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In this paper, we present some novel and intriguing findings on the geometric 
structures of Laplacian eigenfunctions and their deep relationship to the quantitative 
behaviours of the eigenfunctions in two dimensions. We introduce a new notion 
of generalized singular lines of the Laplacian eigenfunctions, and carefully study 
these singular lines and the nodal lines. The studies reveal that the intersecting 
angle between two of those lines is closely related to the vanishing order of the 
eigenfunction at the intersecting point. We establish an accurate and comprehensive 
quantitative characterisation of the relationship. Roughly speaking, the vanishing 
order is generically infinite if the intersecting angle is irrational, and the vanishing 
order is finite if the intersecting angle is rational. In fact, in the latter case, the 
vanishing order is the degree of the rationality. The theoretical findings are original 
and of significant interest in spectral theory. Moreover, they are applied directly 
to some physical problems of great importance, including the inverse obstacle 
scattering problem and the inverse diffraction grating problem. It is shown in a 
certain polygonal setup that one can recover the support of the unknown scatterer as 
well as the surface impedance parameter by finitely many far-field patterns. Indeed, 
at most two far-field patterns are sufficient for some important applications. Unique 
identifiability by finitely many far-field patterns remains to be a highly challenging 
fundamental mathematical problem in the inverse scattering theory.

© 2020 Elsevier Masson SAS. All rights reserved.

r é s u m é

Dans ce papier, nous présentons quelque nouveaux et intriguant résultats sur la 
structure géométrique des fonctions propres de Laplacien et leur relations profondes 
avec les comportements quantitatifs des fonctions propres en dimension deux. 
Nous introduisons une nouvelle notation pour les lignes singulières généralisées des 
fonctions propres de Laplacien. Nous étudions également avec précaution ces lignes 
singulière et ces lignes nodales. Les études relèvent le fait que l’angle d’intersection 
entre deux de ces lignes est fortement liée avec l’ordre d’atténuation de la fonction 
propre sur le point d’intersection. Nous établissons une caractérisation quantitative 
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précise et complète de ces relations. En gros, l’ordre d’atténuation est génériquement 
infini si l’angle d’intersection est irrationnel, et l’ordre d’atténuation est fini si l’angle 
d’intersection est rationnel. En effet, dans le second cas, l’ordre d’atténuation est 
le degré de rationalité. Les résultats théoriques sont originaux et avoir des intérêts 
significatifs dans la théorie spectrale. En plus, ils sont directement applicables sur 
quelque problèmes physiques de grandes importances, y compris le problème inverse 
de diffusion des obstacle et le problème inverse de diffraction des grilles. Il est 
démontré dans une configuration polygonale particulière qu’on peut retrouver le 
support d’un disperseur ainsi le paramètre surfacique d’impédance par un nombre 
fini de mesures des champs lointains. En effet, il suffit au plus deux mesures de 
champs lointains pour certaines applications importants. L’identifiablité unique par 
un nombre fini de mesures des champs lointains reste un problème mathématique 
difficile et fondamental dans la théorie de problèmes inverses de diffusion.

© 2020 Elsevier Masson SAS. All rights reserved.

1. Introduction

1.1. Background

Laplacian eigenvalue problem is arguably the simplest PDE eigenvalue problem, which is stated as finding 
u ∈ L2(Ω) and λ ∈ R+ such that

−Δu = λu, (1.1)

where Ω is an open set in R2, under a certain homogeneous boundary condition on ∂Ω, such as the Dirichlet, 
Neumann or Robin condition. There is a long and colourful history on the spectral theory of Laplacian 
eigenvalues and eigenfunctions; see e.g. [18,66,67,21,29,30,40,44,52,5,64,69]. It still remains an inspiring 
source for many technical, practical and computational developments [11,12,60–62,69].

In this paper, we are concerned with the geometric structures of Laplacian eigenfunctions as well as their 
applications to inverse scattering theory. There is a rich theory on the geometric properties of Laplacian 
eigenfunctions in the literature; see e.g. the review papers [32,44,26]. The celebrated Courant’s nodal domain 
theorem states that the first Dirichlet eigenfunction does not change sign in Ω and the nth eigenfunction 
(counting multiplicity) un has at most n nodal domains. In particular, a famous conjecture concerning the 
topology of the 2nd Dirichlet eigenfunction states that in R2, the nodal line of u2 divides Ω by intersecting 
its boundary at exactly two points if Ω is convex (cf. [68]). A large amount of literature has been devoted 
to this conjecture and significant progress has been made in various situations [59,46,54,3,31,63,24,33,22,
23,25,36,42]. The “hot spots” conjecture formulated by J. Rauch in 1974 says that the maximum of the 
second Neumann eigenfunction is attained at a boundary point. This conjecture was proved to be true for 
a class of planar domains [6], but the statement may not be correct in general; see several counterexamples 
[7,13,10,34]. The hot spots conjecture was proved recently for a new class of domains (possibly non-convex 
and non-Euclidean) [43]. Another famous longstanding problem in spectral theory is the Schiffer conjecture 
which states that if a Neumann eigenfunction takes constant value on the boundary, then the domain must 
be a ball. The Schiffer conjecture is closely related to the Pompeium property in integral geometry (cf. 
[68]) and has also an interesting connection to invisibility cloaking (cf. [47]). In [27], the nodal set of the 
second Dirichlet Laplacian eigenfunction was proved to be close to a straight line when the eccentricity 
of a bounded and convex domain Ω ⊂ R2 is large. On the other hand, one may also have some estimate 
about the size of eigenfunctions, e.g., the size of the first eigenfunction can be estimated uniformly for all 
convex domains; see [28]. Other geometrical characteristics may also be analyzed, e.g., the volume of a set 
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on which an eigenfunction is positive [58], and lower and upper bounds for the length of the nodal line of 
an eigenfunction of the Laplace operator in two-dimensional Riemannian manifolds [9,57].

As we see from the above, the study of the geometric structures of Laplacian eigenfunctions is intriguing 
and challenging. We shall present some novel findings on the geometric structures of Laplacian eigenfunctions 
and their deep relationship to the quantitative behaviours of the eigenfunctions in R2. Roughly speaking, we 
consider the intersections of certain homogeneous line segments and their implications to the quantitative 
analytic properties of the underlying eigenfunction. The specific geometric and mathematical setup of our 
study is heavily motivated by our research into the inverse obstacle scattering problem, which is concerned 
with the recovery of geometric and physical properties of unknown obstacles from the measurement of the 
wave pattern due to an impinging field. It is a long-standing and fundamental problem in inverse scattering 
whether a one-to-one correspondence holds between the geometric shapes of a set of obstacles and their 
scattering wave patterns due to a single impinging wave field. This is also known as the Schiffer problem 
in the inverse scattering theory. To tackle this fundamental problem within the polygonal geometry, we 
suggest in this work a highly novel approach by making full use of the geometric properties of the Laplacian 
eigenfunctions in the specific setup of the current study. We shall present more relevant discussions in this 
aspect in the next subsection and Section 8.

1.2. Motivation and discussion of our main findings

We first introduce three definitions for the descriptions of our main results.

Definition 1.1. For a Laplacian eigenfunction u in (1.1), a line segment Γh ⊂ Ω is called a nodal line of u
if u = 0 on Γh, where h ∈ R+ signifies the length of the line segment. For a given complex-valued function 
η ∈ L∞(Γh), if it holds that

∂νu(x) + η(x)u(x) = 0, x ∈ Γh, (1.2)

then Γh is referred to as a generalized singular line of u. For the special case that η ≡ 0 in (1.2), a generalized 
singular line is also called a singular line of u in Ω. We use N λ

Ω , Sλ
Ω and Mλ

Ω to denote the sets of nodal, 
singular and generalized singular lines, respectively, of an eigenfunction u in (1.1).

According to Definition 1.1, a singular line is obviously a generalized singular line. However, for unam-
biguity and definiteness, Γh in (1.2) is called a generalized singular line only if η is not identically zero, 
otherwise it is referred to as a singular line. We like to point out that as u is (real) analytic inside Ω, a 
nodal line or a singular line can be extended by the analytic continuation within Ω (cf. [41]). We are mainly 
concerned with the local properties of the eigenfunction u around the intersecting point of two lines, and 
hence the length h of Γh does not play an essential role as long as it is positive. We further emphasize that 
no any specific boundary condition is specified for u on ∂Ω in Definition 1.1, that is, all our subsequent 
results hold for a generic Laplacian eigenfunction as long as it satisfies (1.1), therefore applicable to the 
particular Dirichlet, Neumann or Robin eigenfunction. As mentioned earlier, one of the major motivations 
of our current study comes from attacking the fundamental Schiffer problem in the inverse scattering theory. 
The localized feature of our results, which is independent of any specific boundary condition of u on ∂Ω, 
shall play a key role in our study. This shall become more evident in our subsequent analysis.

Definition 1.2. Let Γ and Γ′ be two line segments in Ω that intersect with each other. Denote by θ =
∠(Γ, Γ′) ∈ (0, 2π) the intersecting angle. Set

θ = α · 2π, α ∈ (0, 1).
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θ is called an irrational angle if α is an irrational number; and it is called a rational angle of degree q if 
α = p/q with p, q ∈ N and irreducible.

Definition 1.3. Let u satisfy (1.1) and be a nontrivial eigenfunction. For a given point x0 ∈ Ω, if there exits 
a number N ∈ N ∪ {0} such that

lim
r→+0

1
rm

∫
B(x0,r)

|u(x)|dx = 0 for m = 0, 1, . . . , N + 1, (1.3)

where B(x0, r) is a disk centered at x0 with radius r ∈ R+, we say that u vanishes at x0 up to the order 
N . The largest possible N such that (1.3) is fulfilled is called the vanishing order of u at x0, and we write

Vani(u;x0) = N.

If (1.3) holds for any N ∈ N, then we say that the vanishing order is infinity.

Since u to (1.1) is analytic in Ω, it is straightforward to verify that Vani(u; x0) is actually the lowest 
order of the nontrivial homogeneous polynomial in the Taylor series expansion of u at x0. Moreover, by the 
strong unique continuation principle, we know that if the vanishing order of u is infinity at a given point 
x0 ∈ Ω, then u is identically zero in Ω.

To elucidate our study, we next consider a simple example which connects the vanishing order of an 
eigenfunction with the intersecting angle of its nodal lines. Set

u(x) = Jn(
√
λ r) sinnθ, x = (x1, x2) = r(cos θ, sin θ) ∈ Ω,

where Jn is the first-kind Bessel function of order n ∈ N (cf. Section 3.4 of [16]). u(x) is a single spherical 
wave mode and satisfies (1.1), and we can verify that

Vani(u;0) = n.

In particular, it is noted that if one considers u in a central disk Br0 with 
√
λ r0 being a root of Jn(t) or 

J ′
n(t), then u is actually a Dirichlet or Neumann eigenfunction in Ω = Br0 . However, we are more interested 

in the nodal lines of u, and it can be easily seen that

Γm
h := {x = r(cos θm, sin θm); 0 < r < h, θm = m

n
π}, m = 0, 1, 2, . . . , 2n− 1. (1.4)

The nodal lines in (1.4) all intersect at the origin and the intersecting angle between any two of them is 
rational of degree n. Clearly, this simple example reveals an intriguing connection between the intersecting 
angle of two nodal lines and the vanishing order of the eigenfunction at the intersecting point. The aim of 
the present paper is to establish an accurate and comprehensive characterisation of such a relationship in 
the most general scenario. Roughly speaking, we shall show that the vanishing order is generically infinity 
if the intersecting angle is irrational, and the vanishing order is finite if the intersecting angle is rational. In 
the latter case, the vanishing order is actually the degree of rationality of the intersecting angle. The result is 
not only established for the nodal lines, but also for the generalized singular lines. Hence our study uncovers 
a deep relationship between the nodal and generalized singular structures of the Laplacian eigenfunctions 
and the quantitative behaviours of the eigenfunctions. To the best of our knowledge, it is the first time in 
the literature to present a systematic study of such intriguing connections between the vanishing orders of 
Laplacian eigenfunctions and the intersecting angles of their nodal/generalized singular lines. Hence, these 
results should be truly original and of significant interest in the spectral theory of Laplacian eigenfunctions, 
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and possibly closely related to the Maxwellian eigenfunctions as well. In fact, it is noted that the Maxwell 
equations can be transformed to vector-valued Helmholtz equations (cf. [16]). We would also like to comment 
on the geometric speciality of our study with nodal and singular line segments, which may not always occur 
for the usual Dirichlet/Neumann/Robin Laplacian eigenfunctions. On the one hand, as noted earlier, we 
shall not prescribe any boundary condition of u and consider a generic u satisfying (1.1). This allows u to 
possess much richer structures than those of the specific Dirichlet/Neumann/Robin eigenfunctions. On the 
other hand, as it will become more evident in Section 8, the aforementioned homogeneous line segments of 
the general Laplacian eigenfunctions occur naturally when dealing with the fundamental Schiffer problem 
in inverse scattering within the general polygonal geometry.

In order to establish the aforementioned results, we make essential use of the spherical wave expansion 
of the eigenfunction, which in combination with the homogeneous conditions on the intersecting lines can 
yield certain formulae of the Fourier coefficients. In order to trigger off the formulae for us to achieve the 
desired vanishing order of the eigenfunction, we need to show the vanishing of the first few polynomial terms 
(basically up to the third order) of the eigenfunction. For this part, we develop a “localized” argument, by 
making use of some analytical tool from the microlocal analysis in combination with a complex-geometrical-
optics (CGO) solution to derive more accurate characterisations of the singularities of the eigenfunction 
at the intersecting point in the phase space. This involves rather delicate and technical analysis, but it 
only requires the “local” information of the eigenfunction in a corner region formed by the intersecting 
lines. This is in sharp contrast to the Fourier expansion, which requires the “global” information of the 
eigenfunction around the intersecting point. In principle, the arguments that are developed in this work 
can be used to extend our study to the case with general second order elliptic operators as well as to the 
case that the nodal or singular lines are lying on the boundary ∂Ω of the domain. However, we choose in 
this work to stick to the fundamental case with the Laplacian eigenfunctions and the nodal or generalised 
singular lines lying within the domain Ω and study the aforementioned technical extensions in our future 
work.

In addition to their theoretical beauty and profundity, our new spectral findings in this work can be 
directly applied to some physical problems of great practical importance, including the inverse obstacle 
scattering problem and the inverse diffraction grating problem. By using the new critical connection between 
the intersecting angles of the nodal/generalized singular lines and the vanishing order of the eigenfunctions, 
we establish in a certain polygonal setup that one can recover the support of the unknown scatterer as well 
as the surface impedance parameter by finitely many far-field patterns. In fact, two far-field patterns are 
sufficient for some important applications under some mild a-priori knowledge of the underlying obstacles. 
It is well known that unique identifiability by finitely many far-field patterns remains a highly challenging 
fundamental mathematical problem in the inverse scattering theory. Using the new spectral findings, we 
are able not only to establish the unique identifiability results for some open inverse scattering problems, 
especially for the impedance case, but also to develop a completely new approach that can treat the unique 
identifiability issue for several inverse scattering problems in a unified manner, especially in terms of general 
material properties. Most existing analytical theories for the unique identifiability of inverse scattering 
problems need to handle each special material property very differently. We shall give more background 
introduction in Section 8 about these practical problems so that we can first focus on the theoretical study 
of the nodal and singular structures of the Laplacian eigenfunctions.

The rest of the paper is organized as follows. In Sections 2 and 4, we consider the case that the intersecting 
angle is irrational and show that the vanishing order is infinity. In Sections 3, 5 and 6, we study the case that 
the intersecting angle is rational and the vanishing order is finite. Section 3 is devoted to the presentation 
and discussions of the main results, whereas Sections 5 and 6 are concentrated on the corresponding rigorous 
proofs. Section 7 discusses a generic condition required in Sections 2–6. In Section 8, we establish the unique 
recovery results for the inverse obstacle problem and the inverse diffraction grating problem by at most two 
incident waves.
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2. Irrational intersection and infinite vanishing order: two intersecting nodal and singular lines

In this section, we consider a relatively simple case that two nodal lines or two singular lines intersect at 
an irrational angle. We show that in such a case, the vanishing order of the eigenfunction at the intersecting 
point is generically infinite, and hence it is identically vanishing in Ω.

Theorem 2.1. Let u be a Laplacian eigenfunction to (1.1). If there are two nodal lines Γ+
h and Γ−

h from N λ
Ω

such that

Γ+
h ∩ Γ−

h = x0 ∈ Ω and ∠(Γ+
h ,Γ

−
h ) = α · 2π, (2.1)

where α ∈ (0, 1) is irrational. Then the vanishing order of u at x0 is infinite, namely

Vani(u;x0) = +∞.

In order to prove Theorem 2.1, we need some auxiliary results about reflection principles of nodal and 
singular lines from the following two lemmas. In what follows, for a line segment Γ ⊂ R2, we define RΓ to 
be the (mirror) reflection in R2 with respect to the line containing Γ.

Lemma 2.1. Let u be a Laplacian eigenfunction to (1.1). There hold the following reflection principles:

1. Let Γ ∈ N λ
Ω (resp. Γ ∈ Sλ

Ω) and Γ′ ∈ N λ
Ω ∪ Sλ

Ω. If Γ̃ = RΓ′(Γ) ⊂ Ω, then Γ̃ ∈ N λ
Ω (resp. Γ̃ ∈ Sλ

Ω);
2. Let Γ ∈ Mλ

Ω with ∂νu + ηu = 0 on Γ and Γ′ ∈ N λ
Ω . If Γ̃ = RΓ′(Γ) ⊂ Ω, then Γ̃ ∈ Mλ

Ω satisfies 
∂ν̃u + η̃u = 0 on Γ̃, where ν̃ = RΓ′(ν) and η̃ = RΓ′(η).

The reflection principles are rather standard for the Laplacian [50,51]. The first reflection principle in 
Lemma 2.1 shall be used in the proof of Theorem 2.1, whereas the second one is needed in our subsequent 
study.

Lemma 2.2. Let 0 < α1 < 1 be an irrational number. Define

αn+1 = 1 −
⌊

1
αn

⌋
αn, n = 1, 2, . . . , (2.2)

where 	·
 is the floor function. Then it holds that

lim
n→∞

αn = 0.

