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A CONVERGENT ADAPTIVE EDGE ELEMENT METHOD
FOR AN OPTIMAL CONTROL PROBLEM IN MAGNETOSTATICS *> **

YIFENG XU! AND JUN ZoOU?

Abstract. This work is concerned with an adaptive edge element solution of an optimal control
problem associated with a magnetostatic saddle-point Maxwell’s system. An a posteriori error estimator
of the residue type is derived for the lowest-order edge element approximation of the problem and proved
to be both reliable and efficient. With the estimator and a general marking strategy, we propose an
adaptive edge element method, which is demonstrated to generate a sequence of discrete solutions
converging strongly to the exact solution satisfying the resulting optimality conditions and guarantee
a vanishing limit of the error estimator.
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1. INTRODUCTION

We are concerned in this work with the following stationary saddle-point system [5,6, 16]

V x (vV xy) =xcu in 2,
V.oy= 0 in £ (1.1)
yxn= 0 ondf

which is often encountered in magnetostatic simulations. Here £2 C R3 is an open bounded polyhedral domain
with a connected boundary 942, n is the unit outward normal on 9f2. The three-dimensional vector u € LQ(QC)
represents an exciting current density in a Lipschitz polyhedral subdomain (2. satisfying 2. C £2 and . is the
characteristic function of £2.. The coefficient v(x) is the inverse of the magnetic permeability and is assumed to
be piecewisely Wl’OO(Q) such that 0 < 1y < v(x) < vy ae. in 2 for two positive constants v4 and vs.
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convergence.
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Edge elements are very popular in numerical solutions of the saddle-point system (1.1), resulting in some
symmetric positive definite systems, which arise from the first equation of (1.1) with an extra zeroth order
term [6,9].

The main interest of this work is to propose an adaptive edge element method for an optimal control problem
related to the system (1.1) with the applied current density w and the potential y as the control and the state
respectively. Mathematically, it is formulated as a constrained minimization problem [28]:

1
min 7 (u) = 7|V x y(w) = V x yyllf + 2 [ulf o (1.2)

where y(u) solves the system (1.1), the desired field y, € Ho(curl;2) and V x V x y, € L*(£2) (all the
subsequent results can be easily extended to the case when V x y,; in (1.2) is replaced by a target field
G, € L*(22) with V x §, € L*(£2)). The constant ~ is a stabilisation parameter and the admissible space is
defined as

U:={uecL*2,)| (u,Vq)o =0 VYqec H (2.)}. (1.3)

The mathematical theory, including sensitivity analysis of control-to-state mapping, optimality conditions and
regularity of the optimal control, of the problem (1.2) has been investigated under some reasonable assumptions
on the nonlinear reluctivity v(«, |B|) in [28]. Moreover, relevant a priori error finite element analysis is also
conducted when the control and the state are both discretized by the lowest order edge elements of Nédélec’s first
family. We also mention [23,27] for latest results on optimal control problems in electromagnetism. However,
the existing studies have still not focused on numerical treatments of the practically important situations
when the solution to the problem (1.1)—(1.2) encounters local singularities or internal interface layers due to
reentrant corners on 942 or jumps of the coefficient v across interfaces of different media, which affects numerical
performance and accuracy greatly on uniformly refined meshes. Adaptive finite elements are an popular and
effective strategy to improve local accuracies of numerical solutions.

An adaptive finite element method (AFEM) typically takes the successive loops of the form:
SOLVE — ESTIMATE — MARK — REFINE. (1.4)

That is, one first solves the discrete problem for the finite element solution on the current mesh, computes the
relevant a posteriori error estimator, marks elements to be subdivided, and then refines the current mesh to
generate a new finer one.

The most crucial ingredient of the above process is the module ESTIMATE, which measures the error in
terms of some computable quantities formed by the discrete solution, the mesh size and the given data, i.e.,
a posteriori error estimation. This topic has been examined in depth for partial differential equations; see two
systematic reviews [1,24] and the references therein. In the past decade many important progresses have been
made on a posteriori error analyses for PDE-constrained optimal control problems, see, e.g., [11,15]. As far as
adaptive finite elements for Maxwell’ s equations are concerned, the theory has already reached a mature level;
see [2,5,7,19]. But the development of adaptive methods for optimal control problems of Maxwell’s equations is
still at an early stage. A residual-type a posteriori error estimator is obtained in [13] for the lowest order edge
element approximation of an H (curl)-elliptic distributed control problem with a pointwise control constraint.

On the other hand, the convergence and computational complexity of AFEM have also been investigated
extensively in the past decade. The issue has been well understood for second order linear elliptic problems;
see [4,17,18,21]. A very recent survey in [3] provides an abstract framework for quasi-optimal convergence rates
of various adaptive schemes based on conforming, nonconforming and mixed methods for second order linear
and nonlinear problems. The theory of AFEM has also been generalized to adaptive edge element methods for
the Maxwell’s equations; see [5,12,21,29]. But as far as optimal control problems are concerned, we are only
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aware of the work [10] on an asymptotic error reduction property of an adaptive finite element approximation
for the distributed control problems. The authors have recently studied the AFEM for the PDE-based inverse
problems, and established the convergence of AFEM for the problem of flux reconstruction in [26].

The aim of this work is two fold. First, we shall derive an a posteriori error estimator for the optimality system
of the constrained minimization problem (1.1)—(1.2) when the lowest order edge element of the first family is
used for approximation. Then an adaptive algorithm of the form (1.4) will be proposed and its convergence will
be established: the sequence of adaptively-generated minimizers to discrete problems converges strongly to the
minimizer of the problem (1.1)—(1.2) and the relevant estimator is a null sequence. We note that the algorithm
under consideration is of the same framework as the standard one for elliptic problems (e.g. [4,17,18]). Thus it
is of great convenience from the point of view of implementation. In the course of analysis, we shall make full use
of some effective arguments and analysis tools in literature for linear elliptic and electrogmagnetic problems and
their related optimal controls, in addition to several new techniques introduced here to handle some essential
difficulties and major differences due to the constraint system (1.1) and the control constraint (cf. (1.3)).

An adaptive FEM was investigated in [13] for the optimal control problem associated with the Maxwell
system, where only the H (curl)-elliptic system is considered, namely the first equation in (1.1) has an extra
zeroth order term. Our current interest is the more technical case where the zeroth order term is absent, so the
divergence constraint must be enforced for the uniqueness, resulting in the saddle-point system (1.1), for which
a Lagrangian multiplier will be introduced in the state equation.

In the finite element analysis of [28], in parallel with the continuous case the discrete control set is required to
be the orthogonal complement of the edge element space to the gradient of the continuous linear element space.
Then the L?-norm convergence of the discrete minimizers follows from the discrete compactness property of the
edge elements [16]. However, it remains still open whether this property is true for a family of triangulations
that are generated by adaptive local refinements, where the mesh sizes of the triangulations may converge to
zero only over part of the domain (2. So for proving a similar convergence result over adaptively refined meshes,
we shall resort to the weak convergence and a simple yet crucial observation: the sequence of minima to discrete
objective functionals converges to the minimum of a functional with respect to some limiting optimization
problem.

Next, we give a brief description of our subsequent arguments. Thanks to the special structure of the sys-
tem (1.1), we shall adopt an equivalent energy norm, the inf-sup condition, a regular decomposition and two
quasi-interpolation operators in deriving the estimator for errors of the state, the costate and the control in
the a posteriori error estimation; see Section 3. Important in the course of convergence analysis is an auxiliary
limit of discrete minimizers/discrete triplets (the approximate state, costate and control) given by the adaptive
process (1.4). By applying techniques from nonlinear optimization, we first achieve the convergence of discrete
cost functionals (the proof of Theorem 5.4). Then the weak limit of discrete controls can be upgraded to a strong
one (Thm. 5.5), by which, a norm convergence of the discrete state and costate variables is further guaranteed
(Thm. 5.7). The first desired convergence result (Thm. 6.8) follows after we verify that the limiting triplet also
satisfies the optimality conditions for the problem (1.1)-(1.2), and the second result (Thm. 6.9) is established
by the help of the efficiency; see Section 6.

The rest of this paper is organized as follows. In Section 2, we present the optimality system of the prob-
lem (1.1)—(1.2) and the corresponding edge element method. Section 3 is devoted to the reliability and the
efficiency of an residual-type error estimator, which allows us to design an adaptive algorithm in Section 4. We
discuss the convergence of discrete solutions to some limiting triplet in Section 5 before main results are given
in Section 6. The paper is ended with some concluding remarks in Section 7.

