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In this paper we consider the inverse scattering problem for high-contrast targets, 
and analyze mathematically the experimentally observed phenomenon about super-
resolution in imaging the shapes of these targets. In particular, super-resolution at 
specific high contrast values is justified based on the novel concept of scattering 
coefficients and several important implications (given by two main theorems, 
Theorems 4.6 and 4.9). This is the first time that a mathematical theory of super-
resolution is established in the context of imaging high-contrast inclusions. We shall 
also illustrate our main findings with a variety of numerical examples. These findings 
may help develop resonant structures for resolution enhancement.
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r é s u m é

Dans cet article, nous considérons le problème de diffusion d’ondes dans des milieux 
à haut contrast. Nous analysons le phénomène de super-resolution et nous illustrons 
numériquement nos résultats. Notre analyse est fondée sur le concept de coefficients 
de diffusion.

© 2017 Elsevier Masson SAS. All rights reserved.

1. Introduction

The aim of this work is to mathematically investigate the mechanism underlying the experimentally-
observed phenomenon of super-resolution in reconstructing targets of high contrast from far-field measure-
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ments. Our main focus is to explore the possibility of breaking the diffraction barrier from the far-field 
measurements using the novel concept of scattering coefficients [1–3]. This diffraction barrier, referred to 
as the Abbe–Rayleigh or the resolution limit, places a fundamental limit on the minimal distance at which 
we can resolve the shape of a target [4,5]. It applies only to waves that have propagated for a distance 
substantially larger than its wavelength [6,7].

Since the mid-20th century, several approaches have aimed at pushing this diffraction limits. Resolution 
enhancement in imaging the target shape from far-field measurements can be achieved using sub-wavelength-
scaled resonant media [8–13], single molecule imaging [14] and using plasmonic particles [15]. Another 
innovative method to overcome the diffraction barrier has been proposed after some experimental ob-
servations in [16]. In their work, resolution enhancement in shape reconstruction of the inclusion was 
experimentally shown when the contrast value is very high. In the reconstructed images from far-field 
measurements, the observed resolution is smaller than half of the operating wavelength. This encouraging 
observation suggests a possibility of breaking the resolution limit with high permittivity of the target. It is 
therefore the purpose of this work to prove that the higher the permittivity of the target is, the higher the 
resolving power is in imaging its shape.

For the transmission problem of a strictly convex domain, it was proved in [17] that there exists an 
infinite sequence of complex resonant frequencies located at the upper half plane. These resonances converge 
to the real axis exponentially fast, and the real part of these resonances correspond to the quasi-resonant 
modes introduced as in [17]. Quasi-resonance occurs when the wavelength inside the inclusion is larger 
than the wavelength in the background media and is such that it reaches the real part of one of these true 
resonant frequencies. In this paper, we have shown, via the analysis of the shape derivative of the scattering 
coefficients, that these resonant state of the inclusion actually has a signature in the far-field and can be 
used for super-resolved imaging from far-field data. To be more exact, we have proved that, in the shape 
derivative of the scattering coefficients for a circular domain, there are simple poles at the complex resonant 
states, and therefore peaks corresponding to the real parts of these resonances. Henceforth, as the material 
contrast increases to infinity and is such that it is equal to the real part of a resonance, the sensitivity in 
the scattering coefficients becomes large and super-resolution for imaging becomes possible.

Throughout this paper, we consider the following scattering problem in R2,(
Δ + k2

(
1 + q(x)

))
u = 0, (1.1)

where u is the total field, q(x) > 0 is the contrast of the medium and k is the wave number. The operating 
wavelength is then 2π/k.

We consider an inclusion D contained inside a homogeneous background medium, and assume that D is 
an open bounded connected domain with a C1,α-boundary for some α > 0. Suppose that the function q is 
of the form

q(x) = ε∗χD(x), (1.2)

where χD denotes the characteristic function of D and ε∗ > 0 is a constant. We shall always complement 
the system (1.1) by the physical outgoing Sommerfeld radiation condition:

∣∣ ∂

∂|x|u
s − ikus

∣∣ = O(|x|− 3
2 ) as |x| → ∞ , (1.3)

where us := u −ui is the scattered field and ui is the incident field. The solution u to the system (1.1)–(1.3)
represents the total field due to the scattering from the inclusion D corresponding to the incident field ui.