Proof. We prove this lemma by contradiction. First, by induction, it is easy to see that {αn} ⊂ R\Q, where 
Q is the set of rational numbers and αn > 0. Furthermore, by using

0 <
1
αn

−
⌊

1
αn

⌋
< 1,

we know that the sequence {αn} is bounded below and decreasing. Suppose that

lim
n→∞

αn = β0 > 0. (2.3)

Since 1/αn is not an integer, we know from [65, p. 15, Eq. (2.1.7)] that the Fourier series expansion of 
	1/αn
 is given as follows
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⌊
1
αn

⌋
= 1

αn
− 1

2 + 1
π

∞∑
k=1

sin(2kπ/αn)
k

. (2.4)

Next, we show for a sufficiently small ε0 ∈ R+ := {x ∈ R|x > 0}, the Fourier series 
∑∞

k=1 k
−1sin(2kπx)

is uniformly convergent with respect to x ∈ ( 1
β0

− ε0, 1
β0

+ ε0). To this end, we first prove by absurdity that 
β0 �= 1

N for any N ∈ N. It is obvious to see from (2.3) that β0 < 1, since {αn} is decreasing with β0 as its 
infimum. Now assume contrarily that β0 = 1

N for some N ∈ N\{1} and

lim
n→∞

1
αn

= 1
β0

= N.

Since the sequence { 1
αn

} is increasing and bounded above by 1
N , we know that there exists a sufficiently 

large n1 ∈ N such that for any n ≥ n1, there holds

N − 1 ≤ 1
αn

≤ N,

Hence,

1
N

≤ αn ≤ 1
N − 1 for any n ≥ n1, (2.5)

and ⌊
1
αn

⌋
= N − 1.

On the other hand, from definition (2.2), we can also deduce that

1
N

≤ αn+1 = 1 −
⌊

1
αn

⌋
αn = 1 − (N − 1)αn ≤ 1

N − 1 for n ≥ n1,

which further yields

N − 2
(N − 1)2 ≤ αn ≤ 1

N
for n ≥ n1. (2.6)

Combining (2.5) and (2.6), we can obtain that

αn = 1
N

for n ≥ n1,

which contradicts to the fact that αn ∈ R\Q for n = 1, 2, · · · . Therefore we must have β0 �= 1
N for any 

N ∈ N.
We proceed to prove the uniform convergence of the Fourier series

∞∑
k=1

k−1sin(2kπx)

with respect to x ∈ ( 1
β0

− ε0, 1
β0

+ ε0) by Dirichlet’s test [19]. Indeed, since { 1
k} is decreasing with respect to 

k and limk→∞
1
k = 0 uniformly in ( 1

β0
− ε0, 1

β0
+ ε0), it suffices to show that the partial sum 

∑K0
k=1 sin(2kπx)

is uniformly bounded in ( 1 − ε0, 1 + ε0) for K0 = 1, 2, · · · . By [20, p. 110, Eq. (7.1.3)], we actually have
β0 β0
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∣∣∣∣∣
K0∑
k=1

sin(2kπx)

∣∣∣∣∣ =
∣∣∣∣cosπx− cos(2K0 + 1)πx

2 sin πx

∣∣∣∣ ≤ ∣∣∣∣ 1
sin πx

∣∣∣∣ ≤ 2
| sin π

β0
| , (2.7)

which readily gives the desired uniform boundedness. The last inequality in (2.7) holds because β0 �= 1
N

for any N ∈ N and hence sin π
β0

�= 0. By the continuity, we know there holds that | sinπx| ≥ 1
2 | sin

π
β0
| for 

x ∈ ( 1
β0

− ε0, 1
β0

+ ε0).
Taking x = α−1

n in 
∑∞

k=1 k
−1sin(2kπx) and utilizing the uniform convergence result in αn ∈ (β0−ε0, β0+

ε0) for a sufficiently small ε0 ∈ R+, we can let n → ∞ on the both sides of (2.4) to derive that

lim
n→∞

⌊
1
αn

⌋
= lim

n→∞

(
1
αn

− 1
2 + 1

π

∞∑
k=1

sin(2kπ/αn)
k

)
=
⌊

1
β0

⌋
. (2.8)

By using (2.8) and taking the limits of both sides of (2.2), we further have that

β0 = 1 −
⌊

1
β0

⌋
β0. (2.9)

Dividing β0 on the both sides of (2.9), we finally arrive at a contradiction

1 = 1
β0

−
⌊

1
β0

⌋
,

which completes the proof. �
We are now ready to present the proof of Theorem 2.1.

Proof of Theorem 2.1. By a rigid motion if necessary, we can assume without loss of generality that x0 = 0
is the origin and Γ−

h lies in the x+
1 -axis while Γ+

h has the angle 2απ away from Γ−
h in the anticlockwise 

direction. Since we are mainly concerned with the local properties, it is assumed that h ∈ R+ is sufficiently 
small such that RΓ+

h
(Γ−

h ) � Ω. In what follows, with the help of Lemmas 2.1 and 2.2, we show that there 
exists a dense set of nodal lines around the origin.

To begin with, we prove that one can assume α ∈ (R\Q) ∩ (0, 1/3) in (2.1). That is, there exist two 
nodal lines Γ±

h satisfying (2.1) with α ∈ (0, 1/3) being irrational. To that end, we first show that the 
other two separate cases α ∈ (R\Q) ∩ (1/3, 1/2) and α ∈ (R\Q) ∩ (1/2, 1) can be reduced to the case 
α ∈ (R\Q) ∩ (0, 1/3). We first consider α ∈ (R\Q) ∩ (1/3, 1/2). By Lemma 2.1, we set

Γ(0)
1,h = RΓ+

h

(
Γ−
h

)
∈ N λ

Ω , Γ(1)
1,h = RΓ(0)

1,h

(
Γ+
h

)
∈ N λ

Ω , (2.10)

Then it can be directly verified that Γ(1)
1,h has an angle α(1) ·2π away from Γ−

h in the anticlockwise direction, 
where

α(1) := 1 −
⌊

1
α

⌋
α ∈ (R\Q) ∩ (0, 1/3).

Hence, one can replace Γ+
h in (2.1) by Γ(1)

1,h in (2.10) to obtain the desired result. Next, if α ∈ (1/2, 1), we 
set

Γ(1) = R −
(
Γ+) ∈ N λ

Ω . (2.11)
1,h Γh h
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Fig. 1. Schematic illustration of the reflection argument in the proof of Theorem 2.1.

Then Γ(1)
1,h has an angle 2(1 − α)π away from Γ−

h in the anticlockwise direction. It can be directly verified 
that

α(2) := 1 − α ∈ (R\Q) ∩ (0, 1/2).

If α(2) ∈ (0, 1/3), then one can replace Γ+
h in (2.1) by Γ(1)

1,h in (2.11) to obtain the desired result, whereas if 
α(2) ∈ (1/3, 1/2), one can follow the same reflection argument as the previous case (cf. (2.10)) to obtain a 
nodal line for replacing Γ+

h in (2.1) satisfying α ∈ (R\Q) ∩ (0, 1/3).
Next, starting from (2.1) with α ∈ (R\Q) ∩ (0, 1/3), we perform a series of reflections to obtain the dense 

set of nodal lines around the origin as mentioned at the beginning of the proof; see Fig. 1 for a schematic 
illustration. We write Γ(1)

0,h = Γ−
h and Γ(1)

1,h = Γ+
h . By Lemma 2.1, we see that

Γ(1)
2,h := RΓ(1)

1,h

(
Γ(1)

0,h

)
∈ N λ

Ω .

Since α ∈ (0, 1/3) we know that

�1 :=
⌊

1
α

⌋
≥ 3.

By repeating the reflections, one can find (�1 − 2) nodal lines as follows:

Γ(1)
m,h := RΓ(1)

m−1,h

(
Γ(1)
m−2,h

)
∈ N λ

Ω , m = 3, . . . , �1.

Furthermore, it is easy to verify that

∠(Γ(1)
�1,h

,Γ−
h ) = α1 · 2π, α1 := 1 −

⌊
1
α

⌋
α < α.

Let

Γ�1,h = RΓ−
h

(
Γ(1)
�1,h

)
∈ N λ

Ω .

Then one sees that Γ�1,h has an angle 2α1π away from Γ−
h in the anticlockwise direction.

Next, by replacing Γ+
h with Γ�1,h and repeating the above reflection argument, one can find a nodal line 

Γ�2,h such that
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Γ�2,h ∈ N λ
Ω , �2 :=

⌊
1
α1

⌋
, ∠(Γ�2,h,Γ−

h ) = α2 · 2π and α2 := 1 −
⌊

1
α1

⌋
α1 < α1.

Furthermore, Γ�2,h has an angle 2α2π away from Γ−
h in the anticlockwise direction. Clearly, by further 

repeating this reflection argument, one can find a series of nodal lines Γ�n,h such that

Γ�n,h ∈ N λ
Ω , �n :=

⌊
1

αn−1

⌋
, ∠(Γ�n,h,Γ−

h ) = αn · 2π, and αn := 1 −
⌊

1
αn−1

⌋
αn−1. (2.12)

Moreover, Γ�n,h has the angle 2αnπ away from Γ−
h in the anticlockwise direction. Then by Lemma 2.2 we 

have

lim
n→∞

αn = 0. (2.13)

Combining (2.12) and (2.13), we see that {Γ�n,h} forms a dense set of nodal lines around the origin. Hence, 
by the continuity of u one readily has that u is identically zero. This completes the proof of Theorem 2.1. �

The next theorem is concerned with the intersection of two singular lines.

Theorem 2.2. Let u be a Laplacian eigenfunction to (1.1). If there are two singular lines Γ+
h and Γ−

h from 
Sλ

Ω such that

Γ+
h ∩ Γ−

h = x0 ∈ Ω and ∠(Γ+
h ,Γ

−
h ) = α · 2π,

where α ∈ (0, 1) is irrational, then there hold that

Vani(u;x0) = 0, if u(x0) �= 0;

Vani(u;x0) = +∞, if u(x0) = 0.

Moreover, if u(x0) �= 0, we have the following expansion of u in a neighbourhood of x0:

u(x) = u(x0)J0(
√
λr), x = x0 + r(cos θ, sin θ),

where J0(t) is the zeroth Bessel function of the first kind.

In order to prove Theorem 2.2, we need some auxiliary results from the following three lemmas, especially 
about the spherical wave expansion, for which we refer to [16] for more details. In what follows, i :=

√
−1

is used for the imaginary unit.

Lemma 2.3. [16, Section 3.4] Suppose that u is an eigenfunction to (1.1), then u has the following spherical 
wave expansion in polar coordinates around the origin:

u(x) =
∞∑

n=0

(
ane

inθ + bne
−inθ) Jn (√λr

)
, (2.14)

where x = (x1, x2) = r(cos θ, sin θ) ∈ R2, λ is the corresponding eigenvalue of (1.1), an and bn are constants, 
and Jn(t) is the n-th Bessel function of the first kind.

Lemma 2.4. Let Γ be a line segment that can be parameterized in polar coordinates as x ∈ Γ, where x =
r(cos θ, sin θ) with 0 ≤ r < ∞ and θ fixed. Let ν be the unit normal vector to Γ, then it holds that
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∂u

∂ν
= ±1

r

∂u

∂θ
.

Proof. Using the polar coordinates and the chain rule, we have

∂u

∂x1
= ∂u

∂r
cos θ − sin θ

r

∂u

∂θ
,

∂u

∂x2
= ∂u

∂r
sin θ + cos θ

r

∂u

∂θ
.

Thus

∂u

∂ν
=
(
∂u

∂r

∣∣∣
Γ

cos θ − sin θ

r

∂u

∂θ

∣∣∣
Γ

)
cosϕ +

(
∂u

∂r

∣∣∣
Γ

sin θ + cos θ
r

∂u

∂θ

∣∣∣
Γ

)
sinϕ, (2.15)

where ν = (cosϕ, sinϕ) denotes the unit normal vector to Γ. Using the fact |ϕ − θ| = π/2, we complete the 
proof. �
Lemma 2.5. Suppose that for 0 < h � 1 and t ∈ (0, h),

∞∑
n=0

αnJn(t) = 0, (2.16)

where Jn(t) is the n-th Bessel function of the first kind. Then

αn = 0, n = 0, 1, 2, . . . .

Proof. From [16], we know that

Jn(t) = tn

2nn!

(
1 +

∞∑
p=1

(−1)pn!
p!(n + p)!

(
t

2

)2p
)
. (2.17)

Substituting (2.17) into (2.16) and comparing the coefficient of tn (n = 0, 1, 2, . . .), we can prove this 
lemma. �

Now we are in a position to prove Theorem 2.2.

Proof of Theorem 2.2. Without loss of generality, we assume that two singular lines Γ+
h and Γ−

h intersect 
with each other at the origin. Using the reflection principle and a similar argument to the proof of Theo-
rem 2.1, for any line segment Γ � Ω = {x; x = r(cosβ, sin β), 0 ≤ r ≤ h} pointed out from the origin we 
can show that

∂u

∂νΓ
≡ 0 in Ω,

where νΓ is a unit normal vector to Γ. Recalling the expansion (2.14), it is easy to see that

∂u

∂θ

∣∣∣
Γ

=
∞∑

n=0
in
(
ane

inβ − bne
−inβ) Jn (√λr

)
= 0. (2.18)

Taking β = 0 in (2.18), we derive from Lemma 2.5 that

∞∑
in (an − bn) Jn

(√
λr
)

= 0,

n=0



X. Cao et al. / J. Math. Pures Appl. 143 (2020) 116–161 127
thus

in (an − bn) = 0, n = 1, 2, . . . .

Moreover, evaluating (2.18) at β = απ where α ∈ R\Q, we can deduce that

in
(
ane

inαπ − bne
−inαπ) = 0, n = 1, 2, . . . .

Hence an and bn satisfy [
1 −1

einαπ −e−inαπ

] [
an
bn

]
= 0, n = 1, 2, . . . ,

which readily implies that an = bn = 0 for n = 1, 2, · · · , in view of Lemma 2.5. Therefore, u(x) has the 
simplified form:

u(x) = (a0 + b0)J0(
√
λr).

Finally, from the assumptions in the theorem we can easily see

a0 + b0 = u(0) �= 0, if u(0) �= 0;

a0 + b0 = u(0) = 0, if u(0) = 0,

which complete the proof. �
3. Rational intersection and finite vanishing order

In this section, we consider the general case that two line segments from Definition 1.1 intersect at a 
rational angle. Throughout the present section, we let Γ+

h and Γ−
h signify the two line segments which could 

be either one of the three types: nodal line, singular line or generalized singular line. It is also assumed that 
for a generalized singular line of the form (1.2), the parameter η is a constant. Nevertheless, we would like 
to point out that for the case that η is a function in the generalized singular line, we can derive similar 
conclusions, but through more tedious and subtle calculations. We shall address this point more in Section 5. 
Let η1 and η2 signify the parameters associated with Γ−

h and Γ+
h , respectively, if they are generalized singular 

lines. Set

∠(Γ+
h ,Γ

−
h ) = α · π, α ∈ (0, 2), (3.1)

where α is a rational number of the form α = p/q with p, q ∈ N and irreducible. Since the Laplace operator 
−Δ is invariant under rigid motions, without loss of generality, we assume throughout the rest of this work 
that

Γ+
h ∩ Γ−

h = 0 ∈ Ω, (3.2)

and Γ−
h coincides with the x1

+-axis while Γ+
h has the angle α·π away from Γ−

h in the anti-clockwise direction; 
see Fig. 2 for a schematic illustration.

Finally, we mainly deal with the case that the two intersecting line segments Γ+
h and Γ−

h form an angle 
satisfying

∠(Γ+,Γ−) = α · π, α ∈ (0, 1), (3.3)
h h
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Fig. 2. Schematic illustration of the geometry of two intersecting lines with an angle θ0 = α · π for some α ∈ (0, 1) ∩Q.

and the other case with 1 < α < 2 can be reduced to the previous case by a straightforward argument. 
Indeed, for 1 < α < 2, we know that Γ+

h belongs to the half-plane of x2 < 0 (see Fig. 2). Let Γ̃+
h be the 

extended line segment of length h in the half-plane of x2 > 0. Since the Laplacian eigenfunction u is real 
analytic in the interior of Ω and Γ+

h � Ω, u is real analytic on Γ+
h . Moreover, u fulfils a certain homogeneous 

condition on Γ+
h . By the analytic continuation (cf. [41]), we know that Γ̃+

h fulfils the same homogeneous 
condition as that on Γ+

h . That is, Γ̃+
h is of the same type of Γ+

h . Hence, instead of studying the intersection 
of Γ+

h and Γ−
h , one can study the intersection of Γ̃+

h and Γ−
h , and its relations to the vanishing order of the 

eigenfunction. Clearly, the angle between Γ̃+
h and Γ−

h satisfies (3.3).
For a clear exposition, the rest of the section is devoted to the presentation and discussion of our main 

results, and their proofs shall be postponed to Sections 5 and 6. In Section 5, we consider the case where 
the vanishing of the eigenfunction is up to the third order, whereas in Section 6, we consider the case of 
general vanishing orders.

Theorem 3.1. Let u be a Laplacian eigenfunction to (1.1). Suppose that there are two generalized singular 
lines Γ+

h and Γ−
h from Mλ

Ω such that (3.2) and (3.3) hold. Assume that η1 ≡ C1 and η2 ≡ C2, where C1 and 
C2 are two constants. Then the Laplacian eigenfunction u vanishes up to the order N at 0:

N ≥ n, if u(0) = 0 and α �= q

p
, p = 1, . . . , n− 1, (3.4)

where n ∈ N, n ≥ 3 and for a fixed p, q = 1, 2, . . . , p − 1.

In Theorem 3.1, we require that n ≥ 3. That means, we exclude the special case that the intersecting 
angle is π/2. Nevertheless, we shall discuss this special case in Remark 3.1 with more details in what follows. 
In the next two theorems, we consider the case of two intersecting singular and nodal lines, respectively.

Theorem 3.2. Let u be a Laplacian eigenfunction to (1.1). Suppose that there are two nodal lines Γ+
h and 

Γ−
h from N λ

Ω such that (3.2) and (3.3) hold. Then the Laplacian eigenfunction u vanishes up to the order N
at 0:

N ≥ n, if α �= q

p
, p = 1, . . . , n− 1,

where n ∈ N, n ≥ 3 and for a fixed p, q = 1, 2, . . . , p − 1.

