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Fluid motion driven by planetary libration may play a key role in maintaining the magnetism of synchronous
planets and moons that are thermally or chemically nonconvective. We present a fully discrete finite element
method on a triaxial ellipsoidal domain for simulating a three-dimensional nonlinear flow in a latitudinally
librating triaxial ellipsoidal cavity, for which the usual pseudospectral method with the poloidal-toroidal
decomposition is difficult because of nonspherical geometry. Stability of the time-dependent finite element
solutions with two different temporal schemes are studied, and their error estimates of optimal order are
established. The corresponding numerical simulation is implemented for the second-order implicit scheme,
offering an insight into the practical aspect of the proposed finite element method. © 2013 Wiley Periodicals,
Inc. Numer Methods Partial Differential Eq 30: 1518–1537, 2014
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I. INTRODUCTION

The shape of many planets and moons is, to a first approximation, spherical. It is well known
that, however, because of the effect of rapid rotation as well as the interaction among the Sun,
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planets, and moons, many astrophysical bodies are nonspherical and in the shape of a spheroid or
a triaxial ellipsoid [1]. As a result of nonspherical geometry, planets and moons are usually rotat-
ing nonuniformly and undergo forced libration [2]. It is recently revealed, through an asymptotic
analysis [3], that fluid motion in a synchronously rotating spheroidal planet can resonate with
planetary latitudinal libration, leading to a large amplitude O(E−1/2) of the librationally driven
flow, where the Ekman number E is extremely small for many rapidly rotating planets. This sug-
gests an alternative driving mechanism for dynamo action within the planets and moons that are
thermally or chemically nonconvective. A libration-driven dynamo is feasible because the two
conditions for resonance—nearly synchronous rotation and small but non-zero eccentricity of the
shape—can be approximately met by some synchronous planets and moons.

In comparison with spherical geometry, direct numerical simulation in triaxial ellipsoidal
geometry is both mathematically and computationally less tractable. Although, triaxial ellip-
soidal geometry can be, in principle, accommodated by a coordinate transformation that maps
an ellipsoidal domain into the spherical domain [4] or by using complicated nonspherical coor-
dinates [5], there are computational disadvantages in the pseudospectral approximation with the
poloidal-toroidal decomposition and, particularly, the mathematical equations resulting from the
coordinate transformation are highly complicated. Moreover, the harmonic expansion leads to
the global integration that requires an intensive global communication, making it less efficient on
modern massively parallel computers. It is thus desirable to seek an alternative numerical method
that is nonspectral and can be readily implemented on modern parallel computers for solving the
problem of fluid mechanics in librating triaxial ellipsoids.

This study concerns with the theoretical aspects of finite element methods for simulating the
three-dimensional (3D) nonlinear flow of a homogeneous fluid of viscosity ν driven by latitudinal
libration and confined within a triaxial ellipsoidal cavity. The triaxial ellipsoidal cavity of arbitrary
eccentricity E is described by

x2

a2
+ y2

a2(1 + E2)
+ z2

a2(1 − E2)
= 1, (1)

where 0 < E < 1, which also defines Cartesian coordinates (x, y, z) used in the numerical
analysis. The ellipsoidal container rotates rapidly with an angular velocity �0 fixed in an inertial
frame and, at the same time, undergoes weak latitudinal libration with the libration vector �lat

which results in a periodic variation of the z-axis of the ellipsoid toward and away from its mean
direction. Through both viscous and topographic coupling between the container and the inte-
rior fluid, latitudinal libration can drive fluid motion against viscous dissipation. There are three
key parameters that characterize the problem of librationally driven flow in triaxial ellipsoidal
cavities: the Ekman number E = ν/(a2�0), where �0 = |�0|, provides the measure of relative
importance between the typical viscous force and the Coriolis force, the eccentricity E measures
the degree of topographic coupling between the container and its interior fluid, and the Poincaré
number Po quantifies the strength of Poincaré force resulting from the libration.

For simulating fluid motion driven by latitudinal libration in triaxial ellipsoids, we shall use
an Element-By-Element finite element method that has been effectively used for the numerical
solution of the dynamo problem in spherical geometry [6]. While the practical aspects of the
finite element method, such as how to perform temporal discretization and spatial tetrahedral dis-
cretization, have been discussed [7] (see also [8] for the finite element solution of tidally driven
flow in a rotating triaxial ellipsoid and [9] for the finite element dynamo), its key theoretical prop-
erties, particularly the numerical stability of the finite element scheme and the numerical error of
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1520 CHAN ET AL.

the finite element solution, have not been studied for librationally driven flows in triaxial ellip-
soidal geometry. Such theoretical studies will be essential for the geophysical and astrophysical
application of the finite element method. The primary purpose of this article is to understand the
theoretical aspects of the finite element method—which is based on the 3D triangulation of a tri-
axial ellipsoidal domain together with the velocity and pressure being represented by continuous
piecewise quadratic and linear finite elements—for simulating a nonlinear flow in latitudinally
librating triaxial ellipsoids. By providing a mathematical analysis on the numerical stabilities and
optimal error estimates of the finite element method, we build a mathematically sound framework
that is required for simulating a nonlinear flow in latitudinally librating triaxial ellipsoids.

In what follows we shall begin by presenting the model and governing equations of the numer-
ical problem in Section II. The theoretical problem of the finite element method is discussed in
Section III and Section IV. Numerical implementation of the second-order implicit scheme and
its results are discussed in Section V and the article closes in Section VI with a brief summary
and some remarks.

II. MODEL AND GOVERNING EQUATIONS

Consider a homogeneous fluid of viscosity ν confined within a triaxial ellipsoidal cavity defined
by (1). Suppose that the ellipsoidal container rotates rapidly with an angular velocity �0 which is
fixed in the inertial frame and, at the same time, undergoes latitudinal libration with the libration
vector �lat which results in a periodic variation of the z-axis slightly toward and away from the
rotation axis �0. Motivated by its application to synchronous planets and moons, we assume that
the overall angular velocity, � = �0+�lat, of the triaxial ellipsoidal container can be expressed as

� = �0 + x̂�0Po sin
(
ω̂�0t

)
, (2)

where x̂ is a unit vector that is fixed in a frame of reference attached to the container, the man-
tle frame of reference, and perpendicular to the angular velocity �0, and Po/ω̂ represents the
maximum angular displacement of latitudinal libration with 0 < ω̂ < 2. This study is mainly con-
cerned with the key mathematical properties of finite element method for simulating librationally
driven flow in a triaxial ellipsoidal cavity.

