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 CONVERGENCE OF AN ADAPTIVE FINITE ELEMENT

 METHOD FOR DISTRIBUTED FLUX RECONSTRUCTION

 YIFENG XU AND JUN ZOU

 Abstract. We shall establish the convergence of an adaptive conforming finite
 element method for the reconstruction of the distributed flux in a diffusion

 system. The adaptive method is based on a posteriori error estimators for the
 distributed flux, state and costate variables. The sequence of discrete solutions
 produced by the adaptive algorithm is proved to converge to the true triplet
 satisfying the optimality conditions in the energy norm, and the corresponding
 error estimator converges to zero asymptotically.

 1. Introduction

 The heat flux distributions are of significant practical interest in thermal and
 heat transfer problems, e.g., the real-time monitoring in steel industry [2] and the
 visualization by liquid crystal thermography [17]. Considering its accurate distri-
 bution is rather difficult to obtain in some inaccessible part of the physical domain,
 such as the interior boundary of nuclear reactors and steel furnaces, engineers at-
 tempt to recover the heat flux from some measured data, which leads naturally
 to the inverse problem of reconstructing the distributed heat flux from the mea-
 surements on the accessible part of the boundary or the Cauchy problem for an
 elliptic/parabolic equation. Several numerical methods have been proposed for this
 classical ill-posed problem, among which the least-squares formulation [39], [41],
 [42] has received intensive investigations and has been implemented by means of
 the boundary integral method [42] and the finite element method [39].

 However, the story is far from complete from the viewpoint of numerical simula-
 tions. One main challenge is to detect local features of unknown fluxes accurately
 and efficiently, particularly in the presence of nonsmooth boundaries and discon-
 tinuity or singularity in fluxes. Compared with the finite element reconstruction
 over meshes generated by a uniform refinement, which often requires formidable
 computational costs to achieve a high resolution, adaptive finite element methods
 (AFEM) are clearly a preferable candidate to remedy the situation as it is able to
 retrieve the same result with much fewer degrees of freedom.
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 2646 YIFENG XU AND JUN ZOU

 A standard adaptive finite element method consists of successive loops of the
 form:

 (1.1) SOLVE -> ESTIMATE -> MARK -> REFINE.

 That is, one first solves the discrete problem for the finite element solution on the
 current mesh, computes the related a posteriori error estimator, marks elements to
 be subdivided, and then refines the current mesh to generate a new finer one.

 A major force used to drive the process (1.1) is the module ESTIMATE, which
 relies on some computable quantities (often called a posteriori estimation), formed
 by the discrete solution on the current mesh and given data. Since the pioneer
 work [3], a posteriori error estimations have been extensively investigated for finite
 element approximations of direct partial differential equations and the theory has
 reached a mature level for elliptic systems; see the monographs [1], [6], [40] and the
 references therein. As far as PDE-based inverse problems are concerned, there are
 also some important developments, e.g., [5], [8], [9], [10], [11] [12], [19], [21], [24].
 But a vast amount of literature is available on PDE-constrained optimal control
 problems; see [7], [22], [23], [25], [26] and the references therein, although inverse
 problems are quite different in nature due to the severe instability by data noise.

 On the other hand, the study of AFEMs itself is also a research topic of great
 interest and has made substantial progress in the past decade. Specifically, the
 convergence and the computational complexity of an AFEM have been analyzed in
 depth for the numerical solution of second order boundary value problems; see [13] ,
 [14] [16], [18], [31], [32], [33] [35], [36]. But there are still no developments available
 for inverse problems. To our knowledge, the only related work is the one in [20]
 and it studied the asymptotic error reduction property of an adaptive finite element
 approximation for the distributed control problems with control constraints, where
 the adaptive algorithm requires one extra step for some oscillation terms in the
 module MARK and the interior node property in the module REFINE.

 In this work, we shall fill in the gap and establish a first convergence result for an
 adaptive finite element method for inverse problems, namely, we shall demonstrate
 that both the finite element error (in some appropriate norm) and the estimator
 converge to zero when the AFEM is applied to reconstruct the distributed flux on
 some inaccessible part of the boundary from partial measurements on an accessible
 boundary part. Compared with [20] for an optimal control problem, the algorithm
 studied here is of the same framework as the standard one for (direct) elliptic prob-
 lems (e.g. [14] [33]), particularly no more marking for oscillation terms as well as no
 interior node property is enforced in the module MARK and the module REFINE,
 therefore it is advantageous to practical computations. Our basic arguments follow
 some principles in [35], [32] for a class of linear direct boundary value problems.
 In this sense, the current work may be viewed as an extension of [32], [35] for the
 AFEM to inverse problems, but due to the nature of the inverse problem there are
 some essential technical differences as mentioned below.

 • The direct problems of some linear partial differential equations were con-
 sidered in [32], [35], while a nonlinear optimization problem for solving an
 inverse problem with the temperature field (state) and the flux (control)
 coupled in a diffusion equation is the focus of this work, which leads to a
 saddle-point system.
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 CONVERGENCE OF AN ADAPTIVE FINITE ELEMENT METHOD 2647

 • In [32], [35] for linear direct problems, a key observation is the strong conver-
 gence of a sequence of discrete solutions generated by the adaptive process
 (1.1) to some limit, which is a direct consequence of the standard finite el-
 ement convergence theory such as Cea's lemma [15]. In contrast, achieving
 such a result for the inverse problem is highly nontrivial. We shall view
 the approximate fluxes generated by (1.1) as the minimizers to a discrete
 optimal system, and employ some techniques from nonlinear optimizations
 to establish the strong convergence of the adaptive sequence to a minimizer
 of some limiting optimal system.

 • The convergence was established in [35] by first demonstrating the weak
 vanishing limit of a sequence of residuals associated with the adaptive so-
 lutions, then proving the strong limit of the sequence of adaptive solutions
 is the exact solution. But this approach does not apply to our current
 problem as the exact state and the limiting state depend on the exact flux
 and the limiting flux respectively. As a remedy, we shall introduce an aux-
 iliary state depending on the limiting flux to help us realize the desired
 convergence.