Theorem 3.3. Let u be a Laplacian eigenfunction to (1.1). Suppose that there are two singular lines Γ+
h and 

Γ−
h from Sλ

Ω such that (3.2) and (3.3) hold. Then the Laplacian eigenfunction u vanishes up to the order N
at 0:

N ≥ n, if u(0) = 0 and α �= q

p
, p = 1, . . . , n− 1,

where n ∈ N, n ≥ 3 and for a fixed p, q = 1, 2, . . . , p − 1.



X. Cao et al. / J. Math. Pures Appl. 143 (2020) 116–161 129
Example 3.4. Let Ω := {(x1, x2) ∈ R2 | − 2π ≤ x1 ≤ 2π, −4π ≤ x2 ≤ 4π} be a rectangle. It is easy to see 
that

u(x1, x2) = sin x1 sin 2x2

is an eigenfunction to (1.1) with a homogeneous Dirichlet boundary condition on ∂Ω. The corresponding 
eigenvalue is λ = 5. One pair of nodal lines of u in Ω are {(x1, x2) | x2 = 0, −2π + h ≤ x1 ≤ 2π − h} and 
{(x1, x2) | x1 = 0, −4π + h ≤ x2 ≤ 4π − h} for a fixed 0 < h < 2π, which are perpendicular to each other 
at the origin. Therefore from Theorem 3.2, since ∠(Γ+

h , Γ
−
h ) = π/2 which implies that α �= 1, the vanishing 

order N at the origin is 2. In fact, by the explicit expression of u, we know that the order of the lowest 
nontrivial homogeneous polynomial of the Taylor expansion of u at the origin is 2, which coincides with the 
conclusion given by Theorem 3.3.

We now proceed to consider that a nodal line intersects with a generalized singular line. Without loss of 
generality, we can assume that Γ−

h is the generalized singular line, while Γ+
h is the nodal line.

Theorem 3.5. Let u be a Laplacian eigenfunction to (1.1). Suppose that a generalized singular line Γ+
h ∈ Mλ

Ω
intersects with a nodal line Γ−

h ∈ N λ
Ω at 0 with the angle ∠(Γ+

h , Γ
−
h ) = α · π. Assume that the boundary 

parameter η2 ≡ C2 on Γ+
h is a constant. Then the Laplacian eigenfunction u vanishes up to the order N at 

0:

N ≥ n, if α �= 2q + 1
2p , p = 1, . . . , n− 1, (3.5)

where n ∈ N, n ≥ 2 and for a fixed p, q = 0, 1, . . . , p − 1.

Next, we consider the intersection of a singular line and a generalized singular line. Similar to Theorem 3.5, 
without loss of generality, we can assume that Γ−

h is the generalized singular line. Indeed, the vanishing 
order of the eigenfunction in such a case can be obtained from formally taking η2 on Γ+

h to be zero in 
Theorem 3.1.

Theorem 3.6. Let u be a Laplacian eigenfunction to (1.1). Suppose that a singular line Γ+
h ∈ Sλ

Ω intersects 
with a generalized singular line Γ−

h ∈ Mλ
Ω at the origin with the angle ∠(Γ+

h , Γ
−
h ) = α · π. Assume that the 

boundary parameter η1 on Γ−
h is a non-zero constant, i.e., η1 ≡ C1 �= 0. Then the Laplacian eigenfunction 

u vanishes up to the order N at 0:

N ≥ n, if u(0) = 0 and α �= q

p
, p = 1, . . . , n− 1, (3.6)

where n ∈ N, n ≥ 3 and q = 1, 2, . . . , p − 1 for a fixed p.

Using a similar proof to Theorem 3.5, we can find the relationship between the vanishing order of the 
Laplacian eigenfunction and the intersecting angle between a singular line and a nodal line.

Theorem 3.7. Let u be a Laplacian eigenfunction to (1.1). Suppose that a singular line Γ+
h ∈ Sλ

Ω intersects 
with a nodal line Γ−

h ∈ N λ
Ω at the origin with the angle ∠(Γ+

h , Γ
−
h ) = α ·π. Then the Laplacian eigenfunction 

u vanishes up to the order N at 0:

N ≥ n, if α �= 2q + 1
2p , p = 1, . . . , n− 1, (3.7)

where n ∈ N, n ≥ 2 and for a fixed p, q = 0, 1, . . . , p − 1.
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Remark 3.1. As mentioned after Theorem 3.1, we exclude the special case that the intersecting angle between 
two lines is π/2. In fact, for Theorems 3.1-3.3 and Theorem 3.6, one may see from their proofs in Section 5
that if ∠(Γ+

h , Γ
−
h ) = π/2, then there holds that ∇u(0) = 0 if u(0) = 0. That means, the eigenfunction is 

vanishing at least to the second order in such a case. For the other two cases in Theorems 3.5 and 3.7, we 
can only have that if α = 1/2 and u(0) = 0, the eigenfunction is vanishing at least to the first order.

Remark 3.2. It is noted that in Theorems 3.5 and 3.7, we require that n ≥ 2, whereas in other theorems, we 
require that n ≥ 3. In particular, when n = 2, α �= 1/2, one can conclude in Theorems 3.5 and 3.7 that the 
eigenfunction is vanishing at least to the second order. This conclusion is different from Theorems 3.1-3.3
and 3.6, where one has that if α �= 1/2 then the eigenfunction is vanishing at least to the third order.

Remark 3.3. We point out that all the vanishing orders of the eigenfunction in Theorems 3.1 to 3.7 depend 
only on the intersecting angle of the two homogeneous line segments and are independent of the underlying 
eigenvalue (cf. (1.1)). This is probably due to the special geometries of our study. We believe when the 
curved geometries are considered, the underlying eigenvalues should be involved.

4. Irrational intersection and infinite vanishing order: general cases

In this section we consider the irrational intersection, namely α in (3.1) is an irrational number. We show 
that the eigenfunction is generically vanishing to infinity, namely u is identically zero in Ω. Here, the generic 
condition is provided by u vanishing or not at the intersecting point. We shall present more discussions on 
this generic condition in Section 7. By verifying the conditions in (3.4), (3.5), (3.6) and (3.7) for an irrational 
α, we can readily obtain from Theorems 3.1, 3.5, 3.6 and 3.7 the results in the following four theorems.

Theorem 4.1. Let u be a Laplacian eigenfunction to (1.1). Suppose that there are two generalized singular 
lines Γ+

h and Γ−
h from Mλ

Ω such that (3.2) and (3.3) hold. Assume that η1 ≡ C1 and η2 ≡ C2, where C1 and 
C2 are two constants. If ∠(Γ+

h , Γ
−
h ) = α · π with α ∈ (0, 2) being irrational, then there hold that

Vani(u;0) = 0, if u(0) �= 0;

Vani(u;0) = +∞, if u(0) = 0.

Theorem 4.2. Let u be a Laplacian eigenfunction to (1.1). Suppose that a generalized singular line Γ−
h ∈ Mλ

Ω
intersects with a nodal line Γ+

h ∈ N λ
Ω at 0 with the angle ∠(Γ+

h , Γ
−
h ) = α · π. Assume that the boundary 

parameter η1 ≡ C1 on Γ−
h is a constant. If α ∈ (0, 2) is irrational, then there holds

Vani(u;0) = +∞.

Theorem 4.3. Let u be a Laplacian eigenfunction to (1.1). Suppose that a singular line Γ+
h ∈ Sλ

Ω intersects 
with a generalized singular line Γ−

h ∈ Mλ
Ω at 0 with the angle ∠(Γ+

h , Γ
−
h ) = α · π. Assume that the boundary 

parameter η1 ≡ C1 on Γ−
h is a constant. If α ∈ (0, 2) is irrational, then there hold that

Vani(u;0) = 0, if u(0) �= 0;

Vani(u;0) = +∞, if u(0) = 0.

Theorem 4.4. Let u be a Laplacian eigenfunction to (1.1). Suppose that a singular line Γ−
h ∈ Sλ

Ω intersects 
with a nodal line Γ+

h ∈ N λ
Ω at 0 with the angle ∠(Γ+

h , Γ
−
h ) = α ·π. If α ∈ (0, 2) is irrational, then there holds

Vani(u;0) = +∞.
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Table 1
Vanishing orders of Laplacian eigenfunction at intersecting points.

Rational intersection 
(Finite vanishing order)

Irrational intersection 
(Infinite vanishing order)

Γ+
h ,Γ−

h ∈ Mλ
Ω N ≥ n, if u(x0) = 0 and α �= q

p , 
p = 1, · · · , n − 1 and q = 1, · · · , p − 1

N = +∞, if u(x0) = 0; 
N = 0, if u(x0) �= 0

Γ+
h ,Γ−

h ∈ Nλ
Ω N ≥ n, if α �= q

p , 
p = 1, · · · , n − 1 and q = 1, · · · , p − 1

N = +∞

Γ+
h ,Γ−

h ∈ Sλ
Ω N ≥ n, if u(x0) = 0 and α �= q

p , 
p = 1, · · · , n − 1 and q = 1, · · · , p − 1

N = +∞, if u(x0) = 0; 
N = 0, if u(x0) �= 0

Γ+
h ∈ Mλ

Ω,Γ−
h ∈ Nλ

Ω N ≥ n, if α �= 2q+1
p , 

p = 1, · · · , n −1 and q = 0, 1, · · · , p −1
N = +∞

Γ+
h ∈ Sλ

Ω,Γ−
h ∈ Nλ

Ω N ≥ n, if α �= 2q+1
p , 

p = 1, · · · , n −1 and q = 0, 1, · · · , p −1
N = +∞

Γ+
h ∈ Sλ

Ω,Γ−
h ∈ Mλ

Ω N ≥ n, if u(x0) = 0 and α �= q
p , 

p = 1, · · · , n − 1 and q = 1, · · · , p − 1
N = +∞, if u(x0) = 0; 
N = 0, if u(x0) �= 0

For readers’ convenience, we now summarize in Table 1 all our main results in Sections 3 and 4 about the 
vanishing order N of the Laplacian eigenfunction u to (1.1) at an intersecting point x0 of two line segments 
Γ+
h and Γ−

h which form an angle ∠(Γ+
h , Γ

−
h ) = α · π for α ∈ (0, 1). We recall that the sets of nodal, singular, 

and generalized singular lines are denoted by N λ
Ω , Sλ

Ω and Mλ
Ω, respectively.

5. Proofs of the theorems in Section 3 up the third order

In this section, we present the proofs of the theorems shown in Section 3, but confined to the case 
that the vanishing order N is at most 3. We develop a mathematical scheme by making use of tools 
from microlocal analysis that possesses several remarkable properties. Next, we first introduce the so-called 
complex-geometrical-optics (CGO) solutions constructed in [8] for the subsequent use. As before, we let (r, θ)
denote the polar coordinates in R2; that is, for x = (x1, x2) ∈ R2, one has r = |x| and θ = arg(x1 + ix2). 
Let Bh be the central disk of radius h ∈ R+. Let Γ± signify the infinite extension of Γ±

h in the half-space 
x2 ≥ 0. Let θm = 0 and θM ∈ (0, π) be respectively the polar angles of Γ− and Γ+. Consider the open sector

W =
{
x ∈ R2;x �= 0, θm < arg(x1 + ix2) < θM

}
, (5.1)

which is formed by the two half-lines Γ− and Γ+. We have the following result.

Lemma 5.1. [8, Lemma 2.2 and Proposition 2.3] Let

u0(x) := exp
(√

r

(
cos

(
θ

2 + π

)
+ i sin

(
θ

2 + π

)))
. (5.2)

Then Δu0 = 0 in R2\R2
0,−, where R2

0,− := {x ∈ R2|x = (x1, x2); x1 ≤ 0, x2 = 0}, and s �→ u0(sx) decays 
exponentially in R+ whenever x is in the same domain of harmonicity. Furthermore, it holds for α, s > 0
that ∫

W

|u0(sx)||x|αdx ≤ 2(θM − θm)Γ(2α + 4)
δ2α+4
W

s−α−2, (5.3)

where δW = − maxθm<θ<θM cos(θ/2 + π) > 0, and
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∫
W

u0(sx)dx = 6i(e−2θM i − e−2θmi)s−2, (5.4)

while for h ∈ R+, ∫
W\Bh

|u0(sx)|dx ≤ 6(θM − θm)
δ4
W

s−2e−δW
√
hs/2. (5.5)

Henceforth, for notational convenience, we set

θ0 = α · π = ∠(Γ+
h ,Γ

−
h ); (5.6)

for α ∈ (0, 1). In order to make use of the CGO solution u0(sx) given in Lemma 5.1 as a test function 
to analyze the vanishing order of u at the origin, we consider the following domain (see Fig. 2 for the 
illustration):

Sh = W ∩Bh, (5.7)

where ∂Sh = Γ+
h ∪ Γ−

h ∪ Λh and

Γ+
h = {x ∈ R2; 0 ≤

√
x2

1 + x2
2 ≤ h, arg(x1 + ix2) = θ0},

Γ−
h = {x ∈ R2; 0 ≤

√
x2

1 + x2
2 ≤ h, arg(x1 + ix2) = 0},

Λh = W ∩ ∂Bh.

(5.8)

In the definition of the generalized singular line, we recall that the polar angles of the exterior normal 
vectors of Γ+

h (with respect to the domain W ) and Γ−
h are, respectively,

ϕM = θ0 + π

2 , ϕm = −π

2 . (5.9)

In order to investigate the relationship between the vanishing order of u at the origin and the intersecting 
angle of the generalized singular lines Γ±

h , we consider the following equations

Δu + λu = 0 in Bh, (5.10a)
∂u

∂ν
+ η1u = 0 on Γ−

h , (5.10b)

∂u

∂ν
+ η2u = 0 on Γ+

h . (5.10c)

Next, we derive several crucial auxiliary results regarding the function u satisfying (5.10a)–(5.10c).
Recall that Sh is defined in (5.7). Since u0 is only smooth in Sh\ Bε(0 < ε < h), we cannot use Green’s 

formula for the Laplacian eigenfunction u and the CGO solution u0 in Sh directly. Instead, we may overcome 
this difficulty by taking a limit of the volume integral with the integrand u0Δu over Sh\ Bε and carefully 
investigate the boundary integrals on ∂(Sh\ Bε). We only present the result in the following proposition 
and its proof is similar to the argument of Lemma 3.2 in [8].

Lemma 5.2. The CGO solution u0(sx) defined in (5.2) is harmonic in Sh\0 and decays exponentially as 
s → ∞ for 0 < θ < θ0, where θ0 is the intersecting angle of Γ+

h and Γ−
h . Moreover, for the Laplacian 

eigenfunction u to (1.1), the Green’s formula holds
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∫
Sh

(u0(sx)Δu− uΔu0(sx)) dx = I+
1 + I−1 + I2, (5.11)

where

I+
1 =

∫
Γ+
h

(
u0(sx)∂u

∂ν
− u(x)∂u0(sx)

∂ν

)
dσ,

I−1 =
∫
Γ−
h

(
u0(sx)∂u

∂ν
− u(x)∂u0(sx)

∂ν

)
dσ,

I2 =
∫
Λh

(
u0(sx)∂u

∂ν
− u(x)∂u0(sx)

∂ν

)
dσ.

(5.12)

From Lemma 2.4, by direct calculations, we have the following proposition regarding the exterior normal 
derivative of the CGO solution u0(sx) on any straight line.

Proposition 5.1. For any straight line Γ, where x = r(cos θ, sin θ) ∈ Γ, let the exterior unit normal vector to 
Γ be ν = (cosϕ, sinϕ). Then the CGO solution u0(sx) given in Lemma 5.1 fulfills

∂u0(sx)
∂ν

∣∣∣
Γ

= β(θ)e
√
srζ(θ)

√
s

r
, (5.13)

where ζ(θ) and β(θ) are given by

ζ(θ) = ei(θ/2+π) = −eiθ/2, β(θ) = 1
2 sin(ϕ− θ)ζ̃(θ), ζ̃(θ) = −ieiθ/2. (5.14)

By induction and straightforward calculations, we can derive the explicit formulas of the following in-
tegrals in Lemma 5.3, which is essential in showing the relationship between the vanishing order of u
and the intersecting angle of the generalized singular lines Γ±

h . The detailed proof of Lemma 5.3 is omit-
ted.

Lemma 5.3. For a given ζ(θ) ∈ C and � = 0, 1, 2, . . ., it holds that

h∫
0

r�e
√
srζ(θ)dr = 2

s�+1

{ (2� + 1)!
ζ(θ)2�+2 + e

√
shζ(θ)

2�+1∑
j=0

(−1)j(2� + 1)!
(2� + 1 − j)!ζ(θ)j+1

× (sh)(2�+1−j)/2
}
,

h∫
0

r�e
√
srζ(θ)

√
s

r
dr = 2

s�

{
− (2�)!

ζ(θ)2�+1 + e
√
shζ(θ)

2�∑
j=0

(−1)j(2�)!
(2�− j)!ζ(θ)j+1

× (sh)(2�−j)/2
}
.

Furthermore, the following asymptotic expansions are true for �(ζ(θ)) < 0 and s → ∞:
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h∫
0

r�e
√
srζ(θ)dr = 2

s�+1 · (2� + 1)!
ζ(θ)2�+2 + O

(
s−1/2e

√
shζ(θ)

)
,

h∫
0

r�e
√
srζ(θ)

√
s

r
dr = − 2

s�
· (2�)!
ζ(θ)2�+1 + O

(
e
√
shζ(θ)

)
.

(5.15)

In Lemmas 5.4 and 5.5 below, we will investigate the asymptotic behaviours of the integrals associated 
with u and the CGO solution u0(sx) (or their corresponding exterior normal derivatives) with respect to 
the positive parameter s as s → ∞.

Lemma 5.4. Recall that Γ−
h and Γ+

h are defined in (5.8). Denote

I+
11 =

∫
Γ+
h

u(x)∂u0(sx)
∂ν

dσ, I−11 =
∫
Γ−
h

u(x)∂u0(sx)
∂ν

dσ. (5.16)

Then the following asymptotic expansions hold with respect to s as s → ∞:

I+
11 = −2β(θ0)

ζ(θ0)
u(0) − 1

s
· 4β(θ0)
ζ(θ0)3

c1(θ0) −
1
s2 · 48β(θ0)

ζ(θ0)5
c2(θ0) + O(s−3),

I−11 = −2β(0)
ζ(0) u(0) − 1

s
· 4β(0)
ζ(0)3 c1(0) − 1

s2 · 48β(0)
ζ(0)5 c2(0) + O(s−3),

(5.17)

where

c1(θ) = ∂u

∂x1

∣∣∣
x=0

cos θ + ∂u

∂x2

∣∣∣
x=0

sin θ,

c2(θ) = 1
2

(
∂2u

∂x2
1

∣∣∣
x=0

cos2 θ + ∂2u

∂x1x2

∣∣∣
x=0

sin 2θ + ∂2u

∂x2
2

∣∣∣
x=0

sin2 θ

)
.