Following the work of [18,2,3], the scattering coefficients provide a powerful and efficient tool for shape 
classification of the target D. Therefore, we aim at exhibiting the mechanism underlying the super-resolution 
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phenomenon experimentally-observed in [16] in terms of the scattering coefficients corresponding to high-
contrast inclusions.

In [2], it is proved that the scattering coefficient of order (n, m) decays very quickly as the orders |n|, 
|m| increase. Nonetheless, it is shown in [3] that the scattering coefficients can be stably reconstructed from 
the far-field measurements by a least-squares method. The stability of the reconstruction in the presence 
of a measurement noise is analyzed and the resolving power of the reconstruction in terms of the signal-
to-noise-ratio is estimated. It is the purpose of this paper to use the scattering coefficients to estimate the 
resolution limit for imaging high contrast targets from far-field measurements as function of the material 
contrast, and to prove that the higher the permittivity is inside the target, the better the resolution is for 
imaging its shape from far-field measurements.

In order to achieve this goal, in this work, we first give a decay estimate of the scattering coefficients 
in arbitrary shaped domains, and then in the particular case of a circular domain. Our estimate shows 
different behaviors of the scattering coefficients of different orders as the material contrast increases. Then 
we provide a sensitivity analysis of the scattering coefficients, which clearly shows that, in the linearized 
case, the scattering coefficient of order (n, m) of a circular domain contains information about the (n −m)-th 
Fourier mode of the shape perturbation. Afterwards, we establish the asymptotic behavior of eigenvalues of 
an important family of integral operators closely related to the scattering coefficients. Series representations 
of the scattering coefficients and their shape derivatives in the case of a circular domain are given based on 
this asymptotic behavior. From these series representations, we prove that as the material contrast increases 
and moves close to the reciprocal of the eigenvalues, the shape derivatives of the scattering coefficients behave 
like simple poles. This explains the better conditioning of the inversion process of higher Fourier modes of 
inclusions with large material contrast, and hence an enhanced resolution of reconstructing the perturbation 
using the scattering coefficients. Numerical examples illustrate that the relative magnitudes of higher order 
scattering coefficients grow as the medium coefficients grow and move close to the reciprocals of several 
of these eigenvalues simultaneously, therefore providing more information about the shape of the domain 
with a fixed signal-to-noise ratio. Our approach provides a good and promising direction of understanding 
towards the super-resolution phenomenon for high-contrast targets.

This paper is organized as follows. In section 2 we give a brief review of the concept of scattering 
coefficients. We also prove a fundamental expression of the scattering coefficients in terms of a family 
of important integral operators. Sensitivity analysis of the scattering coefficients with a fixed contrast is 
then presented in section 3, which shows that the shape derivative can also be represented by the family 
of integral operators introduced in section 2. Section 4.1 briefly recalls Riesz decomposition of compact 
operators. Asymptotic behavior of eigenvalues and eigenfunctions of the introduced integral operators will 
be studied in section 4.2. Section 4.3 provides a series representation of the scattering coefficients and their 
shape derivative. A mathematical explanation of the super-resolution phenomenon is given based on several 
implications in Theorems 4.6 and 4.9, which are the main results of this work. Theorem 4.6 provides the 
clear asymptotic behavior of the eigenvalues of a related operator, while Theorem 4.9 gives a reason for the 
stronger sensitivity of the Fourier modes of higher orders when the reciprocal of a contrast comes close to 
the real parts of the reciprocals of the respective eigenvalues simultaneously. Numerical results are reported 
in section 5 to illustrate the phenomenon of super-resolution as the material contrast increases.

2. The concept of scattering coefficients and a fundamental expression

In this section, we estimate the behavior of the scattering coefficients. Without loss of generality, from 
now on, we normalize the wave number k in (1.1) to be k = 1 by a change of variables.

To begin with, we first recall the definition of the scattering coefficients Wnm(D, ε∗) from [18,2]. For this 
purpose, we introduce the following several notions. The fundamental solution Φ to the Helmholtz operator 
Δ + 1 in two dimensions satisfying
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(Δ + 1)Φ(x) = δ0(x), (2.1)

where δ0 is the Dirac mass at 0, with the outgoing Sommerfeld radiation condition:

∣∣ ∂

∂|x|Φ − iΦ
∣∣ = O(|x|− 3

2 ) as |x| → ∞ ,

is given by

Φ(x) = − i

4H
(1)
0 (|x|) , (2.2)

where H(1)
0 is the Hankel function of the first kind of order zero.

