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This work aims at providing a mathematical and numerical framework for the analysis
on the effects of pulsed electric fields on the physical media that have a heterogeneous
permittivity and a heterogeneous conductivity. Well-posedness of the model interface

problem and the regularity of its solutions are established. A fully discrete finite ele-
ment scheme is proposed for the numerical approximation of the potential distribution
as a function of time and space simultaneously for an arbitrary-shaped pulse, and it is
demonstrated to enjoy the optimal convergence order in both space and time. The new
results and numerical scheme have potential applications in the fields of electromag-
netism, medicine, food sciences, and biotechnology.
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1. Introduction

This work is concerned with a mathematical and numerical framework to help
in understanding and analyzing the effects of pulsed electric fields on the phys-
ical media that have a heterogeneous permittivity and a heterogeneous conduc-
tivity. The governing system involves an electric interface model, which may find
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wide applications in electromagnetism, medicine, food sciences, and biotechnology.
A direct example is that the electrical properties of biological tissues and cell sus-
pensions determine the pathways of current flow through the medium,4,19,21 and a
biological tissue is described as having a permittivity and a conductivity.20 The con-
ductivity can be regarded as a measure of the ability of its charge to be transported
throughout its volume by an applied electric field while the permittivity is a mea-
sure of the ability of its dipoles to rotate or its charge to be stored by an applied
external field. At low frequencies, biological tissues behave like a conductor but
capacitive effects become important at higher frequencies due to the membranous
structures.25,26

Our goal is to study the electric behavior of a physical medium under the
influence of a pulsed electric field. It is of great importance to understand the
effects of the pulse shape on the potential distribution in the medium. We pro-
vide a numerical scheme for computing the potential distribution as a function
of time and space simultaneously for an arbitrary-shaped pulse. Our results are
expected to have important applications in neural activation during deep brain
simulations,6,12 debacterization of liquids, food processing,28 and biofouling preven-
tion.24 Our numerical scheme can also be used for selective spectroscopic imaging
of the electrical properties of biological media.3 It is challenging to specify the pulse
shape in order to give rise to selective imaging of cell suspensions.14,16

The paper is organized as follows. In Sec. 2, we introduce the model equation
and some notations and preliminary results. We recall the method of continuity
and the notions of weak and strong solutions. Section 3 is devoted to existence,
uniqueness, and regularity for the solutions to the model interface problem. We
first derive an a priori energy estimate, then prove existence and uniqueness of the
weak solution. Finally, we investigate the interface problem where the conductivity
and permittivity distributions may be discontinuous or have large jumps across the
medium interface, which is a common feature of biological media. It is shown in
Sec. 3 that the solution to the interface problem has a higher regularity in each
individual region than in the entire domain. This regularity result is critical for our
further numerical analysis. In Sec. 4, we investigate the numerical approximation
of the solution to the interface problem. Assuming that the domain is a convex
polygon, we present a semi-discrete scheme and show its error estimates in both
H1- and L2-norms. With these estimates at hand, we then process to propose a
fully-discrete scheme and establish its error estimates in both H1- and L2-norms.
It is worth mentioning that both semi-discrete and fully discrete scheme achieve
optimal convergence order in both H1- and L2-norms, provided that the interface
is numerically resolved.

Let us end this section with some notation used in this paper. For a domain
U ⊂ R

n (n = 2, 3), each integer k ≥ 0 and real p with 1 ≤ p ≤ ∞, W k,p(U)
denotes the standard Sobolev space of functions with their weak derivatives of
order up to k in the Lebesgue space Lp(U). When p = 2, we write Hk(U) for
W k,2(U). The scalar product of L2(Ω) is denoted by (·, ·). If X is a Banach space
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with norm ‖·‖X and J ⊂ R is an interval, then L2(J ; X) represents the Banach
space consisting of all square integrable functions f : J → X (in Bôcher sense) with
norm: ‖f(t)‖L2(J;X) := (

∫
J ‖f(t)‖2

Xdt)1/2. We denote by H1(J ; X) the space of all
functions u ∈ L2(J ; X) such that u′, the weak derivative of u with respect to time
variable, exists and belongs to L2(J ; X), endowed with the norm ‖u‖H1(J;X) =
(‖u‖2

L2(J;X) + ‖u′‖2
L2(J;X))

1/2. For 1 ≤ i, j ≤ n, we write Diu = ∂u/∂xi and
Di,ju = ∂2u/∂xi∂xj . For u ∈ H1(U) and f ∈ H1(J ; H1(U)), we also set the
semi-norms |u|H1(U) := ‖∇u‖L2(U) and |f |L2(J;H1(U)) := (

∫
J |f(t)|2H1(U)dt)1/2. For

ease of notation, we do not always distinguish between the notation of u, u(t),
u(t, x) and u(t, ·). Sometimes, the notation is not changed when a function defined
on Ω is restricted to a subset. For the sake of brevity, we systematically use
the expression A � B to indicate that A ≤ CB for constant C that is inde-
pendent of A and B. In some special cases, we may specify more the constants
involved.

2. Preliminaries

Let Ω be a bounded domain in R
n (n = 2, 3) with a Lipschitz boundary, and σ

and ε the conductivity and permittivity distributions inside Ω. We assume that
σ and ε belong to L∞(Ω). Biological tissues induce capacitive effects due to their
cell membrane structures.20 When they are exposed to electric pulses, the voltage
potential u is a solution to the following time-dependent equation15,22:

−∇ · (σ(x)∇u(t, x) + ε(x)∇u′(t, x)) = f(t, x), (t, x) ∈ (0, T ) × Ω,

u = 0, (t, x) ∈ (0, T ) × ∂Ω,

u(0, x) = u0, x ∈ Ω,

(2.1)

where u0 is the initial voltage, T is the finite terminal observation time and f ∈
L2(]0, T [; H−1(Ω)) is the electric pulse.

The goal of this work is to establish the well-posedness of the model interface
system (2.1) and derive a fully discrete finite element scheme for the numeri-
cal solution of the system. Of our special interest is the case when the physi-
cal coefficients are discontinuous in Ω, namely they may have large jumps across
the interface between two different media, which is a common feature in appli-
cations, and the conductivity distribution σ(x) does not need to be bounded
below strictly positively. As far as we know, this is the first mathematical and
numerical work on pulsed electric interface fields in capacitive media. The main
difficulty comes from the fact that (2.1) does not belong to the well-studied
classes of time-dependent equations. Our results in this paper have potential
applications in cell electrofusion and electroporation using electric pulses and in
electrosensing.1,22

In this section, we first introduce some notions and preliminary results. For the
sake of brevity, we write I = ]0, T [, H = L2(Ω), V = H1

0 (Ω) with its dual space
V ′ = H−1(Ω) and X = H1

0 (Ω) ∩ H2(Ω). Clearly, V ⊂ H ⊂ V ′ is a triple of spaces
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(e.g. Chap. 1 in Ref. 27), i.e.:

(1) the embeddings V ⊂ H ⊂ V ′ are dense and continuous;
(2) {V ′, V } forms an adjoint pair with duality product 〈·, ·〉V ′×V ;
(3) the duality product 〈·, ·〉V ′×V satisfies

〈u, v〉V ′×V = (u, v), ∀u ∈ H, v ∈ V.

We also introduce two bilinear forms a1(u, v) and a2(u, v) on V as follows:

a1(u, v) =
∫

Ω

σ(x)∇u(x) · ∇v(x)dx, u, v ∈ V,

a2(u, v) =
∫

Ω

ε(x)∇u(x) · ∇v(x)dx, u, v ∈ V.