(5.18)

Proof. It is easy to see that the exterior unit normal vector to Γ+
h is

ν = (cosϕM , sinϕM ), ϕM = θ0 + π

2 . (5.19)

From Proposition 5.1, on Γ+
h we obtain that

∂u0(sx)
∂ν

∣∣∣
Γ+
h

= β(θ0)e
√
srζ(θ0)

√
s

r
, (5.20)

where ζ(θ0) = −eiθ0/2, and

β(θ0) = 1
2 sin(ϕM − θ0)ζ̃(θ0) = − ieiθ0/2

2 , ζ̃(θ0) = −ieiθ0/2. (5.21)

Noting the analyticity of the Laplacian eigenfunction u to (1.1) in Ω, we have the expansion near a neigh-
bourhood of the origin:

u(x) =
∑
2

(∂αu)(0)
α! xα, (5.22)
α∈N0 , |α|≥0
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where N2
0 = {(α1, α2) | αj ∈ N ∪ {0}, j = 1, 2}. Then substituting (5.20) and (5.22) into I+

11, we deduce 
that

I+
11 =

∫
Γ+
h

u(x)∂u0(sx)
∂ν

dσ = u(0)β(θ0)
h∫

0

e
√
srζ(θ0)

√
s

r
dr

+
(

∂u

∂x1

∣∣∣
x=0

cos θ0 + ∂u

∂x2

∣∣∣
x=0

sin θ0

)
β(θ0)

h∫
0

re
√
srζ(θ0)

√
s

r
dr

+ 1
2

(
∂2u

∂x2
1

∣∣∣
x=0

cos2 θ0 + 2 ∂2u

∂x1x2

∣∣∣
x=0

sin θ0 cos θ0 + ∂2u

∂x2
2

∣∣∣
x=0

sin2 θ0

)

× β(θ0)
h∫

0

r2e
√
srζ(θ0)

√
s

r
dr + rI+

11
,

(5.23)

where

rI+
11

=
∑

α∈N2
0 , |α|≥3

(∂αu)(0)
α!

∫
Γ+
h

xα ∂u0(sx)
∂ν

dσ.

But this term can be estimated as s → ∞ by means of (5.15),

∣∣∣rI+
11

∣∣∣ ≤ |β(θ0)|
h∫

0

r3 · e
√
sr
(ζ(θ0))

√
s

r
dr

∑
α∈N2

0 ,
|α|≥3

h|α|−3
∣∣∣∣ (∂αu)(0)

α!

∣∣∣∣ = O(s−3) ,

where we have used the fact that �(ζ(θ0)) = − cos(θ0/2) < 0 for θ0 ∈ (0, π). Now the asymptotic expan-
sion (5.17) for I+

11 follows directly by substituting (5.15) into (5.23). Similar argument also applies to the 
asymptotic expansion of I−11 and the detail is omitted.

The proof is complete. �
Lemma 5.5. Recall that Γ−

h and Γ+
h are defined in (5.8). Suppose that u satisfies the boundary conditions 

(5.10b) and (5.10c) on Γ−
h and Γ+

h , respectively. Moreover, assume that η1 ∈ Cγ(Γ−
h ) and η2 ∈ Cγ(Γ+

h ) for 
γ ∈ (0, 1], and

I+
12 = −

∫
Γ+
h

u0(sx)∂u
∂ν

dσ, I−12 = −
∫
Γ−
h

u0(sx)∂u
∂ν

dσ. (5.24)

Then the following asymptotic expansions hold for I±12 with respect to s as s → ∞:

I+
12 = 2

s
· η2(0)u(0)

ζ(θ0)2
+ 12

s2 · η2(0)c1(θ0)
ζ(θ0)4

+ u(0) · O(s−1−γ) + O(s−2−γ),

I−12 = 2
s
· η1(0)u(0)

ζ(0)2 + 12
s2 · η1(0)c1(0)

ζ(0)4 + u(0) · O(s−1−γ) + O(s−2−γ).
(5.25)

Proof. Since η1 and η2 are of Cγ-smooth, we have

ηi(x) = ηi(0) + δηi(x), |δηi| ≤ ‖ηi‖Cγ · |x|γ . (5.26)
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Then using (5.15), (5.22) and (5.26), we can deduce in polar coordinates on Γ+
h that

I+
12 =

∫
Γ+
h

u0(sx)η2udσ = η2(0)u(0)
h∫

0

e
√
srζ(θ0)dr + u(0)

h∫
0

δη2e
√
srζ(θ0)dr

+ η2(0)c1(θ0)
h∫

0

re
√
srζ(θ0)dr + rI+

12
,

(5.27)

where

rI+
12

= η2(0)
∑

α∈N2
0 , |α|≥2

(∂αu)(0)
α!

∫
Γ+
h

u0(sx)xαdσ (5.28)

+
∑

α∈N2
0 , |α|≥1

(∂αu)(0)
α!

∫
Γ+
h

u0(sx)xαδη2dσ.

For this term, it follows from (5.15) that

∣∣∣rI+
12

∣∣∣ ≤ |η2(0)|
∑

α∈N2
0 , |α|≥2

h|α|−2
∣∣∣∣ (∂αu)(0)

α!

∣∣∣∣
h∫

0

r2e
√
sr
(ζ(θ0−π))dr

+ ‖η2‖Cγ

∑
α∈N2

0 , |α|≥1

h|α|−1
∣∣∣∣ (∂αu)(0)

α!

∣∣∣∣
h∫

0

r1+γe
√
sr
(ζ(θ0−π))dr

= O(s−2−γ).

(5.29)

Using this and (5.15) again, we can derive (5.25) from (5.27). Similar derivation can be done for the 
asymptotic expansion of I−12. �

The following lemma is about the exterior normal derivative of ∂νu with respect to any singular line of 
a Laplacian eigenfunction u.

Lemma 5.6. Suppose Γ := {x ∈ R2 | x = r(cos θ, sin θ), r > 0} (θ is fixed) is a singular line of the Laplacian 
eigenfunction u, and ϕ is the polar angle of the unit normal vector to Γ, then

cosϕ cos θ∂
2u

∂x2
1

∣∣∣
x=0

+ sinϕ sin θ
∂2u

∂x2
2

∣∣∣
x=0

+ sin(ϕ + θ) ∂2u

∂x1∂x2

∣∣∣
x=0

= 0 . (5.30)

Proof. Recalling the definition of a singular line, one has

∇
(
∂u

∂ν

)
· (cos θ, sin θ)� = 0. (5.31)

Then we can derive (5.30) by evaluating (5.31) in more detail at x = 0. �
For the subsequent analysis, we also need the following lemma.
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Lemma 5.7. Suppose that u has the expansion (5.22). For any straight line segment Γh := {x ∈ R2 | x =
r(cos θ, sin θ), 0 ≤ r ≤ h � 1} (with θ fixed) satisfying �(ζ(θ)) < 0 where ζ(θ) is defined in (5.14), we 
assume that ν = (cosϕ, sinϕ) is the exterior unit normal vector to Γh. Then it holds as s → ∞ that

I12 =
∫
Γh

u0(sx)∂u
∂ν

dσ = 2
s
·
(

∂u

∂x1

∣∣∣
x=0

cosϕ + ∂u

∂x2

∣∣∣
x=0

sinϕ

)
· 1
ζ(θ)2 (5.32)

+ 12
s2 ·

(
∂2u

∂x2
1

∣∣∣
x=0

cosϕ cos θ + ∂2u

∂x2
2

∣∣∣
x=0

sinϕ sin θ + ∂2u

∂x1∂x2

∣∣∣
x=0

sin(ϕ + θ)
)

× 1
ζ(θ)4 + O(s−3) .

Proof. Using the polar coordinate on Γh, it is easy to see that

∂u

∂ν
= ∂u

∂x1

∣∣∣
x=0

cosϕ + ∂u

∂x2

∣∣∣
x=0

sinϕ + r

(
∂2u

∂x2
1

∣∣∣
x=0

cosϕ cos θ + ∂2u

∂x2
2

∣∣∣
x=0

sinϕ sin θ

+ ∂2u

∂x1∂x2

∣∣∣
x=0

sin(ϕ + θ)
)

+ R(u, r, ϕ, θ) (5.33)

where

|R(u, r, ϕ, θ)| ≤ r2
∑

α∈N2
0 , |α|≥3

h|α|−3
∣∣∣∣ (∂αu)(0)

(α− 1)!

∣∣∣∣ .
Therefore we can further write

I12 =
∫
Γh

u0(sx)∂u
∂ν

dσ =
(

∂u

∂x1

∣∣∣
x=0

cosϕ + ∂u

∂x2

∣∣∣
x=0

sinϕ

) h∫
0

e
√
srζ(θ)dr

+
(
∂2u

∂x2
1

∣∣∣
x=0

cosϕ cos θ + ∂2u

∂x2
2

∣∣∣
x=0

sinϕ sin θ + ∂2u

∂x1∂x2

∣∣∣
x=0

sin(ϕ + θ)
)

×
h∫

0

re
√
srζ(θ)dr +

h∫
0

R(u, r, ϕ, θ)e
√
srζ(θ)dr.

(5.34)

Then the desired result follows from the estimate as s → ∞ by using (5.15):∣∣∣∣∣∣
h∫

0

R(u, r, ϕ, θ)e
√
srζ(θ)dr

∣∣∣∣∣∣ ≤
h∫

0

r2e
√
srζ(θ)dr ·

∑
α∈N2

0 , |α|≥3

h|α|−2
∣∣∣∣ (∂αu)(0)

(α− 1)!

∣∣∣∣
= O(s−3) . �

Suppose that Γh is a nodal line of u. Using the polar coordinate and evaluating (5.22) on Γh, we can 
prove the following lemma.

Lemma 5.8. Suppose that u is a Laplacian eigenfunction to (1.1) and u = 0 on Γh, where Γh := {x ∈
R2; x = r(cos θ, sin θ), 0 ≤ r ≤ h} (with θ fixed) is a line segment. Then the functions c1(θ) and c2(θ)
defined in (5.18) are both identically zero.
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Now we are in a position to present the proof of the theorems in Section 3 in the specific case that the 
vanishing order N is up to 3. Before that, we make two important remarks.

First, throughout the present section, if a generalized singular line of the form (1.2) is involved, the 
parameter η can be a C1 function other than a constant. Indeed, our argument in the present section can 
deal with this more general case. In principle, we believe that the theorems in Section 3 can also be extended 
to the more general case that η is a function other than a constant. However, when dealing with higher 
vanishing orders, the corresponding analysis becomes radically more tedious and complicated. Hence, in the 
next section for the general vanishing order case, we shall stick to the case that η is a constant.

Second, in proving the vanishing order of the eigenfunction (up to 3), we shall only make use of the eigen-
function confined in Sh. This is achieved by means of the auxiliary results established in Lemmas 5.2–5.7. 
It is emphasized that this is in sharp contrast to the argument in the next section (for the higher vanishing 
orders), which applies the spherical wave expansion of the eigenfunction in Bh. Hence, our argument in 
the present section is “localized”. This “localization” property enables one to consider, e.g., the quantita-
tive behaviours of the Dirichlet eigenfunction in Ω up to the boundary ∂Ω. Moreover, combining with our 
first remark above, the argument can also be used to study the quantitative behaviours of eigenfunctions 
associated with a general second order elliptic operator other than the Laplacian. We shall investigate these 
interesting extensions in our future work.

We first deal with Theorem 3.1. According to our discussion above, we actually prove the following more 
general theorem.

Theorem 5.1. Let u be a Laplacian eigenfunction to (1.1). Suppose that there are two generalized singular 
lines Γ+

h and Γ−
h from Mλ

Ω such that (3.2) and (3.3) hold. Assume that η1 ∈ C1(Γ−
h ) and η2 ∈ C1(Γ+

h ). If 
the conditions

u(0) = 0 and α �= 1
2 (5.35)

are satisfied, the Laplacian eigenfunction u vanishes up to the order 3 at 0.

Proof. Recall Fig. 2. Evaluating (5.10b) and (5.10c) at 0, using u(0) = 0 we derive

∇u
∣∣∣
x=0

· (cosϕm, sinϕm) = −η1(0)u(0) = 0,

∇u
∣∣∣
x=0

· (cosϕM , sinϕM ) = −η2(0)u(0) = 0.

Since θ0 ∈ (0, π), we know that Γ−
h and Γ+

h are non-collinear. Therefore it is easy to see

∇u(0) = 0. (5.36)

Noting that u is the Laplacian eigenfunction satisfying (5.10a), we derive the integral equality from (5.11):

−λ

∫
Sh

u0(sx)u(x)dx =
∫
Sh

(u0(sx)Δu− uΔu0(sx)) dx = I+
1 + I−1 + I2, (5.37)

where Sh is defined in (5.7), and I±1 and I2 are defined in (5.12).
Since u ∈ H2(Bh), which can be embedded into Cγ(Bh)(0 < γ < 1), we know that

u(x) = u(0) + δu(x), |δu(x)| ≤ ‖u‖Cγ |x|γ , (5.38)

from which it follows that
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∫
Sh

u0(sx)u(x)dx = u(0)
∫
Sh

u0(sx)dx + I3 = u(0)

⎛⎝∫
W

u0(sx)dx − I4

⎞⎠+ I3 (5.39)

where

I3 =
∫
Sh

u0(sx)δu(x)dx, I4 =
∫

W\Bh

u0(sx)dx.

Substituting (5.39) into (5.37) and combining with (5.4), we derive that

−6λi(e−2iθ0 − 1)s−2u(0) = I+
1 + I−1 + I2 + λI3 − u(0)λI4. (5.40)

Using u(0) = 0, we further obtain

0 = I+
1 + I−1 + I2 + λI3. (5.41)

Since u ∈ H2(Bh), we have from [8, Page 6263] and (5.3) that for some c′ > 0,

|I2| ≤ Ce−c′
√
s, |I3| ≤ O(s−γ−2) as s → ∞ . (5.42)

Recalling the definitions of I±1 , I2, I±11 and I±12 given by (5.12), (5.16) and (5.24), respectively, it is easy 
to see that

I+
1 = −(I+

11 + I+
12), I−1 = −(I−11 + I−12). (5.43)

Since η1 and η2 are C1 functions on the boundary Γ±
h , they fulfill the requirement of Lemma 5.5. Using 

(5.36) and recalling c1(θ0) and c1(0) given in (5.18), we know that

c1(θ0) = c1(0) = 0. (5.44)

Substituting u(0) = 0 and (5.44) into (5.17) and (5.25) yields

I+
11 = − 1

s2 · 48β(θ0)
ζ(θ0)5

c2(θ0) + O(s−3), I−11 = − 1
s2 · 48β(0)

ζ(0)5 c2(0) + O(s−3),

I+
12 = O(s−2−γ), I−12 = O(s−2−γ).

(5.45)

But by means of (5.43), we deduce by substituting (5.45) into (5.41) that

1
s2 · 48β(θ0)

ζ(θ0)5
c2(θ0) + 1

s2 · 48β(0)
ζ(0)5 c2(0) = −λI3 − I2 + O(s−2−γ), (5.46)

where c2(θ) is defined in (5.18). Multiplying s2 on the both sides of (5.46), combining with (5.42), and 
letting s → ∞, we can obtain that

β(θ0)
ζ(θ0)5

c2(θ0) + β(0)
ζ(0)5 c2(0) = 0. (5.47)

Using the eigen-equation, −Δu = λu, we can see

∂2u
2

∣∣∣ + ∂2u
2

∣∣∣ = −λu(0) = 0. (5.48)

∂x1 x=0 ∂x2 x=0
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Substituting this equation into the expression of c2(θ), we derive that

c2(0) = 1
2
∂2u

∂x2
1

∣∣∣
x=0

, c2(θ0) = 1
2

(
∂2u

∂x2
1

∣∣∣
x=0

cos 2θ0 + ∂2u

∂x1x2

∣∣∣
x=0

sin 2θ0

)
. (5.49)

From (5.14), it is easy to see that

β(θ0)
ζ(θ0)5

= ie−2iθ0

2 ,
β(0)
ζ(0)5 = − i

2 (5.50)

Then substituting (5.49) and (5.50) into (5.47), we can deduce that

(
1 − e−2iθ0 cos 2θ0

) ∂2u

∂x2
1

∣∣∣
x=0

− e−2iθ0 sin 2θ0
∂2u

∂x1x2

∣∣∣
x=0

= 0. (5.51)

Recalling that

f(x) := ∂u

∂ν
+ η2u ≡ 0 on Γ+

h ,

we know the directional derivative of f with respect to the direction (cos θ0, sin θ0) satisfies

∇
(
∂u

∂ν
+ η2u

)
· (cos θ0, sin θ0)� = 0. (5.52)

Since η1 ∈ C1(Γ−
h ) and η2 ∈ C1(Γ+

h ), we can use the fact that

∇
(
∂u

∂ν
+ η2u

)
=

⎡⎢⎢⎣
∂2u

∂x2
1

cosϕM + ∂2u

∂x1∂x2
sinϕM + ∂η2

∂x1
u + η2

∂u

∂x1
∂2u

∂x1∂x2
cosϕM + ∂2u

∂x2
2

sinϕM + ∂η2

∂x2
u + η2

∂u

∂x2

⎤⎥⎥⎦ ,

where ϕM = θ0 + π
2 , and evaluate (5.52) at x = 0, then derive by using u(0) = 0 and (5.36) that

cosϕM cos θ0
∂2u

∂x2
1

∣∣∣
x=0

+ sinϕM sin θ0
∂2u

∂x2
2

∣∣∣
x=0

+ sin(ϕM + θ0)
∂2u

∂x1∂x2

∣∣∣
x=0

= 0. (5.53)

Substituting (5.48) into (5.53), together with ϕM = θ0 + π
2 we can further obtain that

sin 2θ0
∂2u

∂x2
1

∣∣∣
x=0

− cos 2θ0
∂2u

∂x1∂x2

∣∣∣
x=0

= 0. (5.54)

Now combining (5.51) with (5.54), we can get a system of linear equations with respect to ∂2u
∂x2

1
(0) and 

∂2u
∂x1∂x2

(0), with the determinant of its coefficient matrix given by∣∣∣∣∣ 1 − e−2iθ0 cos 2θ0 −e−2iθ0 sin 2θ0
sin 2θ0 − cos 2θ0

∣∣∣∣∣ = − cos 2θ0 + e−2iθ0 = −i sin 2θ0 �= 0

since θ0 �= π/2. Therefore, together with (5.48) we can conclude that

∂2u
2

∣∣∣ = ∂2u ∣∣∣ = ∂2u
2

∣∣∣ = 0.

