined meshes

is that the theoretical analysis of Sect. 5.2 hinges on the fact that only edge ele-
ment spaces of the second family are rich enough to contain all piecewise linear
continuous vector fields. However, the need for second family of edge elements in
Va is not borne out by numerical experiments, see Sect. 6: it is due to limitations
of the current theory.

As prolongation operator Ih we choose the finite element interpolation Ih :
Ẽa �→ Eh . The splitting (2.1) is inspired by the idea of hybrid smoothing in the con-
text of multigrid for H(curl;�)-elliptic variational problems [12, Formula (3.5)]:

Eh =
∑
e∈Eh

Span {be} +
∑

p∈Vh

Span
{
gradψp

}
. (4.6)

This splitting captures oscillatory curl-free error components, cf. the discussion
in [12, Sect. 3]. Eventually, we simply pick the restriction of a(·, ·) from (1.2) to
Ẽa as bilinear form b(·, ·) on Va . This tacitly assumes a zero extension to � of
functions in Ẽa . Table 4.1 summarizes how to fit this particular algorithm into the
abstract theory of Sect. 2.

In order to give an algebraic description of the resulting auxiliary space pre-
conditioner we have to introduce a few matrices (Ea are the interior edges of Ta)

A := (a(be,be′))e,e′∈Eh ∈ R
�Eh ,�Eh ,

B := (a(̃bi , b̃ j ))i, j ∈ R
2�Ea ,2�Ea ,

L := (le,p)e∈Eh ,p∈Vh ∈ R
�Eh ,�Vh : gradψp =∑

e∈Eh
le,p be ,

D := (a(gradψp, gradψq))p,q∈Vh ∈ R
�Vh ,�Vh ,

T := (te,i )e∈Eh ,i=1,...,2�Ea ∈ R
�Eh ,2�Ea : Ih b̃i =∑

e∈Eh
te,i be.

(4.7)

Table 4.1 Concrete choices for auxiliary space preconditioner in H(curl;�)
Sect. 2 Concrete choice for algorithm

Vh First family edge element space Eh on Th
Va Second family edge element space Ẽa on Ta
a(·, ·) Bilinear form a(·, ·) from (1.2) on �
b(·, ·) Same as a(·, ·) but on �a
Ih Edge element interpolation operator Ih
Vi (Lumped) Span {be} and Span

{
gradψp

}
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All these matrices have a small number of non-zero entries per row so that matrix-
vector products require O(�Eh) operations in each case. If the costs of solving
the linear system with matrix B are ignored, the computational effort for a single
evaluation of the preconditioner scales linearly with the size of the stiffness matrix
A. A pseudo-code description of an implementation of the preconditioner (2.7) is
given in Fig. 4.3.

Remark The construction of a structured auxiliary mesh as those shown in Figs. 4.1
and 4.2 can efficiently done by means of octree techniques. In addition, this hier-
archical data structure makes it easy to locate cells of the auxiliary mesh.

Remark Any s.p.d. bilinear form b(·, ·) that is spectrally equivalent to a(·, ·) on
Va can be used to get the correction from the auxiliary space without affecting the
asymptotic properties of the method. For instance, the exact solve of B�ca = �fa (see
Fig. 4.3) can be replaced by a V-cycle of geometric multigrid in H0(curl;�). This
will result in true O(�Eh) computational costs of a single evaluation.

Remark In practice, see Sect. 6, the best performing preconditioner seems to arise
from a fully multiplicative implementation of the auxiliary space method, whose
implementation is outlined in Fig. 4.4.

5 Convergence analysis

In this section we aim to prove the main theoretical result of this paper. It will
first be stated and then we will establish the prerequisites for applying the abstract
theory of Sect. 2.

Theorem 5.1 Under the assumptions made in the previous section the spectral
condition number κ(Mh Ah) for the auxiliary space method outlined in the pre-
vious section only depends on � and the shape-regularity measures ρ(Th) and
ρ(Ta).

function �u = Mm
h (
�f)

{
�u = 0
Forward Gauss-Seidel sweep(s) on A�u = �f
Compute residual �r := �f − A�u
Lift residual �ρ := LT �r
�γ := 0; Symmetric Gauss-Seidel on D �γ = �ρ
Update �u← �u + L �γ
Backward Gauss-Seidel sweep(s) on A�u = �f




(Hybrid)
Smoothing

Restrict �fa := TT �f
Solve B�ca = �fa
Prolongate (damped) correction �u← �u+ ωT�ca


 Auxiliary space

correction

}

Fig. 4.3 Pseudo-code for the evaluation of the semi-multiplicative auxiliary space preconditioner,
�f, �u ∈ R�Eh , matrices from (4.7)
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function �u = Mm
h (
�f)

{
�u = 0
Forward Gauss-Seidel sweep(s) on A�u = �f
Compute residual �r := �f − A�u
Lift residual �ρ := LT �r
�γ := 0; Forward Gauss-Seidel on D �γ = �ρ
Update �u← �u + L �γ