Throughout the paper we adopt the standard notation for the Lebesgue space L°°(G) and Sobolev spaces
W™P(@) for integer m > 0 on an open bounded domain G C R®. Related norms and semi-norms of H™(G)
(p = 2) as well as the norm of L>°(G) are denoted by || - ||m,c, | - |m,¢ and || - ||leo,c respectively. We use (-, -)a
to denote the L? scalar product G, and the subscript is omitted when G = 2. Moreover, we shall use C, with
or without subscript, for a generic constant independent of the mesh size and it may take a different value at
each occurrence.
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2. VARIATIONAL FORMULATION AND EDGE ELEMENT APPROXIMATION

For numerical treatments by edge elements, we need to reformulate the system (1.1) as a variational problem.
For this purpose, we need the following Sobolev spaces

Hy(curl; 2) = {v e L*(2) | V x v € L*(2), v x n = 0 on 902},
X ={ve Hy(curl; 2) | (v,Vq) =0V q € H}(2)},

H(curl; 2.) = {v € L*(2,) | V x v € L*(12.)},

X¢={ve H(curl; 2.) | (v,Vq) =0V q€ H(2.)},

all of which are equipped with graph norms || - || g(curr)- With a Lagrange multiplier ¢ € H(£) introduced
to relax the divergence condition in (1.1), integration by parts yields the following saddle-point problem: find
(y(u), d(u)) € Ho(curl; 2) x HE(£2) such that

{ (vV xy,V xv)+ (v,Ve) = (u,v)n, Vve Hy(curl;2), 21

(¥, Vq) =0 Vqe H}).

As the control-to-state map y(u) is linear, standard arguments from optimization implies a unique solution
(u*,y*,¢*) € U x Ho(curl; 2) x H}(£2) to the problem (1.2) and (2.1) [28]. For our later use, we collect two
important results here, i.e., the Poincaré-type inequality and the inf-sup condition (cf. [6,16,28]):

lvllo < CIV xv|lp YveX, (2.2)

v,V
sip VD s ol g e BYQ) (2.3)

0#vEH(curl;2) Hv”H(curl)

where C' depends only on 2. A direct consequence of (2.2) is that ||V x -||o is equivalent to the graph norm
on X. Noting that X and VH{(£2) are L?-orthogonal and Ho(curl; 2) = X & VHE(£2) [16], we may define
an alternative norm equivalent to the graph one on Hy(curl; 2): (|V x v||2 + ||v°]2)'/2, with v° being the
L?-projection of v on VH}(£2).

With a costate p* € Ho(curl;2) and a corresponding Lagrangian multiplier * € H{(£2) involved, the
solution (u*, y*, ¢*) € U x Hy(curl; 2) x H}(§2) to the problem (1.2) and (2.1) is characterized by the following
optimality conditions [28]:

vV x y*,V xv) + (v, Vo*) = (u*,v)n, Vve Hy(curl; 2), (2.4)
(y*,Vq) =0 Vqe H}), '
WV xp*,V xv)+ (v,V*) = (Vxy*—V xy,;,,V xv) Vve Hy(curl; 2), (2.5)
(p*,Vq) =0 Vqe Hj(1), '
(u* +’771p*,u)gc =0 YuelU. (2.6)

Noting that u* € U, we can easily see the Lagrange multiplier ¢* = 0 by taking v = V¢* in the first equation
of (2.4). Similarly, we have ¢* = 0 by taking v = V¢* in the first equation of (2.5).

Next we introduce a finite element method to approximate the constrained minimization problem (1.2)
and (2.1). Let 7 be a conforming and shape-regular triangulation of §2 into a set of closed tetrahedra such that
the local meshsize hr := |T|*/? and the coefficient function v is piecewise W1 over 7. When restricted on the
control region 2., 7 induces a subset 7°¢ satisfying 2, = Urere T Then the lowest order edge element space
of the first family is defined by [16]

Vr={veHycurl;2) | vlr =ar+br xz ar,br € R, VT eT}.
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For the numerical treatment of the Lagrange multiplier, we also need the standard H{ (£2)-conforming piecewise
linear finite element space St [8], for which we know the following inclusion relation [16]

VSrcVr. (2.7)

Now we take V& := V7o, and S5 to be the H'(§2.)-conforming piecewise linear finite element space, then
introduce the following discrete admissible space for controls:

Ur={weVS%| (v,Vg)a, =0V qe S5} (2.8)

Now we approximate the optimal control problem (1.2) and (2.1) by the following discrete system

. 1 5
min  Jr(ur) = §HV xyr(ur) =V xy,l + §||UT 5.2, (2.9)

ureUr

where y7 =y, (ur) € Vr and ¢7 := ¢7(ur) € St satisfy the discrete problem:

{ WV xyr, Vxvr)+ (vr,Vor) = (ur,vr)n, YVvr eV, (2.10)

(y7r,Var)=0 Vgqr € St.
As in the continuous case, there exists a unique minimizer uwh € Uy and a corresponding pair (yk, ¢k ) €
V1 x St to the problem (2.9) and (2.10) [28], based on the following discrete Poincaré inequality and the

inf-sup condition [6, 16, 28]:
[vllo <CV xvllo VveXr, (2.11)

v,V
sup (o, Vq) >Cllgl YqeSr (2.12)
0#AveEV T HU”H(curl)

where constant C' depends only on (2 and the shape-regularity of 7, and
Xr={veVs|(v,Vq) =0,VqgeSr}.

By introducing a costate p5 € V7 and a corresponding multiplier 13- € S, we have the optimality conditions
for the solution (uk,yk, ¢%) € Ur x V1 x St to the problem (2.9)—(2.10):

{ vV x y7, V x v1) + (1, V7)) = (uy,v7)0, Vor€Vr, (2.13)
(y%,Var) =0 Vqr € ST,
{ WV xp7, V xvr) + (v1, V1) = (V xy7 =V Xy, V xv7) VoreVr, (2.14)
(P5,Var)=0 Vg7 € St,
(ur +77'pr ur)e, =0 Yur €Ur. (219)

As for the continuous case, we can easily see ¢ = 0 and ¥% = 0 by taking vy = Vi and Vi in (2.13)
and (2.14) respectively.

We shall need the following stability results for finite element solutions to the problem (2.10), (2.13) and (2.14),
which are consequences of the Babuska—Brezzi theory:

HyTHH(curl) + |¢T|1 < CHU‘T”Q-QM (2'16)

197l (cury < Clluzloe.,  [1PTIHEU) < Clluzlloe. + IV X y4llo)- (2.17)
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Remark 2.1. The derivation of (2.6) is mainly based on the Helmholtz decomposition [28]:
H(curl; 2.) = X°© VH(12,). (2.18)

Using this, the costate p*|, can be expressed as —y " 1p*|n, = w + V& with w € X° and ¢* € H(§2.). Then
w can be shown to be the optimal control u* by the nonnegative Gateaux derivative of J at u* [28], i.e.,

P, = ut + Ve (2.19)
Similarly, the equation (2.15) is derived on the basis of a discrete Helmholtz decomposition:
Vy=Ur & VST. (2.20)
As a result, there exists a £5. € S such that

—7"'Prlo. = ur + VEre. (2.21)

3. A POSTERIORI ERROR ESTIMATE AND ITS RELIABILITY AND EFFICIENCY

In this section, we introduce a residual-type a posteriori error estimator for the discrete problem (2.13)—(2.15)
and show its reliability and efficiency with respect to errors of the control, state and costate. For this purpose,
some more notation and definitions are needed.

The collection of all faces (resp. all interior faces) in 7 is denoted by Fr (resp. Fr(§2)) and its restriction on
Q. (vesp. £2.) by Fr(92.) (resp. Fr(£2.)). The scalar hy := |F|'/? stands for the diameter of F' € Fr, which is
associated with a fixed normal unit vector nz in 2 with nx being the unit outward normal on 92, and np = n
on the boundary 9f2. We use Dr (resp. Dp) for the union of all elements in 7 with non-empty intersection
with element T € T (resp. F' € Fr). Furthermore, for any T' € 7 we denote by wy the union of elements in 7°
sharing a common face with 7', while for any F' € Fr({2) (resp. F' C 92) we denote by wp the union of two
elements in 7 sharing the common face F' (resp. the element with F' as a face).