 Our convergence theory is basically established in three steps. In the first step, we
 shall show the sequence of discrete triplets (the approximate state, costate and flux)
 produced by the adaptive algorithm converges strongly to some limiting triplet.
 Unlike for the direct problem of differential equations, we need to deal with a
 nonlinear optimization system with PDE constraints; see Section 4. In the second
 step, we will prove the limiting triplet is the exact one. To do so, we have to consider
 and study the limiting behaviors of the residuals associated with the approximate
 state and costate and introduce an auxiliary problem to resolve a technical difficulty;
 see Section 5.2. Finally in the last step, we will demonstrate that the error estimator
 has a vanishing limit. This will be the consequence of the previous steps and the
 efficiency of the error estimator; see the proof of Theorem 5.2.

 The rest of this paper is organized as follows. In Section 2, we give a description of
 the flux reconstruction problem and its finite element method. A standard adaptive
 algorithm based on an existing residual-type a posteriori error estimator is stated
 in Section 3. In Section 4, we prove the sequence of discrete triplets converges to
 some limiting triplet. The main results are presented in Section 5 and finally the
 paper is ended with some concluding remarks in Section 6.

 Throughout the paper we adopt the standard notation for the Lebesgue space
 L°°(G) and L2-based Sobolev spaces Hm(G) for integer m > 0 on an open bounded
 domain G C Kd. Related norms and semi-norms of Hm(G) as well as the norm of
 L°°(G) are denoted by || • ||m,G, I • U,G and || • ||oo,g respectively. We use (•, -)g to
 denote the L2 scalar product on G, and the subscript is omitted when no confusion is
 caused. Moreover, we shall use G, with or without subscript, for a generic constant
 independent of the mesh size and it may take a different value at each occurrence.

 2. Mathematical formulations

 Let Ū C Rd (d = 2, 3) be an open and bounded polyhedral domain. The bound-
 ary r of ÎÎ is made up of two disjoint parts T0 and T¿ such that T = Ta U I', where
 ra and Ti are the accessible and inaccessible parts respectively. The governing
 diffusion system of our interest is of the form

 (2.1) -V • (aVw) = / in fž,
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 2648 YIFENG XU AND JUN ZOU

 ^ 9u _ du _
 (2.2) ^ a-+iu = jua on _ ra ; a- = -q on _ I¿,

 on on

 where n is the unit outward normal on T and the given data include the source
 / G L2 (fi), the ambient temperature ua G L2(Ta), the heat transfer coefficient 7 > 0
 and the diffusi vity coefficient a > 0. For simplicity 7 and a are both assumed to be
 constants, but it is straightforward to extend all our analyses and results to the case
 when both are variable functions. The inverse problem is to recover the distributed
 flux <7, when the partial measurement data z of temperature u is available on Ta.
 We note this problem is highly ill-posed since the Cauchy data z imposed on Ta
 is inevitably contaminated with observation errors in practice [39]. To overcome
 this difficulty, we often formulate it as a constrained minimization problem with
 the Tikhonov regularization:

 (2.3) gefĶ)J(q) = ¿IK?) " 2|l°'r° + 2 1 ikll°-r"
 where u := u(q) G if1(ň) satisfies the variational formulation of (2.1)-(2.2):

 (2.4) a(u, <j>) = (/, <j>) + (tu., 4) r. - (®, 4>)u V <j> € if1 (il)

 and the constant ß > 0 is the regularization parameter. Here a(-, •) := (aV-, V ) +
 (7*5 )ra is a weighted inner product over H 1(íi) and its induced norm || • ||a is equiv-
 alent to the usual fi1 -norm due to the Poincaré inequality. There exists a unique
 minimizer to the system (2.3)-(2.4) [39]. Moreover, with a costate p* G H1 (Sì)
 involved, the minimizer (q*,u*(q*)) is characterized by the following optimality
 conditions [24]:

 (2.5) a{u'<j>) = {f,<t>) + {1ua,<t>)Ta-{q*,4>)Ti V </> e tf1^),

 (2.6) a(p*,v) = (u* -z,v) ra VveH^Ū),
 (2.7) (ßg'-p',w)rt=0 V w e L2(Tì).

 Next we introduce a finite element method to approximate the continuous prob-
 lem (2.3)-(2.4). Let Th be a shape-regular conforming triangulation of Ù into a set
 of closed simplices, with the diameter hr := 'T'l¡d for each element T G Th- Let Vh
 be the usual if1 -conforming linear element space over Th, and V^r» •= |r¿ the
 feasible discrete space for q. Then the minimization (2.3)-(2.4) is approximated by

 (2-8) min Jh(qh) = )- ''uh(qh) - «||gr. + filmilo, iv

 where u/, := Uh{qh ) € Vh solves the discrete problem

 (2.9) a(Uh, <f>h) = (/, 4h) + (7ua> <t>h)ra ~ (qh, <t>h)Ti V <t>h € Vh-

 As in the continuous case, there exists a unique minimizer to (2.8)-(2.9), and the
 minimizer qjt € V^r, , the discrete state and costate u*h € V/, and p*h e Vh satisfy
 the optimality conditions:

 (2.10) a(u£, <t>h) = (/, 4>h) + (lUa, 4>h) r„ - (®v Mr, V <j>h € Vh,

 (2.11) a(p*h, vh) = ( ul - z, vh)ra V vh € Vh,
 (2.12) (ßqt-plwh )r, =0 V wh € Vfctr4.

This content downloaded from 137.189.49.142 on Fri, 02 Dec 2022 08:27:27 UTC
All use subject to https://about.jstor.org/terms



 CONVERGENCE OF AN ADAPTIVE FINITE ELEMENT METHOD 2649

 3. A POSTERIORI ERROR ESTIMATION AND AN ADAPTIVE ALGORITHM

 In this section we review a residual-type a posteriori error estimate and a re-
 lated adaptive algorithm developed in [24]. For this purpose, more notation and
 definitions are needed.

 The collection of all faces (resp. all interior faces) in Th is denoted by Th (resp.
 Th(ft)) and its restriction on Ta and by J4(ra) and J4(r¿) respectively. The
 scalar hp '-= |F stands for the diameter of F G J4, which is associated with a
 fixed normal unit vector rip in the interior of Ū and rip = n on the boundary T. We
 use Dp (resp. Dp) for the union of all elements in Th with nonempty intersection
 with element T G % (resp .F e Th)- Furthermore, for any Te ^ we denote
 by up the union of elements in Th sharing a common face with T, while for any
 F G Th( fi) (resp. F G F/l(ra)U ^(T^)) we denote by uf the union of two elements
 in Th sharing the common face F (resp. the element with F as an edge).