(Hybrid)
Pre-smoothing

Compute residual �r := �f − A�u
Restrict �ra := TT �r
Solve B�ea = �ra
Prolongate correction �u← �u+ T�ea




Auxiliary space
correction

Compute residual �r := �f − A�u
Lift residual �ρ := LT �r
�γ := 0; Backward Gauss-Seidel on D �γ = �ρ
Update �u← �u + L �γ
Backward Gauss-Seidel sweep(s) on A�u = �f




(Hybrid)
Post-smoothing

Fig. 4.4 Pseudo-code for the evaluation of the multiplicative auxiliary space preconditioner,
�f, �u ∈ R�Eh , matrices from (4.7)

To begin with, (2.2) is a fairly straightforward estimate for decompositions (2.1)
based on locally supported basis functions. For any vh ∈ Eh , vh = ∑

e∈Eh
aebe,

αe ∈ R,

‖vh‖2A =
∥∥∥∑

e∈Eh
aebe

∥∥∥2

A
=

∑
K∈Th

∥∥∥∥
∑6

j=1
α j,K b j,K

∥∥∥∥
2

A,K
,

where b j,K , j = 1, . . . , 6, are the nontrivial restrictions of edge element basis
functions to the element K . The Cauchy-Schwarz inequality yields

‖vh‖2A ≤ 6
∑

K∈Th

∑6

j=1
|α j,K |2

∥∥b j,K
∥∥2

A,K

= 6
∑

K∈Th

∑
e∈Eh

|αe|2 ‖be‖2A,K = 6
∑
e∈Eh

‖αebe‖2A .

A similar argument applies to nodal decompositions of Sh , and we conclude (2.2)
with c0 = 6.

Next, we investigate the continuity of Ih in order to establish mesh-indepen-
dence of ω0.

Lemma 5.2 Under the assumptions (4.2) and (4.5) on Th and Ta there holds true

‖Ihva‖A
<∼ ‖va‖A ∀ va ∈ Ẽa .
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Proof Consider an arbitrary element K ∈ Th . One can show by a simple scaling
argument the following equivalence for all vh ∈ Eh and va ∈ Ẽa

‖vh‖2L2(K )
=∼ hK

∑
e∈EK

(∫
e

vh · d�s
)2

, (5.1)

‖va‖2L2(Ka)
=∼ hKa

∑
e∈EKa

{(∫
e

va · d�s
)2

+
(∫

e
(1− 2t)va(t) · d�s(t)

)2
}
.

(5.2)

If vh = Ihva for some va ∈ Ẽa (which is supposed to have been extended by
zero outside �a), the very definition of Ih implies

‖Ihva‖2L2(K )
<∼ h3

K ‖va‖2L∞(UK )
, (5.3)

with UK :=⋃{Ka ∈ Ta, Ka∩K �= ∅}, see Fig. 5.1. Inspecting the basis functions
from (3.11) we find that for a Ka ∈ Ta

‖va‖L∞(Ka)
<∼ h−1

Ka

∑
e∈EKa

(∣∣∣∣
∫

e
va · d�s

∣∣∣∣+
∣∣∣∣
∫

e
(1− 2t)va(t) · d�s(t)

∣∣∣∣
)

<∼ h−1
Ka


 ∑

e∈EKa

{(∫
e

va · d�s
)2

+
(∫

e
(1− 2t)va(t) · d�s(t)

)2
}


1
2

.

From this and (5.2) we infer

‖va‖2L∞(Ka)
<∼ h−3

Ka
‖va‖2L2(Ka)

. (5.4)

Combining the estimates, we arrive at

‖Ihva‖2L2(K )
<∼ h3

K

∑
Ka∈UK

h−3
Ka
‖va‖2L2(Ka)

. (5.5)

K

UK

Fig. 5.1 Proof of Lemma 5.2: neighborhood UK in 2D
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Now we appeal to the matching condition (4.2) and the local quasi-uniformity of
the meshes, which give us hK =∼ hKa for all Ka ∈ UK . The finite overlap property

of the neighborhoods UK finally confirms

‖Ihva‖L2(�)
<∼ ‖va‖L2(�a)

. (5.6)

In order to show

‖curl Ihva‖L2(�)
<∼ ‖curl va‖L2(�) (5.7)

we need merely resort to the commuting diagram property (3.9). Then the proof can
be carried out as above with face elements and their degrees of freedom replacing
edge elements and edge path integrals. We skip the details. �

Summing up, we have shown ω0 <∼ 1 in (2.5) for the concrete choices for Vh ,

Va , and Ih given in Tab. 4.1. It remains to prove that K0 from (2.4) does not depend
on the sizes of elements of Th .

5.1 Auxiliary space decomposition in H1
0 (�)

To fix ideas and provide estimates for later use, we briefly recall the proof of the
stability of the auxiliary space decomposition of Sh . More details can be found in
[29, Sect. 4] and [5, Sect. 3].