For the solution (u%, y%, p%) to the problem (2.13)—(2.15), we define two element residuals for each T € T by

Rra(yr,ur) = xeur =V x WV xy7), Rra(pr) = -V xV xy,—V x ¥V xp7)
and some face residuals for each F' € Fr(£2) by

Jr1(yT) = [((vV xy7) xnr|, Jra(y7) = [y - nrl,

[ur -np| for F € Fr(f2),
Jra(ur) =4 wy-np for Fe Fr(2:)\ Fr(f),
0 for F e Fr(2)\ Fr(£2.),

Jra(pT,y7) = [(V X y7) X np — (WV x p7) x npl,  Jrs(pT) := [PT - np),
where [-] denotes jumps across interior faces F'. For any M C 7, we introduce our error estimator

U%’(U;,y;,p?},/\/{) = Z ng’(u;’vy;’vp’?vT)
TeM

= Z (n‘%’,l(y'*fau;’aT) +77’§’,2(p'*fay'*TaT) +77§—,3(U;—,T))
TeM
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2 * — 2
where 07 5(uy, T) := 3 pcorna hell Jrslld g, and

nra (s ur, T) = b3 Realls e+ Y (hellJeallsr + bellJr2llf r),
FCOTNN

1507y T) = hi|Realdr + > (hellJralld r + kel Jesll3 r)
FCoTNg

and four oscillation errors that involve the given data and the related elementwise projections:

oscy (Y, wy, M) := > hi|Rra — Rrallg r,

TeM
oscy (pr, M) := > h7l|Rrs — Reall§ o,
TeM
osex (Y7, S) == > _ hellJe1 — Jralldry 053 (07, ¥, S) == > hellJra— Jralld r
FeS§ FeSs

for some M C 7 and S C Fr(£2), where Ry and Ry s (resp. Jp1 and Jp4) are integral averages of Ry 1 and
Rr o (resp. Jp1 and Jpg4) over T (resp. F). When M =T or § = Fr(§2), M or S will be dropped in the
parameter list of the error estimator or the oscillation errors above.

We shall need the following regular decomposition of vector fields in H(curl; £2) [7,16]:

Lemma 3.1. Let 2 be a bounded Lipschitz domain, then for any v € Hq(curl;{2) there exist some z €
H'(2) N Ho(curl; Q) and ¢ € H}(2) such that
v=2z+Vyp (3.1)
with the estimate
1211 + 1ol < Cllvl| cury- (3.2)

To relate two parts in the splitting (3.1) to discrete spaces, we need two quasi-interpolation operators IT 7 :
H'(2)n Hy(curl; 2) — V7 [2] and I7 : H}(£2) — St [20], which have the following estimates for any T € 7
and any F' € Fr:

|v — I 7vllor < Chrlvli,py, |lv— Hzvlor < Chil’[v)i, by, (3.3)
g = Irqllor < Chrlgh.ne, lla—Irdllor < ChY gl by (3.4)

With the above preparations, we are ready to provide an upper bound of the error between the true solutions
to the problem (2.4)—(2.6) and the problem (2.13)—(2.15). As the state y* and the discrete state y% depend on
different controls, the so-called Galerkin orthogonality, essential to the a posteriori error estimates for elliptic
equations, does not hold in the current situation. We start our analysis with two auxiliary saddle-point systems:
find (y(uk), d(uk)) € Ho(curl; 2) x H}(£2) such that

vV x y(u%),V xv) + (v, Vo(uk)) = (uh,v)o, YV ve Ho(curl; 2),
{ (y(u3). Vo) =0 Vg€ HY(2) )
and find (p(u), ¥(us)) € Ho(curl; 2) x HL(£2) such that
{ ¥V x p(uy), V x v) + (v, Vi (ur)) = (V x (y(ur) — y,), V x v) Vv € Ho(curl; 2), (36)
(p(u7), Vq) =0 Vg€ Hj(R2).

Unique solvability of the problems (3.5) and (3.6) is guaranteed by the inequality (2.2) and the inf-sup condi-
tion (2.3).
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Lemma 3.2. Let (uk,yk) be the solution to the problem (2.9)—(2.10) and y(uk) be defined by (3.5) respec-
tively, then

ly(u?) = Y7 | Fr(eunn) < COiF 2 (W7, ur) + 07 5(ur). (3.7)
Proof. By the Helmholtz decomposition Hg(curl; 2) = X @& VH(2) (cf. [16]), we can write
yluk) —yr =w+Vp for we X, pe Hi(R).
Noting (w, Vq) = 0 for any ¢ € H}(£2), we take v = w in the first equation of (3.5) to get
2V x (y(u) — y2)ls = WV x (y(uf) —y7), V x w)
= WV x(y(ur) —y7), V X w) + (w, V($(ur) — 67))
= (ur, w)o, — (VV X y7, V x w) — (w, Vo)
={(ur,2)0. — (WV xy7,V x 2) = (2,V¢7)}
+{(u7, Ve)a. = (Ve, Vor)} =T + 1y, (3-8)
where we have used the decomposition w = Vo + z with z € H'(2) N Ho(curl; 2) and ¢ € H}(2) (see

Lem. 3.1). Applying operator It to z, using the first equation of the system (2.13) and noting ¢% = 0, we
deduce

L =Wr,z—IIrz)o, — vV xy5,Vx(z—I712))— (z— 1z, Vy)

= Z(Xcui} -V x WV xyy),z—Irz)r — Z ([(vV x y%¥) xnp|,z—I712)p
TeT FeFr(Q)

<Y NBralorlz —Irzlor+ Y. IJeilorllz = Mzl
TeT FeFr(0)

Similarly, by using (2.7), the first equation of (2.13) with vy = VIr¢ and the fact that V - u vanishes on
each element T' € 7° and ¢% = 0 we derive

L= (ur, V(g —I7¢))0. — (Ve — I19), VoT)

= > Urse—Iror< Y eslorlle - Irelor.
FeFr(2.) FeFr(£2)

It follows further from (3.3), (3.4) and the fact that Jp3 =0 on F € Fr(2) \ Fr(£2.) that

Ll <Y (7Rl e+ Y helleallsr)"?zh (3.9)
TeT FCoT
2| < Cnrs(ur)lelr. (3.10)

Now with the help of (3.2), the norm equivalence between |[w|| g (curty and ||V x wl|o and the fact that V x w =
V x (y(u¥) — y%), we obtain from (3.8)—(3.10) that

IV x (y(ui) =yl < CY_ Wzl Rrallir + Y hellJr
TeT FCoTNS?

13.6) + 07 5 (ui)) /2 (3.11)

On the other hand, we deduce from the second equation of the problems (3.5), (2.13) with ¢ = p and g7 = I7p
respectively and the fact that V - y% = 0 on each 7' € T that
(y(u7) = y7,Vp) = —(y7, Vp) = —(y7, V(p — I7p))
=— Z (Jr2,p—Irp)r < Z |2

FeFr(82) FeFr(£2)

lo,rllp — Irpllo,F-
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But for the projection of y(u%) — yi in VH{(£2), we note that (y(u%) — y%)° = Vp, then along with the
second estimate in (3.4) we get

Iy(ur) =y Mo <O > heldre

TeT FCOTNS?

13.2)'%. (3.12)

So we conclude from (3.11)—(3.12) that
IV > (y(ur) = y)I3 + I(y(wr) — y7)° I < Ct 1 (w7 ul) + 07 s(ur)).
The desired estimate follows now from the norm equivalence between (|V x -3+ ||-*[|12)/2 and |- | rr(cury. O

Likewise, we may obtain an estimate for the discrete costate p-.

Lemma 3.3. Let pk be the solution to the problem (2.14) and p(uk) be defined by (3.6), then

Proof. The proof is almost the same as that of Lemma 3.2. The Helmholtz decomposition and the regular
decomposition give
puyr)—pr=w+Vp=z+Vp+Vp
for some w € X, z € H*(2) N Ho(curl; £2) and ¢,p € H}(£2). Then using the first equation of (3.6) we derive
as in (3.8) that
[V1/2% x (p(u7) = PT)lls = (VY x (p(uf) = pT), V x w)
= WV x(plur) —p7), V xw) + (w, V((ur) — 7))
:(ny(u*T)—Vxyd,wa)—(Vpr*T,Vxw)—(w,Vzﬁ})
= (Vx(y(uz) —y7), V xw)+(V xyr =V xy,;, V xw)
— (vV x p¥, V x w) — (w, V)
= (V x (y(ur) —y7), V x w) + (=(Vep, Vi7))
+(Vxyr =V Xy, Vxz)—= vV xpr,Vxz)—(2Vir)
= 111 + IIQ + 113
Then by the Cauchy—Schwarz inequality,

L] < IV > (y(ur) —y7)lollV x wlo < [V x (y(uz) = y7)[o[[V x (p(ur) = PT)ll0-

Using the fact that ¢4 = 0 we know II, = 0. But for II3, taking v = IT7 z in the first equation of (2.14),
applying the estimate (3.3) and noting ¢ = 0 we derive

5] = [(V x y7 =V xy4, V x (2 — IIT2))
— WV xXpH VX (z—I72))— (2 — 71z, V)]

<O (hlRr2lir+ D hellJralls r))' |20
TeT FCoTns?