 For any ((f) h , Vh, Wh) G x 14 x 14^ , we define two element residuals for each
 T G % by

 Rt, i(0/i) = / + v • (aV<ļ>h) and RTfi(vh) = -V • (aVą) ,
 and two face residuals for each face F G Th by

 ( [aV(f>h • nF] for F e Fh(ū),
 , w h) = < jua- i<ļ>h - aV<j>h ■ nF for F € Fh(ra),

 { -wh- aV<j)h-nF iox F eFh{Ti)
 and

 ( [aVt)/, • nF] for F € Fh(ty,
 JF,2{vh,<ì>h) = < <t>h-z-jvh- aVvh • nF for F € Fh(Ta),

 { -aVvh-nF îorF€Fh(Ti),
 where [aV</>/, • «f] and [aVw^ • nF] are the jumps across F € Th- Then for any
 M h Ç Th, we introduce the error estimator

 Vh(<t>h,Vh,Wh,f,Ua,Z,Mh):= VTfiiČhjVhyWhJ^cZ)
 T€Mh

 ■■= ^2 (rfrhl(<1>h,whJ,ua) + rfrha{vh,<l>h,z))
 T€Mh

 with

 rÌT,hti(<t>h,Wh,f,ua) •■= hĻ''Rr,i(4>h)''o,T + ^2 w/»)IIo,f
 FCdT

 and

 r¡Tih¿(vh,(Í>hiZ) := ^tII^T,2(^7I)||O,T + ^ll^»2(^/i> 0h)Ho ,F>
 FCdT

 and the following oscillation errors that involve the given data and the related
 elementwise projections:

 ose h(f,Mh):= J2 ftTll/-/rllo,r>
 T€Mh

 ° sc'(<j>h,Wh,Sh) := ^ 2 ^f ||/p,i - Jf, ilio,
 F€Sh

 OSCh(Vh,4>h,Sh) := ^2 ^f''Jf,2 "^F,2||o,F
 F€Sh
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 2650 YIFENG XU AND JUN ZOU

 for some Mh Q % and Sh Q Th , where fr (resp. Jf,i and Jf,2) is the integral
 average of / (resp. Jp, i and Jf,2) over T (resp. F). When Mh = Th or Sh = Th,
 Mh 01 Sh will be dropped from the parameter list of the error estimator or the
 oscillation errors above.

 With the above preparations, we are now ready to present the upper and lower
 bounds for the errors of the finite element solutions in terms of a residual-type
 estimator [24].

 Theorem 3.1. Let (u*,p*,q*) and (u£,p£,q£) be the solutions of (2.5)-(2.7) and
 (2.10)-(2.12) respectively, then there exists a constant C depending on the shape-
 regularity of Th and the coefficients a and 7, such that

 (3.1) IK- <11? + IK -P^ll? + IK - qt''l < Cß-2ril{ul,pUlf,ua,z).

 Theorem 3.2. There exists a constant C depending on the shape-regularity of Th
 and the coefficients a and 7, such that for any T G Th,

 2) (<.<><>/>«», *) < c(|K - <||^T + IK - Philo, UT
 + Ik* - <llo,0Tnr'°sc/;(/, WT) + os<«, q*h, &T) + osc2h{p*h, u*h, &T)).

 Based on the error estimators provided in Theorems 3.1 and 3.2 above, the fol-
 lowing adaptive algorithm was proposed for the flux reconstruction in [24]. In what
 follows the dependence on the triangulations is indicated by the number k of the
 mesh refinements.

 Algorithm 3.1. Given a parameter 0 G [0, 1] and a conforming initial mesh %.
 Set k := 0.

 (1) (SOLVE) Solve the discrete problems (2.10)-(2.12) on Tk for (u*Ļ,p%,qh) €
 Vk X Vk X VktTi.

 (2) (ESTIMATE) Compute the error estimator >rik('uļ,pļ.,ql, f,ua,z).
 (3) (MARK) Mark a subset Mk C Tk such that

 (3.3) WTeMk m-, k(uļ, pļ, qļ,f, ua, z) > 9 max rçr,k«,Pfc, <,/»«<,, z).
 TETic

 (4) (REFINE) Refine each triangle T G Mk by the newest vertex bisection to
 get Tk+i .

 (5) Set k := k + 1 and go to Step 1.

 A stopping criterion is normally included after step 2 to terminate the iteration,
 which is omitted here for notational convenience. The maximum strategy [3], one
 of the most common marking criteria, is used in the module MARK and we will
 discuss more about other strategies in Section 5.3. In addition, the newest vertex
 bisection in the module REFINE guarantees the uniform shape-regularity of {Tk}
 [28] [29], [30], [37], [38], [40]. In other words, all constants only depend on the
 initial mesh and the given data but not on any particular mesh in the sequel. We
 point out a practically important feature in our algorithm: the additional marking
 for oscillation errors and the interior node property for the refinement are both
 not required, which are needed in the adaptive algorithm for an optimal control
 problem in [20]. Finally, as the solution (uļ,ql) G Vk x Vfc,r¿ is also the minimizer
 to problem (2.8)-(2.9) with h = k, we shall view both of them as the same unless
 specified otherwise.
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 CONVERGENCE OF AN ADAPTIVE FINITE ELEMENT METHOD 2651

 The adaptive Algorithm 3.1 was implemented and analysed in [24]. Several
 nontrivial numerical examples were tested there, with different types of singular
 fluxes, including fluxes with large jumps, shape-spike fluxes and dipole-like fluxes.
 From the numerical experiments we have observed that Algorithm 3.1 is able to
 locate the singularities of fluxes accurately, with the desired local mesh refinements
 around singularities. Moreover, all the examples in [24] have shown that Algorithm
 3.1 ensures the convergence of the flux errors in L2-norm, even with essentially
 fewer degrees of freedom than the uniform refinement. The aim of this work is to
 provide a rigorous mathematical justification of the convergence of the adaptive
 finite element Algorithm 3.1.