In the mantle frame of reference, the dynamics of latitudinally librational driven flow is
governed by the dimensional equations:

∂u
∂t

+ u · ∇u + 2�0

[
ẑ + x̂Po sin

(
�0ω̂t

) − ŷ
(
Po/ω̂

)
cos

(
�0ω̂t

)] × u + 1

ρ
∇p

= ν∇2u + Po�2
0

[
ω̂r × x̂ cos

(
�0ω̂t

) + r × (
ẑ × x̂

)
sin

(
�0ω̂t

)]
, (3)

∇ · u = 0, (4)

where r is the position vector, (x̂, ŷ, ẑ) denotes the corresponding unit vectors for the Cartesian
coordinates (x, y, z), p is a reduced pressure and u is the 3D velocity field. The final two terms on
the right-hand side of (3) are known as the Poincaré force which results from latitudinal libration
and drives fluid motion. Using the semiaxis a as the length scale, �−1

0 as the unit of time and
ρa2�2

0 as the unit of pressure, the nondimensional envelope of a triaxial ellipsoidal cavity is then
described by

x2

1
+ y2

1 + E2
+ z2

1 − E2
= 1, (5)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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FINITE ELEMENT ANALYSIS ON FLUID MOTION 1521

while the nondimensional governing equations are

∂u
∂t

+ u · ∇u + 2ẑ × u + ∇p

= E∇2u + 2Po
[(

1/ω̂
)

ŷ × u cos
(
ω̂t

) − x̂ × u sin
(
ω̂t

)]
+ Po

[
ω̂r × x̂ cos

(
ω̂t

) + r × (
ẑ × x̂

)
sin

(
ω̂t

)]
, (6)

∇ · u = 0. (7)

Note that the centrifugal force is combined with all other conservative forces to form the reduced
pressure p. Librationally driven flow on the bounding surface, S, of the triaxial ellipsoidal cavity
(5) is at rest, requiring that

n̂ · u = 0; n̂ × u = 0 (8)

where n̂ is the normal to S. The problem defined by (6) and (7) subject to the boundary conditions
(8) for triaxial ellipsoidal geometry (5) will be solved subject to the initial condition

u(r, 0) = u0(r)

by a 3D fully discrete finite element method.

III. FINITE ELEMENT METHOD WITH FIRST-ORDER TEMPORAL SCHEME

A. Variational Formulation and Finite Element Approximation

For sake of exposition, we rewrite the governing Eqs. (6) and (7) in the form

∂u
∂t

+ u · ∇u + Z(ω̂, t) × u + ∇p = E∇2u + f(ω̂, x, y, z, t) in �, (9)

∇ · u = 0 in �, (10)

where � is the triaxial ellipsoid formed by the interior of the triaxial ellipsoidal cavity (5), Z(ω̂, t)
and f(ω̂, x, y, z, t) are given respectively by

Z(ω̂, t) = 2
[
ẑ + Pox̂ sin(ω̂t) − Poω̂−1ŷ cos(ω̂t)

]
, (11)

f(ω̂, x, y, z, t) = P0[ω̂r × x̂ cos(ω̂t) + r × (ẑ × x̂) sin(ω̂t)]. (12)

Then we introduce the following trilinear functional

d(w, u, v) = 1

2
{(w · ∇u, v) − (w · ∇v, u)} ∀w, u, v ∈ H1

0(�), (13)

where (·, ·) denotes the inner product in L2(�)3. Let L2
0(�) be the subspace of L2(�) with all

functions with a vanishing mean in �. Using the trilinear functional (13), we can easily derive the
variational formulation to the coupled system (9) and (10) governing the flow u and the pressure
p in the ellipsoid �:

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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1522 CHAN ET AL.

Find u ∈ L∞(0, T ; L2(�)3) ∩ L2(0, T ; H1
0(�)), p ∈ L2(0, T ; L2

0(�)) such that

(
∂u
∂t

, v) + E(∇u, ∇v) − (p, ∇ · v) + d(u, u, v) + (Z × u, v)

= (f , v)∀v ∈ L2(0, T ; H1
0(�)), (14)

−(∇ · u, q) = 0 ∀q ∈ L2(0, T ; L2
0(�)). (15)

Now we are going to propose a fully discrete finite element approximation to the variational
system (14) and (15). We start with the partition of the time interval [0, T] and the triangulation
of the physical ellipsoidal domain �. We divide the time interval [0, T] into M equally spaced
subintervals using the following nodal points

0 = t0 < t1 < t2 < · · · < tM = T,

where tn = nτ for n = 0, 1, . . . , M and τ = T /M . For any given discrete time sequence {un}M
n=0

with each un lying in L2(�) or L2(�)3, we define the first order backward finite differences and
the averages as follows:

∂τ un = un − un−1

τ
, un = 1

τ

∫ tn

tn−1

u(·, s)ds.

If u(r, t) is a function which is continuous with respect to t, we shall often write un(·) = u(·, tn)
for n = 0, 1, . . . , M .