Now collecting the above two inequalities and using the estimates (2.2) and (3.2), we obtain
IV > (p(ur) = PTG < C(|V < (y(ur) —y7)lls

+Z(h%||RT,2||aT+ ) hF||JF,4||3,F)). (3.14)

TeT FCoTns?
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Furthermore, we can deduce from the second equations of the problems (3.6) and (2.14) with ¢ = p and
qr = I7p respectively as well as the estimate (3.4) that

b} = (p(u}) — Py, Vp) = —(py, Vp) = —(p5. V(p — Irp))

< | Jrsllorllp = Irplor <CCY . Y. hellJrsld )/ Iplh- (3.15)
TeT FCOTNR
The proof is now completed by a combination of (3.14)—(3.15) and the estimate (3.7). O

Now we are in a position to establish the reliability of the error estimator ns.
Theorem 3.4. Let (u*,y*,p*) and (u, y%, p%) be the solutions to the problems (2.4)—(2.6) and (2.13)—(2.15)
respectively, then there holds that
1y = ¥7 [z curyy + 1P = PT I E(cury) + 10" = uZl[§ o, < Cuz(ur, y7, pT), (3.16)
where the constant C' depends only on v, v and the shape-regularity of 7T .

Proof. We start with the estimate of u* — uk. As we know from Remark 2.1, there exist {* € Hi(£2.) and
&re € S5 such that
u'=—"'plo, — VE, ur=-"'prle. — V. (3.17)

Subtracting the first equations of (3.5) and (3.6) from (2.4) and (2.5) respectively, we get for any v € X that

WV x (y* —y(uy)),V xv) = (u" —ur,v)g,, (3.18)

vV x (p* = p(u7)),V xv) = (V x (y* —y(ur)), V x v). (3.19)
Taking v = p* — p(uk), v = y* — y(uk) in (3.18)—(3.19) respectively and noting (3.17), we find
IV > (y" = y(up)§ = (" —uz,p" — p(ur))e,
= (u" —uz,p” —p7)o. + (W —ur, pr —p(ur))e,
=7(u" —ur,ur —u')o, +y(u —ur, V(7. — &),
+ (" —ur,pr — p(uy))o.

Thus by the definitions of U and Uz (¢f. (1.3) and (2.8)) and the Scott—Zhang interpolation IS : H(§2.) —
St [20],

" = wrlf o + 11V > (y" = y(up)3
=(uz, V(7 (7 =€) = (§7c = &7))e. + (w" —uz,p7 — p(uz))e,
< Cynrs(ur)l€” = Erchio. + [w” —uzlloqllpT — puz)lo;

which, together with (3.17) and (3.13), yields

" = urllf o, < Clnrswp)lu” —urlo.q. +nrs(ur)p” - prllo)
+ " = uzlo.elpr — Pluz)lo
< C(nr (ug, y7,P7)[w” = wrllo.o. +n7s(ur)|p” — prllo)-

Then by Young’s inequality, we have

lu* — w7 |f o, < Cn (wr, y7, p7) +n73(u7) [P — P lo)- (3.20)
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Noting y* — y(uk) € X, taking v = y* — y(uk) in (3.18) and using (2.2) we deduce

ly* — y(ur) | Hicurr) < OV x (y" —y(uz))llo < Cllu” —urlon.. (3.21)

With v = p* — p(uk) € X in (3.19) and by (2.2) as well as (3.21) there holds

1P = P(u7) [ F (curt) < CIV % (0" = p(up))[§ < CIV x (y" —y(up))[f < Cllu” - wrllf o,
which, along with (3.13) in Lemma 3.3, (3.20) and Young’s inequality, yields
12" = 27 [ (eurty < Ciz (7, Y7, D7) (3.22)
Then it follows readily from (3.20) and (3.22) that
lw* = w7l o, < Cn7(ur,y7. pY). (3.23)
Using (3.21), (3.23) and (3.7) in Lemma 3.2, we are led to
Clearly the desired estimate follows now from (3.22)—(3.24). O

By the bubble function techniques [24], we may bound the estimator locally from above by the errors up to
the oscillation terms, i.e., the following efficiency theorem.

Theorem 3.5. Let (u*,y*, p*) and (uk, y’, p%) be the solutions to the problems (2.4)—(2.6) and (2.13)—(2.15)
respectively. Then there holds for any T € T that

n’%’(u:;Wy’);'?p’);'?T) < C(Hy* - y’?“%—l(curl),wT + Hp* _p’?H%—I(curl),wT + HXCU* - Xcu:;'Hg,wT
+ osc (yh, uh, wr) + oscx (phr, wr) + osc2 (yl, OT) + osc(ph, yi, OT)), (3.25)
where the constant C' depends only on v and the shape-reqularity of T .

Proof. For T € T, let br be the usual tetrahedral bubble function on T [24]. With wr = Ry 1br, the standard
scaling argument and the definition of Rp; imply

C||RT,1||(2),T < (Rry,wr)r = (Rr,1 — Ry, wr)r + (Rr1, wr)r
= (Xcuf;— -V x (VV X y;—), wT)T + (RT,l — RT,la wT)T. (326)

Integrating by parts and invoking the first equation of (2.4) with v = wyr € H (l)(T) and ¢* = 0 admit

(Xeur — V x (vV xy7), wr)r = (x.ur, wr)r — (vVV X y7, V X wr)r
=WV x (Y —y7), VXwr)r — (x.u" — XcuT, wr)r. (3.27)

By the Cauchy—Schwarz inequality, the inverse estimate, the scaling argument and the triangle inequality, we
see from (3.26) and (3.27) that

Wl Reallgr < CUIY < (y* =y 80 + hrlxew” = xewr |50 + | Rry — Rrallg o) (3.28)

For F' € Fr({2), we make use of the face bubble function br [24], which vanishes on dwp, to construct wp :=
Jr1bp € Hy(wp). By arguments similar to those for (3.26) and (3.27) we find

CHJF,1||(2)7F < (Jpi,wr)r = (Jp1,wr)r + (Jp1 — Jp1, wr)p,

(JFJ,'LUF)F = (XCU‘* - Xcuj},wp)wF - (VV X (y* - y;’)a V x wF)wF + (RT71’wF)wF’
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which, together with (3.28), the inverse estimate, the estimate ||wr|low, < Chy || Jr1llo,r and the triangle

1/2
= Uhp
inequality, yields

hellJpalF < C( DUV x @ = yD)l5.r + hrllxew” — xeurlls -
TEwr
+h7||Rra — Reallg 7)) + hellJea — JF,1||(2),F> : (3.29)

For the jump Jr 2, we extend it constantly along the normal to F' to get an extension Ep(Jp1) over wp. Then
taking v = Ep(Jp2)bp € Hi(wr) in the second equation of (2.4) and applying the same arguments as above,
we obtain

hr||Jr2

5r<C > vy —yr

TEwr

5 (3.30)

For Rr 2, Jr4 and Jpps, it is not difficult to deduce their bounds in a similar manner:

W | Rral2 0 < CUIV x (0° — 5 Br + IV x (v — y5) 137 + W3 | Rra — Rral? 1), (3.31)
hellJrald <C( D IV x 0" = p) 3 e + 11V x (" =y 2 r
TEwr
+ h3||Rr2 — Rrallgr) + hellJea — Jrallf r), (3.32)
hellJrsllE e < C S P — pyllR o (3.33)

TEwr

Finally, by virtue of the constraint (u*,Vg)o, = 0 for any ¢ € HY($2.) (¢f (1.3)), we choose ¢ = qr =
XcEr(Jp3)br and proceed for some given F' € Fr(f2.),

ClIpsllr < (Jrs,ar)r = (Xt — XU, VaF)wp.
Then the inverse estimate and ||¢r|/owy < Ch}/2||JF73||07F give
hellJrsllr < C Y lIxew” = xeuwk s - (3.34)
Tewr
Now the desired lower bound follows from (3.28) and (3.34). O

We end this section with the following useful stability results for the error estimator 77, which are the direct
consequences of the inverse estimate, the local quasi-uniformity of 7 and the assumption on the coefficient v.