(2.2)

Next, we define the weak and strong solutions to Eq. (2.1). We adapt the widely
used notions of weak and strong solutions of parabolic equations.23

Definition 2.1. Let u0 ∈ V and f ∈ L2(I; V ′). A function u ∈ H1(I; V ) is called
a weak solution of (2.1) if u(0) = u0 and it satisfies the following weak formulation:

a1(u(t, ·), v) + a2(u′(t, ·), v) = 〈f(t, ·), v〉V ′×V (2.3)

for all v ∈ H1
0 (Ω) and a.e. t ∈ I.

Definition 2.2. Let f ∈ L2(I; H) and u0 ∈ X . Then, a function u ∈ H1(I;X ) is
called a strong solution of (2.1) if u(0) = u0 and the relation

−∇ · (σ(x)∇u(t, x) + ε(x)∇u′(t, x)) = f(t, x) (2.4)

holds for a.e. t ∈ I and a.e. x ∈ Ω.

Remark 2.1. Let X be a Banach space. From Proposition7.1 in Ref. 23 we know
that H1(I; X) � C(I; X) continuously and

sup
t∈I

‖u(t)‖X � ‖u‖H1(I;X). (2.5)

In particular, we have that u ∈ C(I; V ) for u ∈ H1(I; V ).

To prove the existence below, we will use the so-called “method of continuity”,
whose key tool is the following lemma.11

Lemma 2.1. Let X be a Banach space, Y a normed linear space, and L0, L1 two
bounded linear operators from X to Y . For each λ ∈ [0, 1], set

Lλ = (1 − λ)L0 + λL1,

and suppose that there exists a constant C such that

‖x‖X ≤ C‖Lλx‖Y , ∀x ∈ X, λ ∈ [0, 1].

Then L1 maps X onto Y if and only if L0 maps X onto Y .
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Let u be a function in a domain U ⊂ R
n, W � U and ek the unit coordinate

vector in the xk direction. We define the difference quotient of u in the direction
ek by

Dh
ku(x) =

u(x + hek) − u(x)
h

(2.6)

for x ∈ W and h ∈ R with 0 < |h| < dist(W, ∂U). We will use the following
lemma in the proof of Theorem 3.3, concerning the difference quotient of functions
in Sobolev spaces.11

Lemma 2.2. Suppose that u ∈ H1(U). Then for each W � U,

‖Dh
ku‖L2(W ) ≤ ‖Dku‖L2(U), ∀h : 0 < |h| <

1
2
dist(W, ∂U).

We end up with an analogue of Lemma 7.24 in Ref. 11, and provide an outline
of its proof.

Lemma 2.3. Let u ∈ L2(I; L2(U)), W � U and suppose that there exists a positive
constant K such that ‖Dh

ku‖L2(I;L2(W )) ≤ K for all 0 < |h| < 1
2dist(W, ∂U). Then

‖Dku‖L2(I;L2(W )) ≤ K.

Proof. Banach–Alaoglu theorem implies that there exists a sequence {hm}∞m=1

with hm → 0 and a function v ∈ L2(I; L2(W )) such that ‖v‖L2(I;L2(W )) ≤ K, and
for any ϕ ∈ C∞

0 (W ) and α ∈ C∞
0 (I),∫

I

∫
W

α(t)ϕDhm

k u(t)dxdt →
∫

I

∫
W

α(t)ϕv(t)dxdt as m → ∞.

On the other hand, we have∫
I

∫
W

α(t)ϕDhm

k u(t)dxdt

= −
∫

I

∫
W

α(t)u(t)D−hm

k ϕdxdt → −
∫

I

∫
W

α(t)u(t)Dkϕdxdt,

as m → ∞. Hence, we have∫
I

∫
W

α(t)(u(t)Dkϕ + v(t)ϕ)dxdt = 0.

Using the arbitrariness of α and ϕ, we know for a.e. t ∈ I, v(t) = Dku(t) in weak
sense, hence v = Dku in L2(I; L2(W )).

Lemma 2.4. Let U ⊂ R
n be a domain and 1 ≤ i ≤ n. If u ∈ H1(I; L2(U)),

Diu
′ ∈ L2(I; L2(U)) and Diu(0) ∈ L2(U), then Diu ∈ L2(I; L2(U)) and

‖Diu‖L2(I;L2(U)) � ‖Diu
′‖L2(I;L2(U)) + ‖Diu(0)‖L2(U).
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Proof. Since u ∈ H1(I; L2(U)), we have

u(t) = u(0) +
∫ t

0

u′(s)ds, ∀ t ∈ I.

By Fubini’s theorem, we know that for any φ ∈ C∞
0 (U),∫

U

u(t)Diφdx =
∫

U

u(0)Diφdx +
∫

U

∫ t

0

u′(s)Diφdsdx

= −
∫

U

(
Diu(0) +

∫ t

0

Diu
′(s)ds

)
φdx,

which implies that

Diu(t) = Diu(0) +
∫ t

0

Diu
′(s)ds.

This completes the proof.

3. Existence and Regularity

We now introduce a basic assumption for the existence and uniqueness of weak
solutions to (2.1).

(A1) σ, ε ∈ L∞(Ω), and there exist two positive constants m and M such that
0 ≤ σ(x) ≤ M and m ≤ ε(x) ≤ M for a.e. x ∈ Ω.

Let us recall that there exist two operators A1,A2 : V → V ′ associated with
the bilinear forms a1(·, ·) and a2(·, ·), respectively, i.e.

〈A1u, v〉V ′×V = a1(u, v), 〈A2u, v〉V ′×V = a2(u, v), u, v ∈ V.

From Theorem 1.24 in Ref. 27 we know that A1 is a bounded operator and satisfies
the following estimate

‖A1u‖V ′ ≤ M‖u‖V , ∀u ∈ V, (3.1)

and A2 is actually an isomorphism from V to V ′ and satisfies

m‖u‖V ≤ ‖A2u‖V ′ ≤ M‖u‖V , ∀u ∈ V. (3.2)

3.1. Existence and uniqueness of weak solutions

In this subsection, we prove the existence and uniqueness of the weak solutions to
(2.1). The first auxiliary result is the following a priori estimate, which lays the
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foundation for our subsequent existence and regularity results of weak solutions
to (2.1).

Theorem 3.1. Let f ∈ L2(I; V ′), u0 ∈ V and u be the weak solution to (2.1).
Under the assumption (A1), we have∫ T

0

∫
Ω

|∇u′|2dxdt + sup
t∈I

‖u(t)‖2
V � ‖f‖2

L2(I;V ′) + ‖u0‖2
V (3.3)

and

‖u‖H1(I;V ) � ‖f‖L2(I;V ′) + ‖u0‖V . (3.4)

Proof. Choosing v = u′ in (2.3) and integrating over (0, T ), we obtain∫ T

0

∫
Ω

(σ∇u(t) · ∇u′(t) + ε|∇u′(t)|2)dxdt ≤
∫ T

0

‖f(t)‖V ′‖u′(t)‖V dt. (3.5)

From this and the identity that∫ T

0

∫
Ω

σ∇u(t) · ∇u′(t)dxdt =
1
2
(‖
√

σ∇u(T )‖2
H − ‖

√
σ∇u(0)‖2

H),

it follows that∫ T

0

∫
Ω

ε|∇u′(t)|2dxdt ≤
∫ T

0

‖f(t)‖V ′‖u′(t)‖V dt + M‖u0‖V . (3.6)

Using Young’s inequality, we have

‖u′‖L2(I;V ) � ‖f‖L2(I;V ′) + ‖u0‖V .

From Lemma 2.4 and Remark 3.2, the desired results follow immediately.

With estimate (3.4) in hand, we can prove the first existence result of (2.1).