Now, given an incident field ui satisfying the homogeneous Helmholtz equation, i.e.,

Δui + ui = 0 , (2.3)

the solution u to (1.1) and (1.3) can be readily represented by the Lippmann–Schwinger equation as

u(x) = ui(x) − ε∗
∫
D

Φ(x− y)u(y)dy , x ∈ R
2 , (2.4)

and hence, the scattered field reads

us(x) = −ε∗
∫
D

Φ(x− y)u(y)dy , x ∈ R
2 . (2.5)

Let S∂D be the single-layer potential defined by the kernel Φ( · ), i.e.,

S∂D[φ](x) =
∫
∂D

Φ(x− y)φ(y) ds(y) (2.6)

for φ ∈ L2(∂D). Let S
√
ε∗+1

∂D be the single-layer potential associated with the kernel Φ 
(√

1 + ε∗ ( · )
)
.

Definition 2.1. The scattering coefficient Wnm(D, ε∗) for n, m ∈ Z is defined as follows:

Wnm(D, ε∗) =
∫
∂Ω

Jn(rx) e−inθxφm(x) ds(x) , (2.7)

where x = rx(cos θx, sin θx) in polar coordinates and the weight function φm ∈ L2(∂D) is such that the pair 
(φm, ψm) ∈ L2(∂D) × L2(∂D) satisfies the following system of integral equations:⎧⎨⎩S

√
ε∗+1

∂D [φm](x) − S∂D[ψm](x) = Jm(rx)eimθx ,

∂
∂νS

√
ε∗+1

∂D [φm] |− (x) − ∂
∂νS∂D[ψm] |+ (x) = ∂

∂ν (Jm(rx)eimθx).
(2.8)

Here + and − in the subscripts respectively indicate the limit from outside D and inside D to ∂D along 
the normal direction, and ∂/∂ν denotes the normal derivative.

According to [18,2], the scattering coefficients Wnm(D, ε∗) are basically the Fourier coefficients of the 
far-field pattern (scattering amplitude) which is 2π-periodic function in two dimensions. The far-field pattern 
A∞(d̂, ̂x), when the incident field is given by eid̂·x for a unit vector d̂, is defined to be
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(u− ui)(x) = ie−πi/4 ei|x|√
8π|x|

A∞(d̂, x̂) + O(|x|− 3
2 ) as |x| → ∞,

with x̂ := x/|x|. We have, recalling from [18,2], that

Wnm(D, ε∗) = in−mFθd,θx [A∞(d̂, x̂)](−m,n), (2.9)

where x̂ = (cos θx, sin θx) and d̂ = (cos θd, sin θd) are in polar coordinates and Fθd,θx [A∞(d̂, ̂x)](m, n) de-
notes the (m, n)-th Fourier coefficient of the far-field pattern A∞(d̂, ̂x), under the Fourier basis functions 
{ei(mθd+nθx)}∞n,m=−∞.

Our first objective is then to work out an explicit relation between the far-field pattern and the contrast 
ε∗ so as to obtain the behavior of the scattering coefficients when ε∗ is large.

In view of (2.4), we introduce the following operator for the subsequent analysis.

Definition 2.2. The operator K̃D : L2(D) → L2(D) is defined by

K̃D[φ](x) =
∫
D

Φ(x− y)φ(y) dy , for x ∈ D and φ ∈ L2(D) ; (2.10)

whereas, the operator ˜̃KD : L2(D) → L∞(R2) is given by

˜̃
KD[φ](x) =

∫
D

Φ(x− y)φ(y) dy , for x ∈ R
2 and φ ∈ L2(D) . (2.11)

It is easy to see from the definition of K̃D and the Rellich lemma that K̃D is a compact operator. However, 
it is worth emphasizing that K̃D is not a normal operator in L2(D). Therefore, it is not unitary equivalent 
to a multiplicative operator. With Definition 2.2, we can rewrite (2.4) as

(I + ε∗K̃D)[u](x) = ui(x) , ∀x ∈ D . (2.12)

By the Fredholm theory [19] and the injectivity of operator I + ε∗K̃D (see, e.g., [20]), we know

u = (I + ε∗K̃D)−1[ui] . (2.13)