We pick an arbitrary ϕh ∈ Sh . The crucial idea is to separate off a part βh ∈ Sh
close to the boundary:

βh(p) :=
{
ϕh(p) for p ∈ Vh ∩ B̄ ,

0 for p ∈ Vh ∩ (� \ B̄) .
(5.8)

Lemma 5.3 (cf. Lemma 4.2 in [29]) The following estimates hold with constants
only depending on ρ(Th) and C∂∥∥h−1βh

∥∥
L2(�)

<∼ |βh |H1(�) , |βh |H1(�)
<∼ |ϕh |H1(�) .

Proof We invoke the L2-stability of the nodal basis of Sh and then use local Poin-
caré-Friedrichs inequalities (since βh = 0 on ∂�), and the finite overlap property
of the neighborhoods Bp defined in (4.5):

∥∥h−1βh
∥∥2

L2(�)
<∼

∥∥h−1βh
∥∥2

L2(B)
<∼

∑
p∈V∂

h−2
p ‖βh‖2L2(Bp)

<∼
∑
p∈V∂

h−2
p diam(Bp)

2 |βh |2H1(Bp)

<∼
∑
p∈V∂
|βh |2H1(Bp)

<∼ |βh |2H1(B) .

Applying local inverse inequalities settles the second estimate

|βh |H1(�)
<∼

∥∥h−1βh
∥∥

L2(�)
<∼

∥∥h−1βh
∥∥

L2(B)
<∼ |βh |H1(B)

<∼ |ϕh |H1(B) ,

because βh ≡ ϕh on B. �
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Next, recall the concept of local quasi-interpolation operators, for instance the
one proposed by Scott and Zhang in [24], see also [31]. It provides a local projec-
tion Qa : H1

0 (�a) �→ Sa , Sa the space of piecewise linear H1
0 (�a)-conforming

finite element functions on Ta , with the following properties: for all ϕa ∈ H1
0 (�a)∥∥h−1

a (ϕa − Qaϕa)
∥∥

L2(�a)
<∼ |ϕa|H1(�a)

, (5.9)

|Qaϕa|H1(�a)
<∼ |ϕa |H1(�a)

. (5.10)

Further, one can establish the following estimates for the nodal interpolation
operator 	h , see [6, Lemma 1], [29, Lemma 4.1] and the proof of Lemma 5.5
below: ∥∥h−1(Id −	h)ϕa

∥∥
L2(�)

<∼ |ϕa |H1(�) ∀ ϕa ∈ Sa . (5.11)

Keeping in mind that µh := ϕh − βh is supported in �̄0, �0 := � \ B̄, estimates
(5.9), (5.10), and (5.11) immediately give∥∥h−1(Id −	h Qa)µh

∥∥
L2(�)

<∼ |µh |H1(�) . (5.12)

Now we are in a position to study the H1-stability of the splitting (For the sake of
clarity it has been related to the abstract decomposition discussed in Sect. 2.)

ϕh = (βh + (Id −	h Qa)µh) + 	h(Qaµh).∈ � �
Vh = V1 + · · · + VN + Ih Va

(5.13)

By virtue of (5.12), Lemma 5.3, L2-stability of the nodal basis {ψp}p∈Vh
, and

the fact that |ψp|H1(�)
<∼ ‖h−1ψp‖L2(�)

, ∀p ∈ Vh , we conclude that the first
term in the splitting can be decomposed into contributions of basis functions in a
H1-stable manner:

βh + (Id −	h Qa)µh = ∑
p∈Vh

αpψp, (5.14)

∑
p∈Vh

α2
p|ψp|2H1(�)

<∼ |βh |2H1(�)
+ |µh |2H1(�)

. (5.15)

Further, Lemma 5.3 also implies |µh |H1(�)
<∼ |ϕh |H1(�) and along with (5.9)

this ensures the H1-stability of (5.13) with constants only depending on shape
regularity, C∂ and Ca .

5.2 Auxiliary space decomposition in H0(curl;�)
Given vh ∈ Eh we have to find qh ∈ Eh , ζh ∈ Sh , and w̃a ∈ Ẽa such that

vh = qh + gradζh + Ihw̃a, (5.16)

and ∥∥h−1qh
∥∥

L2(�)
<∼ ‖vh‖A ,

∥∥h−1ζh
∥∥

L2(�)
<∼ ‖vh‖A , ‖wa‖A

<∼ ‖vh‖A .

(5.17)
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Thanks to the L2-stability of the bases of Eh and Sh and local inverse esti-
mates, cf. the arguments at the end of Sect. 5.1, the first two estimates ensure that
qh + gradζh possesses a uniformly stable splitting according to (4.6). Together
with the third inequality of (5.17), it is then straightforward that K0 <∼ 1.