Theorem 3.2. Let f ∈L2(I; V ′) and u0 ∈V . Under the assumption (A1), Eq. (2.1)
admits a unique weak solution.

Proof. We first establish the result for u0 = 0. The uniqueness is nothing but a
direct consequence of Theorem 3.1. We use Lemma 2.1 to prove the existence. First,
we construct a linear operator L : H1

0 (I; V ) → L2(I; V ′) by setting

(Lu)(t) := A1u(t) + A2u
′(t), ∀u ∈ H1

0 (I; V ),

where H1
0 (I; V ) is defined by

H1
0 (I; V ) = {u ∈ H1(I; V ); u(0) = 0}.

It is a closed subspace of the Banach space H1(I; V ), since H1(I; V ) � C(I ; V )
continuously. From (3.1) and (3.2) it follows that

‖Lu‖L2(I,V ′) ≤ M‖u‖H1(I;V ),

which implies that L is well-defined and continuous.
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For each λ ∈ [0, 1], we introduce a linear operator Lλ : H1
0 (I; V ) → L2(I; V ′) as

follows:

Lλu := λLu + (1 − λ)L0u, ∀u ∈ H1
0 (I; V ),

where we set L0u = −∆u−∆u′ for u ∈ H1
0 (I; V ). Here (−∆) is seen as an operator

from V to V ′ and it is actually an isomorphism (cf. Theorem 2.2 in Ref. 27).
Let σλ = λσ + (1 − λ)χΩ and ελ = λε + (1 − λ)χΩ for λ ∈ [0, 1]. Then the

functions σλ and ελ satisfy

m′ := min{m, 1} ≤ ελ(x) ≤ M ′ := max{M, 1} for a.e. x ∈ Ω

and

0 ≤ σλ(x) ≤ M ′ for a.e. x ∈ Ω.

Then, an application of Theorem 3.1 yields that there exists a positive constant C,
depending only on m′, M ′ and T , such that

‖u‖H1(I;V ) ≤ C‖Lλu‖L2(I,V ′) ∀u ∈ H1
0 (I; V ).

In view of Lemma 2.1, it remains to prove that the mapping L0 : H1
0 (I; V ) →

L2(I; V ′) is onto. To this end, for an arbitrary f ∈ L2(I; V ′), we construct a function
w(t) :=

∫ t

0
e−t+sh(s)ds for t ∈ I, where h(s) = (−∆)−1f(s) for s ∈ I. Since

(−∆)−1 : V ′ → V is bounded, we have that h ∈ L2(I; V ) and hence w ∈ H1(I; V ).
Moreover, a direct computation yields w(0) = 0 and −∆w′(t) − ∆w(t) = f(t) for
t ∈ I, which ensures that L0 is onto. Therefore, we can conclude that the method
of continuity applies and Theorem 3.2 holds for u0 = 0.

For u0 �= 0, we choose w ∈ H1(I; V ) such that w(0) = u0 and write f∗ =
A1w +A2w

′. Clearly, f∗ ∈ L2(I; V ′). Then the proof above for u0 = 0 confirms the
existence of a unique function v ∈ H1(I; V ) such that v(0) = 0 and

A1v + A2v
′ = f − f∗.

Therefore, the function u := w + v is the desired weak solution.

3.2. Regularity of the solutions to the interface problem

In this subsection, we consider the regularity of the weak solution for (2.1), which
is important not only for its theoretical interest but also for the subsequent numer-
ical analysis. Of our prime concern in this paper is the case when the coefficients
σ(x) and ε(x) are discontinuous, and the conductivity distribution σ(x) in (2.1) is
unnecessary to be bounded below strictly positively. This feature is common to bio-
logical applications. Due to the (possibly sharp) jumps of σ(x) and ε(x) across the
medium interface, the solution to (2.1) does not expect a desired global regularity
like H2(Ω), but it is shown in this section that this H2-regularity is true locally
in each medium region Ωi for i = 1, 2. And such local H2-regularity is proved
sufficient in the next section for us to establish the desired optimal convergence
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order for finite element approximations. As we are not aware of proofs of such local
regularities for time-dependent PDEs with large jumps in coefficients in literature,
even for standard parabolic equations, we will present a rigorous proof here for the
non-standard time-dependent PDE (2.1). We start with the introduction of some
standard assumptions.

(A2) Ω consists of two C2-subdomains Ω1 and Ω2 with Ω1 � Ω, Ω2 := Ω\Ω1;
(A3) εi := ε|Ωi and σi := σ|Ωi are continuously differentiable in Ωi (i = 1, 2).

The interface problem (2.1) is often complemented with the following physical
interface conditions:

[u(t)] = 0 on I × Γ,

[
σ

∂u(t)
∂ν

+ ε
∂u′(t)

∂ν

]
= 0 on I × Γ, (3.7)

where Γ := ∂Ω1 is the interface, and [u(t)] := u1|Γ − u2|Γ,
[
σ ∂u(t)

∂ν + ε∂u′(t)
∂ν

]
:=

σ1
∂u1(t)

∂ν1
+ σ2

∂u2(t)
∂ν2

+ ε1
∂u′

1(t)
∂ν1

+ ε2
∂u′

2(t)
∂ν2

on Γ. Here ui stands for the restrictions of
u to Ωi, and ∂/∂νi denotes the outer normal derivative with respect to Ωi, i = 1, 2.
To deal with the interface problem, we introduce a Banach space

Y = {u ∈ V ; ui ∈ H2(Ωi), i = 1, 2}
with the norm

‖u‖Y = ‖u‖V + ‖u1‖H2(Ω1) + ‖u2‖H2(Ω2), ∀u ∈ Y.

Definition 3.1. Let f ∈ L2(I; H) and u0 ∈ Y. A function u ∈ H1(I;Y) is called a
strong solution of (2.1) with the jump conditions (3.7) if u(0) = u0 and the relation

−∇ · (σ(x)∇u(t, x) + ε(x)∇u′(t, x)) = f(t, x) (3.8)

holds for a.e. t ∈ I and a.e. x ∈ Ωi (i = 1, 2).

Before proving the existence of a strong solution to the interface problem, we
first establish the following result.

Lemma 3.1. Let u be the weak solution of (2.3). Assume that f ∈ L2(I; H), u0 ∈
Y, u ∈ H1(I;Y), ∂Ω1 and ∂Ω2 are Lipschitz continuous. Then u is a strong solution
for (2.1) and (3.7).

Proof. We obtain, upon integration by parts, that for a.e. t ∈ I,∫
Ωi

(−∇ · (σ∇u + ε∇u′)v − fv)dx

=
∫

Ωi

(σ∇u · ∇v + ε∇u · ∇v − fv)dx, ∀ v ∈ H1
0 (Ωi),

which implies that

−∇ · (σ(x)∇u(t, x) + ε(x)∇u′(t, x)) = f(t, x)

holds for a.e. t ∈ I and a.e. x ∈ Ωi (i = 1, 2). It remains to show that the weak
solution also satisfies the jump conditions (3.7). By integration by parts we have
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for a.e. t ∈ I,

0 =
∫

Ω1∪Ω2

(−∇ · (σ∇u + ε∇u′)v − fv)dx

=
∫

Ω

(σ∇u · ∇v + ε∇u · ∇v − fv)dx −
∫

Γ

[
σ

∂u

∂ν
+ ε

∂u′

∂ν

]
vdx, ∀ v ∈ V.

From this and the definition of weak solutions it follows that∫
Γ

[
σ

∂u

∂ν
+ ε

∂u′

∂ν

]
vdx = 0, ∀ v ∈ V.