Next we introduce the triangulation of the ellipsoidal domain �. For sake of technical treat-
ments, we shall assume that the domain � is a closed convex polyhedron; the actual ellipsoidal
curved boundary case can be treated using some well-developed technicalities for curved bound-
aries (see, e.g., [10, 11]) in combination with the finite element error estimates established
here. Let Th be a quasi-uniform triangulation of the polyhedral domain �, Vh ⊂ H1

0(�) and
Ph ⊂ L2

0(�) be the continuous piecewise quadratic and linear finite element spaces associated
with Th, respectively. Using the first-order semiimplicit scheme, we can now formulate the finite
element approximation of the system (14) and (15):

Find {un
h} ⊂ Vh and {pn

h} ⊂ Ph for 0 ≤ n ≤ M such that u0
h = Ihu0 and

(∂τ un
h, vh) + E(∇un

h, ∇vh) − (pn
h, ∇ · vh) + d(un−1

h , un
h, vh)

+(Zn × un
h, vh) = (fn, vh) ∀vh ∈ Vh (16)

−(∇ · un
h, qh) = 0 ∀qh ∈ Ph. (17)

We end this section with a brief review of some existing results on finite element methods
for the standard Navier-Stokes equations and their convergence [12–15]. For some basic finite
element approximations, we refer to the classic monographs [16, 17]. For the fully discrete finite
element approximation of the 2D Navier-Stokes equations, we refer to [18] and [19] for the first-
order semi-implicit and implicit/explicit temporal schemes and for the stability and convergence
under the restrictions τ ≤ C|lnh|−1 and τ ≤ C with the following regularity

(A1) u ∈ L∞(0, T ; H2(�)) and p ∈ L∞(0, T ; H 1(�)).

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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FINITE ELEMENT ANALYSIS ON FLUID MOTION 1523

But in this work, we shall demonstrate the stability and optimal convergence of the finite ele-
ment solution (un

h, pn
h) to the first-order semi-implicit scheme (16) and (17) in 3D, imposing no

restrictions on the time step size τ under the following regularities for the exact solution (u, p):
(A2) u ∈ L∞(0, T ; H2(�)) ∩ L2(0, T ; H3(�)) and ut ∈ L2(0, T ; H1

0(�)), p ∈
L2(0, T ; H 2(�)).

Remark. If domain � is sufficiently smooth, regularities in (A2) can be derived from the
Navier-Stokes equations and the regularities in (A1).

B. Auxiliary Mathematical and Numerical Analysis Tools

In this section, we shall introduce a few important technical relations, inequalities and finite ele-
ment interpolation error estimates that are needed for our subsequent convergence analysis for
both the first-order temporal scheme in this section and the second-order temporal scheme in next
section. Throughout the article, we shall frequently use C to stand for a generic constant, that is
independent of the mesh size h, the time stepsize τ and the relevant functions involved.

By direct computing, one can verify for all w, u, v ∈ H1
0(�) that

(Z(t) × u, u) = 0, d(w, u, u) = 0, (18)

d(w, u, v) = (w · ∇u, v) + 1

2
((∇ · w)u, v), (19)

and the following inequalities

|d(w, u, v)| ≤ c||∇w||0||∇u||0||∇v||0,

|d(w, u, v)| ≤ c
√||w||0||∇w||0||∇u||0||∇v||0. (20)

While for all w, v ∈ H1
0(�) and u ∈ H2(�) ∩ H1

0(�), we have

|d(w, u, v)| ≤ c||w||0(||u||L∞ + ||∇u||L3)||∇v||0,

|d(u, v, w)| ≤ c(||u||L∞ + ||∇u||L3)||∇v||0||w||0. (21)

Here and hereafter, c is used to denote a general positive constant depending only on �.
The following two simple relations can be easily verified for any two vector-valued functions

u, v ∈ L2(�)3 and any two vectors a, b ∈ Rn:

(u − v, u) = 1

2
||u||20 − 1

2
||v||20 + 1

2
||u − v||20; |a × b| ≤ √

2|a||b|.

Let Ih: L2(�)3 → V0h be the standard L2-projection. We shall need its following important
approximation properties [20]:

||v − Ihv||0,� + h||∇(v − Ihv)||0,� ≤ chi ||v||i,� ∀v ∈ Hi (�) ∩ V0 (22)

for i = 1, 2, 3, with V0 = {v ∈ H1
0(�); ∇ · v = 0}.

Purely for some subsequent analysis, we shall often make use of the approximate divergence-
free finite element space V0h:

V0h = {vh ∈ Vh; (∇ · vh, qh) = 0 ∀qh ∈ Ph}.

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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1524 CHAN ET AL.

We know from [20] that the pair (Vh, Ph) and V0h satisfy the following approximation
properties:

Property (A). For each v ∈ Hi (�) ∩ H1
0(�) with ∇ · v = 0 and q ∈ Hi−1(�) ∩ L2

0(�) with
i = 1, 2, 3, there exist approximations πhv ∈ V0h and ρhq ∈ Ph such that

||∇(v − πhv)||0 ≤ chi−1||v||i , ||q − ρhq||0 ≤ chi−1||q||i−1.

As in most finite element analysis, the inverse inequality of the form [21]

||∇vh||0 ≤ ch−1||vh||0 ∀vh ∈ Vh (23)

and the following inf-sup condition [22]: for each qh ∈ Ph, there exists vh ∈ Vh, vh �= 0 such that

d(vh, qh) ≥ β||qh||0||∇vh||0 (24)

will be very helpful. Here β is a positive constant depending only on �.
We end this section with the introduction of a discrete Gronwall inequality (see, e.g., [23]):
Let C0, an, bn, dn be nonnegative numbers with integer n ≥ 0 such that

am + τ

m∑
n=1

bn ≤ τ

m−1∑
n=0

dnan + C0, ∀m ≥ 1, (25)

then the following estimate holds

am + τ

m∑
n=1

bn ≤ C0 exp(τ

m−1∑
n=0

dn), ∀m ≥ 1. (26)

We emphasize that the Gronwall inequality (25) and (26) is an improved variant of the following
one: let C0, an, bn, dn be nonnegative numbers with integer n ≥ 0 such that

am + τ

m∑
n=1

bn ≤ τ

m∑
n=0

dnan + C0, ∀m ≥ 1. (27)

If τ satisfies τdn < 1 for all 0 ≤ n ≤ m, then

am + τ

m∑
n=1

bn ≤ C0 exp(τ

m∑
n=0

(1 − τdn)
−1dn), ∀m ≥ 1. (28)

The right-hand side of (27) involves the term am so the resulting estimate (28) requires a time
restriction on τ , while (25) does not. Most existing results, see, e.g., [16–19, 22, 24–26], could
only reduce their final error estimates to the case with the Gronwall inequality (27) and (28).
Instead we shall be able to manipulate the entire error estimate process in a way that our error
estimates can finally end with the case for the improved Gronwall inequality (25) and (26). This
is one of the key ingredients in our analysis that help us get rid of the time restriction for all our
error estimates.