 4. A LIMITING TRIPLET

 In this section, we demonstrate the convergence of the sequence {(uļiPk^k)}
 generated by Algorithm 3.1. To this end, with {14} and {14, r¿} induced by Algo-
 rithm 3.1, we define two limiting spaces:

 14o := (J 14 (in i^-norm) and Qoo := (J 14, r< (in L2-norm) .
 k> 0 fc>0

 We remark that 14o and Qoo are a closed subspace of H 1 (ii) and L2(T¿) respectively.
 Then we introduce a constrained minimization problem over Qoo'.

 (4-1) ?nün JM = l||«oo(®) - *||o,r. + f IMIojv
 where Uoo := ^oo(q) € 14o satisfies the variational problem:

 (4.2) a(t¿oo, (f>) = (/, 4>) + (7 uai (¡>) ra - (q, 0)r< V </> G 14o-

 Following the arguments of [39] for the system (2.3)-(2.4), we can show that
 there exists a unique minimizer to the optimization problem (4.1)-(4.2).
 Next we present the first result of this section, namely the sequence {q%} gen-
 erated by Algorithm 3.1 converges strongly to the minimizer q ^ of problem (4.1)-
 (4.2). For this purpose we need some auxiliary results.

 Lemma 4.1. Let {I4 x Vfc,r¿} be a sequence of discrete spaces generated by Algo-
 rithm 3.1. If the sequence {qk} C Ufc>o weakly converges to some q* G Qoo in
 L2(Ti), then there exists a subsequence {qm} with m = kn, such that for the sequence
 {um((ļm)} C Ufc>o ^ produced by (2.9) with h replaced bym anduoo(q*) € 14o gen-
 erated by (4.2) with q = q* there holds

 (4.3) um(qm) -> Uoo {q*) in L2(T).

 Proof Taking <f>k = Uk(qk) in (2.9), we immediately know that ||i¿fc(^)||i is uni-
 formly bounded independently of fc and hence there exist a subsequence, denoted
 by {um(qm)} with m = fcn, and some u* G H1 (ii) such that

 (4.4) Umiqm) -» u* weakly in H1 (il), um(çm) -> u* in L2(T).

 We only need to show u* = Uoo{q*)- As 14o is weakly closed, u* G 14o- For any
 positive integer Z, when we choose m > Z, we know from (2.9) that

 (aVum(qm), V</>z) + (7um(gm),</>¿)r0 = (/,</>/) + (7^a,<£z)ra V G Vi.
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 2652 YIFENG XU AND JUN ZOU

 Letting m go to infinity and noting the convergence results in (4.4) as well as the
 weak convergence of {qk}, we find

 (aVit*, V<£¡) + {ju*,<f>i) ra = + (jua,<ļ>i)ra - (g*,0j)r, V fa e V¡.
 As I and fa G Vi are arbitrary, we further obtain

 (aVu*, V0) + (7 «*, <£)ra = (/, 0 + (tu., <t>) ra - (g*, ¿)rť

 which leads to the desired conclusion. □

 Lemma 4.2. Let {Vk x V^r»} a sequence of discrete spaces generated by Algo-
 rithm 3.1. If the sequence {qk} C Ufc>o^>rt strongly converges to some q* G Qoo
 in L2(Ti), then for the sequence {uk(qk)} C Ufc>o ^ given by (2.9) with h replaced
 by k and u00(q *) G V oo given by (4.2) with q = q* there holds

 (4.5) Uk(qic) - ► u<x,(q*) in H1^).
 Proof We begin with an auxiliary discrete problem: Find Uk(q*) G Vk such that

 (4.6) a(uk(q*), <j>) = (/, <¡>) + (7 ua, 4>)ra ~ (q*, <¡>)rt V <ļ> e Vk.

 Subtracting (4.6) from (2.9) with 0 = Uk(qk) - v>k{q*) and using the trace theorem
 as well as the norm equivalence we come to the estimate

 I 'uk(Q*) - v>k(qk) ||i < C''q* - 9fc||o,r<-

 On the other hand, we note that (4.6) is a finite element approximation of (4.2)
 with q = q* G Qoo, so the Cea's lemma admits an optimal approximation property

 ''uoo (q*) - uk(q*) 111 < C inf ||u<x>(0 ~ v''i.
 vevk

 Finally, the desired convergence (4.5) is the consequence of the above two estimates
 and the density of (Jfc>o iR ^oo- Ū

 Now we are in a position to show the first main result of this section.

 Theorem 4.1. Let {Vk x Vkx ¿} be a sequence of discrete spaces generated by Al-
 gorithm 3.1, and {qļ,} the corresponding sequence of minimizers to the discrete
 problem (2.8) -(2.9) when finite element spaces Vh and V/^r* are replaced by Vk and
 Vfc,r¿ (and functional Jh will be denoted by Jk accordingly). Then the whole se-
 quence {q%} converges strongly in L2(Ti) to the unique minimizerq of the problem
 (4.1M4.2).

 Proof. The fact that ||g£||o,ri is uniformly bounded implies there exist a subse-
 quence, also denoted by {qļ.} and some q* G Qoo such that

 (4.7) qļ - » q* weakly in L2(r¿).
 Then from Lemma 4.1, we know by extracting a subsequence with m = kn that

 (4.8) -> Uoo(«*) in L2( ro).
 On the other hand, for any q G Qoo there exists a sequence {qi} C Uz>o Ví,rť such
 that

 (4.9) lim Ha - çllo.r* = 0,
 l-ÏOO

 which, by Lemma 4.2 and the trace theorem, implies

 (4-!0) Um IM«) - z||o,ra = IMfa) - *|lo,iv
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 CONVERGENCE OF AN ADAPTIVE FINITE ELEMENT METHOD 2653

 Choosing A: > I for sufficiently large I and noting the whole sequence {qk} are
 minimizers of Jk over {V^r»}? we can derive

 Jk(Qi) < Jl(qi) = '''ui(qi) - z''ļXa + ' ||®||g,rł.