The arbitrariness of v shows that u satisfies the second jump condition in (3.7).
The first condition in (3.7) is a direct consequence of the fact that u ∈ H1(I; V ).
This completes the proof.

From the lemma above, we know that the key point is to get the regularity of
the weak solutions, which is the main subject of the following theorem.

Theorem 3.3. Let f ∈ L2(I; H) and u0 ∈ Y. Under the assumptions (A1), (A2)
and (A3), the interface problem (2.1) and (3.7) admits a unique strong solution u,

which satisfies

‖u‖H1(I;Y) � ‖f‖L2(I;H) + ‖u0‖Y .

Proof. From Corollary 3.2, there exists a weak solution u ∈ H1(I; V ) to (2.1). In
view of Lemma 3.1 and Theorem 3.1, it suffices to show that u ∈ H1(I;Y) and

‖u‖H1(I;Y) � ‖u‖H1(I;V ) + ‖f‖L2(I;H) + ‖u0‖Y .

The proof is divided into two parts. We only show that u|Ω1 ∈ H2(Ω1), since
the result that u|Ω2 ∈ H2(Ω2) can be proven in the same way. Henceforth we
denote by C a generic constant that depends only on the cut-off functions, the final
observation time T and the coefficients ε and σ, and is always independent of the
size of the difference parameter h in (2.6).

We first establish the interior regularity of the solution and its desired estimate.
Let U � Ω1 and choose a domain W such that U � W � Ω1. We then select a
cut-off function η ∈ C∞

0 (W ) such that η ≡ 1 on U and vanishes outside of W .
Now let |h| > 0 be small, and ek be the unit coordinate vector in xk direction
for k ∈ {1, . . . , n}, and define a function v = −D−h

k (η2Dh
ku′) (see (2.6) for the

definition of Dh
k ). Clearly, we know v(t) ∈ H1

0 (Ω1), hence also to V for t ∈ I. Now,
letting σh(x) = σ(x + hek), εh(x) = ε(x + hek) for x ∈ W , substituting this v into
the left-hand side of (2.3), and integrating it over I, we find that

A :=
∫

I

(a1(u(t), v(t)) + a2(u′(t), v(t)))dt

=
∫

I

∫
Ω

(Dh
k (σ∇u(t)) · ∇(η2Dh

ku′(t)) + Dh
k (ε∇u′(t)) · ∇(η2Dh

ku′(t)))dxdt
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=
∫

I

∫
W

(εhη2∇Dh
ku′(t) · ∇Dh

ku′(t) + σhη2∇Dh
ku′(t) · ∇Dh

ku(t))dxdt

+
∫

I

∫
W

(2ηDh
kεDh

ku′(t)∇u′(t) · ∇η + η2Dh
kε∇u′(t) · ∇Dh

ku′(t)

+ 2εhηDh
ku′(t)∇Dh

ku′(t) · ∇η)dxdt

+
∫

I

∫
W

(2ηDh
kσDh

ku′(t)∇u(t) · ∇η + η2Dh
kσ∇u(t) · ∇Dh

ku′(t)

+ 2σhηDh
ku′(t)∇Dh

ku(t) · ∇η)dxdt

=: (J)1 + (J)2 + (J)3.

We now estimate (J)1, (J)2, and (J)3 one by one. It is easy to see that

(J)1 =
1
2

∫
W

σhη2|∇Dh
ku(T )|2dx

− 1
2

∫
W

σhη2|∇Dh
ku(0)|2dx +

∫
I

∫
W

εhη2|∇Dh
ku′(t)|2dxdt. (3.9)

We note that there exists a constant K > 0 such that |Dh
kσ(x)| ≤ K and

|Dh
kε(x)| ≤ K for all x ∈ W and 0 < |h| < 1

2 dist(W, ∂Ω1). Using Young’s inequality
and Lemma 2.2, we obtain

|(J)2| ≤ m

5

∫
I

∫
W

η2|∇Dh
ku′(t)|2dxdt + C

∫
I

∫
Ω

|∇u′(t)|2dxdt. (3.10)

Similarly, we can derive

|(J)3| ≤ m

5

∫
I

∫
W

η2|∇Dh
ku′(t)|2dxdt + δ

∫
I

∫
W

η2|∇Dh
ku(t)|2dxdt

+ C

∫
I

∫
Ω

(|∇u(t)|2 + |∇u′(t)|2)dxdt, (3.11)

where δ is a positive constant to be specified later. An interplay of Lemmas 2.2 and
2.4 implies that∫

W

η|∇Dh
ku(t)|2dx ≤ C′

(∫
Ω

|∇Dku(0)|2dx +
∫

I

∫
Ω

|∇Dku′(s)|2dxds

)
, ∀ t ∈ I,

with some constant C′ > 0, whence (3.11) ensures that

|(J)3| ≤
2m

5

∫
I

∫
W

η2|∇Dh
ku′(t)|2dxdt

+ C

∫
I

∫
Ω

(|∇u(t)|2 + |∇u′(t)|2)dxdt, (3.12)

if δ is chosen small enough, say δ = m/(5TC′).
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On the other hand, using Young’s inequality and Lemma 2.2 again, we deduce

B :=
∫

I

∫
Ω

f(t)v(t)dxdt

≤ m

5

∫
I

∫
W

η2|∇Dh
ku′(t)|2dxdt + C

(∫
I

∫
Ω

(|f(t)|2 + |∇u′(t)|2)dxdt + ‖u0‖2
Y

)
.

Since A = B, we combine (3.9) with (3.13) to get
2m

5

∫
I

∫
W

η2|∇Dh
ku′(t)|2dxdt

≤ m

5

∫
I

∫
W

η2|∇Dh
ku′(t)|2dxdt

+ C

(∫
I

∫
Ω

(|∇u(t)|2 + |∇u′(t)|2 + |f(t)|2)dxdt + ‖u0‖2
Y

)
, (3.13)

which implies
n∑

i=1

∫
I

‖Dh
kDiu

′(t)‖2
L2(U)dt �

∫
I

(‖u′(t)‖2
V + ‖u(t)‖2

V + ‖f(t)‖2
H)dt + ‖u0‖2

Y

for all k = 1, 2, . . . , n and sufficiently small |h| �= 0. By applying Lemmas 2.3 and
2.4, we come to

‖u‖H1(I;H2(U)) � ‖f‖L2(I;H) + ‖u‖H1(I;V ) + ‖u0‖Y . (3.14)

Next, we establish the boundary regularity and the desired estimate. We first
use the standard argument to straighten out the boundary, i.e. flattening out the
boundary by changing the coordinates near a boundary point.11 Given x0 ∈ ∂Ω1,
there exists a ball B = Br(x0) with radius r and a C2-diffeomorphism Ψ : B →
Ψ(B) ⊂ R

n such that det|∇Ψ| = 1, U ′ := Ψ(B) is an open set, Ψ(B∩Ω1) ⊂ R
n
+ and

Ψ(B ∩∂Ω1) ⊂ ∂R
n
+, where R

n
+ is the half-space in the new coordinates. Henceforth

we write y = Ψ(x) = (Ψ1(x), . . . , Ψn(x)) for x ∈ B. Then we have {yn > 0; y ∈
U ′} = Ψ(B ∩ Ω1). Let Φ = Ψ−1, B+ = B r

2
(x0) ∩ Ω1, G = Ψ(B r

2
(x0)) and G+ =

Ψ(B+), then we can see G � U ′ and G+ ⊂ G. We shall write Diw = ∂w/∂yi

for i = 1, . . . , n, and w(y) = u(Φ(y)), f̂(y) = f(Φ(y)) for y ∈ U ′. Now using the
transformation function Ψ, the original equation on I ×B can be transformed into
an equation of the same form on I × U ′, i.e. for a.e. t ∈ I,∫