∂x1 x=0 ∂x1∂x2 x=0 ∂x2 x=0
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Since the order of the lowest nontrivial homogeneous polynomial in Taylor expansion (5.22) around the 
origin is larger than 2, its vanishing order is at least up to 3. This completes the proof. �

We next deal with Theorem 3.5, but under a more general situation with η2 ∈ C1(Γ+
h ).

Theorem 5.2. Let u be a Laplacian eigenfunction to (1.1). Suppose that a generalized singular line Γ+
h ∈ Mλ

Ω
intersects with a nodal line Γ−

h ∈ N λ
Ω such that (3.2) and (3.3) hold, and η2 ∈ C1(Γ+

h ). If the following 
condition is fulfilled

α �= 1
4 ,

1
2 and 3

4 (5.55)

then the Laplacian eigenfunction u vanishes up to the order 3 at 0.

Proof. Since u = 0 on Γ−
h , we know from (5.48) that

∂u

∂x1

∣∣∣
x=0

= ∂2u

∂x2
1

∣∣∣
x=0

= ∂2u

∂x2
2

∣∣∣
x=0

= 0. (5.56)

Further, we derive by evaluating

∂u

∂ν
+ η2u = 0

on Γ+
h at x = 0 that

∂u

∂x1

∣∣∣
x=0

cosϕM + ∂u

∂x2

∣∣∣
x=0

sinϕM = −η2(0)u(0) = 0, (5.57)

where ϕM = θ0 + π/2. Then substituting (5.56) into (5.57), it is easy to see that

cos θ0 ·
∂u

∂x2

∣∣∣
x=0

= 0.

Hence if θ0 �= π/2, we have

∂u

∂x2

∣∣∣
x=0

= 0. (5.58)

Now recalling that we have the boundary condition (5.10c) on Γ+
h , with η2 ∈ C1(Γ+

h ), and the fact that 
u = 0 on Γ−

h , we can establish the following integral equality by the same argument for deriving (5.41)

0 = I+
1 − I−12 + I2 + λI3, (5.59)

where I+
1 = −(I+

11 + I+
12), I2, I

−
12 and I3 are defined in (5.16), (5.12), (5.24) and (5.39), respectively. For the 

term I+
11, it follows from (5.17) that

I+
11 = −2β(θ0)

ζ(θ0)
u(0) − 1

s
· 4β(θ0)
ζ(θ0)3

c1(θ0) −
1
s2 · 48β(θ0)

ζ(θ0)5
c2(θ0) + O(s−3)

which can be further reduced to

I+
11 = − 1

2 · 24β(θ0)
5 · ∂2u ∣∣∣ sin 2θ0 + O(s−3) (5.60)
s ζ(θ0) ∂x1x2 x=0



142 X. Cao et al. / J. Math. Pures Appl. 143 (2020) 116–161
by (5.56) and (5.58).
To estimate the term I+

12, we recall that η2 has the expansion (5.26). We have c1(θ0) = 0 from (5.56) and 
(5.58). Then using u(0) = c1(θ0) = 0, we deduce from (5.25) that

I+
12 = O(s−2−γ). (5.61)

Next we estimate I−12. It follows from (5.32), combining with (5.56) and (5.58), that

I−12 = −
∫
Γ−
h

u0(sx)∂u
∂ν

dσ = 12
s2 · ∂2u

∂x1∂x2

∣∣∣
x=0

· 1
ζ(0)4 −O(s−3). (5.62)

Substituting (5.60)-(5.62) into (5.59), we can get that

1
s2 · 24β(θ0)

ζ(θ0)5
· ∂2u

∂x1x2

∣∣∣
x=0

sin 2θ0 −
12
s2 · ∂2u

∂x1∂x2

∣∣∣
x=0

· 1
ζ(0)4 −O

(
s−2−γ

)
= −(I2 + λI3).

Multiplying s2 on the both sides of the above equality, we deduce from (5.42) that(
2β(θ0)
ζ(θ0)5

· sin 2θ0 −
1

ζ(0)4

)
· ∂2u

∂x1x2

∣∣∣
x=0

= 0

as s → ∞. But we see from (5.50) that

2β(θ0)
ζ(θ0)5

· sin 2θ0 −
1

ζ(0)4 = ie−2iθ0 sin 2θ0 − 1 = − cos 2θ0e
−2iθ0 �= 0

if θ0 �= π/4 and θ0 �= 3π/4. Hence we obtain that

∂2u

∂x1∂x2

∣∣∣
x=0

= 0,

which completes the proof. �
5.1. Proof of Theorem 3.2

Using u = 0 on Γ±
h , we have

∇u
∣∣∣
x=0

· (1, 0)� = ∇u
∣∣∣
x=0

· (cos θ0, sin θ0)� = 0.

This implies

∇u
∣∣∣
x=0

= 0. (5.63)

Now we recall that u has the expansion (5.22), then we can derive on Γ−
h by using (5.63) and polar coordinates 

that ∑
α∈N2

0 , |α|≥2
α=(α1,α2)

(∂αu)(0)
α! r|α| cosα1(0) sinα2(0)

∣∣∣
x∈Γ−

h

≡ 0, 0 ≤ r ≤ h ,

from which it is not difficult to see that
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c2(0) = 1
2
∂2u

∂x2
1

∣∣∣
x=0

· cos2 0 = 0 . (5.64)

This can be used, along with (5.48), to deduce that

∂2u

∂x2
2

∣∣∣
x=0

= 0 . (5.65)

By means of the fact u = 0 on Γ±
h again, we have the integral identity

0 = −I+
12 − I−12 + I2 + λI3, (5.66)

where I2, I±12 and I3 are defined in (5.12), (5.24) and (5.39), respectively. By Lemma 5.7, together with 
(5.63)-(5.65) it is easy to see that

I+
12 = 12

s2 · ∂2u

∂x1∂x2

∣∣∣
x=0

sin(ϕM + θ0) ·
1

ζ(θ0)4
+ O(s−3),

I−12 = 12
s2 · ∂2u

∂x1∂x2

∣∣∣
x=0

sin(ϕm) · 1
ζ(0)4 + O(s−3),

(5.67)

where ϕm = −π/2 and ϕM = θ0 +π/2 are the arguments of the exterior unit normal vectors to Γ−
h and Γ+

h , 
respectively. From (5.14), we have

ζ(θ0)4 = e2iθ0 , ζ(0)4 = 1.

Substituting (5.67) into (5.66), we derive that

12
s2

(
1 − cos 2θ0e

−2iθ0
) ∂2u

∂x1∂x2

∣∣∣
x=0

+ I2 + λI3 −O(s−3) = 0. (5.68)

Now multiplying s2 on the both sides of (5.68), noting (5.42), we have

(
1 − cos 2θ0e

−2iθ0
) ∂2u

∂x1∂x2

∣∣∣
x=0

= 0

from which we can deduce that

∂2u

∂x1∂x2

∣∣∣
x=0

= 0

if θ0 �= π/2. This completes our proof. �
5.2. Proof of Theorem 3.7

Since u satisfies the boundary condition u = 0 on Γ−
h , we know that

u(0) = 0, ∇u
∣∣∣
x=0

· (1, 0)� = 0 =⇒ ∂u

∂x1

∣∣∣
x=0

= 0.

Recalling that ϕM = θ0 +π/2 is the argument of the exterior unit normal vector of Γ+
h and ∂νu = 0 on Γ+

h , 
we easily see
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∂u

∂x1

∣∣∣
x=0

(− sin θ0) + ∂u

∂x2

∣∣∣
x=0

cos θ0 = 0.

Therefore if θ0 �= π/2, we know

∂u

∂x2

∣∣∣
x=0

= 0.

Furthermore, since Γ−
h is a nodal line, we know by Lemma 5.8 that

∂2u

∂x2
1

∣∣∣
x=0

= 0.

Substituting u(0) = 0 into (5.48), we have

∂2u

∂x2
2

∣∣∣
x=0

= −∂2u

∂x2
1

∣∣∣
x=0

= 0.

Then using the fact that Γ+
h is a singular line of u, we derive from Lemma 5.6 that

sin(ϕM + θ0) ·
∂2u

∂x1∂x2

∣∣∣
x=0

= cos 2θ0 ·
∂2u

∂x1∂x2

∣∣∣
x=0

= 0.

Hence if θ0 �= π/4 and θ0 �= 3π/4, we can prove

∂2u

∂x1∂x2

∣∣∣
x=0

= 0,

which means that the expansion (5.22) of u has at least nontrivial homogeneous polynomial with the order 
of three, hence completes our proof. �
Remark 5.1. In the subsection 5.2 above, we may also use the CGO solution as the test function to study 
the vanishing property of the second order partial derivatives of u at the origin with respect to θ0, which 
can lead to the same conclusion.

6. Proofs of the theorems in Section 3 for general cases

In this section, detailed proofs of the theorems for general vanishing order in Section 3 are presented, 
by using the spherical wave expansion of the Laplacian eigenfunction u near the intersecting point between 
two line segments.

From (2.14) and (2.15), we have the following lemma regarding the exterior normal derivative of u on 
Γ±
h by using the spherical wave expansion (2.14) of u.

Lemma 6.1. Under the polar coordinate, we have the following expansion of the normal derivative of u given 
by (2.14) on Γ±

h around the origin

∂u

∂ν

∣∣∣
Γ+
h

= 1
r

∂u

∂θ

∣∣∣
θ=θ0

= 1
r

∞∑
n=0

in
(
ane

inθ0 − bne
−inθ0

)
Jn

(√
λr
)
,

∂u

∂ν

∣∣∣
Γ−

= −1
r

∂u

∂θ

∣∣∣
θ=0

= −1
r

∞∑
in (an − bn)Jn

(√
λr
)
.

(6.1)
h n=0
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In Section 5, we proved the vanishing order up to three of the Laplacian eigenfunction at the origin. In 
the next lemma, we clarify the relationship between the coefficients an, bn in (2.14) and the vanishing order 
of u at the origin.

Lemma 6.2. Suppose that u has the spherical wave expansion (2.14) around the origin, and the coefficients 
an, bn in (2.14) satisfy

a0 + b0 = 0, an = bn = 0, n = 1, 2, . . . , N − 1, N ≥ 2, (6.2)

if and only if the vanishing order of u at the origin is at least N .

Proof. Substituting (6.2) into (2.14) yields

u(x) =
∞∑

n=N

(
ane

inθ + bne
−inθ) Jn (√λr

)
. (6.3)

The lemma is readily proved by noting from (2.17) that the power of the lowest order in (6.3) with respect 
to r is N . �

Recalling the definition of the generalized singular line of the Laplacian eigenfunction u, and using the 
spherical wave expansion (2.14) of u and Lemma 6.1, we can deduce some equations for the undetermined 
coefficients {an, bn} in (2.14). These equations will be used in the proof of Theorem 3.1.

Lemma 6.3. Let Γ±
h be two generalized singular lines of u with the boundary parameters η1 ≡ C1 and η2 ≡ C2

defined on Γ−
h and Γ+

h , respectively, where C1 and C2 are two constants. Suppose that Γ±
h intersect with each 

other at the origin and (6.2) is fulfilled. Then the following equations hold for the coefficients {aN , bN} and 
{aN+1, bN+1} in (2.14):

aNeiNθ0 − bNe−iNθ0 = 0, aN − bN = 0, (6.4)

2C2(aNeiNθ0 + bNe−iNθ0) + i
√
λ(aN+1e

i(N+1)θ0 − bN+1e
−i(N+1)θ0) = 0, (6.5)

2C1(aN + bN ) − i
√
λ(aN+1 − bN+1) = 0. (6.6)

Proof. Substituting (2.14) and (6.1) into

∂u

∂ν
+ η2u = 0 on Γ+

h and ∂u

∂ν
+ η1u = 0 on Γ−

h ,

and combining with the following identity (cf. [1])

Jn(
√
λr) =

√
λr

2n

(
Jn−1(

√
λr) + Jn+1(

√
λr)

)
, n ∈ N,

we can obtain

∞∑
n=1

i
√
λ

2 (aneinθ0 − bne
−inθ0)

(
Jn−1(

√
λr) + Jn+1(

√
λr)

)

+ C2

∞∑
n=0

(aneinθ0 + bne
−inθ0)Jn(

√
λr) = 0,

(6.7)

and
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∞∑
n=1

i
√
λ

2 (an − bn)
(
Jn−1(

√
λr) + Jn+1(

√
λr)

)
− C1

∞∑
n=0

(an + bn)Jn(
√
λr) = 0. (6.8)

Using (6.2) and comparing the coefficients of rN−1 and rN on both sides of (6.7), one can derive by 
straightforward calculations the first equation in (6.4) and (6.5). Similarly, we can derive the second equation 
in (6.4) and (6.6) on Γ−

h by using (6.2) and (6.8). �
Similar to Lemma 6.3, we can obtain the equations for {an, bn} by using (2.14) and the boundary 

conditions on Γ±
h for the singular lines in Lemma 6.4.

Lemma 6.4. Suppose that Γ±
h are two singular lines of u which intersect with each other at the origin and 

(6.2) is fulfilled. Then the following equations hold for the coefficients {aN , bN} in (2.14):

aNeiNθ0 − bNe−iNθ0 = 0, (6.9)

aN − bN = 0. (6.10)

Proof. Using (6.1) and Lemma 2.5, together with (6.2), we can derive (6.9) and (6.10). �
In particular, for two intersecting nodal lines Γ±

h , we can derive the equations for {an, bn}, n = 0, 1, · · · , 
by Lemma 2.5 as follows.

Lemma 6.5. Suppose that Γ±
h are two nodal lines of u which intersect with each other at the origin, then the 

following equations hold for the coefficients {an, bn} in (2.14), n = 0, 1, . . .:

ane
inθ0 + bne

−inθ0 = 0,

an + bn = 0.

Proof. Substituting (2.14) into u = 0 on Γ±
h , we can obtain that

0 =
∞∑

n=0

(
ane

inθ0 + bne
−inθ0

)
Jn(

√
λr), 0 =

∞∑
n=0

(an + bn) Jn(
√
λr).

Then the desired results follow directly from Lemma 2.5. �
In the rest of this section, we provide detailed proofs of theorems for general vanishing orders in Section 3.

6.1. Proof of Theorem 3.1

According to Theorem 5.1, we know that Theorem 3.1 holds at least for N = 3. Hence, by virtue of 
Lemma 6.2, we see that (6.2) holds for N = 3. Now we apply the mathematical induction, and assume that 
(6.2) holds for any N ≥ 3 and N ∈ N. Then using (6.4) we can directly derive by virtue of (3.4) that

∣∣∣∣e2iNθ0 −1
1 −1

∣∣∣∣ = 1 − e2iNθ0 �= 0

for θ0 �= mπ
N (m = 0, 1, . . . , N − 1). This implies that aN = bN = 0, and completes the proof of Theo-

rem 3.1. �
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6.2. Proof of Theorem 3.2

Since u = 0 on Γ±
h , by Lemma 6.5 we know∣∣∣∣einθ0 e−inθ0

1 1

∣∣∣∣ = e−inθ0(e2inθ0 − 1) �= 0

if θ0 �= mπ
n (m = 0, 1, . . . , n − 1). This readily implies that an = bn = 0, n = 1, 2, . . .. �

6.3. Proof of Theorem 3.3

In combination with Lemma 6.4, Theorem 3.3 can be proved by following a completely similar argument 
to the one for Theorem 3.1 in Subsection 6.1 by formally taking η1 ≡ 0 and η2 ≡ 0.

6.4. Proof of Theorem 3.5

From Theorem 5.2, we know that Theorem 3.5 holds at least for N = 3. Therefore, by virtue Lemma 6.2, 
one can conclude that (6.2) holds for N = 3. Now we apply the mathematical induction, and assume that 
(6.2) holds for any N ≥ 3 and N ∈ N. Since u = 0 on Γ−

h , from Lemma 6.5, one has

aN + bN = 0. (6.11)

Since ∂u∂ν + η2u = 0 on Γ+
h , by virtue of (6.4), it holds that

aNe2iNθ0 − bN = 0. (6.12)

In view of (6.11) and (6.12), if θ0 �= (2m+1)π
2N (m = 0, 1, . . . , N − 1), then∣∣∣∣e2iNθ0 −1

1 1

∣∣∣∣ = e2iNθ0 + 1 �= 0,

which readily shows that aN = bN = 0. The proof is complete. �
7. Discussions about the condition u(0) = 0

We recall a critical condition u(0) = 0 that was used in Theorems 3.1, 3.3 and 3.6 in Section 3. It is 
also noted that in other three theorems of the same section, the condition that u(0) = 0 is always fulfilled 
because one of the two line segments is a nodal line there. In this section, by illustrating with several specific 
examples, we show that the condition u(0) = 0 can be fulfilled in certain scenarios in Theorems 3.1, 3.3 and 
3.6, if one imposes certain generic conditions on the boundary parameters Ci, the intersecting angle α · π
and the eigenvalue λ.

It is stated in the introduction that one of the main motivations of our study in this work is the unique 
identifiability in inverse scattering problems. As we will see in the next section, we are able to develop a pow-
erful mathematical strategy so that this condition is always fulfilled by making use of a linear combination 
of two eigenfunctions.

Proposition 7.1. Let u be a Laplacian eigenfunction to (1.1), with its Fourier series given by (2.14). Suppose 
that there are two generalized singular lines Γ+

h and Γ−
h from Mλ

Ω such that (3.2) and (3.3) hold. Assume 
that η1 ≡ C1 and η2 ≡ C2 for two constants C1 and C2. Then if α = 1 and C1 �= C2, the Laplacian 
eigenfunction u fulfills u(0) = 0. If α �= 1, two coefficients a1 and b1 in (2.14) can be expressed explicitly by
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a1 = 1√
λ sin θ0

(C1e
−iθ0 + C2)u(0), b1 = 1√

λ sin θ0
(C1e

iθ0 + C2)u(0). (7.1)

Proof. Recall the Laplacian eigenfunction u has the spherical wave expansion (2.14) in polar coordinates 
around the origin. Then we can obtain from Lemma 6.3, and noting that α = 1 implies θ0 = π, the following 
equations

{
2C2(a0 + b0) − i

√
λ(a1 − b1) = 0,

2C1(a0 + b0) − i
√
λ(a1 − b1) = 0.