Our key tool is the stable regular Helmholtz-type decomposition from [14,
Lemma 2.4], [21, Lemma 2.2]

H0(curl;�) = H1
0(�)+ gradH1

0 (�) .

This guarantees that we can find z ∈ H1
0(�) and φ ∈ H1

0 (�) such that vh =
z+ gradφ and

|z|H1(�)
<∼ ‖curl vh‖L2(�) , |φ|H1(�)

<∼ ‖vh‖A . (5.18)

The Helmholtz-type regular decomposition of vh fails to provide components in
finite element space. So the next step is about retrieving a fully discrete splitting.

To that end we introduce a vectorial quasi-interpolation operator Qh : H1
0(�) �→

Sh := (Sh)
3 by applying the standard Scott-Zhang operator Qh : H1

0 (�) �→ Sh to
the components of vector fields. The operator Qh enjoys continuity and stability
properties analoguous to (5.9) and (5.10), which means that zh := Qhz satisfies

|zh |H1(�)
<∼ |z|H1(�) , ‖h−1(z− zh)‖L2(�)

<∼ |z|H1(�) . (5.19)

This gives us the intermediate splitting

vh = zh + (z− zh)+ gradφ. (5.20)

In order to return to the discrete setting completely, we apply edge element
interpolation Ĩh onto the second family edge element space Ẽh : by the commuting
diagram property (3.14) we obtain

vh = zh + Ĩh(z− zh)+ grad	̃hφ. (5.21)

Here, the second family of edge elements comes very handy, because Sh ⊂ Ẽh
so that Ĩhzh = zh , which would not be the case if we had used Ih . Owing to the
following fundamental result the application of Ĩh to (5.20) is justified and will not
affect stability.

Lemma 5.4 (Lemma 4.6 in [14]) If u ∈ H1(�) satisfies curl u ∈ curl Ẽh, then

‖h−1(u− Ĩhu)‖L2(�)
<∼ |u|H1(�) .

From this lemma and (5.19) we conclude the estimate

‖h−1̃Ih(z− zh)‖L2(�) ≤ ‖h−1(z− Ĩhz)‖L2(�) + ‖h−1(z− zh)‖L2(�)

<∼ |z|H1(�)
<∼ ‖curl vh‖L2(�) .

(5.22)

As in Sect. 5.1, we shall now decompose zh into the sum of a boundary part z∂h ∈ Sh

and an interior part zi
h ∈ Sh , where the former is defined by, cf. (5.8),

z∂h(p) :=
{

zh(p) if p ∈ Vh ∩ B̄,
0 if p ∈ Vh ∩�0,

(5.23)
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and the latter is supported in �̄0:

zi
h := zh − z∂h ∈ H1

0(�0). (5.24)

We can simply apply Lemma 5.3 to the components of z∂h and learn
∥∥∥h−1z∂h

∥∥∥
L2(�)

<∼
∣∣∣z∂h

∣∣∣
H1(�)

,

∣∣∣z∂h
∣∣∣

H1(�)

<∼ |zh |H1(�) . (5.25)

Summing up, local decompositions of Ĩh(z− zh) and z∂h will be uniformly stable,
but the auxiliary space has to take care of zi

h .
Following the policy of Sect. 5.1, we make use of another vectorial Scott-

Zhang type quasi-interpolation operator Qa : H1
0(�a) �→ Sa := (Sa)

3, that is, the
vectorial version of Qa . Then wa := Qazi

h ∈ Sa ⊂ Ẽa will give the desired
contribution of the auxiliary space. First note that by (5.10), (5.25), and (5.19)

‖wa‖A
<∼ |wa |H1(�)

<∼
∣∣∣zi

h

∣∣∣
H1(�)

<∼ |zh |H1(�)
<∼ ‖curl vh‖L2(�) . (5.26)

In addition, wa really contains all “smooth components” of zi
h :

Lemma 5.5 We have∥∥∥h−1(zi
h − Ihwa)

∥∥∥
L2(�)

<∼
∣∣∣zi

h

∣∣∣
H1(�)

.

Proof We depart from the splitting

zi
h − Ihwa = (zi

h −Qazi
h)+ (wa − Ihwa). (5.27)

First, we estimate the second term. Pick a tetrahdedron K ∈ Th and write B for
the matrix associated with the affine transformation mapping the reference (“unit”)
tetrahedron K̂ onto K . Label pulled back functions bŷand take into account that
edge element interpolation and the pullback (3.4) commute:

‖wa − Ihwa‖2L2(K )
<∼ h3

K ‖wa − Ihwa‖2L∞(K ) = h3
K ‖B−T (ŵa − Îhŵa)‖2L∞(K̂ )

<∼ h3
K |B−T |2 inf

c∈R3
‖(Id − Îh)(ŵa− c)‖2

L∞(K̂ )
<∼hK |ŵa |2W 1,∞(K̂ )

<∼ hK ‖BT (gradwa)B‖2L∞(K ) <∼ hK |B|4 |wa |2W 1,∞(K ) .