 Then a collection of (4.7)-(4.10) gives

 J~(ql = 'hoo(qn-z''lra + Ļ'q*''lri

 - miííL m-¥ oo Z ~ ^llo.ra + m- Voo |||ç^||g ¿ ' r, m-¥ oo Z m- Voo ¿ '

 < liminf Jm{qm) < lim sup Jm («7^) < limsup Jk{qļ)
 m-*°° 771 - VOO k-¥00

 < limsup Ji (qi) = Joo(q) VqtQoo,
 l - voo

 which indicates that q* = q^ is the unique minimizer of the problem (4.1)-(4.2).
 Then the whole sequence {qk} converges weakly to q^. Moreover, the choice q = q*
 in the above estimate yields equality lim Jm{Qm) = *?oc{q*) = inf Joo{Qoo) and

 771- VOO

 it follows that lim Jk{ql) - inf JooiQoo) for the whole sequence {<?£}. Similarly,
 k- voo

 the strong convergence in (4.8) also holds true for the whole sequence {uk(qk)}.
 These two facts guarantee that lim H^Hop ' 1 = Ilo ' r * 5 which, along with the fc- voo ' 1 ' *

 weak convergence, implies the strong convergence. □

 As in the continuous case, after we introduce a Lagrangian multiplier Poo G to
 relax the constraint (4.2), the minimization problem (4.1) is recast as a saddle-point
 problem of the following Lagrangian functional over Foo x x

 £(«oo,Poo,g) = ^ll«oo -«llo,r, + |llflllo,r«
 - a(u<xiP<x>) + ( f,Poo ) + (7«o,Poo)r0 - (g,Poo)rv

 The minimizer q ^ of (4.1) and the related state t¿^0 are determined by the following
 system:

 (4.11) a(u*0 0,<ļ>) = (/, 4>) + (7 ua, <1>)ra - («», <¿)r< V <f> e V«,,

 (4.12) o(p^,, v) = (u^ - z, u)r0 V v e V«,,
 (4.13) (ßq^-pl^w) r4=0 V w e Qoo-

 Finally, for the above system, we have the second main result of this section.

 Theorem 4.2. Let {Vk x V^} be a sequence of discrete spaces generated by
 Algorithm 3.1, then the sequence {{u',p*k,q £)} of discrete solutions converges to
 {uloiPooiQoo)> the solution of the problem (4.11)-(4.13), in the following sense :

 (4.14) Il m J - tifili -► 0, ||pjļ -pJolli ->• 0, ''ql - g^lkr» -> 0 as k -)> 00.

 Proof. The third convergence follows directly from Theorem 4.1. Then by Lemma
 4.2 we obtain the first result. It remains to show the second one. We introduce an

 auxiliary problem: Find pk € Vk such that

 (4.15) (aVpfc, Vv) + (7 pk, v)ra = (*C ~ u)r0 V v € Vk.
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 Combining (2.11) and (4.15) with v = Pk - pļ using the trace theorem as well
 as the norm equivalence we obtain

 (4-16) l|Pfc-Pfclli<CM-uSJi.

 On the other hand, it is not difficult to find that the problem (4.15) is a discrete
 version of (4.12). Hence Cea's lemma gives

 (4-17) WpIo - Pkh < c inf IIpU - «111-
 vevk

 The desired result comes readily from (4.16), (4.17), the first convergence in (4.14)
 and the construction of Vqq. □

 Remark 4.1. As a matter of fact, the convergence results in Theorem 4.2 have no
 connections with any particular strategy adopted in the module MARK as in the
 case of linear elliptic problems [32], [33], [35]. So other marking strategies also work
 here; see Section 5.3 for details.

 5. Convergence

 In this section, we shall establish the convergence of Algorithm 3.1 in the fol-
 lowing senses: (1) the discrete solutions {{uļ^pļ, <?£)} converge strongly to the true
 solution of the problem (2.5)-(2.7); (2) the error estimator r]k converges to zero.
 With some properties of adaptively generated triangulations and the error esti-
 mator stated in Section 5.1, the proof of our main results is presented in Section
 5.2. We will discuss the generalizations of the current arguments to other marking
 strategies in Section 5.3.

 5.1. Preliminaries. We first introduce a convenient classification of all elements

 generated during an adaptive algorithm. For each mesh 7fc, we define [35]:

 Tk+ :=f]Ti and TŠ :=Tk'Tk+.
 l>k

 So Tfr consists of all elements not refined after the fc-th iteration and the sequence
 {T¿~ } satisfies T* C for all fc > Z. On the other hand, all elements in 7 are
 refined at least once after the fc-th iteration, that is to say, for any T € 7¡?, there
 exists I > k such that T 6 71 but T £7I+i- Correspondingly, the domain Í! is split
 into two parts covered by Tb and 7JP respectively, i.e.,

 Ū = Ū(T+)UŪ(TČ) =: ft+un°.

 We also define a mesh-size function hk : fi - ► R+ almost everywhere by hk(x) = hr
 for X in the interior of an element T e Tk and hk(x) = hp for x in the relative
 interior of a face F £ Tk- It is clear that the sequence {hk} given by Algorithm 3.1
 strictly decreases on the region refined by the newest vertex bisection. In fact, we
 have the following observations (Corollary 3.3, [35]).

 Lemma 5.1. Let Xk be the characteristic function of£t', then the definition ofT£
 implies that

 (5-1) lim llftfcXfelloo = lim ||Moo,n° " =0. Ac- Voo k - voo "
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 In the subsequent convergence analysis, the sum of rļT,k,i and r]T,k,2 over Tk will
 be split by 7JP and Tk , and with the help of Lemma 5.1 and the local approximation
 properties of a classic nodal interpolation operator [15], we are able to control the
 relevant residual in ūk (see the proof of Lemma 5.3 below). For the remaining part,
 we have to resort to the marking strategy (3.3), which implies that the maximal
 error indicator in Tk ' Mk is dominated by the maximal error indicator in Mk-
 Therefore it is necessary to study only the convergence behavior of the latter.