Noting that a0 + b0 = u(0) and using the assumption C1 �= C2, we can derive from the above equations 
that u(0) = 0. And (7.1) follows readily from (6.5) and (6.6) if α �= 1. �
Proposition 7.2. Let u be a Laplacian eigenfunction to (1.1). Suppose that there are two generalized singular 
lines Γ+

h and Γ−
h from Mλ

Ω such that (3.2) and (3.3) hold. Assume that η1 ≡ C1 and η2 ≡ C2 for two 
constants C1 and C2. If α �= 1

2 , then a2 and b2 in (2.14) can be expressed explicitly as

a2 = 2u(0)
λ sin 2θ0 sin θ0

(C1C2 + C1C2e
−i2θ0 + C2

2 cos θ0 + C2
1 cos θ0e

−i2θ0),

b2 = 2u(0)
λ sin 2θ0 sin θ0

(C1C2 + C1C2e
i2θ0 + C2

2 cos θ0 + C2
1 cos θ0e

i2θ0). (7.2)

Proof. Substituting (7.1) into (6.5) and (6.6) and taking n = 2, we can obtain that

{
2C2(a1e

iθ0 + b1e
−iθ0) + i

√
λ(a2e

i2θ0 − b2e
−i2θ0) = 0,

2C1(a1 + b1) − i
√
λ(a2 − b2) = 0.

(7.3)

After rearranging the terms, (7.3) can be further simplified as⎧⎨⎩a2e
i2θ0 − b2e

−i2θ0 = 2C2i√
λ

(a1e
iθ0 + b1e

−iθ0),
a2 − b2 = −2C1i√

λ
(a1 + b1).

(7.4)

Substituting (7.1) into (7.4), then we can derive by direct calculations (7.2) for the explicit expressions of 
a2 and b2. �
Proposition 7.3. Let u be a Laplacian eigenfunction to (1.1). Suppose that there are two generalized singular 
lines Γ+

h and Γ−
h from Mλ

Ω such that (3.2) and (3.3) hold. Assume that η1 ≡ C1 and η2 ≡ C2 for two 
constants C1 and C2. Then if α = 1

3 , C1 �= C2 and

1 + 4
3λ

(
C2

1 + C1C2 + C2
2
)
�= 0, (7.5)

the Laplacian eigenfunction u fulfills u(0) = 0. Furthermore, if α �= 1
3 , then a3 and b3 in (2.14) can be 

expressed explicitly as

a3 = 1√
λ sin 3θ0

(B1 −B2e
−i3θ0), b3 = 1√

λ sin 3θ0
(B1 −B2e

i3θ0), (7.6)

where B1 and B2 are given by
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B1 = i
√
λ(a1e

iθ0 − b1e
−iθ0) + C2(a2e

i2θ0 + b2e
−i2θ0) + C2u(0), (7.7)

B2 = i
√
λ(a1 − b1) − C1(a2 + b2) − C1u(0), (7.8)

with (a1, b1) and (a2, b2) defined in (7.1) and (7.2), respectively.

Proof. Recall (6.7) and (6.8). Comparing the coefficients of r2 on the both sides of these two equations, we 
can derive that

i
√
λ(a1e

iθ0 − b1e
−iθ0) + 1

2 i
√
λ(a3e

i3θ0 − b3e
−i3θ0)

+ C2(a2e
i2θ0 + b2e

−i2θ0) + C2(a0 + b0) = 0 on Γ+
h , (7.9)

and

i
√
λ(a1 − b1) + 1

2i
√
λ(a3 − b3) − C1(a2 + b2) − C1(a0 + b0) = 0 on Γ−

h . (7.10)

Since a0 + b0 = u(0), substituting (7.7) and (7.8) into (7.9) and (7.10), we can further obtain that

a3e
i3θ0 − b3e

−i3θ0 = 2iB1√
λ
, a3 − b3 = 2iB2√

λ
. (7.11)

Since α = 1
3 , taking θ0 = π

3 in (7.11), we have

a3 − b3 = −2iB1√
λ

= 2iB2√
λ
,

which indicates that

B1 + B2 = 0, (7.12)

where

B1 = i
√
λ(a1e

iπ3 − b1e
−iπ3 ) + C2(a2e

i 2π3 + b2e
−i 2π3 ) + C2u(0), (7.13)

and B2 is defined in (7.8). Substituting (7.1) and (7.2) into (7.13) and (7.8), after straightforward calcula-
tions, (7.12) can be reduced to

(C1 − C2)
[
1 + 4

3λ
(
C2

1 + C1C2 + C2
2
)]

u(0) = 0.

This implies u(0) = 0 by noting that C1 �= C2 and using (7.5). Similarly we can deduce (7.6) from (7.11)
directly for α �= 1/3. �

We end this section with two important remarks.

Remark 7.1. By tracing the proofs of Propositions 7.1–7.3 and repeating similar arguments, we can find 
that under some mild assumptions on C1, C2, the intersecting angle α ·π and the eigenvalue λ, the property 
u(0) = 0 still holds for the rational intersecting angle α · π generically except for α = π/2m, where 
m = 1, 2, · · · . The detailed arguments are rather tedious and technical, but straightforward.
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Remark 7.2. In Propositions 7.1-7.3, we studied the property u(0) = 0 for two intersected generalized 
singular lines only for some conditions on C1, C2, the intersecting angle α · π and λ. Other situations may 
be analysed similarly, e.g., either C1 = 0 or C2 = 0. But as shown in Theorem 2.2, we can not guarantee 
u(0) = 0 by imposing some conditions on the intersecting angle between two intersecting singular lines.

8. Unique identifiability for inverse scattering problems

In this section, we apply the spectral results we have established in the previous sections to study a 
fundamental mathematical topic, i.e., the unique identifiability, in a class of physically important inverse 
problems. These include the inverse obstacle problem and the inverse diffraction grating problem, which 
are concerned with imaging the shapes of some unknown or inaccessible objects from certain wave probing 
data in different physical settings. These inverse scattering problems may arise from a variety of important 
applications such as radar, sonar and medical imaging, as well as geophysical exploration and nondestructive 
testing.

8.1. Unique recovery for the inverse obstacle problem

We first consider the inverse obstacle problem. Let k = ω/c ∈ R+ be the wavenumber of a time harmonic 
wave with ω ∈ R+ and c ∈ R+, respectively, signifying the frequency and sound speed. Let Ω ⊂ R2 be a 
bounded domain with a Lipschitz-boundary ∂Ω and a connected complement R2\Ω. Furthermore, let the 
incident field ui be a plane wave of the form

ui := ui(x; k,d) = eikx·d, x ∈ R2 , (8.1)

where d ∈ S1 denotes the incident direction of the impinging wave and S1 := {x ∈ R2 : |x| = 1} is the 
unit circle in R2. Physically, Ω is an impenetrable obstacle that is unknown or inaccessible, and ui signifies 
the detecting wave field that is used for probing the obstacle. The presence of the obstacle interrupts the 
propagation of the incident wave, and generates the so-called scattered wave field us. Let u := ui+us be the 
resulting total wave field, then the forward scattering problem can be described by the following Helmholtz 
system: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δu + k2u = 0 in R2\Ω,

u = ui + us in R2,

B(u) = 0 on ∂Ω,

lim
r→∞

r
1
2

(
∂us

∂r
− ikus

)
= 0.

(8.2)

The limiting equation above is known as the Sommerfeld radiation condition which holds uniformly in 
x̂ := x/|x| ∈ S1 and characterizes the outgoing nature of the scattered wave field us. The boundary operator 
B could be Dirichlet type, B(u) = u; or Neumann type, B(u) = ∂νu; or Robin type, B(u) = ∂νu + ηu, 
corresponding to that Ω is a sound-soft, sound-hard or impedance obstacle, respectively. Here ν denotes 
the exterior unit normal vector to ∂Ω and η ∈ L∞(∂Ω) signifies a boundary impedance parameter. It is 
required that �η ≥ 0 and �η ≥ 0. In what follows, we formally take u = 0 on ∂Ω as ∂νu + ηu = 0 on 
∂Ω with η = +∞. In doing so, we can unify all three boundary conditions as the generalized impedance 
boundary condition:

B(u) = ∂νu + ηu = 0 on ∂Ω, (8.3)
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where η could be ∞, corresponding to a sound-soft obstacle. The forward scattering problem (8.2) is well 
understood [16,53] and there exists a unique solution u ∈ H1

loc(R2\Ω) that admits the following asymptotic 
expansion:

us(x; k,d) = eikr

r1/2u∞(x̂; k,d) + O
(

1
r3/2

)
as r → ∞ (8.4)

which holds uniformly with respect to all directions x̂ := x/|x| ∈ S1. The complex valued function u∞ in 
(8.4) defined over the unit sphere S1 is known as the far-field pattern with x̂ ∈ S1 signifying the observation 
direction. The inverse obstacle scattering problem is to recover Ω by using the knowledge of the far-field 
pattern u∞(x̂; k, d). By introducing an operator F which sends the obstacle to the corresponding far-field 
pattern through the Helmholtz system (8.2), the inverse obstacle problem can be formulated as the following 
abstract operator equation:

F(Ω, η) = u∞(x̂; k,d) , (8.5)

where F is defined by the forward obstacle scattering system, and is nonlinear. That is, one intends to 
determine (Ω, η) from the knowledge of u∞(x̂; k, d).

A primary issue for the inverse obstacle problem (8.5) is the unique identifiability, which is concerned 
with the sufficient conditions such that the correspondence between Ω and u∞ is one-to-one. There is a 
widespread belief that one can establish uniqueness for (8.5) by a single or at most finitely many far-field 
patterns. We remark that by a single far-field pattern we mean that u∞(x̂; k, d) is collected for all x̂ ∈ S1, but 
is associated with a fixed incident eikx·d. Phrased in the geometric term, it states that the analytic function 
u∞ on the unit sphere associated with at most finitely many k and d can supply a global parameterization 
of a generic domain Ω. This problem is known as the Schiffer problem in the inverse scattering community. 
It is named after M. Schiffer for his pioneering contribution around 1960 which is actually appeared as a 
private communication in the monograph by Lax and Phillips [45]. There is a long and colourful history on 
the study of the Schiffer problem, and we refer to a recent survey paper by Colton and Kress [17] which 
contains an excellent account of the historical developments of this problem.

Recent progress on the Schiffer problem is made on general polyhedral obstacles in Rn, n ≥ 2. Uniqueness 
and stability results by using a finite number of far-field patterns can be found in [4,15,48–51]. The major 
idea is to make use of the reflection principle for the Laplacian eigenfunction to propagate the so-called 
Dirichlet or Neumann hyperplanes. In the two-dimensional case, the Dirichlet and Neumann hyperplanes 
are actually the nodal and singular lines introduced in the present paper. In [51], two of the authors of 
the present paper made an effort to answer the unique determination issue for impedance-type obstacles 
but gave only a partial solution to this fundamental problem. In this section, we develop a completely 
new approach that is able to provide a solution to this inverse obstacle problem in two dimensions, and 
the approach is uniform to sound-soft, sound-hard and impedance type obstacles. The new approach is 
completely local, and enables us to show in a rather general scenario that one can determine an impedance 
obstacle as well as its surface impedance by at most two far-field patterns.

Consider an obstacle Ω associated with the generalized impedance boundary condition (8.3). It is called 
an admissible polygonal obstacle if Ω ⊂ R2 is an open polygon, and on each edge of ∂Ω, η is either a constant 
(possibly zero) or ∞. That is, each edge K of an admissible polygonal obstacle is either sound-soft (η ≡ ∞
on K), or sound-hard (η ≡ 0 on K), or impedance-type (η is a constant on K). It is emphasized that η may 
take different values on different edges of ∂Ω. We write (Ω, η) to signify an admissible polygonal obstacle.

Definition 8.1. Let (Ω, η) be an admissible polygonal obstacle. If all the angles of its corners are irrational, 
then it is said to be an irrational obstacle. If there is a corner angle of Ω is rational, then it is called a 
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rational obstacle. The smallest degree of the rational corner angles of Ω (cf. Definition 1.2) is referred to as 
the rational degree of Ω.

It is easy to see that for a rational polygonal obstacle Ω in Definition 8.1, the rational degree of Ω is at 
least 2.

Definition 8.2. Ω is said to be an admissible complex polygonal obstacle if it consists of finitely many 
admissible polygonal obstacles. That is,

(Ω, η) =
l⋃

j=1
(Ωj , ηj), (8.6)

where l ∈ N and each (Ωj , ηj) is an admissible polygonal obstacle. Here, we define

η =
l∑

j=1
ηjχ∂Ωj

. (8.7)

Moreover, Ω is said to be irrational if all of its component polygonal obstacles are irrational, otherwise it is 
said to be rational. For the latter case, the smallest degree among all the degrees of its rational components 
is defined to be the degree of the complex obstacle Ω.

Next, we first consider the determination of an admissible complex irrational polygonal obstacle by at 
most two far-field patterns. We have the following local uniqueness result.

Theorem 8.1. Let (Ω, η) and (Ω̃, ̃η) be two admissible complex irrational obstacles. Let k ∈ R+ be fixed and 
d�, � = 1, 2 be two distinct incident directions from S1. Let G denote the unbounded connected component 
of R2\(Ω ∪ Ω̃). Let u∞ and ũ∞ be, respectively, the far-field patterns associated with (Ω, η) and (Ω̃, ̃η). If

u∞(x̂,d�) = ũ∞(x̂,d�), x̂ ∈ S1, � = 1, 2, (8.8)

then one has that (
∂Ω\∂Ω̃

)
∪
(
∂Ω̃\∂Ω

)
cannot have a corner on ∂G.

Proof. We prove the theorem by contradiction. Assume (8.8) holds but 
(
∂Ω\∂Ω̃

)
∪
(
∂Ω̃\∂Ω

)
has a corner 

xc on ∂G. Clearly, xc is either a vertex of Ω or a vertex of Ω̃. Without loss of generality, we assume that 
xc is a vertex of Ω̃. Moreover, we see that xc lies outside Ω. Let h ∈ R+ be sufficiently small such that 
Bh(xc) � R2\Ω. Moreover, since xc is a vertex of Ω̃, we can assume that

Bh(xc) ∩ ∂Ω̃ = Γ±
h , (8.9)

where Γ±
h are the two line segments lying on the two edges of Ω̃ that intersect at xc.

Recall that G denotes the unbounded connected component of R2\(Ω ∪ Ω̃). By (8.8) and the Rellich 
theorem (cf. [16]), we know that

u(x; k,d�) = ũ(x; k,d�), x ∈ G, � = 1, 2. (8.10)
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It is clear that Γ±
h ⊂ ∂G. Hence, by using (8.10) as well as the generalized boundary condition (8.3) on ∂Ω̃, 

we readily have

∂νu + η̃u = ∂ν ũ + η̃ũ = 0 on Γ±
h . (8.11)

It is also noted that in Bh(xc), −Δu = k2u. Next, we consider two separate cases.

Case 1. Suppose that either u(xc; k, d1) or u(xc; k, d2) is zero. Without loss of generality, we assume that 
u(xc; k, d1) = 0. By the assumption of the theorem that Ω̃ is an irrational obstacle, we see that Γ+

h and Γ−
h

intersect with an irrational angle. Hence, by our results in Sections 2 and 4, one immediately has that

u(x; k,d1) = 0 in Bh(xc), (8.12)

which in turn yields by the analytic continuation that

u(x; k,d1) = 0 in R2\Ω. (8.13)

In particular, one has from (8.13) that

lim
|x|→∞

|u(x; k,d1)| = 0. (8.14)

But this contradicts to the fact that follows from (8.4):

lim
|x|→∞

|u(x; k,d1)| = lim
|x|→∞

∣∣eikx·d1 + us(x; k,d1)
∣∣ = 1. (8.15)

Case 2. Suppose that both u(xc; k, d1) �= 0 and u(xc; k, d2) �= 0. Set

α1 = u(xc; k,d2) and α2 = −u(xc; k,d1), (8.16)

and

v(x) = α1u(x; k,d1) + α2u(x; k,d2), x ∈ Bh(xc). (8.17)

Clearly, there hold

−Δv = k2v in Bh(xc); ∂νv + η̃v = 0 on Γ±
h . (8.18)

Moreover, by the choice of α1, α2 in (8.16), one obviously has that v(xc) = 0. Hence, by our results in 
Sections 2 and 4, one immediately has that

v = 0 in Bh(xc), (8.19)

which in turn yields by the analytic continuation that

α1u(x; k,d1) + α2u(x; k,d2) = 0 in R2\Ω. (8.20)

However, since d1 and d2 are distinct, we know from [16, Chapter 5] that u(x; k, d1) and u(x; k, d2) are 
linearly independent in R2\Ω. Therefore, one has from (8.20) that α1 = α2 = 0, which contracts to the 
assumption at the beginning that both α1 and α2 are nonzero. �
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It is recalled that the convex hull of Ω, denoted by CH(Ω), is the smallest convex set that contains Ω. 
As a direct consequence of Theorem 8.1, we next show that the convex hull of a complex irrational obstacle 
can be uniquely determined by at most two far-field measurements. Furthermore, the boundary impedance 
parameter η can be partially identified as well. In fact we have

Corollary 8.2. Let (Ω, η) and (Ω̃, ̃η) be two admissible complex irrational obstacles. Let k ∈ R+ be fixed and 
d�, � = 1, 2 be two distinct incident directions from S1. Let G denote the unbounded connected component 
of R2\(Ω ∪ Ω̃). Let u∞ and ũ∞ be, respectively, the far-field patterns associated with (Ω, η) and (Ω̃, ̃η). If

u∞(x̂,d�) = ũ∞(x̂,d�), x̂ ∈ S1, � = 1, 2, (8.21)

then one has that

CH(Ω) = CH(Ω̃) := Σ, (8.22)

and

η = η̃ on ∂Ω ∩ ∂Ω̃ ∩ ∂Σ. (8.23)

Proof. From Theorem 8.1, we can immediately conclude (8.22). Next we prove (8.23). Let E ⊂ ∂Ω ∩∂Ω̃∩∂Σ
be an open subset such that η �= η̃ on E . By taking a smaller subset of E if necessary, we can assume that 
η (respectively, η̃) is either a fixed constant or ∞ on E . Clearly, one has u = ũ in R2\Σ. Hence, there hold 
that

∂νu + ηu = 0, ∂ν ũ + η̃ũ = 0, u = ũ, ∂νu = ∂ν ũ on E . (8.24)

By direct verification, one can show that

u = ∂νu = 0 on E , (8.25)

which in turn yields by the Holmgren uniqueness result (cf. [50]) that u = 0 in R2\Ω. Hence, we arrive at 
the same contradiction as that in (8.15), which implies (8.23). �
Remark 8.1. Let V(Ω) and V(CH(Ω)) denote, respectively, the sets of vertices of Ω and CH(Ω). It is known 
that V(CH(Ω)) ⊂ V(Ω). Theorem 8.1 states that if the corner angle of the polygon Ω at any vertex in V(Ω)
is irrational, then CH(Ω) can be uniquely determined by two far-field patterns. Indeed, from the proof of 
Theorem 8.1, we see that this requirement can be relaxed to that the corner angle of the polygon Ω at any 
vertex in V(CH(Ω)) is irrational.