U ′

 n∑
i,j=1

σ̂ijDiw(t)Djv +
n∑

i,j=1

ε̂ijDiw
′(t)Djv

dy =
∫

U ′
f̂(t)vdy (3.15)

for v ∈ H1
0 (U ′), where the coefficients σ̂ij(y) and ε̂ij(y) are given by:

σ̂ij(y) :=
n∑

r=1

σ(Φ(y))
∂Ψi

∂xr
(Φ(y))

∂Ψj

∂xr
(Φ(y)),

ε̂ij(y) :=
n∑

r=1

ε(Φ(y))
∂Ψi

∂xr
(Φ(y))

∂Ψj

∂xr
(Φ(y))

(3.16)
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for 1 ≤ i, j ≤ n and y ∈ U ′. It is not difficult to see that
n∑

i,j=1

ε̂ij(y)ξiξj ≥ m|ξ|2,
n∑

i,j=1

σ̂ij(y)ξiξj ≥ 0, ∀ (y, ξ) ∈ U ′ × R
n. (3.17)

Choosing a domain W ′ such that G � W ′ � U ′, we then select a cut-off function,
which is still denoted by η, such that η ≡ 1 on G and vanishes outside W ′. Now let
|h| > 0 be small, and êk be the unit coordinate vector in the yk direction for k ∈
{1, . . . , n− 1}. In the sequel, Dh

k stands for the difference quotient in the direction
êk. We observe that there exists a constant K ′ > 0 such that |Dh

k σ̂i,j(y)| ≤ K ′ and
|Dh

k ε̂i,j(y)| ≤ K ′ for a.e. y ∈ W ′, all 0 < |h| < 1
2 dist(W ′, ∂U ′) and 1 ≤ i, j ≤ n.

Then, a natural variant of the reasoning leading to (3.13) shows that

2m

5

∫
I

∫
W ′

(
n∑

i=1

η2(Dh
kDiw

′(t))2
)

dydt

≤ m

5

∫
I

∫
W ′

(
n∑

i=1

η2(Dh
kDiw

′(t))2
)

dydt

+ C

∫
I

(‖w(t)‖2
H1(U ′) + ‖w′(t)‖2

H1(U ′) + ‖f̂(t)‖L2(U ′))dt

+ C‖w(0)‖H2(U ′
−∪U ′

+),

where ‖w(0)‖H2(U ′
−∪U ′

+) := ‖w(0)‖H2(U ′
−) + ‖w(0)‖H2(U ′

+) with U ′
+ = U ′ ∩ R

n
+ and

U ′
− = U ′\U ′

+. We can derive from the resulting inequality that
n∑

i=1

∫
I

‖Dh
kDiw

′(t)‖2
L2(G+)dt

�
∫

I

(‖w′(t)‖2
H1(U ′) + ‖w(t)‖2

H1(U ′) + ‖f̂(t)‖2
L2(U ′))dt + ‖w(0)‖H2(U ′

−∪U ′
+)

for k = 1, . . . , n − 1 and all sufficiently small |h| �= 0, where we have also used the
fact η = 1 on G+. Using Lemma 2.3, we have∑

1≤i,j<2n

‖Di,jw‖H1(I;L2(G+))

� ‖f̂‖L2(I;L2(U ′)) + ‖w‖H1(I;H1(U ′)) + ‖w(0)‖H2(U ′
−∪U ′

+), (3.18)

where Di,jw = DiDjw. From (3.15) we obtain upon integration by parts that for
a.e. t ∈ I,∫

G+
σ̂nnDnw(t)Dnϕ + ε̂nnDnw′(t)Dnϕdy

=
∫

G+

f̂(t) +
∑

1≤i,j<2n

Di(ε̂ijDjw
′(t)) +

∑
1≤i,j<2n

Di(σ̂ijDjw(t))

ϕdy
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for any ϕ ∈ C∞
0 (G+). Noting that σ̂ij and ε̂ij are both continuously differentiable in

G
+

and the estimate (3.18), the right-hand side of the equation above is well-defined
and so we find that for a.e. t ∈ I, the weak derivative of σ̂nnDnw(t) + ε̂nnDnw′(t)
with respect to yn exists and it satisfies

−Dn(σ̂nnDnw(t) + ε̂nnDnw′(t))

= f̂(t) +
∑

1≤i,j<2n

Di(ε̂ijDjw
′(t)) +

∑
1≤i,j<2n

Di(σ̂ijDjw(t)). (3.19)

For the sake of brevity, we write g := ε̂nnHDnw, where

H(t, y) := exp
(

σ̂nn(y)
ε̂nn(y)

t

)
(t, y) ∈ I × G+.

It follows readily that H is strictly positive and H ∈ C1(I × G+). Equation (3.19)
ensures that for a.e. t ∈ I,

−Dn

(
g′(t)
H

)
= f̂(t) +

∑
1≤i,j<2n

Di(ε̂ijDjw
′(t)) +

∑
1≤i,j<2n

Di(σ̂ijDjw(t)). (3.20)

A direct computation yields for a.e. t ∈ I,

Dng′(t) =
DnH(t)

H(t)
g′(t)

−H(t)

f̂(t) +
∑

1≤i,j<2n

Di(ε̂ijDjw
′(t)) +

∑
1≤i,j<2n

Di(σ̂ijDjw(t))

.

Since ‖g′‖L2(I;L2(G+)) � ‖w‖H1(I;H1(G+)), we infer from this and (3.18) that

‖Dng′‖L2(I;L2(G+))

� ‖f̂‖L2(I;L2(U ′)) + ‖w‖H1(I;H1(U ′)) + ‖w(0)‖H2(U ′
−∪U ′

+). (3.21)

As ‖Dng(0)‖ � ‖w(0)‖H2(U ′
+), an application of Lemma 2.4 yields

‖Dng‖L2(I;L2(G+))

� ‖f̂‖L2(I;L2(U ′)) + ‖w‖H1(I;H1(U ′)) + ‖w(0)‖H2(U ′
−∪U ′

+). (3.22)

We can then conclude from (3.21) and (3.22) that

‖Dn,nw‖H1(I;L2(G+)) � ‖f̂‖L2(I;L2(U ′)) + ‖w‖H1(I;H1(U ′)) + ‖w(0)‖H2(U ′
−∪U ′

+).

Combining this with estimate (3.18), and transforming w back to u in the resulting
inequality, we find

‖u‖H1(I;H2(B+)) � ‖f‖L2(I;H) + ‖u‖H1(I;V ) + ‖u0‖Y . (3.23)

By choosing a finite set of balls {Bri/2(xi)}N
i=1 such that it covers the boundary

and then adding the estimates over these balls, we obtain the desired result.
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Using the standard arguments (cf. Theorem 3.2.1.2 in Ref. 13) with some natural
modifications and the estimates above, we can prove the following regularity result
in a general convex domain.

Theorem 3.4. Let f ∈ L2(I; H) and u0 ∈ Y. Assume that Ω is a bounded and
convex domain, Ω1 � Ω a C2-subdomain, and that (A1) and (A3) hold. Then, the
interface problem (2.1) and (3.7) admits a unique strong solution, which satisfies

‖u‖H1(I;Y) � ‖f‖L2(I;H) + ‖u0‖Y . (3.24)

3.3. Existence of a strong solution for smooth coefficients

For the case with smooth coefficients, if we use

(A4) ∂Ω is C2 and σ, ε ∈ C1(Ω),

instead of (A2) and (A3), then we can obtain a better regularity result as follows,
using the same argument as in the proof of Theorem 3.3.