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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FINITE ELEMENT ANALYSIS ON FLUID MOTION 1525

C. Error Estimates of Finite Element Solutions

In this section, we establish the stability and error estimates of the discrete solution {un
h, pn

h} to
the finite element system (16) and (17).

First for the stability, we take vh = τun
h in (16) and use (17) to derive

1

2
||un

h||20 − 1

2
||un−1

h ||20 + 1

2
τ 2||∂τ un

h||20 + Eτ ||∇un
h||20 ≤ τ ||fn||0||un

h||0,

then summing over n = 1, 2, · · · , k ≤ M and using the Poincaré and Young’s inequalities, we
obtain the stability estimate:

max
1≤n≤M

||un
h||20 + τ

M∑
n=1

(τ ||∂τ un
h||20 + E||∇un

h||20) ≤ c

(
||u0

h||20 + E−1τ

M∑
n=1

||fn||20
)

. (29)

Next, we demonstrate that the finite element solution {un
h, pn

h} to the system (16) and (17) has
the optimal error estimates.

Theorem 3.1. Let (u, p) be the solution to the variational system (14) and (15) with the reg-
ularities (A2), and {(un

h, pn
h)} be the fully discrete solution to the finite element system (16) and

(17), then we have the following optimal error estimates

max
1≤n≤M

||un
h − un||20 + τE

M∑
n=1

||∇(un
h − un)||20 ≤ C(τ 2 + h4). (30)

Here C is a general positive constant depending on the data (E, T , u, Z, f , �).

Proof. It suffices to derive the estimate for un
h − Ihun by using the relation

un
h − un = (un

h − Ihun) + (Ihun − un) (31)

and the triangle inequality and the projection approximation (22). So we will estimate εn
h :=

un
h − Ihun below.

Integrating both sides of (14) and (15) over the time interval (tn−1, tn) respectively, we deduce
for any v ∈ H1

0(�) and q ∈ L2(0, T ; L2
0(�)),

(∂τ un, v) + E(∇un, ∇v) − (p̄n, ∇ · v) + (u · ∇u
n
, v) + (Z × u

n
, v) = (f

n
, v), (32)

−(∇ · un, q) = 0. (33)

Subtracting (32) from (16), we get the following equation for εn
h :

(∂τ ε
n
h , vh) + E(∇εn

h , ∇vh) − (pn
h − p̄n, ∇ · vh)

= (fn − f
n
, vh) + (u · ∇u

n − un−1
h · ∇un

h, vh) + (Z × u
n − Zn × un

h, vh)

+ E(∇(un − Ihun), ∇vh).

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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1526 CHAN ET AL.

Taking vn
h = τεn

h , we obtain

1

2
||εn

h ||20 − 1

2
||εn−1

h ||20 + τE||∇εn
h ||20 =

10∑
i=1

(I)i

≡
∫ tn

tn−1

(t − tn−1)(ft (t), εn
h)dt −

∫ tn

tn−1

(t − tn−1)dt (u, u, εn
h)dt

+ τd(u(tn) − u(tn−1), u(tn), ε
n
h) + d(u(tn−1) − Ihu(tn−1) + εn−1

h , u(tn), ε
n
h)

+ τd(un−1
h , u(tn) − Ihu(tn), ε

n
h) + τ(ρhp̄

n − p̄n, ∇ · εn
h)

+
∫ tn

tn−1

(t − tn−1)(Zt × u + Z × ut , ε
n
h)dt + (Z(tn) × (u(tn) − Ihu(tn)), ε

n
h)

− E

∫ tn

tn−1

(t − tn−1)(∇ut , ∇εn
h)dt + Eτ(∇(u(tn) − Ihu(tn)), ∇εn

h). (34)

Now by some standard techniques and using the Poincaré and Young inequalities, we can
derive the following estimates for all the terms (I)1 to (I)10 in (34) except for (I)2 and (I)3:

(I)1 ≤ cτ
3

2

(∫ tn

tn−1

||ft ||20dt

) 1
2

||εn
h ||0 ≤ E

16
||∇εn

h ||20τ + cE−1τ 2

∫ tn

tn−1

||ft ||20dt ,

(I)4 ≤ cτ ||εn−1
h ||0||u(tn)||2||∇εn

h ||0
+ cτ ||∇(u(tn−1) − Ihu(tn−1))||0||∇u(tn)||0||∇εn

h ||0
≤ E

16
||∇εn

h ||20τ + cE−1τ ||∇(u(tn−1) − Ihu(tn−1))||20||∇u(tn)||20
+ cE−1τ ||εn−1

h ||20||u(tn)||22,

(I)5 ≤ ch−1τ ||εn−1
h ||0||∇(u(tn) − Ihu(tn))||0||∇εn

h ||0
+ cτ ||∇(Ihu(tn−1)||0||∇(u(tn) − Ihu(tn))||0||∇εn

h ||0
≤ E

16
||∇εn

h ||20τ + cE−1τ ||∇u(tn−1)||0||∇(u(tn) − Ihu(tn))||20
+ cE−1τ ||εn−1

h ||20||u(tn)||22,

(I)6 ≤ cτ ||p̄n − ρhp̄
n||0||∇εn

h ||0 ≤ E

16
||∇εn

h ||20τ + cE−1h4

∫ tn

tn−1

||p||22dt ,

(I)7 ≤ cτ
3
2

(∫ tn

tn−1

(|Zt |2||u||20 + |Z|2||ut ||20)dt

) 1
2

||∇εn
h ||0

≤ E

16
||∇εn

h ||20τ + cE−1τ 2

∫ tn

tn−1

(|Zt |2||u||20 + |Z|2||ut ||20)dt ,

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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FINITE ELEMENT ANALYSIS ON FLUID MOTION 1527

(I)8 ≤ cτ |Z(tn)|||u(tn) − Ihu(tn)||0||εn
h ||0

≤ E

16
||∇εn

h ||20τ + cE−1τ |Z(tn)|2||∇(u(tn) − Ihu(tn))||20,

(I)9 ≤ cτ
3
2

(∫ tn

tn−1

||∇ut ||20dt

) 1
2

||∇εn
h ||0 ≤ E

16
||∇εn

h ||20τ + cE−1τ 2

∫ tn

tn−1

||∇ut ||20dt ,

(I)10 ≤ cτ ||∇(u(tn) − Ihu(tn))||0||∇εn
h ||0

≤ E

16
||∇εn

h ||20τ + cE−1τ ||∇(u(tn) − u(tn))||20.