We proceed now to consider the unique determination of rational obstacles. Let Ω be a polygon in R2

and xc be a vertex of Ω. In what follows, we define

Ωr(xc) = Br(xc) ∩R2\Ω, r ∈ R+. (8.26)

For a function f ∈ L2
loc(R2\Ω), we define

L(f)(xc) := lim
r→+0

1
|Ωr(xc)|

∫
Ωr(xc)

f(x) dx (8.27)

if the limit exists. It is easy to see that if f(x) is continuous in Ωτ0(xc) for a sufficiently small τ0 ∈ R+, then 
L(f)(xc) = f(xc).
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Theorem 8.3. Let (Ω, η) be an admissible complex rational obstacle of degree p ≥ 3. Let k ∈ R+ be fixed and 
d�, � = 1, 2 be two distinct incident directions from S1. Set u�(x) = u(x; k, d�) to be the total wave fields 
associated with (Ω, η) and eikx·d� , � = 1, 2, respectively. Recall that G denotes the unbounded connected 

component of R2\(Ω ∪ Ω̃). If the following condition is fulfilled,

L (u2 · ∇u1 − u1 · ∇u2) (xc) �= 0, (8.28)

where xc is any vertex of Ω, then one has that(
∂Ω\∂Ω̃

)
∪
(
∂Ω̃\∂Ω

)
cannot have a corner on ∂G.

Proof. We prove the theorem by contradiction. Assume that there exists an admissible complex rational 
obstacle of degree p ≥ 3, (Ω̃, ̃η), such that (8.8) holds but 

(
∂Ω\∂Ω̃

)
∪
(
∂Ω̃\∂Ω

)
has a corner on ∂G. In 

what follows, we adopt the same notation as those introduced in the proof of Theorem 8.1. Note that the 
total wave fields ũ�, � = 1, 2, associated with (Ω̃, ̃η), are also assumed to fulfill the condition (8.28).

By following a similar argument to the proof of Theorem 8.1, one can show that there exist two line 
segments Γ±

h in R2\Ω such that ∂νu + η̃u = 0 on Γ±
h , and Γ+

h and Γ−
h intersect at a point xc which is a 

vertex of Ω̃. Using the fact that u = ũ near xc and the condition (8.28) on (Ω̃, ̃η), we actually have

u(xc;d2) · ∇u(xc;d1) − u(xc;d1) · ∇u(xc;d2) �= 0. (8.29)

Clearly, (8.29) implies that α1 := u(xc; d2) and α2 := −u(xc; d1) cannot be identically zero. Set v to be the 
one introduced in (8.17), then it clearly satisfies

v(xc) = 0 and ∇v(xc) �= 0. (8.30)

Since Ω̃ is rational of degree p ≥ 3, we know that Γ+
h and Γ−

h intersect either at an irrational angle or 
at a rational angle of degree p ≥ 3. In either case, by our results in Sections 2, 3 and 4, we can see that v
is vanishing at least to the second order at xc. Hence, there holds ∇v(xc) = 0, which is a contradiction to 
(8.30). �

Similar to Corollary 8.2, as a direct consequence of Theorem 8.3, under the condition (8.28), we next 
show that the convex hull of a complex rational obstacle of degree p ≥ 3 can be uniquely determined by at 
most two far-field measurements. Indeed we have

Corollary 8.4. Let (Ω, η) be an admissible complex rational obstacle of degree p ≥ 3. Let k ∈ R+ be fixed 
and d�, � = 1, 2 be two distinct incident directions from S1. Set u�(x) = u(x; k, d�) to be the total wave 
fields associated with (Ω, η) and eikx·d� , � = 1, 2, respectively. If (8.28) is fulfilled, then CH(Ω) is uniquely 
determined by u∞(x̂, d�), � = 1, 2. Similar to Corollary 8.2, the boundary impedance parameter η can be 
partially identified as well.

Remark 8.2. As mentioned earlier that a general rational obstacle is at least of order 2. By Remark 3.1, 
we can easily extend the proof of Theorem 8.3 to cover the general case that p = 2. However, as discussed 
in Remark 3.1, we need to exclude the case that η ≡ ∞ and η is a finite number (possibly being zero), 
respectively on the two intersecting line segments Γ± (as appeared in the proof of Theorem 8.3).
h



156 X. Cao et al. / J. Math. Pures Appl. 143 (2020) 116–161
Remark 8.3. Similar to Remark 8.1, the condition (8.28) can be relaxed to hold only at any vertex in 
V(CH(Ω)) in Theorem 8.3 and Corollary 8.4. Furthermore, since in the proof of Theorem 8.3, we only make 
use of the vanishing up to the second order. By our results in Section 5, we know that Theorem 8.3 actually 
holds for a more general case where the surface impedance η can be a C1 function.

It would be interesting to investigate the sufficient conditions for (8.28) to hold. From a practical point of 
view, the condition (8.28) depends on the a-priori knowledge of the underlying obstacle as well as the choice 
of the incident waves. As an illustrating scenario, suppose that the obstacle Ω is sufficiently small compared 
with the wavelength, namely k ·diam(Ω) � 1. Then from a physical viewpoint, the scattered wave field due 
to the obstacle is of a much smaller magnitude than that of the incident field, and the incident plane wave 
dominates in the total wave field u = ui + us. In such a case, one can verify that the condition (8.28) is 
fulfilled in the setup described in Theorem 8.3 (thanks to the fact that the condition is actually satisfied by 
two incident plane waves). However, we shall not explore more about this point. Finally, we also would like 
to point out that our arguments for the uniqueness results in Theorems 8.1 and 8.3 are “localized” around 
the corner point xc. Therefore one may consider other different types of wave incidences from the incident 
plane wave (8.1), e.g., the point source of the form,

ui(x; z0) = H1
0 (k|x − z0|), x, z0 ∈ R2,

where H1
0 is the zeroth-order Hankel function of the first kind, and z0 signifies the location of the source 

ui(x, z0). ui(x; z0) blows up at the point z0. By direct verifications, we can show that both the uniqueness 
results in Theorem 8.1 and 8.3 still hold for this point source incidence.

8.2. Unique recovery for the inverse diffraction grating problem

In this subsection, we consider the unique recovery for the inverse diffraction grating problem. First we 
give a brief review of the basic mathematical model for this inverse problem. Let the profile of a diffraction 
grating be described by the curve

Λf = {(x1, x2) ∈ R2; x2 = f(x1)}, (8.31)

where f is a periodic Lipschitz function with period 2π. Let

Ωf = {x ∈ R2;x2 > f(x1), x1 ∈ R}

be filled with a material whose index of refraction (or wave number) k is a positive constant. Suppose further 
that the incident wave given by

ui(x; k,d) = eikd·x, d = (sin θ,− cos θ)�, θ ∈
(
−π

2 ,
π

2

)
,

propagates to Λf from the top. Then the total wave satisfies the following Helmholtz system:

Δu + k2u = 0 in Ωf ; B(u)
∣∣
Λf

= 0 on Λf , (8.32)

with the generalized impedance boundary condition

B(u) = ∂νu + ηu = 0 on ∂Ω, (8.33)

where η can be ∞ or 0, corresponding to a sound-soft or sound-hard grating, respectively.
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To achieve the uniqueness of (8.32), the total wave field u should be α-quasiperiodic in the x1-direction, 
with α = k sin θ, which means that

u(x1 + 2π, x2) = e2iαπ · u(x1, x2),

and the scattered field us satisfies the Rayleigh expansion (cf. [55,56]):

us(x; k,d) =
+∞∑

n=−∞
une

iξn(θ)·x for x2 > max
x1∈[0,2π]

f(x1), (8.34)

where un ∈ C(n ∈ Z) are called the Rayleigh coefficient of us, and

ξn(θ) = (αn(θ), βn(θ))� , αn(θ) = n + k sin θ,

βn(θ) =

⎧⎪⎨⎪⎩
√
k2 − α2

n(θ), if |αn(θ)| ≤ k

i
√
α2
n(θ) − k2, if |αn(θ)| > k

.
(8.35)

The existence and uniqueness of the α-quasiperiodic solution to (8.32) for the sound-soft or impedance 
boundary condition with η ∈ C being a constant satisfying �(η) > 0 can be found in [2,14,37,38]. It should 
be pointed out that the uniqueness of the direct scattering problem associated with the sound-hard condition 
is not always true (see [35]). In our subsequent study, we assume the well-posedness of the forward scattering 
problem and focus on the study of the inverse grating problem.

Introduce a measurement boundary as

Γb := {(x1, b) ∈ R2; 0 ≤ x1 ≤ 2π, b > max
x1∈[0,2π]

|f(x1)|}.

The inverse diffraction grating problem is to determine (Λf , η) from the knowledge of u(x|Γb
; k, d), and can 

be formulated as the operator equation:

F(Λf , η) = u(x; k,d), x ∈ Γb,

where F is defined by the forward diffraction scattering system, and is nonlinear.
The unique recovery result on the inverse diffraction grating problem with the sound-soft boundary 

condition by a finite number of incident plane waves can be found in [38,39]. But the unique identifiability 
still open for the impedance or generalized impedance cases, and will be the focus of the remaining task 
in this work. To do so, we propose the following admissible polygonal gratings associated with the inverse 
diffraction grating problem.

Definition 8.3. Let (Λf , η) be a periodic grating as described in (8.31). Suppose there is a partition, [0, 2π] =
∪�
i=1[ai, ai+1] with ai < ai+1, a1 = 0 and a�+1 = 2π. If on each piece [ai, ai+1], 1 ≤ i ≤ �, f is a linear 

polynomial and η is either a constant (possibly zero) or ∞, then (Λf , η) is said to be an admissible polygonal 
grating.

Definition 8.4. Let (Λf , η) be an admissible polygonal grating. Let Γ+ and Γ− be two adjacent pieces of Λf . 
The intersecting point of Γ+ and Γ− is called a corner point of Λf , and ∠(Γ+, Γ−) is called a corner angle. 
If all the corner angles of Λf are irrational, then it is said to be an irrational polygonal grating. If a corner 
angle of Λf is rational, it is called a rational polygonal grating. The smallest degree of the rational corner 
angles of Λf is referred to as the rational degree of Λf .
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Clearly for a rational polygonal grating Λf in Definition 8.4, the rational degree of Λf is at least 2. Next, 
we establish our uniqueness result in determining an admissible irrational polygonal grating by at most two 
incident waves. We first present a useful lemma, whose proof follows from a completely similar argument to 
that of [16, Theorem 5.1].

Lemma 8.1. Let ξ� ∈ R2, � = 1, . . . , n, be n vectors which are distinct from each other, D be an open set in 
R2. Then all the functions in the following set are linearly independent:

{eiξ�·x; x ∈ D, � = 1, 2, . . . , n}

Theorem 8.5. Let (Λf , η) and (Λf̃ , ̃η) be two admissible irrational polygonal gratings, and G be the unbounded 
connected component of Ωf ∩ Ωf̃ . Let k ∈ R+ be fixed and d�, � = 1, 2 be two distinct incident directions 
from S1, with

d� = (sin θ�,− cos θ�)�, θ� ∈
(
−π

2 ,
π

2

)
.

Let u(x; k, d�) and ũ(x; k, d�) denote the total fields associated with (Λf , η) and (Λf̃ , ̃η) respectively and let 
Γb be a measurement boundary given by

Γb :=
{

(x1, b) ∈ R2; 0 ≤ x1 ≤ 2π, b > max
{

max
x1∈[0,2π]

|f(x1)|, max
x1∈[0,2π]

|f̃(x1)|
}}

,

If it holds that

u(x; k,d�) = ũ(x; k,d�), � = 1, 2, x = (x1, b) ∈ Γb, (8.36)

then it cannot be true that there exists a corner point of Λf lying on ∂G\∂Λf̃ , or a corner point of Λf̃ lying 
on ∂G\∂Λf .

Proof. The proof follows from a similar argument to that for Theorem 8.1, and we only sketch the necessary 
modifications in this new setup. By contradiction and without loss of generality, we assume that there exists 
a corner point xc of Λf̃ which lies on ∂G\Λf .

First, by the well-posedness of the diffraction grating problem (8.32)-(8.34) as well as the unique 
continuation, we show that u(x; k, d�) = ũ(x; k, d�) for x ∈ G. In fact, by introducing w(x; k, d�) :=
u(x; k, d�) − ũ(x; k, d�), � = 1, 2, we see from (8.36) that w fulfils

Δw + k2w = 0 in U; w = 0 on Γb and w satisfies the Rayleigh expansion (8.34),

where U := G ∩ {x ∈ R2; x2 > b, x1 ∈ R} with ∂U = Γb. Hence, by the uniqueness of the solution to 
the diffraction grating problem, we readily know w = 0 in U. On the other hand, since u(x; k, d�) and 
ũ(x; k, d�) are analytic in G, we know w(x; k, d�) = 0 in G by means of the analytic continuation, that is, 
u(x; k, d�) = ũ(x; k, d�) for x ∈ G.

Next, using a similar argument to the proof of Theorem 8.1, we can prove that

u(x; k,d�) = 0 or v(x) = 0 for x2 > max
x1∈[0,2π]

f(x1),

where v is similarly defined to (8.17) and (8.16). Next, when x2 > maxx1∈[0,2π] |f(x1)|, u(x; k, d�) has the 
Rayleigh expansion (cf. [55,56]):
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u(x; k,d�) = eikd�·x +
+∞∑

n=−∞
une

iξn(θ�)·x for x2 > max
x1∈[0,2π]

f(x1), (8.37)

where ξn(θ�), αn(θ�), βn(θ�) are defined in (8.35). Using the definition of α0(θ�) and β0(θ�) in (8.35), we 
can easily show that

kd� = (α0(θ�),−β0(θ�))�. (8.38)

We proceed to consider two separate cases.

Case 1. Suppose that either u(xc; k, d1) or u(xc; k, d2) is zero. Without loss of generality, we assume the 
former case. Then

u(x; k,d1) = 0 for x2 > max
x1∈[0,2π]

f(x1).

Clearly any two vectors of {ξn(θ1) | n ∈ Z} are distinct from each other. Moreover, in view of (8.38), 
kd1 /∈ {ξn(θ1) | n ∈ Z} since |θ1| < π/2. In view of (8.37), from Lemma 8.1 we can arrive at a contradiction.

Case 2. Suppose that both u(xc; k, d1) �= 0 and u(xc; k, d2) �= 0. Then it holds that

α1u(x; k,d1) + α2u(x; k,d2) = 0 for x2 > max
x1∈[0,2π]

f(x1), (8.39)

where α� �= 0, � = 1, 2, are defined in (8.16). Substituting (8.37) into (8.39), we derive that

2∑
�=1

α�e
ikd�·x +

+∞∑
n=−∞

2∑
�=1

un(θ�)α�e
iξn(θ�)·x = 0 for x2 > max

x1∈[0,2π]
f(x1), (8.40)

where un(θ�) ∈ C(n ∈ Z) are the Rayleigh coefficients of us(x; k, d�) associated with the incident wave 
eikd�·x. Clearly, any two vectors of the set

{kd1}
⋃

{kd2}
⋃

{ξn(θ1) | n ∈ Z}
⋃

{ξn(θ2) | n ∈ Z}

are distinct since |θ�| < π/2 and (8.38). Using Lemma 8.1 and (8.40), we can see α� = 0 for � = 1, 2, which 
is a contradiction to α� �= 0, � = 1, 2. �

For the polygonal gratings, one can introduce a certain notion of “convexity” in the sense that if two such 
gratings are different, then their difference must contain a corner point lying outside their union. Clearly, 
by Theorem 8.5, if a polygonal grating is “convex”, then both the grating and its surface impedance can be 
uniquely determined by at most two measurements.

As the result in Theorem 8.3 for the inverse obstacle problem, we may consider the unique determination 
of an admissible rational polygonal grating by two measurements if a similar condition to (8.28) is introduced 
in this new setup. In such a case, one can establish the local unique recovery result, similar to Theorem 8.5.

Acknowledgement

The authors would like to thank three anonymous referees for many constructive and insightful comments 
and suggestions, which have led to a significant improvement on the results and the presentation of the 
paper. The work of H. Diao was supported in part by the Fundamental Research Funds for the Central 
Universities under the grant 2412017FZ007. The work of H. Liu was supported by the startup fund from City 



160 X. Cao et al. / J. Math. Pures Appl. 143 (2020) 116–161
University of Hong Kong and the Hong Kong RGC General Research Fund (projects 12302919, 12301218 
and 12301420). The work of J. Zou was supported by the Hong Kong RGC General Research Fund (projects 
14304517 and 14306718).

References

[1] M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, 
vol. 55, Courier Corporation, 1964.

[2] H.-D. Alber, A quasi-periodic boundary value problem for the Laplacian and the continuation of its resolvent, Proc. R. 
Soc. Edinb., Sect. A 82 (3–4) (1978/79) 251–272.

[3] G. Alessandrini, Nodal lines of eigenfunctions of the fixed membrane problem in general convex domains, Comment. Math. 
Helv. 69 (1994) 142–154.

[4] G. Alessandrini, L. Rondi, Determining a sound-soft polyhedral scatterer by a single far-field measurement, Proc. Am. 
Math. Soc. 35 (2005) 1685–1691.

[5] M.S. Ashbaugh, R.D. Benguria, Isoperimetric inequalities for eigenvalues of the Laplacian, Proc. Symp. Pure Math. 76 
(2007) 105–139.