 Lemma 5.2. Let {7fc,Vfc x (uļ,pk,qk)} be the sequence of meshes, finite
 element spaces and discrete solutions produced by Algorithm 3.1 and Mk the set of
 marked elements given by (3.3). Then the following convergence holds:

 (5.2) lim max r)rtk(vļ,pļ, qļ, f, ua, z) = 0.
 fc- >-oc TeMk

 Proof Let T be the element where the error indicator attains the maximum among
 Mk- As T € Mk C Tk , the local quasi-uniformity of Tk and Lemma 5.1 show that

 (5.3) 'Df ' < C'T' < C||^lloo,no -> 0 as k oo.
 By means of a trace theorem, the inverse estimate and the triangle inequality, we
 can estimate the error indicator 77™ , := (77- + 77- Ì1/2 as follows:

 > J. ļKļL JL

 ^ COKIIÎ.D-p + Mlžilo, ôTni' + /l|ll/llo>Ť + ,lŤllUollo)ófnr0)

 < c(''uļ - nul + ||^||Ï)D. + ||gî - &''îXt

 + hf Ikœllo.afnri + + HUaHo,öfnr0) '
 4<k2(pļ,ulz) < C(''pI''1Dť + ||<||Ï)D. +hŤ''z''idŤnra)

 <c(''pì-PUÌ + ''PUID, + ''<-<O''Ì
 + ''uUÍDŤ+hŤ''z''ldŤnra).

 Now the result follows from (4.14), (5.3) and the absolute continuity of || • ||i and
 II * ||o,r with respect to the Lebesgue measure. □

 Remark 5.1. By inverse estimates we can deduce the following stability estimates
 for any T eTk '.

 (5.4) 77T,M(î4,tffc,/,u0) < Cdl^lli, Dt + Ikilkdrnr* + Il/Ilo, t + IK||o,0Tnra),

 (5.5) ryr^iPk^l^) < c(''Pk''hDT + IKI|i,dt + IMkôrnr«).

 Remark 5.2. From the proof of Lemma 5.2, we know that the maximum strategy
 (3.3) in the module MARK is not utilized. Therefore this lemma is valid also for
 other markings.

 5.2. Main results. Now we turn our attention to the main results of this work.

 It is not difficult to know that once we can prove the solution triplet (u^^p^, q^)
 to the system (4.11)-(4.13) is the exact solution triplet (u*,p*,q*) to the system
 (2.5)-(2.7) in some appropriate norm, then our expected first convergence result,
 namely the sequence of discrete solutions {(u£,pjļ,gjļ;)} generated by Algorithm
 3.1 converges strongly to the true solution of the problem (2.5)-(2.7), will follow
 immediately from Theorem 4.2. To do so, we shall first show the two residuals
 with respect to uļ as well as p*k have weak vanishing limits for and p^ (see
 Lemmas 5.3 and 5.4). It is worth noting that compared with the case of the direct
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 boundary value problems, the inverse problem under consideration involves a major
 difficulty, i.e., u* and i¿^c are determined by different fluxes q* and respectively.
 To overcome the difficulty, we define an auxiliary pair (u(^),p(^)) through (2.5)-
 (2.6) with q* replaced by q Then we will show that the pair (u(q^) ì p(q^0)) is
 the same as the limiting pair (u^,^).
 As stated above, the first two residuals with respect to uļ(qļ) and pļ(Qk) are

 defined by

 (K(uļ), <t>) := (/,</>) + (7Ua,¿)r. - (rf,*)r, - a(vļ,4) V <¡> € H'ū'

 (1Z(pI),v) := (uļ - z,v)ra - a(pļ,v) V v € Hl(ū).

 Since {qļ} is a converging sequence of minimizers by Theorem 4.1, it is uniformly
 bounded in L2(I'), so are {uļ} and {pļ} in fí1(íi) by means of (2.10) and (2.11).
 Thus, we know {Ti(uļ)} and {T-(pļ)} are two sequences of uniformly bounded linear
 functionals in if1(íí)/, namely there exist two constants independent of k such that

 (5.6) ''Tl(uļ)'' tfi(n)' < Curii, WR-ÌpDWhhq)' < Cun 2-

 In addition, we can easily observe from (2.10) and (2.11) that

 (5.7) (K(uļ),v) = 0 and (ft(pj), v) =0 V v G Vk.

 Using these relations, we can establish the following weak convergence.

 Lemma 5.3. The sequence {(uļ,pļ,qļ)} produced by Algorithm 3.1 satisfies

 (5.8) lim {H(uļ),<j>) = 0, lim (R,(pļ),<ļ>) = 0 V € if1^) .
 k-too k-too

 Proof. We prove only the first result by borrowing some techniques from [35], as
 the second convergence can be done in the same manner. We easily see that T* C
 Tf C Tk for k> I. This implies Í2? = Íl(7í ' 7^) := U{^ 7?} and
 any refinement of Tk does not affect any element in 71+ ê Now we set Ū* := (J {T G
 TkìT fi fi? 0} and fì£ := |J{T G 7fc,T fi Q+ ± 0}, and write Ik and Iff for
 the Lagrange and Scott-Zhang interpolations, respectively, associated with Vk [15],
 [34]. Then for any tp G C°°(iî), we can derive for w = iļ) - Iký G H1 (ii) by using
 the orthogonality (5.7) and elementwise integration by parts that

 '(n(uļU)' = '(R,(uļ),ip - Ikip)' = '(K(uì),w-Ii*w)'

 <C E VT,k,i(uļ,ql,f, ua)''ìp - Ikip''i,DT
 TeTk

 (5-9) = C( E ^/>^11^- 4V>l|l, .Di-
 rer* '7¡+

 + E VT,kAuh<lkJ>Ua)''lp - hlp''uDT) •
 TeT,+

 Using (5.4) and the uniform boundedness of ''uļ''i and |q¿||o r, , we have
 (5.10)

 ( E ^ CflKlli + hib.Ti + ll/llo + IKHrJ < c,
 T€Tk'T¡+
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 where C is independent of k. Furthermore, we can apply the local interpolation
 error estimate for Ķ [15] and the monotonicity of the mesh-size function hk to
 obtain

 (5.11)

 H - Mhxiì < ciNUnr llalla, U - M lllinř < CINL,^ ^ c^2-
 Now it follows readily from (5.9)-(5.11) and the local quasi-uniformity of 77 that
 for any k > Z,

 (5.12) |Wttfc),V'>l<C,1M2||Ä,||00lno + C2W2( E 4,k,i K-9fc./.«a))1/2.
 Tert+

 To proceed with our estimation, we can choose for any given e > 0 some sufficiently
 large I by using Lemma 5.1 such that