Lemma 3.6. Let (uk, y%, p¥) be the solutions to the problem (2.13) and (2.15). Then for the error indicators
nra, nr,2 and nr 3, there hold that for any T € T,

71 (e wr, T) < CIV X 7§ wr + 19715 0r + X T [[5 00 (3.35)

172y, T) < CUIV X Y75 wr + IV X PTG o + PTG o + RNV X V X yyll5 1), (3.36)

7 3(wy, T) < Clixcws||§ - (3.37)
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4. ADAPTIVE ALGORITHM

In this section we present an adaptive algorithm for the problem (1.2) and (2.1), based on the a posteriori
error estimator defined in the first part of Section 3 for the discrete problem (2.13)—(2.15). Some more definitions
and notation are needed. Let T be the set of all possible conforming triangulations of {2 obtained from some
shape-regular initial mesh by the bisection successively [14,18]. This refinement process ensures that the set T is
uniformly shape regular [18,22], thus all the constants depend only on the initial mesh and the given data, not
on any particular mesh from the refinement. For any 7, 7' € T, we call 77 a refinement of 7 if 7’ is produced
from 7 by a finite number of bisections.

For any triangulation sequence {7;} C T with 7;41 being a refinement of 7;, we define

T," = m’]], 70 =T \T,", 0 = U Dp, 29:= U Dr.
>k TeT" TeTP

That is, ’]? consists of all elements not refined after the kth iteration while all elements in 7,0 are refined at
least once after the kth iteration. It is easy to see 7;"" - ’];j for [ < k. We also define a mesh-size function
hy : £2 — R almost everywhere by hg(z) = hr for z in the interior of an element T € 7}, and hy(x) = hp for
z in the relative interior of a face F' € Fj,. Letting x be the characteristic function of 29, then the mesh-size
function hy(z) has the property [17,21]:

Jim ([} e = 0. (1.1)

Now we are ready to propose an adaptive algorithm featured by an iteration of (1.4). In what follows, all de-
pendences on triangulations are indicated by the number of refinements, e.g., the error estimator nr (uk, y%, p¥)
is rewritten as ni(uy, y5, p;) when 7 is replaced by 7.

Algorithm 4.1. Given a conforming initial mesh Ty. Set k := 0.

1. (SOLVE) Solve the discrete problem (2.9)—(2.10) on Ty, for the minimizer (uj,y;) € U x Vi, and the
discrete adjoint problem (2.14) for pj € V.

2. (ESTIMATE) Compute the error estimator n,(uy, Y., pf)-

3. (MARK) Mark a subset My, C T containing at least one element Te Ti. such that

4. (REFINE) Refine each triangle T € My, by bisection to get Tj41.
5. Set k:=k+1 and go to step 1.

We note that Algorithm 4.1 can also produce a sequence of linear element spaces Si, and the Lagrange
multipliers ¢} and v} from the second equations in (2.13) and (2.14). But as ¢} and v} are both equal to zero,
they are not included in the module of SOLVE. The requirement in the module MARK is clearly met by several
practical marking strategies in computations, such as the maximum strategy, the equi-distribution strategy and
the modified equi-distribution strategy. In practice, it is often required in Dérfler’s strategy that the element
with the maximal error indicator be included in M}, for computing efficiency, that is, it holds that

. * * * * * *
min u LT > max u T).
TeM, 77k( kvykvpka )_TETk\Mk 77k( kvykvpk’ )

5. LIMITING PROBLEMS

This section explores certain limits of sequences of approximate solutions and discrete spaces given by the
adaptive Algorithm 4.1, which are the basis of convergence analysis in the next section. To this end, we define
the following limiting spaces

VOO = U Vk (ln H(Curl)-norm), Soo = U Sk (ln Hl_norm)?
k>0 k>0
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Ve, = U Vi (in H(curl)-norm), S5 := U S¢ (in H'-norm),
k>0 k>0

Xoo={vEVs|(v,Vq) =0V qe Sy},
Uyp ={veVL | (v,Vqgnp =0Vqe S},

where {V',} and {Sk} are both generated by Algorithm 4.1. These spaces have similar properties to those of
discrete ones. In fact, we easily observe from definitions of Vo and S and (2.7) that

VS0 C Vs, (5.1)

v
sup (v,Vyq)

> Cllgli Vg€ Su (5.2)
0zveVa [V H(cur)

with the constant C' depending only on (2. In addition, since VS, is a closed subspace of V¢  we have a
decomposition similar to (2.20):
Vi =Ux®VSS. (5.3)

Finally we note that Xo & X1 & -+ & X & X, but over X, there hold the following important density
result and a counterpart of (2.2).

Lemma 5.1. For any v € X o there exists a sequence {wy,} with wy, € X}, such that
wi — v in Hy(curl; 2) (5.4)
and there is a constant C depending only on the shape-regularity of Ty such that
[vllo < CIV x wllo. (5.5)
Proof. Since X o, C V&, for any v € X o there exists a sequence {vy} C UkZO V. such that
v — v in Ho(curl; 2). (5.6)

By the discrete Helmholtz decomposition [16], V', = X @& V.Sk, we may split vy as vy = wy + Vg with
wy € X and g € Sk. Using the orthogonality of X, to V.Si, we have

(Var, Var) = (v, V) = (vi — v, Vi) < [lv — villol| Vo
In light of (5.6), |[Vgkl|lo < ||v —vi|lo — 0 as kK — oco. Therefore,
o = willo < o — villo + [ Vaillo — 0 as k — o, (5.7)
Noting V x v = V x wy, and using (5.6) again, we get
IV x (v—wg)lo=|IVx(v—vg)lo =0 ask— occ. (5.8)
Then it follows from the discrete Poincaré inequality (2.11) that
lwkllo < C||V x wilo- (5.9)

The proof is completed by collecting (5.7)—(5.9). O
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Now we introduce a limiting minimization problem over U .:

. 1 0
min - Joo(teo) i= 5|V X Yo (o) = V 5 44§ + 5 U 5,00, (5.10)

Uoo €U oo
where Y = Yoo (Uoo) € Vo and oo := doo(Uoo) € Soo satisfy a limiting variational problem:
WV Xy, VXv)+ (v,Vds) = (Ueo, V)2, YV E Vi, (5.11)
(Yoos V) =0 Vg€ Sx. '

The unique solvability of the saddle-point system (5.11) is guaranteed by (5.2) and (5.5).
To formulate the optimality conditions of the problem (5.10)—(5.11), we invoke its adjoint problem: find

(Do, Woo) € Vo X Soo such that
{(VV X Poos VXV)+ (0, Vhoo) =(V Xy, — V Xy, Vxv) VoveV,

5.12
(P, Vq) =0 Vg€ Sy. (5.12)

This problem has a unique solution due to (5.2) and (5.5). Moreover, we know from (5.11) the Gateaux derivative
of Yoo (Uoo) At Uso € U in a direction w € U, i.e., Y, (Uoo)w € X o, solves

vV X (Y (Uoo)w), V X v) = (w,v), VvE Xw. (5.13)
By virtue of (5.12)—(5.13) and (y., (uco)w, Vq) = 0 for any ¢ € S, we can compute the Gateaux derivative
of Joo(uns) with respect to any w € U :
Too(too)w = (V Xy = V X 44, V X (Yo (oo )w)) + (oo, w) 0,
= (VV X P, V X (Yl (thoo)w) + (Yl (thoo)w, Vidoo) +7(Uoo, W),
= (VV X (Yo ()W), V X pog) + (oo, w) e,
= (poo + 'Yuom w)QC-
Noting p|n. € V<, and the decomposition (5.3), we further see —p__|n. = Y200 +7VEs With 2o € U and
¢ €SS, which, along with (w, V&), = 0, implies
Too(Uoo)w = Y(Uoo — Zoo, W), YV w € Ux. (5.14)
Now with a costate p, € V given by (5.12) with y., = yi (u’,) in the right-hand side, we know from (5.14)
and the standard convex analysis that the equivalent condition for the minimizer u}, € Uy to the prob-
lem (5.10)—(5.11) is given by
T(u) (w — uly) = A, — 2w — wl)o, 20 Vw e Us,
where —p’_|o. = vzl +7VEL with zi € Uy and & € SS. Hence ul, = 2%, i.e.,

7Pl = uk + VEL. (5.15)

Summarizing the above analysis, we conclude the equivalent optimality conditions for the constrained mini-
mization problem (5.10)—(5.11): the triplet (u’,,y%,, P ) € Uso X Vo X Vo and corresponding multipliers
(Ph, h) € S X Soo satisty

{ vV X Y%, V xv) + (v, Vo5,) = (ul,,v)a. VveE Ve, (5.16)

(¥5%,Va) =0 Vg€ Sx.

{(VVXp;O,va)Jr(v,VwZO) =(Vxyh =V xy, Vxv) VoeVy, (5.17)
(p:,,Vqg) =0 Vg€ Sk.