Theorem 3.5. Let f ∈ L2(I; H) and u0 ∈ X . Under assumptions (A1) and (A4),
Eq. (2.1) admits a unique strong solution u, which satisfies the following estimate:

‖u‖H1(I;X ) � ‖f‖L2(I;H) + ‖u0‖X .

Remark 3.1. By the standard semigroup theory,27 we may achieve a better esti-
mate, i.e. under the assumptions of Theorem 3.5, we have u ∈ C1([0, T ];X ). That
is, u is a classical solution.

4. Finite Element Approximation and Error Estimates

In this section, we propose a fully discrete finite element scheme to approximate
the solution of the interface problem (2.1) and (3.7), and establish its optimal con-
vergence under the minimum regularity assumptions on the given data. To do so,
we first consider an auxiliary semi-discrete finite element scheme for the concerned
interface problem and develop its optimal convergence, which will lead to the opti-
mal convergence of the fully discrete scheme.

Unless otherwise notified, we assume below that f ∈ L2(I; H) and u0 ∈ Y. For
the sake of exposition, we further make the following assumptions:

(A5) Ω is a convex polygon or polyhedron in R
n with n = 2 or 3, and Ω1 � Ω is a

domain with C2-boundary.
(A6) The coefficients ε and σ are constants in each domain, namely, ε = εi and

σ = σi in Ωi, i = 1, 2, where εi and σi are two positive constants.

Clearly, assumption (A6) implies (A1). It follows from Theorem 3.4 that there
exists a strong solution to the interface problem (2.1) and (3.7).

Remark 4.1. For the sake of exposition, we assume that Ω is a convex polygon
(if n = 2) or a convex polyhedral domain (if n = 3). The actual curved boundary
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can be treated in the same manner as we handle the interface Γ in our subsequent
analysis of this section.

We now introduce a triangulation of the domain Ω. First we triangulate Ω1

using a quasi-uniform mesh T 1
h with simplicial elements of size h, which form a

polyhedral domain Ω1,h. By a quasi-uniform mesh, we mean

h ≤ hK � h, K ∈ T 1
h , (4.1)

where hK := 1/2 diamK and h := minK∈T 1
h

ρK with ρK being the maximal radius
such that BρK (bK) ⊂ K. Here BρK (bK) denotes the closed ball of radius ρK cen-
tered at the barycenter of the element K.18 We also require that the triangulation
T 1

h is done such that all the boundary vertices of Ω1,h lie on the boundary of Ω1.
Then we triangulate Ω2 using a quasi-uniform mesh T 2

h with simplicial elements of
size h, which form a polyhedral domain Ω2,h. The triangulation T 2

h is done such
that all the vertices of the outer polyhedral boundary ∂Ω are also the vertices of
Ω2,h, while all the vertices on the inner boundary of Ω2,h match the boundary ver-
tices of Ω1,h. More precisely, the triangulation Th := T 1

h ∪T 2
h satisfies the following

conditions:

(T1) Ω =
⋃

K∈Th
K;

(T2) if K1, K2 ∈ Th with K1 �= K2, then either K1 ∩ K2 = ∅ or K1 ∩ K2 is a
common vertex, an edge or a face;

(T3) for each K, all its vertices are completely contained in either Ω1 or Ω2.

Now we define Vh to be the continuous piecewise linear finite element space on
the triangulation Th and V 0

h the closed subspace of Vh with its functions vanishing
on the boundary ∂Ω. Then we study the approximation of piecewise smooth func-
tions by finite element functions in Vh. Clearly, the accuracy of this approximation
depends on how well the mesh Th resolves the interface Γ. Following the notation
used in Ref. 18, we define, for λ > 0 with λ < min{dist(Γ, ∂Ω), h/2}, a tubular
neighborhood Sλ of Γ by

Sλ := {x ∈ Ω; dist(x, ∂Γ) < λ};

see Fig. 1. Then we decompose Th into three disjoint subsets Th = T̊ 1
h ∪ T̊ 2

h ∪ T∗,
where

T̊ i
h = {K ∈ Th; K ⊂ Ωi\Sλ}, i = 1, 2,

and T∗ := Th\(T̊ 1
h ∪ T̊ 2

h ). Furthermore, we write T i
∗ = {K ∈ T∗; K ⊂ Ωi ∪Sλ}. And

we know T 1
∗ ∩ T 2

∗ = ∅. To see this, for any element K ∈ T 1
∗ ∩ T 2

∗ , it satisfies that
K ⊂ Sλ by noting the fact that Ω1 ∩ Ω2 = ∅, thus BρK (bK) ⊂ Sλ, which, together
with (4.1), implies h < λ. This contradicts to the condition that 2λ < h, leading
to the conclusion that T 1

∗ ∩ T 2
∗ = ∅. Furthermore, since Γ is of class C2, we know

from Ref. 18 that there exists λ > 0 such that

λ = O(h2), (4.2)
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Fig. 1. An illustrative example of the finite element triangulation.

and T∗ = T 1
∗ ∪ T 2

∗ , provided that h is appropriately small. We may also refer to
p. 1890 in Ref. 7, pp. 180–181 in Ref. 8, and Ref. 10 for more details. Figure 1
illustrates an example of such decomposition.

For this triangulation, we have an important observation that Ωi,h =
⋃
{K; K ∈

T̊ i
h∪T i

∗ }, i = 1, 2, i.e. T i
h = T̊ i

h∪T i
∗ . The notation Sλ not only quantifies how well the

mesh Th resolves the interface, but it also allows us to use the important auxiliary
results in Lemmas 4.2–4.4, which were established in Ref. 18 in the subsequent
analysis.

We note that the evaluation of the entries of the stiffness matrix involving inter-
face elements is not trivial in the three-dimensional case if the mesh is not aligned
with the interface.9 So we shall adopt the following more convenient approximation
bilinear forms ai,h(·, ·) : V × V → R:

a1,h(u, v) :=
2∑

i=1

∫
Ωi,h

σi∇u · ∇vdx and

a2,h(u, v) :=
2∑

i=1

∫
Ωi,h

εi∇u · ∇vdx.

To approximate the problem in space optimally, we introduce the projection
operator Qh : Y ∩ V → V 0

h . For each u ∈ Y, let f∗ = −εi∆ui in Ωi, i = 1, 2, and
g∗ = [ε∂u

∂ν ]. Clearly, f∗ ∈ H and g∗ ∈ L2(Γ). Then, we can define Qh : Y ∩ V →
V 0

h by

a2,h(Qhu, vh) = (f∗, vh) + 〈g∗, vh〉, ∀ v ∈ V 0
h ,

where 〈·, ·〉 denotes the scalar product in L2(Γ). We note that the right-hand
side L(·) := (f∗, ·) + 〈g∗, ·〉 is independent of h. Thus, we can follow the proof
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of Theorems 4.1 and 4.8 in Ref. 18, which mainly focuses on the case when g∗ = 0,
to obtain the following result.

Lemma 4.1. We have

a2(u, vh) = a2,h(Qhu, vh), ∀ vh ∈ V 0
h . (4.3)

Moreover, for any u ∈ Y, the following error estimate holds :

‖u − Qhu‖H + h‖u − Qhu‖V � h2‖u‖Y .

Now, we present some auxiliary results. For the difference between the bilinear
form ai(·, ·) and its approximated bilinear form ai,h(·, ·), we have the following
estimate. See p. 27 in Ref. 18.

Lemma 4.2. Both a1,h(·, ·) and a2,h(·, ·) are bounded, and a2,h(·, ·) is coercive.
Moreover, the form a∆

i,h(u, v) := ai(u, v) − ai,h(u, v) (i = 1, 2) satisfies

|a∆
i (u, v)| � |u|H1(Sλ)|v|H1(Sλ).