Conversely, by using (21) and the following inequality

||u||L∞ + ||∇u||L3 ≤ c||u||2 ∀u ∈ H2(�) ∩ H1
0(�), (35)

we can estimate (I)2 and (I)3 as follows:

(I)2 ≤ c

∫ tn

tn−1

(t − tn−1)[|d(ut , u, εn
h)| + |d(u, εn

h , ut )|]dt

≤ cτ
3
2

(∫ tn

tn−1

||ut ||20||u||22dt

) 1
2

||∇εn
h ||0

≤ E

16
||∇εn

h ||20τ + cE−1τ 2

∫ tn

tn−1

||ut ||20||u||22dt ,

(I)3 ≤ cτ
3
2

(∫ tn

tn−1

||ut ||20dt

) 1
2

||u(tn)||2||∇εn
h ||0

≤ E

16
||∇εn

h ||20τ + cE−1τ 2

∫ tn

tn−1

||ut ||20||u(tn)||22dt .

Summing up (34) over n = 1 to n = m and using the above estimates for (I)1 to (I)10 and the
regularities (A2), lead us to the following bound:

||εm
h ||20 + Eτ

m∑
n=1

||∇εn
h ||20 ≤ C(τ 2 + h4)

∫ T

0
(||ft ||20 + ||u||20 + ||ut ||21 + ||p||22)dt

+ Cτ

M∑
n=1

||∇(u(tn) − Ihu(tn))||20 + cE−1τ

m−1∑
n=1

||u(tn+1)||22||εn
h ||20. (36)

Then applying the discrete Gronwall inequality to (36) and using (A2), we further deduce

||εm
h ||20 + Eτ

m∑
n=1

||∇εn
h ||20

≤ C exp

{
cE−1τ

m−1∑
n=1

||u(tn+1)||22
} {

τ 2 + h4 + τ

M∑
n=1

||∇(u(tn) − Ihu(tn))||20
}

. (37)
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1528 CHAN ET AL.

But it follows easily that

τ ||∇(u(tn) − Ihu(tn))||20 ≤ c(τ 2 + h4)

∫ tn

tn−1

[||∇ut ||20 + ||u||23]dt (38)

by writing u(tn)−Ihu(tn) = (u(tn)−un
)+(un−Ihun

)+(Ihun−Ihu(tn)). Now the desired estimate
(30) follows from (31) by the triangle inequality, (37) and (38), and the projection approximation
(22).

IV. FINITE ELEMENT METHOD WITH SECOND-ORDER TEMPORAL SCHEME

In the previous section, we have discussed a fully discrete finite element method with first-order
time marching scheme. But for our highly nonlinear libration system, the first-order scheme may
not be always sufficient to capture the accuracy of the flow in an effective and stable manner.
In this section, we present a more accurate time discretization, the second-order Crank-Nicolson
extrapolation scheme. The subsequent notations for the time and space discretizations as well as
the finite element spaces are all carried over from the previous section.

Now we are going to use the implicit second-order Crank-Nicolson scheme for the linear terms
and the implicit second-order extrapolation to deal with the nonlinear term. We shall also write

un+1/2 = 1

τ

∫ tn+1

tn

u(s)ds, un+1/2 = un+1 + un

2
, un+1/2

h = un+1
h + un

h

2

and

Tn(u) = 3

2
un − 1

2
un−1 or Tn(uh) = 3

2
un

h − 1

2
un−1

h .

Using these approximations in time along with the same finite element approximations as used
in the previous section in space, we propose the following fully discrete finite element scheme
for the system (14) and (15):

Find {un
h} ⊂ Vh, {pn

h} ⊂ Ph for n = 0, 1, · · · , M such that u0
h = Ihu0 and

(∂τ un+1
h , vh) + E(∇un+1/2

h , ∇vh) − (p
n+1/2
h , ∇ · vh) (39)

+ d(Tn(uh), un+1/2
h , vh) + (Zn+1/2 × un+1/2

h , vh) = (fn+1/2, vh) ∀vh ∈ Vh,

− (∇ · un+1/2
h , qh) = 0 ∀qh ∈ Ph. (40)

It is easy to see that the scheme (39) and (40) just needs to solve a linear system at each time
step, and it will be shown to be second accurate in time.

It is well known [26] that for the fully implicit second-order Crank-Nicolson scheme based on
the mixed finite element method, there is a restriction τ ≤ C on the time step size for the con-
vergence. While for the semi-implicit second-order Crank-Nicolson extrapolation scheme, there
is also a restriction τ ≤ C on the time step size; see [24] for the 2D Navier-Stokes equations.
Conversely, for the semi-implicit second-order Crank-Nicolson extrapolation scheme based on
the stabilized finite element method, no restrictions are imposed on the time step size but the
convergence rate of the scheme is only of order O(τ

3
2 ) in time; see [25] for the 2D Navier-Stokes

equations.
To the best of our knowledge, this seems to be the first time to establish the optimal sec-

ond order convergence of the discrete solution (un
h, pn

h) to a linearized finite element system of
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FINITE ELEMENT ANALYSIS ON FLUID MOTION 1529

the Navier-Stokes equations in 3D, and more importantly, the optimal convergence rate will be
achieved without imposing any restriction on the time step size τ , under the following reasonable
assumptions on the regularities of the exact solution (u, p):

(A3)

{
u ∈ L∞(0, T ; H2(�)) ∩ L2(0, T ; H3(�)), p ∈ L2(0, T ; H 2(�)),

ut ∈ L∞(0, T ; H1(�)) ∩ L2(0, T ; H2(�)), ut t ∈ L2(0, T ; H1(�)).