(uf +7 'Pi,w)o, =0 VweUs. (5.18)
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Noting that VS, C Vo and u}, € U, we can easily get ¢%, = 0 and 9%, = 0 by taking v = V¢ and Vi,
respectively in (5.16) and (5.17).

Next we investigate the unique solvability of the limiting optimal control problem (5.10)—(5.11) and present
an auxiliary result: the sequence {uj,} generated by Algorithm 4.1 converges strongly in L?(£2.) to a limiting
minimizer. Unlike the traditional approach, for proving existence we shall resort to the adaptive solution sequence
and extract some weakly convergent subsequence, the limit of which will be shown to be the minimizer. For this
purpose, some auxiliary results are needed. We define a projection operator Py : VS, — V7 by

(Pru,v)p, = (u,v)n, YveVi. (5.19)
Lemma 5.2. If u € U, then Pyru € Uy. Moreover,

lu — Pru

lo.o. = 0 ask — oo. (5.20)
Proof. As VS§ C Vi, it is easy to check that for u € U,
(Pku,Vq)Qc = (u, Vq)gc =0 Vgqe S,i

From the optimal error estimate of the operator Py, we know

-P < inf |u-
u— Prulo,e, < s [u —vllo,0.,

which converges to zero due to the density of (J,~, Vi in V. O

Lemma 5.3. Let {V, Sk} be a sequence of discrete spaces given by Algorithm 4.1. If the sequence {uy} C
Ukso Vi converges strongly to somew € Vo in L?(£2.), then for the sequence {(y,, (uy), dr(ur))} C Upso Vi X
Sy given by (2.10) and for (Y., (1), pso(1)) € Voo X S given by (5.11), there holds -

Y (ue) = Yoo (W) H(curyy = 0 and  |dp(ur) — dos(u)y — 0 as k — oco. (5.21)
Proof. We begin with an auxiliary discrete problem: find (y,(u), ¢r(u)) € Vi x Sk such that

{ vV x yp(u),V xv) + (v,Vop(u)) = (u,v)g, YVveVy, (5.22)

(yr(u),Vg) =0 VqgeS.

In view of (5.2) and (5.5), this problem is well-posed. The Babuska—Brezzi theory admits a quasi-optimal
approximation property

Hyoo(u) - yk(u)HH(curl) + ‘Qboo(u) - ¢k(u)‘1
Sc(vlen‘ﬁk ”yoo(u) - UHH(curl) + qlensfk |¢oo (U) - CI|1)

On the other hand, we substract (2.10) from (5.22) to get a stability result

llyp(w) =y (ue) | 2 (cur) + [0 (w) — dr(ur)1 < Cllur, — ulfo,q.-

Then (5.21) comes from the above estimates and the density of (J, V' and |J, Sk in Vo and Se. O

Now we are able to show.
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Theorem 5.4. There exists a unique minimizer to the optimization problem (5.10)—(5.11).

Proof. Let {u}} be the sequence of minimizers to the discrete problem (2.9)—(2.10) given by Algorithm 4.1.
Noting that Ji(u}) is the minimum over U}, and 0 € U}, we obtain

Vil . 1
Sluillg e, < Tu(ui) < Ti(0) = SV x yulls ¥ &, (5.23)
2 2

which, together with the stability (2.16), implies

Hylt”H(curl) + ‘¢Z|1 <C Vk. (524)

Furthermore, by (2.17) the sequence of discrete costates is also bounded, i.e.,

||plt:||H(curl) <C Vk&.

Then it follows from (2.21) that
IV xugllon. <C Yk (5.25)

In view of (5.23)—(5.25), there exist three subsequences {uy, }, {y; }, {¢} } and three functions w € V',
Yy € Vi, ¢ € Sy such that the following weak convergences hold

*

uj, —w in L*(2), (5.26)

yi —y in Ho(curl;2) and ¢; — ¢ in H)(R2). (5.27)

To obtain the existence of a minimizer to the problem (5.10)—(5.11), we only need to prove the following two
claims: (y, ¢) satisfies the problem (5.11) with u., = w; and Jo (w) attains the minimum over U . For any
integer [ > 0, (2.10) implies for k,, > [ that

(vV xyp ,V xv)+ (v, Vep )= (uy, ,vi)o, Vv eV,
(v, Va) =0 Yqes,

which, along with the weak convergence (5.26) and (5.27), yields

(VV xy,V xv)+ (v, Vo) = (w,v), Vv €Vy,
(Y, Va) =0 VgeSs.

Since (v, q;) is arbitrary, from the density definitions of Vo, and S, we find

vV xy,V xv)+ (v,Vp) = (w,v)n, VveV,
(y,Vq) =0 Vg€ Sw.

Then the first claim holds with (y.,(w), ¢oo(w)) = (y, #). Noting uj € Uy, as well as the density of (J;> Sf
in S¢ and using the weak convergence (5.26), we have (w, Vq) = 0 for any q € S¢_, i.e., w € U. With the
projection operator Pj applied to any u € U o, we know uy, := Pru € U by Lemma 5.2 and

lw —ugllo,e. — 0, (5.28)
from which and Lemma 5.3, we further get

IV x (Y, (ur) = Yoo (w))llo — 0. (5.29)
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Now it follows from (5.26)—(5.29) and the fact {u} } is a sequence of discrete minimizers to the cost functional
sequence {Jx(-)} over {U}} that

1 Y
Tso(w) = SV X yoo(w) =V x Yall§ + §Hw||%,m

1

< s liminf [V x gy —V x deg + %liminf Hu,’angQL < liminf Jy, (uy, )

< limsup J, (uy, ) <limsup Ji(ug) <limsup Jp(ur) = Jo(u) Vu € Ux. (5.30)
n—oo — 00 — 00

Hence u}, := w € U and yl, = y € V are a solution of the problem (5.10)—(5.11). The uniqueness is
guaranteed by the strict convexity of Joo(-). O

In the proof of Theorem 5.4, the choice u = u’, in (5.30) implies that

lim jkn (u,tn) = joo(uio) = min joo(uoo)

n— oo Uoo €U

and there further holds for the whole sequence {u}} that
lim i (uf) = Tuo ). (5.31)

On the other hand, the uniqueness of minimizer to the limiting problem (5.10)—(5.11) asserts that the weak
convergence in (5.26) and (5.27) are true for the whole sequence, i.e.,

up —ul, in L*(02.), y; —vy’ in Ho(curl; ). (5.32)

As a consequence, the elementary equality

IV 5 (g =y ) 5+l —uloI5 o, = 270 (uh) +2T00 (ule) =2(V xyi = V Xy, Vxys, =V xy,) =2y (uf, ul, ) e,

and the three limits in (5.31) and (5.32) lead to the following first main result of this section.

Theorem 5.5. Let {u}} be a sequence of minimizers to the discrete problem (2.9)—(2.10) given by Algo-
rithm 4.1 and u’, be the minimizer to the problem (5.10)—(5.11). Then

lur, —ullloe. =0 ask— oo (5.33)

Remark 5.6. In the case of uniform refinements, i.e., ||hx|lcc — 0, Theorem 5.5 was established in [28], where
the main tool is the discrete compactness of the Nédélec edge elements [16]. To our best knowledge, it remains
still open whether this discrete compactness property is true for adaptively generated meshes since it may not
hold in this case that ||hx|lcc — 0. So we resort here to the weak convergence of the sequences of the discrete
states and controls in combination with the convergence of the cost functionals.

The following second main result of this section holds for the optimality conditions (5.16)—(5.18).

Theorem 5.7. Let {Uy, Vi, Sk} be the sequence of discrete spaces generated by Algorithm 4.1, then their
corresponding discrete solutions {(uj,yr,pr)} converges to the solution to the problem (5.16)—(5.18) in the
following sense:

lui —usclloo. =0, llyk = Yicllmewrny — 0, [[Pr = PollH(Eeury — 0 as k — oc. (5.34)
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Proof. The first convergence is just the conclusion of Theorem 5.5, while the second one follows from Lemma 5.3.
It remains to prove the third result. We argue in a manner similar to that in the proof of Lemma 5.3 by
introducing a discrete auxiliary problem: find (p,,¥r) € Vi x Sk such that

{(quﬁk,qu)Jr(v,Vsz):(v Xy =V xy,, Vxv)g VYVveVy, (5.35)

(P, V@) =0 VgeS.