The final steps rely on the Bramble-Hilbert lemma and the obvious continuity of Îh
on W 1,∞(K̂ ). Using the neighborhood UK introduced in the proof of Lemma 5.2,
the local relationship

|wa |W 1,∞(Ka)
= h
− 3

2
Ka
|wa |H1(Ka)

∀Ka ∈ Ta,

makes it possible to proceed

‖wa − Ihwa‖2L2(K )
<∼ h5

K |wa |2W 1,∞(UK )
<∼ h2

K |wa |2H1(UK )
.
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We owe this last estimate to the matching condition (4.2). Thus, the finite overlap
property of the neighborhoods UK leads to

∥∥h−1(Id − Ih)wa
∥∥

L2(�)
<∼ |wa |H1(�) ,

and an application of the triangle inequality together with interpolation error
estimates for Qa finishes the proof. �

Summing up, for vh ∈ Eh we have constructed the following decomposition

vh = q̃h + Ihwa + grad	̃hφ, (5.28)

where q̃h ∈ Ẽh is given by

q̃h = z∂h + Ĩh(z− zh)+ (zi
h − Ihwa),

and, by (5.22), (5.25), and Lemma 5.5, it satisfies
∥∥h−1q̃h

∥∥
L2(�)

<∼ ‖curl vh‖L2(�) . (5.29)

Still, q̃h does not belong to Eh as required by the decomposition (4.6). Yet, by
virtue of (3.12) and (3.13), we can shed the surplus:

q̃h = qh + gradη̃h, qh ∈ Eh, ηh ∈ S̃h,
∥∥h−1qh

∥∥
L2(�)

<∼
∥∥h−1q̃h

∥∥
L2(�)

.

This yields a modified decomposition

vh = qh + Ihwa + gradθ̃h, θ̃h := 	̃hφ + η̃h ∈ S̃h . (5.30)

On the one hand, we note that (5.29) carries over to qh , which, therefore, meets the
specification (5.17). The same is true of wa . On the other hand θ̃h ∈ S̃h seems to
be a misfit. However, from (5.30) it is clear that gradθ̃h ∈ Eh . Since the splitting
(3.12) is direct, this enforces θ̃h ∈ Sh! So, from now on, we will write θh instead
of θ̃h .

Now we can fully exploit the results of Sect. 5.1: they supply a decomposition

θh = ζh +	hµa, ζh ∈ Sh, µa ∈ Sa, (5.31)

whose terms satisfy
∥∥h−1ζh

∥∥
L2(�)

<∼ |θh |H1(�) , |µa|H1(�)
<∼ |θh |H1(�) . (5.32)

Merge this with (5.30) by altering wa ← wa + gradµa ∈ Ẽa . Recalling the
commuting diagram property (3.7) and

|θh |H1(�)
<∼ ‖vh‖L2(�) + ‖Ihwa‖L2(�) + ‖qh‖L2(�)

<∼ ‖vh‖A , (5.33)

it is straightforward that we have finally obtained a decomposition (5.16) with
the desired properties (5.17). As explained above, this is what it takes to prove
Thm. 5.1.
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(a) Coarse circular mesh C1
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(b) Coarse triangular mesh T1

Fig. 6.1 The coarsest meshes C1 and T1 used in the numerical experiments

Remark We could replace a(·, ·) by

a(u, v) :=
∫
�

curl u · curl v dx + τ
∫
�

u · v dx , τ > 0. (5.34)

A careful inspection of the proofs yields that for τ � 1 the stabilty estimates will
hold uniformly in τ . However, the constants will blow up for τ → ∞. This is
also a shortcoming of analyses of multigrid in H(curl;�) based on stable decom-
positions [15]. This pessimistic theoretical result is in stark contrast to the ample
numerical evidence that the semi-multiplicative version of the preconditioners does
not suffer when τ →∞, see Sect. 6.

6 Numerical experiments

We first report the performance of the semi-multiplicative auxiliary space precon-
ditioner from Sect. 4 for two two-dimensional model problems. We have decided
to perform numerical studies in 2D, because in three dimensions soaring compu-
tational costs rule out the use of very fine meshes, on which the true asymptotic
behavior might finally emerge. We stress that the 2D case using curl u := ∂u1

∂x2
− ∂u2
∂x1

fully captures all essential features of the three-dimensional problem.
All numerical experiments rely on the bilinear form (5.34) on the domains

shown in 1(a) and 1(b) equipped with a sequence of fairly uniform unstructured
triangular meshes C1, . . . , C6 (T1, . . . , T6, respectively) that arise from succes-
sive regular refinement (plus boundary adaptation) of the coarsest meshes. The
auxiliary meshes possess a regular structure and are fully covered by the unstruc-
tured meshes, see Fig. 2(a) and 2(b). In all experiments, one symmetric Gauss-
Seidel sweep is chosen for hybrid smoothing and a direct solver of the problem is
used in the auxiliary space.
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(a) Auxiliary mesh on C1
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(b) Auxiliary mesh on T1