A. Error Estimates of Finite Element Solutions

In this section, we establish the error estimate of the discrete solutions {un
h, pn

h} to the finite element
system (39) and (40).

For this, we first derive the stability estimates for {un
h, pn

h}. By choosing vh = τun+1/2
h in (39)

we obtain

1

2
||un+1

h ||20 − 1

2
||un

h||20 + Eτ ||∇un+1/2
h ||20 ≤ E

2
||∇un

h||20 + Cτ ||fn+1/2||20,

then summing over n = 1, 2, · · · , k ≤ M , we come to the stability estimate:

max
1≤n≤M

||un
h||20 + E

M∑
n=1

τ ||∇un+1/2
h ||20 ≤ C(||u0

h||20 +
M∑

n=1

τ ||fn||20). (41)

Now we are ready to demonstrate the optimal error estimate of the finite element solutions
{un

h, pn
h} to the system (39) and (40), second order accurate in both space and time.

Theorem 4.1. Let (u, p) be the solution to the variational system (14) and (15) with the reg-
ularities (A3), and {(un

h, pn
h)} be the fully approximate solution to the finite element system (39)

and (40). Then we have the following optimal error estimates

max
1≤n≤M

||un
h − un||20 + τE

M∑
n=1

||∇(un
h − un)||20 ≤ C(τ 4 + h4). (42)

Proof. Similarly, as we argued in the proof of Theorem 3.1, it suffices to estimate the error
εn

h = un
h − Ihun. To derive the equation satisfied by εn

h , we integrate both sides of (14) and (15)
over the time interval (tn, tn+1) to deduce for any v ∈ H1

0(�) and q ∈ L2
0(�), respectively,

(∂τ un+1, v) + E(∇un+1/2, ∇v) − (p̄n+1/2, ∇ · v) + (u · ∇u
n+1/2

, v)

+ (Z × u
n+1/2

, v) = (f
n+1/2

, v), (43)

− (∇ · un+1/2, q) = 0. (44)

Subtracting (43) from (39) yields the equation for the error function εn
h :

(∂τ ε
n+1
h , vh) + E(∇ε

n+1/2
h , ∇vh) − (p

n+1/2
h − p̄n+1/2, ∇ · vh)

= (fn+1/2 − f
n+1/2

, vh) + (u · ∇u
n+1/2 − Tn(uh) · ∇un+1/2

h , vh)

+ (Z × u
n+1/2 − Zn+1/2 × un+1/2

h , vh) + (∂τ (un+1 − Ihun+1), vh)

+ E(∇(un+1/2 − Ihun+1/2), ∇vh).
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1530 CHAN ET AL.

Taking vn
h = τε

n+1/2
h in the above equation, we can rewrite it as follows:

1

2
||εn+1

h ||20 − 1

2
||εn

h ||20 + τE||∇ε
n+1/2
h ||20 ≡

12∑
i=1

(I)i

= 1

2

∫ tn+1

tn

(t − tn)(tn+1 − t)(ft t , ε
n+1/2
h )dt

− 1

2

∫ tn+1

tn

(t − tn)(tn+1 − t)(Zt t × u + 2Zt × ut + Z × ut t , ε
n+ 1

2
h )

+ τ

4
((Z(tn+1) − Z(tn)) × (u(tn+1) − u(tn)), ε

n+ 1
2

h )

+ τ(Zn+ 1
2 × (un+ 1

2 − Ihun+ 1
2 ), ε

n+ 1
2

h )

− E

2

∫ tn+1

tn

(t − tn)(tn+1 − t)(∇ut t , ∇ε
n+ 1

2
h )dt + Eτ(∇(un+ 1

2 − Ihun+ 1
2 ), ∇εn

h)

+ τ(ρhp̄
n+ 1

2 − p̄n+ 1
2 , ∇ · ε

n+ 1
2

h ) − 1

2

∫ tn+1

tn

(t − tn)(tn+1 − t)dtt (u, u, ε
n+ 1

2
h )dt

+ τ

4
d(u(tn+1) − u(tn), u(tn+1) − u(tn), ε

n
h)

+ τ

2
d(u(tn+1 − 2u(tn) + u(tn−1), un+ 1

2 , ε
n+ 1

2
h )

+ τd(Tn(u) − IhTn(u) + Tn(εh), un+ 1
2 , ε

n+ 1
2

h ) + τd(Tn(uh), un+ 1
2 − Ihun+ 1

2 , ε
n+ 1

2
h ). (45)

By some standard techniques, we can estimate (I)1 to (I)7 as

(I)1 ≤ cτ
5
2

(∫ tn+1

tn

||ft t ||20dt

) 1
2

||εn+ 1
2

h ||0 ≤ Eτ

16
||∇ε

n+ 1
2

h ||20 + cτ 4

E

∫ tn+1

tn

||ft t ||20dt ,

(I)2 ≤ cτ
5
2

(∫ tn+1

tn

[|Zt t |2||u||20 + |Zt |2||ut ||20 + |Z|2||ut t ||20]dt

) 1
2

||εn+ 1
2

h ||0

≤ E

16
||∇ε

n+ 1
2

h ||20τ + cE−1τ 4

∫ tn

tn−1

[||u||20 + ||ut ||20 + ||ut t ||20]dt ,

(I)3 ≤ cτ

∫ tn+1

tn

|Zt |dt

∫ tn+1

tn

||ut ||0dt ||εn+ 1
2

h ||0

≤ E

16
||∇ε

n+ 1
2

h ||20τ + cE−1τ 4

∫ tn+1

tn

||ut ||20dt ,

(I)4 ≤ cτ |Zn+ 1
2 |||un+ 1

2 − Ihun+ 1
2 ||0||εn+ 1

2
h ||0

≤ E

16
||∇ε

n+ 1
2

h ||20τ + cE−1τ ||∇(un+ 1
2 − Ihun+ 1

2 )||20,
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FINITE ELEMENT ANALYSIS ON FLUID MOTION 1531

(I)5 ≤ Eτ
5
2

(∫ tn+1

tn

||∇ut t ||20dt

) 1
2

||∇ε
n+ 1

2
h ||0

≤ E

16
||∇ε

n+ 1
2

h ||20τ + cEτ 4

∫ tn+1

tn

||∇ut t ||20dt ,

(I)6 ≤ cτ ||∇(un+ 1
2 − Ihun+ 1

2 )||0||∇ε
n+ 1

2
h ||0

≤ E

16
||∇ε

n+ 1
2

h ||20τ + cE−1τ ||∇(un+ 1
2 − Ihun+ 1

2 )||20,

(I)7 ≤ cτh2||∇ε
n+ 1

2
h ||0||p̄n+ 1

2 ||2 ≤ E

16
||∇ε

n+ 1
2

h ||20τ + cE−1h4

∫ tn+1

tn

||p||22dt .