From the well-known fact that

Φ(x− y) = − i

4H
(1)
0 (|x− y|) = −ie−πi/4 e

i|x|−ix̂·y√
8π|x|

+ O(|x|− 3
2 ) as |x| → ∞ , (2.14)

we have

us(x) = −ε∗
∫
D

Φ(x− y)u(y) dy = iε∗e−πi/4 ei|x|√
8π|x|

∫
D

e−ix̂·yu(y) dy + O(|x|− 3
2 ) as |x| → ∞. (2.15)

Therefore, the far-field of the scattered field can be written as

A∞(θd, θx) := A∞(d̂, x̂) = ε∗
∫
D

e−ix̂·yu(y)dy . (2.16)

Recall the following well-known Jacobi–Anger identity [21] for any unit vector d̂,
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e−id̂·x =
∞∑

n=−∞
(−i)nJn(r)ein(θd−θ) (2.17)

for x = (r, θ) in polar coordinates. Using (2.17) and taking the Fourier transform with respect to θx, we get

Fθx [A∞](n) = (−i)nε∗〈Jn(r)einθ, u〉L2(D) = i−n
〈
Jn(r)einθ, (ε∗−1 + K̃D)−1[ui]

〉
L2(D)

. (2.18)

Now using ui(x) = eid̂·x, it follows from (2.9) and (2.17)–(2.18) that the following proposition holds:

Proposition 2.3. For a domain D and a contrast ε∗, the scattering coefficient Wnm(D, ε∗) for n, m ∈ Z can 
be written in the following form

Wnm(D, ε∗) = i(n−m)Fθd,θx [A(θd, θx)](−m,n) =
〈
Jn(r)einθ, (ε∗−1 + K̃D)−1[Jm(r)eimθ]

〉
L2(D)

, (2.19)

where K̃D is defined by (2.10).

The expression (2.19) of the scattering coefficients Wnm will be fundamental to the analysis of the 
behavior of Wnm with respect to ε∗.

Using (2.19), we can readily obtain an a priori estimate for the coefficients Wnm. Let us first recall 
the following facts on Schatten–von Neumann ideals; see, for example, [22]. Given a Hilbert space H, we 
let B(H) to be the set of bounded operators on H. We denote by S∞(H) the closed two-sided ideal of 
compact operators in B(H). For K ∈ S∞ and k ∈ N, let the k-th singular number sk(K) be defined as the 
k-th eigenvalue of |K| =

√
K∗K ordered in descending order of magnitude and being repeated according 

to its multiplicity, written as sk(K) := λk(|K|). Now, for 0 < p ≤ ∞, we shall often write the following 
Schatten–von Neumann quasi-norms (which are norms if 1 ≤ p ≤ ∞) as follows:

||K||Sp(H) :=
( ∞∑

k=1

sk(K)p
)1/p

for p < ∞ ; ||K||S∞(H) := ||K||H , (2.20)

whenever they are finite. Now let the Schatten–von Neumann quasi-normed operator ideal Sp(H) be defined 
by

Sp(H) :=
{
K ∈ S∞ : ||K||Sp(H) < ∞

}
. (2.21)

Note that with this convention, S1(H) is the well-known trace class, S2(H) is the usual Hilbert–Schmidt 
class, and S∞(H) is the usual class of compact operators in H. Moreover, if H = L2(D) and K ∈ S2(H) is 
the integral operator defined by

K[f ](x) =
∫
D

K(x, y)f(y) dy, for x ∈ D and f ∈ L2(D) , (2.22)

then it holds that

||K||2S2(L2(D)) =
∫
D

∫
D

|K(x, y)|2 dx dy, (2.23)

which is always well-defined for any K ∈ S2(L2(D)). We refer the reader to, for example, [22] for more 
properties concerning the Schatten–von Neumann ideals.
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For a compact operator K, let σ(K) := {λ ∈ C| λ −K is singular} denote its spectrum and (z −K)−1

its resolvent operator whenever z ∈ C\σ(K). Now, we have the following resolvent estimate [23].