Fig. 6.2 The auxiliary meshes belonging to the coarsest triangulations

Table 6.1 Experiment 1: spectral condition numbers of Mm
h Ah

τ 10−6 10−3 1 103 106

C1 10.1 10.1 9.96 3.53 3.03
C2 9.71 9.71 9.67 5.49 3.05
C3 13.6 13.6 13.57 9.89 3.22
C4 14.3 14.3 14.3 12.5 3.38
C5 14.6 14.6 14.63 13.9 3.52
C6 12.9 12.9 12.9 12.5 5.00
T1 9.86 9.86 9.74 3.75 2.84
T2 9.10 9.10 9.07 5.16 2.89
T3 14.1 14.1 14.1 9.41 3.16
T4 13.9 13.9 13.9 11.6 3.21
T5 14.2 14.2 14.2 13.3 3.53
T6 12.2 12.2 12.1 12.0 5.25

In the experiments we monitor the spectral condition numbers of Mm
h Ah and

the speed of convergence of preconditioned CG iterations. Largest and smallest
eigenvalues were determined by means of direct and inverse power iterations 3.

The first experiment examines the algorithm given in Fig. 4.3. It reports the
condition number on meshes C1/T1 through C6/T6 for different values of τ in
(5.34), see Tab. 6.1 for results. The condition numbers show a slight increase when
the mesh is refined which is assumed to be a preasymptotic behavior, as we know
that the same observation is made in the case of BPX-type preconditioners for
discrete second order elliptic problems, cf. Rem. 2 in [3, Sect. 5]. The estimates
seem to be independent of τ , which was not predicted by the theory. The mildly
erratic behavior of the condition numbers is not surprising, because the local geo-
metric relationship of the unstructured meshes and their auxiliary meshes varies
on different levels of refinement.

3 The termination criterium was a relative change of the eigenvalue estimate below 10−6.
Cross-checking with the MATLAB eigs()-routine [11, Sect. 16.5] confirmed the accuracy of
the computed eigenvalues.
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Table 6.2 Experiment 2: spectral condition numbers of Mm
h Ah

τ 10−6 10−3 1 103 106

C1 7.86 7.86 7.78 2.85 2.61
C2 7.41 7.41 7.38 4.34 2.68
C3 10.2 10.2 10.15 7.44 2.79
C4 10.57 10.1 10.56 9.22 2.63
C5 10.7 10.7 10.7 10.2 2.72
C6 9.00 9.00 9.00 8.74 3.61
T1 7.86 7.86 7.77 3.11 2.62
T2 7.12 7.12 7.10 4.13 2.63
T3 10.8 10.8 10.7 7.19 2.74
T4 10.3 10.3 10.3 8.64 2.59
T5 10.6 10.6 10.6 9.96 2.78
T6 8.61 8.64 8.64 8.53 3.79

The second experiment agrees with the first except for the use of the first
family of lowest order edge elements on the auxiliary mesh. We point out that
this arrangement is not covered by the theory of Sect. 5. Nevertheless, the overall
behavior of the condition numbers recorded in Table. 6.2 matches that observed in
the first experiment. Apparently, building Va from second family edge elements is
not essential.

In the third experiment we examine the performance of the semi-multiplicative
auxiliary space method as a preconditioner for a preconditioned conjugate gradient
iterative solver. We track the decrease of the relative error in the energy norm ||ei ||A
during the iteration process for the right hand side function f = (1, 1)T in (1.1)
(with τ = 1 in (5.34)). The relative error ||ei ||A is defined as ||ei ||A := ||ui−u||A||u||A ,
where u is the exact solution of the discretized problem and ui the solution after i
iterations with u0 = 0. Fig. 6.3 to 6.6 show the convergence of the preconditioned
CG-scheme. The corresponding convergence rates are given in Tab. 6.3 and 6.4. The
preconditioned CG-method displays excellent mesh-independent convergence.

In the fourth experiment, the semi-multiplicative scheme is replaced by the
multiplicative method described in Figure 4.4. Condition numbers for all meshes in
the case τ = 1 are shown in Table 6.5. The condition numbers are uniformly small
on all meshes, and significantly smaller than for the semi-multiplicative version of
the preconditioner (at the same computational cost!).

7 Conclusion

We proposed and analyzed an auxiliary space preconditioner for H0(curl;�)-
elliptic boundary value problems discretized by means of lowest order edge
elements. Theory confirms asymptotic quasi-optimality and numerical experiments
demonstrate the viability of the approach. It goes without saying that the results
can easily be extended to the h-version of edge elements of arbitrary but fixed
polynomial degree.