For (I)8 to (I)12 in (45), we can estimate using the definition of the trilinear function d(·, ·, ·)
and its estimates:

(I)8 ≤ cτ
5
2

(∫ tn+1

tn

[||ut t ||20||u||22 + ||ut ||22||ut ||20]dt

) 1
2

||∇ε
n+ 1

2
h ||0

≤ E

16
||∇ε

n+ 1
2

h ||20τ + cE−1τ 4

∫ tn

tn−1

[||ut t ||20||u||22 + ||ut ||22||ut ||20]dt ,

(I)9 ≤ cτ ||∇ε
n+ 1

2
h ||0

(∫ tn+1

tn

||∇ut ||0dt

)2

≤ E

16
||∇ε

n+ 1
2

h ||20τ + cE−1τ 4 sup
0≤t≤T

||∇ut (t)||20
∫ tn+1

tn

||∇ut ||20dt ,

(I)10 ≤ cτ
5
2 ||∇ε

n+ 1
2

h ||0||un+ 1
2 ||2

(∫ tn+1

tn−1

||ut t ||20dt

) 1
2

≤ E

16
||∇ε

n+ 1
2

h ||20τ + cE−1τ 4 sup
0≤t≤T

||u(t)||22
∫ tn+1

tn

||ut t ||20dt ,

(I)11 ≤ cτ ||∇ε
n+ 1

2
h ||0(||∇(Tn(u) − IhTn(u))||0||∇un+ 1

2 ||0 + ||Tn(εh)||0||un+ 1
2 ||2)

≤ E

16
||∇ε

n+ 1
2

h ||20τ + cE−1τ ||∇(Tn(u) − IhTn(u))||20||∇un+ 1
2 ||20

+ cE−1τ ||Tn(εh)||20||un+ 1
2 ||22,

(I)12 ≤ cτ(h−1||Tn(εh)||0 + ||∇Tn(Ihu)||0)||∇(un+ 1
2 − Ihun+ 1

2 )||0||∇ε
n+ 1

2
h ||0

≤ E

16
||∇ε

n+ 1
2

h ||20τ + cE−1τ ||Tn(εh)||20||un+ 1
2 ||22

+ cE−1τ ||∇Tn(u)||20||∇(un+ 1
2 − Ihun+ 1

2 )||20.

Summing up (45) from n = 1 to n = m − 1 and using the previous estimates for (I)1 to (I)12

and the regularities (A3) we obtain
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1532 CHAN ET AL.

||εm
h ||20 + Eτ

m∑
n=1

||∇εn
h ||20

≤ C(τ 4 + h4)

∫ T

0
[||ft t ||20 + ||u||20 + ||p||22 + ||ut ||22 + ||∇ut t ||20]dt

+ Cτ

M−1∑
n=1

[||∇(Tn(u) − IhTn(u))||20 + ||∇(un+ 1
2 − Ihun+ 1

2 )||20]

+ τ

m−1∑
n=1

dn||εn
h ||20, (46)

where we write dM−1 = cE−1(||u(tM)||22 + ||u(tM−1)||22), and

dn = cE−1(||u(tn+2)||22 + ||u(tn+1)||22 + ||u(tn)||22)

for n = 1, · · · , M − 2. Now applying the discrete Gronwall inequality to (46) and using the
regularities (A3), we deduce

||εm
h ||20 + Eτ

m∑
n=1

||∇εn
h ||20 ≤ exp

{
τ

m−1∑
n=1

dn

} {
C(τ 4 + h4)

×
∫ T

0
[||ft t ||20 + ||u||20 + ||p||22 + ||ut ||22 + ||∇ut t ||20]dt

+Cτ

M∑
n=1

[||∇(Tn(u) − IhTn(u))||20 + ||∇(un+ 1
2 − Ihun+ 1

2 )||20]
}

≤ C(τ 4 + h4)

∫ T

0
[||ft t ||20 + ||u||20 + ||p||22 + ||ut ||22 + ||∇ut t ||20]dt

+ Cτ

M∑
n=1

[||∇(Tn(u) − IhTn(u))||20 + ||∇(un+ 1
2 − Ihun+ 1

2 )||20]. (47)

But the last two terms in (47) can be estimated by using the approximation property (22) of
projection Ih as follows:

τ ||∇(un+ 1
2 − Ihun+ 1

2 )||20
≤ 3τ {||∇(un+ 1

2 − un+ 1
2 )||20 + ||∇(un+ 1

2 − Ihun+ 1
2 )||20 + ||∇(Ihun+ 1

2 − Ihun+ 1
2 )||20}

≤ c(τ 4 + h4)

∫ tn+1

tn

[||∇ut t ||20 + ||u||23]dt , (48)
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τ ||∇(Tn(u) − IhTn(u))||20
= τ ||∇[(un+ 1

2 − un+ 1
2 − Tn(u)) − Ih(un+ 1

2 − un+ 1
2 − Tn(u)))||20

≤ 3τ ||∇un+ 1
2 − Ihun+ 1

2 )||20 + 3τ ||∇
∫ tn+1

tn

(ut − Ihut )dt ||20

+ 3τ ||∇
∫ tn

tn−1

(ut − Ihut )dt ||20

≤ c(τ 4 + h4)

∫ tn+1

tn

[||∇ut t ||20 + ||ut ||22 + ||u||23]dt . (49)

Now the desired estimate (42) follows from (31) by the triangle inequality, (47)–(49), and the
projection approximation (22).