To estimate the energy-norm and the L2-norm of a function over Sλ, we will
frequently use the following estimates (cf. Lemma 2.1 and Remark 4.2 in Ref. 18).

Lemma 4.3. For any u ∈ V, we have

‖u‖2
L2(Sλ) � λ‖u‖2

V . (4.4)

Moreover, for any u ∈ Y,

|u|2H1(Sλ) � λ‖u‖2
Y , (4.5)

where |·|H1(Sλ) is the H1-semi-norm.

The following estimate is critical to the establishment of our main results
(cf. Lemma 4.5 in Ref. 18).

Lemma 4.4. There exists a positive constant µ independent of h such that

‖wh‖H1(Sλ) �
√

λ

h
‖wh‖H1(Sµh) ∀wh ∈ Vh.

4.1. Semi-discrete finite element approximation

and error estimates

We now consider an auxiliary semi-discrete finite element scheme for our considered
interface problem (2.1) and (3.7) and develop its optimal convergence, which will
lead directly to the optimal convergence of the fully discrete scheme in Sec. 4.2.

Problem (Ph). Let uh(0) = Qhu0. Find uh ∈ H1(I; V 0
h ) such that for a.e. t ∈ I,

a1,h(uh(t), vh) + a2,h(u′
h(t), vh) = 〈f(t), vh〉V ′×V , ∀ vh ∈ V 0

h . (4.6)

We first establish the following stability estimate, which will be used in the
subsequent analysis.
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Lemma 4.5. If f ∈ L2(I; V ′) and uh is the solution to Problem (Ph), then we
have

‖uh‖H1(I;V ) � ‖f‖L2(I;V ′) + ‖Qhu0‖V .

The proof of this lemma is similar to that of Theorem 3.1, so it is omitted. We
are now in a position to establish the optimal error estimate of the scheme (Ph) in
the energy norm.

Theorem 4.1. Let u be the solution to the interface problem (2.1) and (3.7) and
uh the solution to Problem (Ph), then the following error estimate holds under the
assumptions (A5) and (A6):

‖u − uh‖H1(I;V ) � h(‖f‖L2(I;H) + ‖u0‖Y).

Proof. We first have the following decomposition:(∫ T

0

(‖u(t) − uh(t)‖2
V + ‖u′(t) − u′

h(t)‖2
V )dt

) 1
2

≤
(∫ T

0

(‖u(t) − Qhu(t)‖2
V + ‖u′(t) − Qhu′(t)‖2

V )dt

) 1
2

+

(∫ T

0

(‖Qhu(t) − uh(t)‖2
V + ‖Qhu′(t) − u′

h(t)‖2
V )dt

) 1
2

=: (I)1 + (I)2. (4.7)

Using Lemma 4.1 and Theorem 3.4, we obtain

(I)1 � h‖u‖H1(I;Y) � h(‖f‖L2(I;H) + ‖u0‖Y).

It remains to establish a desired estimate for (I)2. To this end, we first notice that
the function w := uh − Qhu belongs to H1(I; V 0

h ). In addition, using the identity
that (Qhu)′(t) = Qhu′(t) for a.e. t ∈ I and the definition of u and uh, we find for
a.e. t ∈ I,

a1,h(w(t), vh) + a2,h(w′(t), vh) = 〈F (t), vh〉V ′×V , ∀ vh ∈ V 0
h ,

where F (t) ∈ V ′ for t ∈ I, defined by

〈F (t), v〉V ′×V := a1(u − Qhu, v) + a2(u′ − Qhu′, v)

+ a∆
1 (Qhu, v) + a∆

2 (Qhu′, v), ∀ v ∈ V.

Analogously to Lemma 4.5, we derive

(I)2 = ‖w‖H1(I;V ) � ‖F‖L2(I;V ′). (4.8)
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Thus, it remains to estimate ‖F‖L2(I;V ′). For t ∈ I and any v ∈ V , we use
Lemma 4.2 to obtain

|〈F (t), v〉V ′×V | � (‖u(t) − Qhu(t)‖V + |Qhu(t)|H1(Sλ)

+ ‖u′(t) − Qhu′(t)‖V + |Qhu′(t)|H1(Sλ))‖v‖V ,

which, together with the estimates:

|Qhu(t)|H1(Sλ) ≤ |u(t)|H1(Sλ) + |u(t) − Qhu(t)|H1(Sλ),

|Qhu′(t)|H1(Sλ) ≤ |u′(t)|H1(Sλ) + |u′(t) − Qhu′(t)|H1(Sλ),

implies that

‖F‖L2(I;V ′) � ‖Qhu − u‖H1(I,V ) + ‖u‖H1(I;H1(Sλ)).

Now Lemmas 4.1 and 4.3, together with Theorem 3.4, yield

‖F‖L2(I;V ′) � (h +
√

λ)(‖f‖L2(I;H) + ‖u0‖Y).

From this, (4.2) and (4.8), the desired estimate for (I)2 follows readily.

Now, we shall derive the optimal L2-norm error estimate for the scheme
(Ph).

Theorem 4.2. Under the assumptions of Theorem 4.1, we have the following esti-
mate in L2-norm:

‖u − uh‖L2(I;H) � h2(‖f‖L2(I;H) + ‖u0‖Y).

Proof. For the duality argument, we define w ∈ H1(I; V ) and wh ∈ H1(I; V 0
h )

such that for a.e. t ∈ I:

a1(w(t), v) − a2(w′(t), v) = (u(t) − uh(t), v), ∀ v ∈ V,

a1(wh(t), v) − a2(w′
h(t), v) = (u(t) − uh(t), v), ∀ v ∈ V 0

h ,

which satisfies w(T ) = wh(T ) = 0. That is, w∗(t) := w(T − t) is the weak solution
of (2.1) with initial value w∗(0) = 0 and f replaced by u − uh. Then Theorem 3.4
implies that

‖w‖H1(I;Y) � ‖u − uh‖L2(I;H). (4.9)

Using the same argument employed in Theorem 4.1 with a natural modification,
we find that

‖w − wh‖H1(I;V )) � h‖u − uh‖L2(I;H). (4.10)
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By integration by parts with respect to the time variable, identity (4.3) and
taking advantage of the Galerkin orthogonality for w−wh and e := u−uh, we know
that ∫ T

0

(a1(e, wh) − a2(e, w′
h))dt

=
∫ T

0

(a1(e, wh) + a2(e′, wh))dt + a2(u(0) − Qh(0), wh(0))

=
∫ T

0

(−a∆
1 (uh, wh) − a∆

2 (u′
h, wh))dt + a∆

2 (Qhu(0), wh(0)), (4.11)

and for a.e. t ∈ I,

a1(w(t) − wh(t), v) − a2(w′(t) − w′
h(t), v) = 0, ∀ v ∈ V 0

h . (4.12)

Applying (4.11) and (4.12) and integrating by parts with respect to time variable,
we obtain

‖e‖2
L2(I;H) =

∫ T

0

(a1(u − Qhu, w − wh) + a2(u′ − Qhu′, w − wh))dt

−
∫ T

0

(a∆
1 (uh, wh) + a∆

2 (u′
h, wh))dt

+ a∆
2 (Qhu(0), wh(0)) + a2(u(0) − Qhu(0), w(0) − wh(0))

=: (II)1 + (II)2 + (II)3.