So far, our investigations have focused on the case of constant coefficients.
Evidently, mildly varying coefficients can be absorbed into the constants. Yet, if
a(·, ·) from (1.2) featured strongly varying or anisotropic coefficients in both terms
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Fig. 6.3 Convergence of the preconditioned CG-method on the meshes C2, C4, C6 with first
family of lowest order edge elements on the auxiliary mesh
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Fig. 6.4 Convergence of the preconditioned CG-method on the meshes T2, T4, T6 with first
family of lowest order edge elements on the auxiliary mesh
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Fig. 6.5 Convergence of the preconditioned CG-scheme on the circular domain with second
family of lowest order edge elements on the auxiliary mesh
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Fig. 6.6 Convergence of the preconditioned CG-scheme on the triangular domain with second
family of lowest order edge elements on the auxiliary mesh
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Table 6.3 Experiment 3: preconditioned CG convergence rates (second family of lowest order
edge elements on auxiliary mesh)

C1 C2 C3 C4 C5 C6

5
√ ‖e6‖A‖e1‖A

0.1696 0.4118 0.2046 0.4144 0.1367 0.3214

5
√ ‖e11‖A‖e6‖A

0.2312 0.5345 0.2934 0.5629 0.3483 0.5578

5
√ ‖e16‖A‖e11‖A

0.2420 0.4951 0.3261 0.5351 0.3049 0.5586

5
√ ‖e21‖A‖e16‖A

0.2795 0.4788 0.3347 0.6102 0.3646 0.5390

5
√ ‖e26‖A‖e21‖A

0.2063 0.4979 0.2883 0.5461 0.2817 0.5417
T1 T2 T3 T4 T5 T6

5
√ ‖e6‖A‖e1‖A

0.2337 0.4389 0.2106 0.4290 0.1365 0.3447

5
√ ‖e11‖A‖e6‖A

0.2592 0.4984 0.3543 0.5833 0.3212 0.5339

5
√ ‖e16‖A‖e11‖A

0.2061 0.4866 0.2799 0.5234 0.3441 0.5376

5
√ ‖e21‖A‖e16‖A

0.2334 0.4593 0.3074 0.5532 0.3385 0.5385

5
√ ‖e26‖A‖e21‖A

0.2068 0.4651 0.2703 0.5802 0.2717 0.5534

Table 6.4 Experiment 3: preconditioned CG convergence rates (first family of lowest order edge
elements on auxiliary mesh)

C1 C2 C3 C4 C5 C6

5
√ ‖e6‖A‖e1‖A

0.1611 0.3989 0.1989 0.4074 0.1308 0.3075

5
√ ‖e11‖A‖e6‖A

0.1746 0.4817 0.2369 0.4988 0.2607 0.4851

5
√ ‖e16‖A‖e11‖A

0.2124 0.4358 0.2694 0.5123 0.2759 0.4915

5
√ ‖e21‖A‖e16‖A

0.2357 0.4397 0.2818 0.5298 0.2700 0.4812

5
√ ‖e26‖A‖e21‖A

0.1371 0.4523 0.1871 0.4794 0.2166 0.4756
T1 T2 T3 T4 T5 T6

5
√ ‖e6‖A‖e1‖A

0.2255 0.4233 0.2042 0.4214 0.1291 0.3353

5
√ ‖e11‖A‖e6‖A

0.2079 0.4495 0.2782 0.5170 0.2527 0.4787

5
√ ‖e16‖A‖e11‖A

0.1695 0.4342 0.2321 0.4899 0.3089 0.4850

5
√ ‖e21‖A‖e16‖A

0.2040 0.4150 0.2609 0.5085 0.2520 0.4942

5
√ ‖e26‖A‖e21‖A

0.1523 0.4081 0.2129 0.5234 0.2277 0.5000

we have to resign to a gross deterioration of the constants in the theoretical esti-
mates. As far as implementation is concerned, if the coefficients for the second
and zero order term of a(·, ·) display completely different behavior it might be
advisable to use different bilinear forms on the auxiliary space for the treatment
of gradient components and curl-carrying components. The efficacy of this idea
remains to be investigated.
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Table 6.5 Experiment 4: spectral condition numbers (first and second family of lowest order
edge elements on auxiliary mesh)

C1 C2 C3 C4 C5 C6

first family 3.72 3.83 4.50 4.36 4.24 3.75
second family 3.83 3.84 4.71 4.65 4.62 4.32

T1 T2 T3 T4 T5 T6
first family 4.33 3.84 5.58 4.85 5.15 3.97
second family 4.33 3.94 5.74 5.19 5.53 4.29

References

1. Arnold, D., Falk, R., Winther, R.: Multigrid in H(div) and H(curl). Numer. Math. 85,
175–195 (2000)

2. Bochev, P., Garasi, C., Hu, J., Robinson, A., Tuminaro, R.: An improved algebraic multigrid
method for solving Maxwell’s equations. SIAM J. Sci. Comp. 25, 623–642 (2003)