Proposition 2.4. For 0 < p < ∞ and K ∈ Sp(H), we have the following estimate for the resolvent operator 
(z −K)−1 that

∣∣∣∣∣∣∣∣ (z −K)−1
∣∣∣∣∣∣∣∣
H

≤ 1
d(z, σ(K)) exp

(
ap

||K||pSp(H)

d(z, σ(K))p + bp

)
, (2.24)

where ap, bp are two constants depending on p and d(z, σ(K)) is defined by

d(z, σ(K)) := inf
λ∈σ(K)

|z − λ| . (2.25)

Now we can apply Proposition 2.4 to get an estimate for Wnm(D, ε∗). In fact, with the logarithmic type 
singularity of the function H(1)

0 , we readily obtain that

||K̃D||2S2(L2(D)) =
∫
D

∫
D

|H(1)
0 (|x− y|)|2 dx dy < C (1 + R)4 (1 + logR)2 < ∞, (2.26)

whenever D ⊂ B(0, R), and hence K̃D ∈ S2. Therefore, using the Cauchy–Schwartz inequality and applying 
(2.24) for H = L2(D) to (2.19), together with the following well-known asymptotic expression of Jm for 
large m [24, pp. 365–366],

Jm(z)
/

1√
2πm

( ez

2m

)m
→ 1 as m → ∞ , (2.27)

we readily obtain the following inequality (using that a2 = 1/2, b2 = 1/2 if p = 2 [25]):

|Wnm(D, ε∗)| =
∣∣∣∣〈Jn(r)einθ, (ε∗−1 + K̃D)−1[Jm(r)eimθ]

〉
L2(D)

∣∣∣∣
≤
∣∣∣∣∣∣(ε∗−1 + K̃D)−1

∣∣∣∣∣∣
L2(D)

∣∣∣∣Jn(r)einθ
∣∣∣∣
L2(D)

∣∣∣∣Jm(r)eimθ
∣∣∣∣
L2(D)

≤ 1
d(−ε∗−1, σ(K̃D))

exp
(

||K̃D||2S2(L2(D))

d(−ε∗−1, σ(K̃D))2
+ 1

2

)∣∣∣∣Jn(r)einθ
∣∣∣∣
L2(D)

∣∣∣∣Jm(r)eimθ
∣∣∣∣
L2(D)

≤ 1
d(−ε∗−1, σ(K̃D))

exp
(

C1,R

d(−ε∗−1, σ(K̃D))2
+ 1

2

)
C

|m|+|n|
2,R

|m||m||n||n|
,

where Ci,R (i = 1, 2) are some constants, which depend only on the radius R such that D ⊂ B(0, R). We 
summarize the above result in the following theorem.

Corollary 2.5. For a given domain D and a contrast ε∗, we have the following estimate for the scattering 
coefficient Wnm(D, ε∗), for n, m ∈ Z,

|Wnm(D, ε∗)| ≤ 1
d(−ε∗−1, σ(K̃D))

exp
(

C1,R

d(−ε∗−1, σ(K̃D))2
+ 1

2

)
C

|m|+|n|
2,R

|m||m||n||n|
. (2.28)

From Corollary 2.5, we foresee that the magnitude of Wnm may grow as ε∗ increases, and becomes a very 
large value as ε∗−1 is close to the spectrum of the operator K̃D.
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2.1. The case of a circular domain

Now, we consider the operator K̃D for a circular domain, i.e., when D = B(0, R). In this case, the 
operator K̃D becomes more explicit. Actually, from Graf’s formula [21], we have for |x| �= |y| that

H
(1)
0 (|x− y|) =

∞∑
m=−∞

χ{|x|<|y|}Jm(|x|)e−imθxH(1)
m (|y|)eimθy + χ{|x|>|y|}H

(1)
m (|x|)e−imθxJm(|y|)eimθy .

Therefore, for all f ∈ L2(D), the operator K̃D can be written as

K̃D[f ](y) = − i

4

∞∑
m=−∞

[
〈Jm(r)eimθ, f〉D ⋂B(0,|y|)H

(1)
m (|y|)eimθy

+〈H(1)
m (r)eimθ, f〉D\B(0,|y|)Jm(|y|)eimθy

]
.

The above expression of K̃D will be helpful to investigate the behavior of K̃D and Wnm. Before we continue 
our discussion on the operator K̃D, we shall first define some operators.