[6] R. Banuelos, K. Burdzy, On the “hot spots” conjecture of J. Rauch, J. Funct. Anal. 164 (1999) 1–33.
[7] R.F. Bass, K. Burdzy, Fiber Brownian motion and the “hot spots” problem, Duke Math. J. 105 (2000) 25–58.
[8] E. Blåsten, Nonradiating sources and transmission eigenfunctions vanish at corners and edges, SIAM J. Math. Anal. 50 (6) 

(2018) 6255–6270.
[9] J. Brüning, Uber Knoten von Eigenfunktionen des Laplace-Beltrami-Operators, Math. Z. 158 (1978) 15–21.

[10] K. Burdzy, The hot spots problem in planar domains with one hole, Duke Math. J. 129 (2005) 481–502.
[11] K. Burdzy, R. Holyst, D. Ingerman, P. March, Configurational transition in a Fleming-Viot-type model and probabilistic 

interpretation of Laplacian eigenfunctions, J. Phys. A 29 (1996) 2633–2642.
[12] K. Burdzy, R. Holyst, P. March, A Fleming-Viot particle representation of the Dirichlet Laplacian, Commun. Math. Phys. 

214 (2000) 679–703.
[13] K. Burdzy, W. Werner, A counterexample to the “hot spots” conjecture, Ann. Math. 149 (1999) 309–317.
[14] M. Cadilhac, Some mathematical aspects of the grating theory, in: Electromagnetic Theory of Gratings, Springer, 1980, 

pp. 53–62.
[15] J. Cheng, M. Yamamoto, Uniqueness in an inverse scattering problem within non-trapping polygonal obstacles with at 

most two incoming waves, Inverse Probl. 19 (2003) 1361–1384.
[16] D. Colton, R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 3rd edition, Springer-Verlag, Berlin, 2013.
[17] D. Colton, R. Kress, Looking back on inverse scattering theory, SIAM Rev. 60 (40) (2018) 779–807.
[18] R. Courant, D. Hilbert, Methods of Mathematical Physics, vol. I, Interscience Publishers, New York, 1953.
[19] Peter Gustav Lejeune Dirichlet, Démonstration d’un théorème d’Abel, J. Math. Pures Appl. (2) 7 (1862) 253–255.
[20] R.E. Edwards, Fourier Series: A Modern Introduction, 2nd edition, Springer, 1979.
[21] G. Faber, Beweis, dass unter allen homogenen Membranen von gleicher Flache und gleicher Spannung die kreisformige 

den tiefste, Grundton gibt, Sitzungsber. Bayer. Akad. Wiss. Muchen, Math. Phys. Kl. (1923) 169–172.
[22] S. Fournais, The nodal surface of the second eigenfunction of the Laplacian in RD can be closed, J. Differ. Equ. 173 (2001) 

145–159.
[23] P. Freitas, Closed nodal lines and interior hot spots of the second eigenfunction of the Laplacian on surfaces, Indiana Univ. 

Math. J. 51 (2002) 305–316.
[24] P. Freitas, D. Krejčiřík, Location of the nodal set for thin curved tubes, Indiana Univ. Math. J. 57 (2008) 343–375.
[25] P. Freitas, D. Krejčiřík, Unbounded planar domains whose second nodal line does not touch the boundary, Math. Res. 

Lett. 14 (2007) 107–111.
[26] D.S. Grebenkov, B.T. Nguyen, Geometrical structure of Laplacian eigenfunctions, SIAM Rev. 55 (4) (2013) 601–667.
[27] D. Grieser, D. Jerison, Asymptotics of the first nodal line of a convex domain, Invent. Math. 125 (1996) 197–219.
[28] D. Grieser, D. Jerison, The size of the first eigenfunction of a convex planar domain, J. Am. Math. Soc. 11 (1998) 41–72.
[29] W.K. Hayman, Some bounds for principal frequency, Appl. Anal. 7 (1978) 247–254.
[30] A. Hassell, L. Hillairet, J. Marzuola, Eigenfunction concentration for polygonal billiards, Commun. Partial Differ. Equ. 

34 (4–6) (2009) 475–485.
[31] M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, N. Nadirashvili, The nodal line of the second eigenfunction of the Laplacian 

in R2 can be closed, Duke Math. J. 90 (1997) 631–640.
[32] D. Jakobson, N. Nadirashvili, J. Toth, Geometric properties of eigenfunctions, Russ. Math. Surv. 56 (2001) 1085–1105.
[33] D. Jerison, The first nodal set of a convex domain, in: Essays on Fourier Analysis in Honor of Elias M. Stein, Princeton, 

NJ, 1991, in: Princeton Math. Ser., vol. 42, Princeton University Press, Princeton, NJ, 1995, pp. 225–249.
[34] D. Jerison, N. Nadirashvili, The “hot spots” conjecture for domains with two axes of symmetry, J. Am. Math. Soc. 13 

(2000) 741–772.
[35] I.V. Kamotski, S.A. Nazarov, The augmented scattering matrix and exponentially decaying solutions of an elliptic problem 

in a cylindrical domain, J. Math. Sci. 111 (2002) 3657–3666.
[36] J.B. Kennedy, The nodal line of the second eigenfunction of the Robin Laplacian in R2 can be closed, J. Differ. Equ. 

251 (12) (2011) 3606–3624.
[37] A. Kirsch, Diffraction by periodic structures, in: Inverse Problems in Mathematical Physics, in: Lecture Notes in Phys., 

vol. 422, Springer, Berlin, 1993, pp. 87–102.
[38] A. Kirsch, Uniqueness theorems in inverse scattering theory for periodic structures, Inverse Probl. 10 (1) (1994) 145.

http://refhub.elsevier.com/S0021-7824(20)30170-7/bib41F5171DA6E04AFBD6596EA2DA68BB16s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bib41F5171DA6E04AFBD6596EA2DA68BB16s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bibB18B314C46AB4BE0B3CAD71A4E290263s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bibB18B314C46AB4BE0B3CAD71A4E290263s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bibEBCBD5F97D0B9C9BE385AD3442D46E81s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bibEBCBD5F97D0B9C9BE385AD3442D46E81s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bib5B61A1B298A0D06EFA6933A97E68D763s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bib5B61A1B298A0D06EFA6933A97E68D763s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bib4B43AA425313F8FD26D4D7F217571D4Es1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bib4B43AA425313F8FD26D4D7F217571D4Es1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bib70AAA16FD4272CAF21977D9C5B87F505s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bib9ECA04F99C3D4532F3A8A11F9D264D12s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bib5A8494329E99766EEFC1B3F0AF865701s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bib5A8494329E99766EEFC1B3F0AF865701s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bib6B3A49EB084D34FFFB5483E9A743261Fs1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bibB7C1321686B6D05FE5A2DF3C30937B37s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bib92ED31A83D8DB90AACEE34EC9DEE31EFs1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bib92ED31A83D8DB90AACEE34EC9DEE31EFs1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bibB5B362A28BB653607594DEA68E4B2973s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bibB5B362A28BB653607594DEA68E4B2973s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bibDAFAFB2A9E06F051B1D9B57B6FFAA44Fs1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bib64D61AEF63356F52D7A67BC043F0A838s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bib64D61AEF63356F52D7A67BC043F0A838s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bib9025A1AE8C64158622B7428028F0D2BDs1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bib9025A1AE8C64158622B7428028F0D2BDs1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bib534AC75C2E8AC3E3FE7BC32BB8C6E34As1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bib3C27DD675D9EA1AB0DE44DF0C0F8C38Cs1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bib1EE0BF89C5D1032317D13A2E022793C8s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bibBAC152B762896EDFF34ED668AE1A546Fs1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bibA53F3929621DBA1306F8A61588F52F55s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bib77BFCC2CFE62499FE59D4BD3F26766D1s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bib77BFCC2CFE62499FE59D4BD3F26766D1s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bib0504086FA0FB7972E670075FDE59E46Ds1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bib0504086FA0FB7972E670075FDE59E46Ds1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bib3B0FB63EBDE5C2A9DCC3CCFD8C7DD3D0s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bib3B0FB63EBDE5C2A9DCC3CCFD8C7DD3D0s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bib403B395AF0923175A014EDD871F4E7F6s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bib9E1317B68934083C1927E2F5BECAA8FEs1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bib9E1317B68934083C1927E2F5BECAA8FEs1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bib56480A4C00475CEE68CAA7E74D948752s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bibC34EDF7EB34A6C048ED8E955FDA7DF12s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bib3B010CA58CC26EBA8C8CC413D15FB1B0s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bib1E7552E6331BAC51BF2A2F2798DD0EB7s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bibEB91528394CC0A22E4FAF2A8475280D6s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bibEB91528394CC0A22E4FAF2A8475280D6s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bib45C745C3D537DFC199932369D48801EEs1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bib45C745C3D537DFC199932369D48801EEs1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bib014BF159AC45E39BD3A73D068536A335s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bibB00C9094A1477452E351627E94F7EA86s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bibB00C9094A1477452E351627E94F7EA86s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bibB10095B582EE729F312188BA5679A0F3s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bibB10095B582EE729F312188BA5679A0F3s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bibB8D4EB58337A72B9294FE8C109E96D7Cs1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bibB8D4EB58337A72B9294FE8C109E96D7Cs1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bib6C64383BFD8D7B0ED84B7D78DADB4B98s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bib6C64383BFD8D7B0ED84B7D78DADB4B98s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bibE3E87DCA1896CAFA4A0231DE0BF62E26s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bibE3E87DCA1896CAFA4A0231DE0BF62E26s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bibFE32572263E8950542EB61D9B466E44Cs1


X. Cao et al. / J. Math. Pures Appl. 143 (2020) 116–161 161
[39] A. Kirsch, F. Hettlich, Schiffer’s theorem in inverse scattering theory for periodic structures, Inverse Probl. 13 (1997) 
351–361.

[40] E. Krahn, Uber eine von Rayleigh formulierte Minimaleigenschaft des Kreises, Math. Ann. 94 (1925) 97–100.
[41] S.G. Krantz, H.R. Parks, A Primer of Real Analytic Functions, 2nd edition, Birkhäuser Boston, Inc., Boston, MA, 2002.
[42] D. Krejčiřík, M. Tušek, Nodal sets of thin curved layers, J. Differ. Equ. 258 (2015) 281–301.
[43] D. Krejčiřík, M. Tušek, Location of hot spots in thin curved strips, J. Differ. Equ. 266 (2019) 2953–2977.
[44] J.R. Kuttler, V.G. Sigillito, Eigenvalues of the Laplacian in two dimensions, SIAM Rev. 26 (1984) 163–193.
[45] P. Lax, R. Phillips, Scattering Theory, Academic Press, New York and London, 1967.
[46] C.S. Lin, On the second eigenfunction of the Laplacian in R2, Commun. Math. Phys. 111 (1987) 161–166.
[47] H. Liu, Schiffer’s conjecture, interior transmission eigenvalues and invisibility cloaking: singular problem vs. nonsingular 

problem, in: Contemporary Mathematics, vol. 598, American Math. Soc., 2013.
[48] H. Liu, M. Petrini, L. Rondi, J. Xiao, Stable determination of sound-hard polyhedral scatterers by a minimal number of 

scattering measurements, J. Differ. Equ. 262 (3) (2017) 1631–1670.
[49] H. Liu, L. Rondi, J. Xiao, Mosco convergence for H (curl) spaces, higher integrability for Maxwell’s equations, and stability 

in direct and inverse EM scattering problems, J. Eur. Math. Soc. (JEMS) 21 (2019) 2945–2993.
[50] H. Liu, J. Zou, Uniqueness in an inverse acoustic obstacle scattering problem for both sound-hard and sound-soft polyhedral 

scatterers, Inverse Probl. 22 (2006) 515–524.
[51] H. Liu, J. Zou, On unique determination of partially coated polyhedral scatterers with far field measurements, Inverse 

Probl. 23 (2007) 297–308.
[52] E. Makai, A lower estimation of simply connected membranes, Acta Math. Acad. Sci. Hung. 16 (1965) 319–327.
[53] W. Mclean, Strongly Elliptic Systems and Boundary Integral Equation, Cambridge University Press, Cambridge, 2000.
[54] A.D. Melas, On the nodal line of the second eigenfunction of the Laplacian in R2, J. Differ. Geom. 35 (1992) 255–263.
[55] R.F. Millar, On the Rayleigh assumption in scattering by a periodic surface, Proc. Camb. Philos. Soc. 65 (1969) 773–791.
[56] R.F. Millar, On the Rayleigh assumption in scattering by a periodic surface: part II, Proc. Camb. Philos. Soc. 69 (1971) 

217–225.
[57] N. Nadirashvili, On the length of the nodal curve of an eigenfunction of the Laplace operator, Russ. Math. Surv. 43 (1988) 

227–228.
[58] N.S. Nadirashvili, Metric properties of eigenfunctions of the Laplace operator on manifolds, Ann. Inst. Fourier 41 (1991) 

259–265.
[59] L.E. Payne, On two conjectures in the fixed membrane eigenvalue problem, Z. Angew. Math. Phys. 24 (1973) 721–729.
[60] J.W.S. Rayleigh, The Theory of Sound, vol. 1 and 2, 2nd ed., Dover Publications, New York, 1945.
[61] B. Sapoval, T. Gobron, A. Margolina, Vibrations of fractal drums, Phys. Rev. Lett. 67 (1991) 2974–2977.
[62] B. Sapoval, T. Gobron, Vibrations of strongly irregular or fractal resonators, Phys. Rev. E 47 (1993) 3013–3024.
[63] R. Schoen, S.-T. Yau, Lectures on Differential Geometry, Conference Proceedings and Lecture Notes in Geometry and 

Topology, vol. 1, International Press, Boston, 1994.
[64] A. Shnirelman, Ergodic properties of eigenfunctions, Usp. Mat. Nauk 29 (1974) 181–182.
[65] E.C. Titchmarsh, E.C.T. Titchmarsh, D.R. Heath-Brown, The Theory of the Riemann Zeta-Function, Oxford University 

Press, Oxford, 1986.
[66] H. Weyl, Über die asymptotische verteilung der Eigenwerte, Nachr. Ges. Wiss. Gött., Math.-Phys. Kl. (1911) 110–117.
[67] H. Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen, Math. Ann. 71 

(1912) 441–479.
[68] S.T. Yau, Problem Section, Seminar on Differential Geometry, Ann. of Math. Studies, vol. 102, Princeton Univ. Press, 

Princeton NJ, 1982, pp. 669–706.
[69] S. Zelditch, Eigenfunctions of the Laplacian of Riemannian Manifolds, book in progress, 2017.

http://refhub.elsevier.com/S0021-7824(20)30170-7/bibBE2BB38B3A7586982DC5291322084013s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bibBE2BB38B3A7586982DC5291322084013s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bib90DBAFCBEFD9AEC7746090C1EC24C3FDs1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bibFB4CD2F825010B3B62D81A2F85E522FCs1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bib575E2BAA4DB015668F0A8967E80ACF04s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bib321BE3B9F9D271F9D126DD561C789E71s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bib23AD3F9FAD4AA62CC060BD4C07319FBDs1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bib233724C5ADF28DA47784390134DB3C66s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bibC93169F1EB9BE7246F990690B5E66B2Ds1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bib9D4D6204EE943564637F06093236B181s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bib9D4D6204EE943564637F06093236B181s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bibA019DABEDB76FC8CE5407FC1B5D06A56s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bibA019DABEDB76FC8CE5407FC1B5D06A56s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bibBB1683974F29440934AB9630671A2148s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bibBB1683974F29440934AB9630671A2148s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bib1400AF827952C3E2CB3A6DF42CB77F6Es1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bib1400AF827952C3E2CB3A6DF42CB77F6Es1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bibB91F9365FEF5F4D3CE0C8ED95EFF0464s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bibB91F9365FEF5F4D3CE0C8ED95EFF0464s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bibE13428B25563A38632B93D96A6BF72B8s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bib04A7EED647C8F930795089DF237F4495s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bib86A8294264A9E3F11AAD8FB439150957s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bibB24D9D36C74155D7C3B363AA93354749s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bib050DD2547E4EA326A841E5C6A355332Bs1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bib050DD2547E4EA326A841E5C6A355332Bs1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bib8326F204B1824237186436E061C5C297s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bib8326F204B1824237186436E061C5C297s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bib1A1F8EF2489102654FF443C007660DB9s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bib1A1F8EF2489102654FF443C007660DB9s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bib5D12FBA6CB60A8C232AD5F7A025C0C47s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bib333426D46E17DCD5B9439287C9474659s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bib456992BE51CB6DA29C7720811935D834s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bibAB8A5F97FEE2A8B071381AE307E26CCCs1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bibB795524F3F6F46ADE4DE66284314554Fs1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bibB795524F3F6F46ADE4DE66284314554Fs1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bib22DCB59E6AFC277E9586BE3148058B63s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bibC7556073B918F808D0407FB4A1E5B6DAs1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bibC7556073B918F808D0407FB4A1E5B6DAs1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bib8E1FE75E70F2A5A84A67619B0365DAFAs1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bibAA9052274F9CC52DD3A3E1D6CB92493Cs1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bibAA9052274F9CC52DD3A3E1D6CB92493Cs1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bibE25D84524E150FBF30BB661DE9768E82s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bibE25D84524E150FBF30BB661DE9768E82s1
http://refhub.elsevier.com/S0021-7824(20)30170-7/bibA79FA3E053FB26D91965353CB599F42Es1

	On nodal and generalized singular structures of Laplacian eigenfunctions and applications to inverse scattering problems
	1 Introduction
	1.1 Background
	1.2 Motivation and discussion of our main findings

	2 Irrational intersection and infinite vanishing order: two intersecting nodal and singular lines
	3 Rational intersection and finite vanishing order
	4 Irrational intersection and infinite vanishing order: general cases
	5 Proofs of the theorems in Section 3 up the third order
	5.1 Proof of Theorem 3.2
	5.2 Proof of Theorem 3.7

	6 Proofs of the theorems in Section 3 for general cases
	6.1 Proof of Theorem 3.1
	6.2 Proof of Theorem 3.2
	6.3 Proof of Theorem 3.3
	6.4 Proof of Theorem 3.5

	7 Discussions about the condition u(0)=0
	8 Unique identifiability for inverse scattering problems
	8.1 Unique recovery for the inverse obstacle problem
	8.2 Unique recovery for the inverse diffraction grating problem

	Acknowledgement
	References