V. NUMERICAL SIMULATIONS

A. Triaxial Ellipsoidal Tetrahedral Mesh

The essential strategy for generating a tetrahedral mesh suitable for a triaxial ellipsoidal cavity is
first to construct a spherical tetrahedral mesh [27] which is then deformed into a triaxial ellipsoidal
geometry by introducing the eccentricity E as a geometric parameter of the triaxial ellipsoidal
mesh. More precisely, all nodes (xi , yi , zi) in a spherical tetrahedral mesh within the unit sphere
satisfying

x2
i + y2

i + z2
i = r2

i , 0 < ri ≤ 1,

can be transformed by

xE
i = xi , yE

i = yi

√
1 + E2, zE

i = zi

√
1 − E2

such that the deformed nodes (xE
i , yE

i , zE
i ) satisfy

(xE
i )

2 + (yE
i )

2

1 + E2
+ (zE

i )
2

1 − E2
= r2

i , 0 < ri ≤ 1.

For the purpose of resolving the thin viscous boundary layer, we can construct more nodes in
the vicinity of the bounding surface of the triaxial ellipsoidal cavity by stretching the spherical
mesh points (xi , yi , zi) radially before the deformation, for example,

⎡
⎣xi

yi

zi

⎤
⎦ = 1

ri

sin
(π

2
ri

)2/3

⎡
⎣xi

yi

zi

⎤
⎦ .

The spherical mesh itself begins with approximating the sphere by an icosahedron which is
then further divided into 20 identical tetrahedra based on its 20 triangular facets and the center
of the sphere. This initial tetrahedral mesh is then refined recursively by subdividing each of the
tetrahedra into eight subtetrahedra.
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1534 CHAN ET AL.

FIG. 1. Kinetic energy, Ekin (t), obtained with the implicit scheme is shown as a function of the scaled
time (T = 2π/ω̂) at a fixed E = 0.5 for E = 10−4, ω̂ = 1.2 and Po = 0.3.

The 3D tetrahedralization of the triaxial ellipsoid produces a finite element mesh that does
not have pole or central numerical singularities. When E is very close to 1, representing a highly
flatted triaxial ellipsoidal disk, an alternative meshing algorithm should be used. This is because
a regular-shaped tetrahedron after transformation may become too stretched and, consequently,
lead to a poor finite element approximation. In this case, a general mesh generation algorithm
based on the Delaunay triangulation can be used instead.

B. Implementation and Results

In the previous studies [3, 7], an explicit Crank-Nicolson scheme was used for numerical sim-
ulation, which may result in numerical instabilities in the strongly nonlinear regime and, thus,
limit the size of time steps in numerical integration. On the basis of this study, we implement
the second-order implicit Crank-Nicolson scheme, defined by the finite element system (39) and
(40), in a new finite element code for triaxial ellipsoidal geometry.

After implementation, we have simulated a number of nonlinear solutions using the new
implicit code in a triaxial ellipsoidal cavity with E = 0.5. Figure 1 shows the time-dependent
kinetic energies, Ekin (t), defined as

Ekin (t) = 1

2�

∫
�

|u(r, t)|2d�,

for a nonlinear librating flow as a function of time for Po = 0.3 and E = 10−4, where
∫
�

denotes

the integral over the triaxial ellipsoidal cavity. The corresponding spatial structure of the flow is
depicted in Fig. 2. It reveals that the numerical solutions obtained with the implicit scheme are
consistent with both the analytical solution [3] and the numerical solution based on the explicit
scheme [7]. However, the new numerical code using the implicit Crank-Nicolson scheme is much
more efficient, being numerically stable with larger time steps. Moreover, since the nonlinear
effect taking place in the Ekman boundary layer plays an essential role in generating the mean
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FIG. 2. (a) Isosurface of the radial component of the flow and (b) isosurface of the latitudinal component
for E = 0.5, E = 10−4, ω̂ = 1.2 and Po = 0.3. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

flow, the implicit Crank-Nicolson scheme would help capture the boundary-layer nonlinear effect
more accurately.

VI. CONCLUDING REMARKS

As a result of rapid rotation and interaction between planets and stars, many planetary bodies
are in the shape of a triaxial ellipsoid. This article presents the theoretical analysis for a finite
element method that can be used to compute nonlinear time-dependent librating flows confined
in librating triaxial ellipsoidal cavities with arbitrary eccentricity 0 ≤ E < 1, providing a mathe-
matical foundation for the geophysical and astrophysical application of the numerical method. It
can be readily extended to other problems of geophysical and astrophysical fluid dynamics, such
as tidally or precessionally driven flow, in nonspherical geometry.

In comparison to the spectral method, the finite element method is based on the 3D triangulation
of a triaxial ellipsoidal domain with the velocity and pressure being represented by continuous
piecewise quadratic and linear finite elements. We have discussed the stability properties of the
finite element solution and estimated the numerical errors of the finite element approximation. We
have also implemented the second-order implicit scheme which is then used to simulate several
nonlinear flows a triaxial ellipsoid. To authors’ best knowledge, this article represents the first
theoretical study on a finite element scheme for simulating a nonlinear librating flow in triaxial
ellipsoidal geometry.

The numerical scheme presented in this article would be also suitable for simulating dynamo
action taking place in nearly synchronous planets and moons that are thermally or chemically
nonconvective. Although, it is widely accepted that thermal or chemical buoyancy within plane-
tary fluid cores drives planetary dynamo, exceptional cases may exist for certain planets, such as
Mercury and Ganymede, which may require an alternative mechanism of sustaining their dynamo
action. An extension of a similar theoretical study to include both the magnetic field on the flow
and the dynamo action in a librating triaxial ellipsoid would be challenging.

Part of the work was carried out when YH and KZ were visiting Department of Mathematics
and Institute of Mathematical Sciences, the Chinese University of Hong Kong and supported by a
Direct Grant for Research from CUHK.
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