 (513) INLflf <

 In addition, the marking strategy (3.3) and Lemma 5.2 ensure that

 lim max rļrik(uk,pk,qk, f, ua,z) < lim max VT,k(ul'Pk'QkJ>ua,z) = 0,
 k-¥ooT£Tk'Mk k-ïoo T€Mk

 which, together with fl Mk = 0, implies

 lim maxriT,k(Uk,PkiQkif>ua,z)=0.
 k-+oc Terf

 Therefore, we can choose K > I for some fixed I such that when k> K,
 (5-14)

 max VT,k,i(u*k,q*k, f,ua) < max ^(u^,^,/,^,*) < '7¡+'~
 T€ 71+ T£T¡ 20211^112

 Then we can see from (5.12)-(5.14) that (7 ?.(ufc), ip) is controlled by e for any k> K
 and ip G C°°(íí), i.e.,

 (5.15) lim =0 V V G C°°(ft).
 Ac- >oo

 This gives the first convergence in (5.8) by the density of C°°(Ù) in íř1(íí). □

 Remark 5.3. One may see from the second estimate in (5.14) that for a fixed Z,

 (5.16) lim r/fc (u*k , p*k , qk , f, ua , z, Tt+ ) = 0.
 AC- >00

 This observation will be used in the subsequent proof of Theorem 5.2.

 Lemma 5.3 yields a important direct consequence. Indeed, we know from (4.14)
 that for any <j> G H1( ii) and v G íf1(íí),

 (K(uļ o), 4>) := (/, 4>) + (7 «a, <t>) r„ - (9o o. 4>)rx - a(u¡U» <¡>) = lim (K(uk),<ļ>) ,
 AC- »OO

 (K(P*o o), v) := (fi^ - z, v)ra - o(p^, v) = lim (K(p*k), v) .
 Ac- »oo

 Then the application of Lemma 5.3 leads readily to the following results about the
 vanishing residuals associated with u^q^) and pIoÍQ^o)-

 Lemma 5.4. The solution of the problem (4.11)-(4.13) satisfies

 (5.17) (7l(t4),<¿> = 0 and ÇWpU),*) = 0 V^GÍř1^).
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 To continue our analysis, we now introduce two auxiliary continuous problems.
 Find u(^) e if1(íž) and p(^) G H1 (ii) such that

 (5.18) «(«(£,), 0) = (/,0) + (7«a,0)ro -(<&,</>)!- V4>€H' Ū) ,
 (5.19) a(p(ç^),v) = («(£„) -z,v)ra V u €

 Lemma 5.5. For the solution q^) of the problem (4.11)-(4.13) and the
 solutions u(q* 0), p(g£o) of the problems (5.18) and (5.19), it holds that

 (5.20) «» = u(0 and p*00=p(q*00) in if1 (fi).
 Proof. The Poincaré inequality, (5.18) and Lemma 5.4 yield that

 CIMO - <Ji < SUP a(u(0 - <o> <t>) = SUP Cfc«o)> <t>) = 0,
 Il0lli=i Mli=i

 so the first equality is proved. Then the second equality in (5.20) follows from the
 first result, (5.19) and the following estimates:

 CMqZo) - p*oo(i*oo)h < sup a(p(<4) -P^V)
 IMII=I

 = sup {(u(0-2,u)ra -aip'^v)}
 IMIi=i

 = sup {«JO ~z,v)ra -a(p^,u)}
 IMIi=i

 = sup (ft(î4,),w)= 0. □
 IMIi=i

 Now we are ready to present the first main result in this paper.

 Theorem 5.1. Let (u*,p*,q*) be the solution of the problem (2.5)-(2.7). Then
 Algońthm 3.1 produces a sequence of discrete solutions (u£,p£, <?£) which converge
 to (u*,p*,g*) in the following sense:

 (5.21) lim Hu* - «felli = 0, lim ||p* - p¡l||i = 0, lim || q* - g£||0,i' = 0.
 AC- >00 K->00 AC- >00

 Proof. We first show q* = q^, which together with Theorem 4.2, leads to the third
 convergence. By means of the definition of Qoo in Section 4, the trace theorem and
 the density of IJfe>o^ in V^, it is not difficult to get p^Jr* £ Q<x> • Then there
 exists a sequence {pk} C Ufc>o^ such Tk ~ > pļ 0 in H1^), which together
 with the trace theorem, allows

 Pkln-^íCIr, in £2(U).
 Thus we have from (2.7) and (4.13) that

 (5.22) ßq*=P*, ßqlo=P*oo on T,

 On the other hand, we deduce from (2.5)-(2.6) and (5.18)-(5.19) that

 (5.23) a(u(q*00)-u*,<1>) = (q*-q*co,<1>)ri '/<ļ>€H'ū),

 (5.24) a(p(q^0)-p*,v) = (u(qļ0)-u*,v)ra Vuefř^fi).
 By taking 0 = p(g^) - p* and v = - u*, respectively, in (5.23) and (5.24),
 we derive

 ll«(«») -«*llo.r. = («* -9«.P(9«) ~P*)r,-
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 With (5.22), we are further led to

 (5.25) +

 = (q* - ßq* - ßqlo + p(qlo) - p*)r,
 = (q* - q*co>p(qZo) - plohi < Ik* - Clio, i' IMO -dlo.r*,

 which, together with the second equality in (5.20), implies

 Ik* - «»Ikr, < rÌPteSo) -P»lkr, < Cß-l'WL) -p^lli = 0.
 So the last convergence in (5.21) holds thanks to Theorem 4.2. Moreover, it follows
 directly from (5.23) that

 (5.26) u(^) = u* in

 Now the first convergence in (4.14) and the first equality in (5.20) yield the first
 result in (5.21), i.e., uļ - > = u* in H1 (ii) as k - ► oo. Similarly, we can
 show, using (5.24) and (5.26), that p(q ^) = p* in i/1(ii), then the desired second
 convergence in (5.20) follows from Theorem 4.2 and Lemma 5.5. □

 With the help of Theorem 5.1 and the local efficiency (3.2), we are ready to
 establish the second main result of this paper.

 Theorem 5.2. The sequence {pfc(u£,p£, <?£, /, ua, z)} of the estimators generated
 by Algorithm 3.1 converges to zero .