3. Bornemann F., A sharpedned condition number estimate for the BPX-preconditioner of ellip-
tic finite element problems on highly non-uniform triangulations, Tech. Report SC 91-9, ZIB,
Berlin, Germany, September 1991

4. Bossavit, A.: Two dual formulations of the 3D eddy–currents problem. COMPEL, 4, 103–
116 (1985)

5. Chan, T., Zou, J.: A convergence theory of multilevel additive schwarz methods on unstruc-
tured meshes. Numerical Algorithms, 13, 365–398 (1996)

6. Chan, T.F., Smith, B.F., Zou, J.: Overlapping schwarz methods on unstructured meshes using
non-matching coarse grids. Numer. Math. 73, 149–167 (1996)

7. Girault, V., Raviart, P.: Finite element methods for Navier–Stokes equations. Springer,
Berlin, 1986

8. Gopalakrishnan, J., Pasciak, J.: Overlapping schwarz preconditioners for indefinite time
harmonic Maxwell equations. Math. Comp. 72, 1–15 (2003)

9. Gopalakrishnan, J., Pasciak, J., Demkowicz, L.: Analysis of a multigrid algorithm for time
harmonic Maxwell equations. SIAM J. Numer. Anal. 42, 90–108 (2003)

10. Griebel, M., Oswald, P.: On the abstract theory of additive and multiplicative schwarz
algorithms. Numer. Math. 70, 163–180 (1995)

11. Hanselman, D., Littlefield, B.: Mastering MATLAB 6. Prentice Hall, Upper Saddle River,
NJ, 2001

12. Hiptmair, R.: Multigrid method for Maxwell’s equations. SIAM J. Numer. Anal. 36, 204–225
(1999)

13. Hiptmair, R.: Discrete Hodge operators. Numer. Math. 90, 265–289 (2001)
14. Hiptmair, R.: Finite elements in computational electromagnetism. Acta Numerica, 11, 237–

339 (2002)
15. Hiptmair, R.: Analysis of multilevel methods for eddy current problems. Math. Comp. 72,

1281–1303 (2003)
16. Hiptmair, R., Toselli, A.: Overlapping and multilevel Schwarz methods for vector valued

elliptic problems in three dimensions. In: Parallel Solution of Partial Differential Equations,
Bjorstad P. and M. Luskin, eds. no. 120 in IMA Volumes in Mathematics and its Applications,
Springer, Berlin, (1999), pp. 181–202.

17. Hu, Q., Zou, J.: A non-overlapping domain decomposition method for Maxwell’s equation
in three dimensions. SIAM J. Numer. Anal. 41, 1682–1708 (2003)

18. Hu, Q., Zou, J.: Substructuring preconditioners for saddle-point problems arising from Max-
well’s equations in three dimensions. Math. Comp. 73, 35–61 (2003)

19. Nédélec, J.: Mixed finite elements in R3. Numer. Math. 35, 315–341 (1980)
20. Nédélec, J.: A new family of mixed finite elements in R3. Numer. Math. 50, 57–81 (1986)
21. Pasciak, J., Zhao, J.: Overlapping Schwarz methods in H(curl) on polyhedral domains.

J. Numer. Math. 10, 221–234 (2002)
22. Reitzinger, S., Schöberl, J.: Algebraic multigrid for edge elements. Numerical Linear Alge-

bra with Applications, 9, 223–238 (2002)
23. Ruge, J., Stüben, K.: Algebraic multigrid. In: McCormick, S. (ed.), Multigrid methods,

Frontiers in Applied Mathematics, SIAM, Philadelphia, 1987, ch. 4, pp. 73–130



Auxiliary space preconditioning in H0(curl;�) 459

24. Scott, L.R., Zhang, Z..: Finite element interpolation of nonsmooth functions satisfying
boundary conditions Math. Comp. 54, 483–493 (1990)

25. Sterz, O.: Multigrid for time-harmonic eddy currents without gauge. Preprint 2003-07, IWR
Heidelberg, Heidelberg, Germany, April 2003

26. Stüben, K.: An introduction to algebraic multigrid. Academic Press, London, ch.
Appendix A, 2001, pp. 413–528

27. Toselli, A.: Overlapping Schwarz methods for Maxwell’s equations in three dimensions.
Numer. Math. 86, 733–752 (2000)

28. Xu, J.: Iterative methods by space decomposition and subspace correction. SIAM Review,
34, 581–613 (1992)

29. Xu, J.: The auxiliary space method and optimal multigrid preconditioning techniques for
unstructured grids. Computing, 56, 215–235 (1996)

30. Xu, J.: An introduction to multilevel methods. In: M. Ainsworth, K. Levesley, M. Marletta,
W. Light (eds.), Wavelets, Multilevel Methods and Elliptic PDEs, Numerical Mathematics
and Scientific Computation, Oxford: Clarendon Press, 1997, pp. 213–301

31. Xu, J., Zou, J.: Some non-overlapping domain decomposition methods. SIAM Review, 40,
857–914 (1998)