Definition 2.6. Given an integer m ∈ Z, the operators K̃(i)
m : L2((0, R), r dr) → L2((0, R), r dr) for i = 1, 2

are defined as

K̃(i)
m [φ](h) = − i

4

( h∫
0

rJm(r)φ(r)dr
)
H(i)

m (h) − i

4

( R∫
h

rH(i)
m (r)φ(r)dr

)
Jm(h) (2.29)

for h ∈ (0, R) and φ ∈ L2((0, R), r dr), and their extensions ˜̃K(i)

m : L2((0, R), r dr) → L∞((0, +∞)) for 
i = 1, 2 as

˜̃
K

(i)

m [φ](h) = − i

4

( h∫
0

rJm(r)φ(r)dr
)
H(i)

m (h) − i

4

( R∫
h

rH(i)
m (r)φ(r)dr

)
Jm(h) (2.30)

for h ∈ (0, +∞) and φ ∈ L2((0, R), r dr).

With this notion, we can readily see that if f ∈ L2(D) has the form f = φ(r)eimθ, then we have in polar 
coordinates by the orthogonality of {eimθ}m∈Z on L2(S1) that

K̃D[f ](h, θ) = − i

4

( h∫
0

rJm(r)φ(r)dr
)
H(1)

m (h)eimθ − i

4

( R∫
h

rH(1)
m (r)φ(r)dr

)
Jm(h)eimθ

= K̃(1)
m [φ](h)eimθ , (2.31)

and K̃∗
D[f ](h, θ) = K̃

(2)
m [φ](h)eimθ . Furthermore, we can directly see that σ(K̃(2)

m ) = σ(K̃(1)
m ). Moreover, 

using the following relations for all m ∈ Z,

J−m(z) = (−1)mJm(z) and H
(1)
−m(z) = (−1)mH(1)

m (z), (2.32)

we immediately infer the properties for the integral operators:
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K̃
(i)
−m = K̃(i)

m and ˜̃
K

(i)

−m = ˜̃
K

(i)

m . (2.33)

Substituting (2.31) into Proposition 2.3, we obtain the following simplified expressions of the scattering 
coefficients when D = B(0, R).

Proposition 2.7. For a domain D = B(0, R) for some R > 0 and a contrast value ε∗, the scattering coefficient 
Wnm(D, ε∗), n, m ∈ Z, can be written in the following form

Wnm(D, ε∗) = δnm

〈
Jn,
(
ε∗−1 + K̃(1)

m

)−1
[Jm]

〉
L2((0,R),r dr)

, (2.34)

where δnm is the Kronecker symbol.

As a consequence of Proposition 2.7, we easily see that Wnm = 0 for n �= m. Moreover, we readily have 
the following a priori estimate for the coefficients Wnm by the same arguments as those in Corollary 2.5. 
In order to obtain the desired estimate, we consider the asymptotic expression of Ym as m → ∞ [24, 
pp. 365–366]:

Ym(z)
/√

2
πm

( ez

2m

)−m

→ 1 . (2.35)

Together with (2.27) and the logarithmic type singularity of Y0, we have from the definitions of K̃(i)
m for 

i = 1, 2 in (2.29) that

||K̃(i)
m )||2S2(L2((0,R),r dr)) ≤ Cm (1 + R)4 (1 + logR)2 < ∞ . (2.36)

Consequently, following the same arguments as the ones for (2.28), we arrive at the estimate:

|Wnm(D, ε∗)| = δnm

∣∣∣∣∣
〈
Jn,
(
ε∗−1 + K̃(1)

m

)−1
[Jm]

〉
L2((0,R),r dr)

∣∣∣∣∣
≤ δnm

1
d
(
−ε∗−1, σ(K̃(1)

m )
) exp

⎛⎜⎝ CmC1,R

d
(
−ε∗−1, σ(K̃(1)

m )
)2 + 1

2

⎞⎟⎠ C
|m|+|n|
2,R

|m||m||n||n|
,

where Cm is a constant depending only on m and Ci,R, i = 1, 2, are constants only depending on the radius 
R such that D ⊂ B(0, R).