Tt is not difficult to observe that this problem is a finite element approximation of the mixed formulation (5.17),
so by the Babuska—Brezzi theory and the fact that 1% = 0 we have the error estimate

Hp:o - i)kHH(curl) < C(vien‘f'k, ||p:o - UHH(curl) + qiensfk W):o —qh) < Cvien‘ﬁk, ||pZo - UHH(curl) ) (5.36)
and the stability estimate by a substraction of (2.14) from (5.35)

1Pr = Prlleurny < CIV < (v = yi)llo- (5.37)

Now the third convergence in (5.34) follows from (5.36)—(5.37), the second convergence in (5.34) and the density
of V. O

6. CONVERGENCE OF ADAPTIVELY GENERATED SOLUTIONS

This section aims at the ultimate goal of this paper: the sequence {u}} generated by the adaptive Algo-
rithm 4.1 converges strongly in L?(£2,) to the minimizer u* of problem (1.2) and (2.1). In view of Theorems 5.5
and 5.7, this is realised if (ul ),y , pk,) is shown to be the same as (u*, y*, p*), the solution to the optimality
conditions (2.4)—(2.6). For this purpose, the error estimator introduced in Section 3 and the marking require-
ment (4.2) in Algorithm 4.1 are involved in the relevant arguments, whereas the analysis in the previous section
does not depend on these two points. We first show the following fact on the maximal error indicator in the set
of marked elements.

Lemma 6.1. Let {7, U, x Vi, (uj, v, pi)} be the sequence of meshes, finite element spaces and discrete

solutions generated by Algorithm 4.1 and My, be the set of marked elements given by (4.2). Then there holds
li Ly, pe,T)=0. 6.1
Jm max (2, Yy, P, T) (6.1)

Proof. Let Tr be the element with the largest error indicator among My. Using Ty € 72, the local quasi-
uniformity and (4.1), we derive

jwi, | < CITi| < Cllhill3, 00 — 0 as k — oc. (6.2)
But by Lemma 3.6 and the triangle inequality, we have
77k71(yltvuszk) < C(Hyi - y?;o”H(ourl) + ”y:oHH(curl),wfk + ||UZ - u?;oHO,Qc + ”uZo”wank) .

Now the right-hand side goes to zero by means of the results from Theorems 5.5 and 5.7, (6.2) and the absolute
continuity of || - || g(curry and || - [[o with respect to the Lebesgue measure. Similar arguments apply to the other
two terms 7 2 and 7y,3. This completes the proof of the desired vanishing limit. O

Our main convergence will be conducted in a series of lemmas. First we show that the limiting minimizer
ul isin U (Lem. 6.2), then the residuals with respect to adaptive solutions {(u}, ¥}, pj)} are shown to vanish
in the limit (Lem. 6.4), by which and Theorem 5.7 we will find that (u’_, yZ,, pl,) satisfy problems (2.4)—(2.5)
with w’ and y’ in the right-hand side respectively (Lem. 6.6). The desired result is then obtained by proving
ul, = u* (Lem. 6.7).

oo
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Lemma 6.2. The minimizer u’, to the problem (5.10)—(5.11) also belongs to U.

Proof. By the definition of U, it only needs to show (u’,, Vgq)o. = 0 for any ¢ € H'(£2.). Since u} € Uy, we

utilize the usual nodal interpolation operator f,f [8] and the Scott—Zhang operator I associated with S§ to
deduce for any ¢ € C*>°(f2.) and k > [ that

(ui. V)o, = (i, Vie—Ti) = (ui, Vila—Tia) ~ Iia— i)

c c

<C Y mes(ui, T)llg - gl oy

TeTe
= C( > msi Dla— g+ Y mes(ui, T)llg - Iiq |1,DT>
TETNT," TETNT,"
1/2 1/2
<C Z 771%,3('“;:’71) llg — II?Q”LQ? + Z 7713,3(“27T) llg — II(SQHLQZ* )
TeT\T," TeTenT,*

where in the third inequality we have used the elementwise integration by parts and error estimates for If [20].
Noting (3.37) in Lemma 3.6, the uniform boundedness of {uy} (cf. (5.23)), the error estimate for I [8] and the
fact that Jps =0 on F € Fi(£2) \ Fr(§2.), we proceed to see

(ui, V@)o, < Cillilloc,apllallz + Co( D 1 5wk, 7)) a2
TeT"

Thanks to (4.1), we know for sufficiently large [ that C1||hil|o, a0 lqll2 < /2 for any given € > 0. On the other
hand, since 7, C 7,7 C 7}, for k > | the marking property (4.2) implies that

1/2

> mig(uf,T) < VI max ne s (up, T) < /77| max g (u, yi, pi, T)-
TeTt Tel, reM
l

Using Lemma 6.1 we may choose some K > [ for a fixed [ such that there holds when k > K,
1/2

Co | D misi,T) | lalla <e/2.

TeT "
Thus the density of C>(£2..) in H'(2,) gives
Jim (u, V) =0 Vg€ H'(82),
which, together with the convergence (5.33) in Theorem 5.5 and the elementary equality
(ul, Va)o, = (ul, —ug, Vo, + (ug, Voo,
leads to the desired claim. O

One may see from the proof of Lemma 6.2 that the key point lies in a density argument for the limiting
behaviour of {uj} projected on VH'(2.). And ny 3 was split based on two parts 2 and 2,7 of 7y, then
local approximation properties and uniform convergence (4.1) were applied to the former while the marking
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property (4.2) was used for the latter. This idea will be also employed to verify the limiting triplet (u’,, y%,, p5.)
with respect to the continuous system (2.4)—(2.5). We now define two residuals:

(Ra(y5,up),v) = (uf,v)o, — (vV x y;,,V xv) Vove Hy(curl; 2),
(Ra(pi,yi),v) = (V xy; =V xy,v)— ¥V xp;,Vxv) Vove Hy(curl; 2).
As ¢} and 1} are both zero, it is clear from the first equations of (2.13) and (2.14) respectively that
(Ri(yp, up),v) = (Re(Py, yi),v) =0 Vo eVy. (6.3)
To control the above two residuals, we shall use the following local regular decomposition [19].

Lemma 6.3. There exists a quasi-interpolation operator IT;, : Ho(curl; 2) — Vi such that for every v €
H(curl; 2) there exist z € Hy(2) and o € HY(R2) satisfying

v—Ijv=2z+ Vo, (6.4)

with the stability estimates
hotllzllor +2hr < CIIV x vl 5,5 (6.5)
hztllellor + [elir < Cllvly b, (6.6)

where constant C depends only on the shape of the elements in the enlarged element patch 5T = U{T’ €
T | T' N Dy # 0}, not on the global shape of domain 2 or the size of Dr.

As some elements in Dy for T € Ty, \ 7,7 may not be in £2Y for I < k, we can not directly use (4.1) as in the
proof of Lemma 6.2 when estimating R1 and Ro. This difficulty motivates us to define a buffer layer of elements
between 7; and 7, for k > 1,

T ={TeT\TH | TNT' #0, VT € T, }.
We know from 7;* C 7, C 7}, and the uniform shape-regularity of {75} that
Teul < C|7F] (6.7)
with constant C' depending only on the initial mesh 7y, and Dy C Q20 for any T € Tp, \ (7,7 U kal)

Lemma 6.4. The sequence {(u},ys,pr)} produced by Algorithm 4.1 satisfies for any v € Ho(curl; £2) and
q € H} () that

lim (Ri(yy,ur),v) =0, lim (y;,Vq) =0, (6.8)
k—o0 k—oo
i (Ro (P, y),0) =0, lim (P, Vg) = 0. (6.9)

Proof. We only focus on (6.8) as the other two can be derived in a similar manner. Invoking the canonical edge

interpolation operator ITj, [16] associated with V', and using (6.3), we get

(Ri(yiup),v) = (Ra(yj,uj)v — M) Vo€ CF(Q).
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Since w = v — v € H(curl; 2), it can be further split by Lemma 6.3 as w — IIjw = z + Vy with
z € Hy(2) and ¢ € H}(2). With the help of (6.3) again, (Rq(y},u}), w) = (Ri(y},u}),w — Mjw) =
(R1(y5,u}), 2+ V). Then an elementwise integration by parts, the trace theorem and the estimates (6.5)—(6.6)
imply that

(Riyi,ui)z) = > (R, 2)r— Y (Jri,2)r

TeT, FeF,(2)

_ 1/2 —1/2
< 3" bl Braloshz'lzlor+ Y b 1ellorhs?|2]0r
TET, FEFu(2)
1/2 ,,
<C Y (MRl r+ D, helJealde)”” (hptlzllor +12h.r)
TeT FCoTN
1/2
<C> <h2T||RT,1||(2),T + 0y hF||JF,1||(2),F> [V x (v — ), 5,
TeT, FCoTN

Rilyiul). Vo) = > Ursdr < > Wil lrslorhy " llollo.r

FeF(£2) FeF(£2)
1/2
soz( 5 hFuF,snaF> (1 oo + lolur)
TeT, FCoTnNnN

1/2
SCZ< > hF|JF,3||%,F> Jo— Hyolly p,

TeT, \FCITNN
Splitting 7, into 7,7 U ’];bl and 7;, \ (7,7 U ’Z}f’l) for k > [, and noting that UTeTk\(Tﬁukal) Dr C 29, we can

further proceed to derive

<R1(ylta ult)a U> <C Z ﬁk,l(ylta uZ,T)Hv - H’CUHH(curl),ij
TeTy

< C (ki wi, Te \ (T U IE)) 0 — I | b o) 20
+ 7761 (ks i, T U L) [0 = T s eur),

where we have written 77 | (yi, uj, M) == Y rc o ks (g up, T) for M C T with

Tea(Wioui, T) = B3| Reallsr + Y (hellJralld p + bl Jrslf F) -

FCoTns?