The rest of the proof can be done in a similar argument to that used for the
standard elliptic interface problem (see, e.g. Theorem 4.6 in Ref. 18). First by
applying the Cauchy–Schwarz inequality, Lemma 4.1, the regularity estimate (4.9)
and Theorem 4.1, we can establish the desired boundedness of (II)1. Then we can
derive some necessary bounds of uh, w and wh in H1(I; H1(Sλ)) by means of
Lemmas 4.1–4.4, the regularity estimates (4.9), (4.10) and the condition 2λ ≤ h,
and further estimate (II)2 and (II)3, where the embedding result (2.5) is also needed.
The detailed proof can be found in Ref. 2.

4.2. Fully discrete finite element scheme and error estimates

In this subsection, we are going to formulate a fully discrete finite element scheme
to approximate the solution to the interface problem (2.1) and (3.7). We shall use
the backward Euler scheme for the time discretization. Let us start with dividing
the time interval I into N equally spaced subintervals and using the following nodal
points:

0 = t0 < t1 < · · · < tN = T,

where tn = nτ for n = 0, 1, . . . , N and τ = T/N . For any given discrete time
sequence {un}N

n=0 in V and a function g(x, t) which is continuous with respect to t,
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we can define

∂τwn =
wn − wn−1

τ
, gn =

1
τ

∫ tn

tn−1
g(·, s)ds, ĝn(·) = g(·, tn), n = 1, . . . , N.

Now, we propose a fully discrete finite element scheme to approximate the solu-
tion to the interface problem (2.1) and (3.7).

Problem (Ph,τ ). Let u0
h = Qhu0. For each n = 1, 2, . . . , N , find un

h ∈ V 0
h such that

a1,h(un
h, vh) + a2,h(∂τun

h, vh) = (f̂n, vh), ∀ vh ∈ V 0
h . (4.13)

For a discrete sequence {un
h}N

n=1 defined in Problem (Ph,τ ), we can introduce a
piecewise constant function in time by

uh,τ(·, t) = un
h(·) ∀ t ∈ (tn−1, tn], n = 1, 2, . . . , N. (4.14)

Then, we say that uh,τ is a solution of Problem (Ph,τ ), which is a fully discrete
approximation of the solution to the interface problem (2.1) and (3.7). In order to
compute the error between uh,τ and u, it suffices to establish the error between
uh,τ and uh, i.e. the solution of the semi-discrete scheme (4.6), since the error
between uh and u has been studied in Sec. 4.1. To this end, we need the following
auxiliary result, which can be obtained by applying the Lax–Milgram theorem,
taking vh = 2τ∂wn

h in (4.15) and then using some standard arguments (see Ref. 2).

Lemma 4.6. Let {Fn}N
n=1 be a time discrete sequence lying in V ′ and w0

h = 0.
There exists a unique sequence {wn

h}N
n=1 such that for n = 1, 2, . . . , N,

a1,h(wn
h , vh) + a2,h(∂τwn

h , vh) = 〈Fn, v〉V ′×V , ∀ vh ∈ V 0
h . (4.15)

Moreover, the sequence {wn
h}N

n=1 has the following stability estimate:

max
1≤n≤N

‖wn
h‖2

V � τ

N∑
n=1

‖Fn‖2
V ′ . (4.16)

From the lemma above we notice that Problem (Ph,τ ) always admits a unique
solution.

Lemma 4.7. Let uh,τ and uh be the solution of Problem (Ph,τ ) and Problem (Ph ),
respectively, then under the assumptions (A5) and (A6) and the condition that f ∈
H1(I; H), the following estimate holds :

‖uh − uτ,h‖L2(I;V ) � τ(‖f ′‖L2(I;H) + ‖f‖L2(I;H) + ‖u0‖Y).

Proof. We first define a piecewise constant function in time such that u∗
h,τ (0) =

Qhu0 and

u∗
h,τ (·, t) = ûn

h(·), ∀ t ∈ (tn−1, tn], n = 1, 2, . . . , N.

Using Lemmas 4.1 and 4.5, it follows readily that

‖uh − u∗
h,τ‖L2(I;V ) � τ‖uh‖H1(I;V ) � τ(‖f‖L2(I;H) + ‖u0‖Y). (4.17)
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Integrating (4.6) over (tn−1, tn) and dividing both sides by τ , we have for n =
1, 2, . . . , N ,

a1,h(un
h , vh) + a2,h(∂τ ûn

h, vh) = (f̄n, vh), ∀ vh ∈ V 0
h . (4.18)

Subtracting both sides of (4.18) above from those of (4.13), we can rewrite the
resulting equation as

a1,h(un
h − ûn

h, vh) + a2,h(∂τ (un
h − ûn

h), vh)

= (f̂n − f̄n, vh) + a1,h(un
h − ûh, vh), ∀ vh ∈ V 0

h .

The right-hand side of the equation above defines a functional on V for each n =
1, 2, . . . , N . Then we can apply Lemma 4.6, Theorem 4.1 and the triangle inequality
to obtain the desired result; see Ref. 2 for more details.

From Lemma 4.7 and Theorems 4.1 and 4.2, the following result follows imme-
diately.

Theorem 4.3. Let u be the solution to the interface problem (2.1) and (3.7) and
uh,τ the solution to Problem (Ph,τ ), then under the assumptions (A5) and (A6) and
the condition that f ∈ H1(I; H), the following estimates hold :

‖u − uh,τ‖L2(I;V ) � (τ + h)(‖f‖L2(I;H) + ‖f ′‖L2(I;H) + ‖u0‖Y),

‖u − uh,τ‖L2(I;H) � (τ + h2)(‖f‖L2(I;H) + ‖f ′‖L2(I;H) + ‖u0‖Y).

5. Concluding Remarks

This work performs a systematic mathematical and finite element analysis on the
effects of pulsed electric fields on heterogeneous physical media. Under rather gen-
eral conditions on the given data, we have established the well-posedness of the
governing time-dependent electric interface problem and the regularity of its solu-
tions. Then we have proposed a fully discrete finite element scheme for the numerical
approximation of the solutions to the interface problem, and derived the optimal
error estimates of the finite element solution in both energy-norm and L2-norm.

Time-dependent interface problems are frequently encountered in scientific
computing and many applied sciences. The typical mathematical models are the
parabolic- or wave-type interface equations with discontinuous coefficients, which
arise when the physical processes involve two or more materials or media with differ-
ent properties, such as the bulk modulus in acoustic propagation or the conductivity
in heat diffusion; see Refs. 5, 7, 8 and references therein. We believe the new results
and numerical scheme here for a non-standard time-dependent interface problem
may motivate some further research directions, and find more potential applications
in the areas like electromagnetism, biomedicine, food sciences, and biotechnology.

For the sake of exposition and clarity, we have chosen to avoid a few rather
technical but practically important issues in the current work. But the theory of
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this work can be generalized in principle in two directions. First of all, general high-
order finite elements can be studied by combining the theory in this work with the
analysis in Refs. 17 and 18. Second, the model system in this work can be extended
to the following time-dependent interface problem of more general form:

−

 n∑
i,j=1

Di(σi,j(x)Dju(t, x)) +
n∑

i,j=1

Di(εi,j(x)Dju
′(t, x))

 = f(t, x), (5.1)

complemented with the interface conditions:

[u] = 0,

[
du

dN1
+

du′

dN2

]
= g on the interface Γ,

where g(t, x) is a known function representing the interface source strength, and two
derivatives du/dN1 and du/dN2 are given by du/dN1 =

∑n
i,j=1 σi,j

∂u
∂xj

cos(ν, xi)
and du/dN2 =

∑n
i,j=1 εi,j

∂u
∂xj

cos(ν, xi). Naturally, the coefficients {σi,j(x)} and

{εi,j(x)} in (5.1) are assumed to satisfy the similar conditions to (3.17).
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