 Proof. We split the estimator for k > I as in the proof of Lemma 5.3 such that

 (5.27) r)l{u*k,p*k, qk, f, ua, z) = rfc{u*k,pk, qk, f, ua, z,Tk' Tt+)

 + vl(u*k,P*k,ql, f,ua, z,Tt+).

 It follows from (2.10)-(2.11) and the strong convergence of {q%} that ||u£||i, ||p£||i
 and ||^||o,r¿ are all uniformly bounded above by a constant Cstab- Summing up
 the lower bound (3.2) over all elements in Tk ' , we obtain

 lit feK-Pfc. 0fc, /» ua, Z,Tk' V")

 <c ¿2 (IK-<llo,wr + IM-PfcllU + lk*-9fcllo)9Tnrť
 T€Tfc'7¡+

 + osc| (/, ut) + ose l (uk, q*k,dT) + osc| (p*k,u*k,dT))

 <C(''u"-ut''l + ''p*-pl''l + ''q*-qrh''lj:t
 + max M||/||ä + Malli, r, + IMIÌ,ra + 'K''Ì + IMIIÏ + IIÄrJ),

 T€Tk'T,+

 <C(''u*-ul''l + ''p*-pl''l + ''q*-q*h''lTi
 + max /ìtOI/Ho + Inailo, r* + libilo, ra + C«taò))>

 TeTk'7?

 where we used the facts that /t, Jf,i and Jp, 2 are the best L2-projections onto
 constant spaces and hp < Chp for any F G dT fi ^(T). To complete the proof,
 we recall that maxTeTfc^T+ hp < Halloo, îî° 0 as I -> 00 by Lemma 5.1 and the
 monotonicity of and the convergences in (5.21) and (5.16), hence we can require
 two terms in (5.27) to be smaller than any given positive number once we fix a large
 I and choose k sufficiently large. □
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 5.3. Generalizations to other marking strategies. In this section we shall
 extend the convergence results of Algorithm 3.1 established in Section 5.2 above
 to the cases when the marking criterion (3.3) in Algorithm 3.1 is replaced by three
 other popular marking strategies, i.e., the equidistribution strategy, the modified
 equidistribution strategy and the practical Dörfler strategy.

 By carefully reviewing the previous analysis, it is not difficult to discover that
 Theorems 4.1 and 4.2 and Lemmas 5.1 and 5.2 are all independent of any specific
 marking strategy, and the maximum strategy (3.3) is only used in the proof of
 Lemma 5.3 for the condition

 (5.28) max rrrtk(u*k,pļ,q*k, f,ua, z) < max rļr<k{u*k,p*k,q*k, f,ua,z)
 T£Tk'Mk J tAlfc

 to hold. Therefore, it suffices for us to check whether condition (5.28) is satisfied
 also by the aforementioned three strategies.

 The equidistribution strategy. Given a parameter 6 G [0, 1] and a tolerance
 TOL, this strategy selects a subset Mk of all such elements T G Tk to mark, which
 satisfies

 (5-29) r)Tk(u*k,p*k,q*k,f,ua,z) > 0TOL/v/¡7fc|.

 In practice, if 77fc(u£,p£, /, ua, z) < TOL, the adaptive algorithm is terminated.
 It is easy to verify that whenever 77fc(u£,p£, <?£, /, ua, z) > TOL the element with
 the maximal error indicator is always included in Mk according to (5.29). Hence,
 (5.28) holds for the equidistribution strategy. Then arguing as in Theorem 5.2 for
 the case of the maximum strategy, we have the following similar conclusion.

 Theorem 5.3. Let {u*,p*,q*) be the solution of the problem (2.5)-(2.7)
 and {(uļiPkiVk)} a sequence of discrete solutions produced by Algorithm 3.1 with
 (5.29) in place of (3.3) in the module MARK. Then for a given tolerance TOL, the
 following inequality holds after a finite number of iterations:

 (5.30) Tļk(ul,pļ,ql,f,ua,z) < TOL.

 The modified equidistribution strategy. Given a parameter 0 G [0,1], this
 strategy selects a subset Mk of all such elements T G Tk to mark, which satisfies

 (5.31) riT k(uļ,pļ,qļ,f,ua,z) > 0r)k{uļ,pļ,ql, f,ua, z)/ y/'%'.

 With this marking strategy, the convergence results (5.21) and Theorem 5.2 still
 hold true for Algorithm 3.1 since we may easily observe that the modified equidis-
 tribution strategy satisfies (5.28).

 The practical Dörfler strategy. Given a parameter 6 G (0,1], this strategy
 marks a subset Mk of elements in Tk that satisfy

 (5.32) r)k(u*k,p*k,q*k, f,ua,z,Mk) > 0r]k(u*k,pļ,q*k, f,ua, z),

 (5.33) T€Mk r,T'k (u*k ' p*k ' q*k ' f' Ua ' z) ^ T€rfc VMfc VrA^PtlkJ^^z).

 We can easily verify that (5.33) ensures the condition (5.28), so the convergence
 results (5.21) and Theorem 5.2 still follow.
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 Concluding remarks

 We have investigated a new adaptive finite element method for the distributed
 flux reconstruction proposed recently in [24]. It has been demonstrated that as the
 algorithm proceeds the adaptive sequence of the discrete triplets generated by the
 algorithm converges to the true flux in L2-norm, the true state and costate variables
 in iï1-norm and the relevant sequence of estimators also has a vanishing limit. The
 latter guarantees that the adaptive algorithm may stop within any given tolerance
 after a finite number of iterations. For the sake of convenience, convergence results
 are established in the case of the maximum strategy in the module MARK and then
 extended to other more practical marking strategies.

 In the course of the convergence analysis, we have employed some techniques
 from nonlinear optimizations to derive an important auxiliary result: the sequence
 of adaptive triplets generated by the algorithm converges strongly to some limiting
 triplet. We believe there exist similar results for other inverse problems in terms
 of output least-squares formulations with PDE constraints, so we may follow the
 same line to study their related AFEMs.

 The convergence theory developed here may be extended to some nonlinear in-
 verse problems such as the reconstruction of the Robin coefficient on an inaccessible
 part of the boundary from some accessible boundary measurement data on the basis
 of an adaptive finite element method.
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