In view of (2.16) and (5.23), the sequences of discrete minimizers {u}} and related states {y;} are uniformly
bounded in L*(£2.) and H(curl; £2). Then by virtue of the stability (3.35) in Lemma 3.6 and the error estimates

for IT), [16], we can deduce
(Ra(yi, ui),v) < Csllhallgollvllz + Camer (yi, wie, T U T o]l
As it was done earlier, property (4.1) allows the first term to be small enough for sufficiently large . Noting
e (Wi, up, T) < me(uy, yr, pr, T) for any T € 73, and using (4.2) and (6.7), we can obtain
1/2

> M Whu T+ D0 ik, T) | < OVITT| max o (up, v i, T),
TeT," TeT?,
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which, aided by (6.1) in Lemma 6.1, indicates that the second term is also small for large k after fixing I. A
combination of these two facts yields

lim (Ry (g, up),0) =0 v e CF(0).
—00

This, with the density of C°(£2) in H(curl; {2), implies the first convergence in (6.8). For the second conver-
gence, we follow similar arguments to those for Lemma 6.2 with Ij, the nodal Lagrange interpolation [8], and
the Scott—Zhang operator Ij, over Sy, replacing I and I}, respectively. O

Remark 6.5. As can be seen from proofs of Lemmas 6.2 and 6.4, the density argument split all elements over
7T into two parts by the marking. For the error estimator over unrefined elements after a fixed iteration | < k,
the marking property (4.2) and Lemma 6.1 indeed guarantee

Lemma 6.6. The solutions (u’,,y% ,p%,) to problems (5.16)—(5.17) solve the system

{ (VY X Y, V x 0) + (v, Vh) = (ul, v)e, Vv € Hy(curl; £2), (6.11)

(¥5.Va) =0 ¥ qe H)().

{ (yv X PV X0+ (0 V) = (VX% =V xya, ¥V x o) Vo e Holeurh ),
(P%,Vq) =0 VYV qe H(1).

Proof. Let {(u},y},pr)} be the convergent sequence generated by Algorithm 4.1. Noting the fact that ¢35, =0
we then have for any v € Ho(curl; 2) and ¢ € H{(£2),
vV Xy, V xv) + (v, Vo5, ) — (ug,, v)e.|
=V x (y% —yi), V x v) = (ul, — up,v)o, — (Ri(yp, up), v)|
< 12|V x (ys = ui)llollV x wllo + [lud, — ugllo.e.lvllo + [(Ra(yr, ug), v)l, (6.13)
(Y2, V)l < |y — yillolal + [(yk, Vo). (6.14)
So the problem (6.11) holds true upon observing that every term in the right-hand sides of (6.13) and (6.14)
tends to zero due to (5.34) and (6.8). To see (6.12), we may argue similarly that
|(vV x p5 .,V xv)+ (v, VYL ) — (V xyi — V xy,, V xv)
= [V x (ps = 1), V x0) = (V X (Y% = yi), V X v) = (R2 (P, ), )
< |V x (Pl = PR)llolV x vllo + IV X (yoo — yi) oIV x vllo + [(Ra(pk, yi), )|,
[(p%: V@)l < [IPZ — pillolah + |(pk, V).

Now the desired conclusion comes from Theorem 5.7 and Lemma 6.4. O

Lemma 6.7. For the solution (u*,y*,p*) to the problem (2.4)—(2.6) and the solutions yZ, and p}, to the
problems (6.11) and (6.12), there hold that

w*=u’, in L*(.); vy =y, and p*=p’ in Ho(curl; ). (6.15)

Proof. Owing to Lemma 6.6 and the problems (2.4)—(2.5), we only need to prove the first equality. Subtract-
ing (2.4) and (2.5) from (6.11) and (6.12) respectively and noting the facts that ¢* = * = ¢% = ¥% =0, we
obtain for any v € Hy(curl; §2) that
WV x (¥ —y), V xv) = (u" —ul,v)a, (6.16)
(VW X (p° — ), V x 0) = (V X (5" —47), ¥ X 0). (6.17)
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We know from Lemma 6.6 that both y and p%, belong to X. Taking v to be p* — p%_ and y* — yZ in (6.16)
and (6.17) respectively, it further holds

IV x (y" =5 )lls = (u" = ule,p™ — P,
which, along with —y~!'p*|o, = u* + V&* and —y'pi |0, = ul, + V&L (¢f. (2.19), (5.15)), implies
6.0, = (" —ul, VE = VE)a,

with £ € H'(£2.) and &, € S¢.. Since u* € U and u’, € U (¢f Lemma 6.2), we get u* = u’_ in L*(2.). O

IV x (" = w2 )lls +llu” —ul,

Now with the help of Theorem 5.7 and Lemma 6.7, we can conclude our major convergence results for
Algorithm 4.1.

Theorem 6.8. Let (u*,y*,p*) be the solution to the problem (2.4)—(2.6). Then Algorithm 4.1 produces a
sequence of discrete solutions (uj, yy, py) converging to (u*,y*,p*) in the following sense:

Jim [y~ gl = 0. i |5~ pilpeury =0, Jim u” —uiloo, =0, (618)
With Theorems 3.5 and 6.8, we end this work with the convergence of our error estimator.
Theorem 6.9. The sequence {n,(u;,y;,p;)} of the estimators generated by Algorithm 4.1 converges to zero.
Proof. As in the proof of Lemma 6.4, we rewrite the estimator as two parts
e (ui Yis P3) = M (wi, Ui, 0k Te \ T,) + i (g, i, oy 7)) (6.19)
for k > 1. Summing up the local lower bound (3.25) over all elements in 7, \ 7,", we obtain
e (i, 5 P T \ 7)< Clly" = Yl euny + 1P = PillFr(eury + " — uill§ o, +110),
where the term III is given by

III := Z (08¢ (Y, wh, wr) + 05 (Pir, wr) + oscx(yi, OT) + osc>(pi, yir, OT)).
T\T,"

Noting R7 1 and Ry are the best L?-projections onto a constant space and the fact V x V x Yr = VxVxpp =
0, we have

hrl|Rr1 — Rrallor < hrlxeugllor + 1VV|oo,rhrlIV X yillor,
hrl|Rr2 — Rrallor < hrllV x ygllor + |V |oorhr |V x pillor

Letting [v] be the average of [v] on F, the inverse estimate and the Poincaré inequality imply

W[ Tpa — Teallor < O] = Wlloo,r |V % 4

lowr < Chr||V X yg

|O,wF7

hi! 2| Jka — Jeallor < Chr||V x D

Taking (2.17) into account and noting that |luj |0, . is uniformly bounded (cf. (5.23)) we may infer from the
monotonicity of hy and (4.1) that

|0,WF'

M <C max h3 <O|h|% g0 — 0 asl— oo,
TeT\T, " "

which, together with norm convergences in Theorem 6.8, makes the first term in the right-hand side of (6.19)
smaller than any given positive number after a sufficiently large [ is chosen. On the other hand, the conver-
gence (6.10) in Remark 6.5 implies that the second term is also smaller than any given positive number for fixed
l and sufficiently large k. O
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7. CONCLUDING REMARKS

We have established a residual-type reliable and efficient error estimator for edge element approximations of
an optimal control problem governed by an H (curl) saddle-point system. Based on the estimator and a general
but practical assumption on the marking, an adaptive algorithm is designed, which is proved to generate a
null sequence of estimators and a sequence of discrete solutions strongly converging to the exact minimizer, the
corresponding state and costate variables. In the analysis, we have specifically utilized convergence of discrete
objective functionals to lift the weak convergence of discrete optimal controls to a strong one so that the discrete
compactness property of edge elements is circumvented.

Acknowledgements. The authors wish to thank two anonymous referees for their many constructive and insightful com-
ments and suggestions, which have simplified our convergence analyses and improved the quality of the manuscript
significantly.
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