Corollary 2.8. For a circular domain D = B(0, R) and a contrast ε∗, we have the following estimate for the 
scattering coefficient Wnm(D, ε∗), for n, m ∈ Z,

|Wnm(D, ε∗)| ≤ δnm
1

d
(
−ε∗−1, σ(K̃(1)

m )
) exp

⎛⎜⎝ CmC1,R

d
(
−ε∗−1, σ(K̃(1)

m )
)2 + 1

2

⎞⎟⎠ C
|m|+|n|
2,R

|m||m||n||n|
. (2.37)

In the next section we perform a sensitivity analysis of the scattering coefficients in order to obtain a 
quantitative description of what piece of information is provided by the scattering coefficients of different 
orders.
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3. Sensitivity analysis of the scattering coefficients for a given contrast

In this section, for a given contrast ε∗, we calculate the shape derivative DWnm(D, ε∗)[h] of the scattering 
coefficient Wnm(D, ε∗) along the variational direction h ∈ C1(∂D) when ∂D is of class C2. From the shape 
derivative, we will clearly understand what piece of information is provided by the scattering coefficients 
of different orders, and how the knowledge of the scattering coefficients is related to the resolution of the 
reconstructed shapes.

Let us first recall the definition of the shape derivative of a function F [D], where the argument of the 
function is a domain D, which is essential for our sensitivity analysis later in this section. For a given 
bounded C2-domain D in R2, let Dδ be its δ-perturbation in the variational direction h ∈ C1(∂D), i.e.,

∂Dδ :=
{
x̃ = x + δh(x)ν(x) : x ∈ ∂D

}
, (3.1)

where ν(x) is the outward unit normal to ∂D. Then the shape derivative of a function F [D] in the variational 
direction h ∈ C1(∂D), denoted as DF(D), is defined to satisfy the following relationship:

F [Dδ] = F [D] + δDF(D)[h] + O(δ2) . (3.2)

Before going to the sensitivity analysis, we consider now the inclusion of the operators and their spectra. 
To do so, we define the following inclusion maps.

Definition 3.1. For a given domain D, suppose that the bounded linear operator K̃D ∈ B 
(
L2(D)

)
is defined 

as in (2.10). Consider any domain D̂ such that D ⊂ D̂, we shall often write ι(K̃D) ∈ B 
(
L2(D̂)

)
as the 

following operator:

ι(K̃D) [f ] (x) = ˜̃KD [χDf ] (x) for any f ∈ L2(D̂) , (3.3)

where χD is the characteristic function of D. Likewise, for a given radius R > 0, assume the bounded linear 
operators K̃(i)

m ∈ B 
(
L2((0, R), r dr)

)
(m ∈ Z, i = 1, 2), which are defined in (2.29). Then we write

ι(K̃(i)
m ) [f ] (x) = ˜̃K(i)

m

[
χ(0,R)f

]
(x) for any f ∈ L2((0, R̂), r dr) . (3.4)

Then the operators ι(K̃D) and ι(K̃(i)
m ), i = 1, 2, are compact on L2((0, R̂), r dr). Moreover, we have 

the following relations between the spectra of K̃D and ι(K̃D), as well as between K̃(i)
m and ι(K̃(i)

m ) for 
m ∈ Z, i = 1, 2.

Lemma 3.2. Let K̃D and ι(K̃D) be defined as in (2.10) and (3.3), respectively. Then, the following simple 
relationship between the spectra of K̃D and ι(K̃D) holds:

σ(ι(K̃D)) = σ(K̃D)
⋃

{0} . (3.5)

Likewise, for m ∈ Z, i = 1, 2, we have

σ(ι(K̃(i)
m )) = σ(K̃(i)

m )
⋃

{0} . (3.6)

Proof. For a given λ, suppose that the pair (λ, eλ) is an eigenpair of K̃D over L2(D). If λ �= 0, we denote 
by ẽλ ∈ L2(D̂) the following function
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ẽλ := 1
λ

˜̃
KD[eλ] . (3.7)

If λ = 0, we write ẽλ ∈ L2(D̂) as the extension by zero of the function eλ outside the domain D, i.e.,

ẽλ(x) :=
{
eλ(x) if x ∈ D ,

0 otherwise .
(3.8)

Then we readily check from the definition of ι(K̃D) that ι(K̃D)[ẽλ] = λẽλ and hence the pair (λ, ẽλ) is an 
eigenpair of ι(K̃D) over L2(D̂). As any function f ∈ L2(D̂\D) is a zero eigenfunction of ι(K̃D), hence we 
know σ(K̃D) 

⋃
{0} ⊂ σ(ι(K̃D)).

Conversely, if a pair (λ, ẽλ) is an eigenpair of ι(K̃D) over L2(D̂), then, by writing eλ := ẽλ |D, it is easy 
to see form the definition of K̃D that (λ, eλ) is an eigenpair of K̃D. Hence, σ(ι(K̃D)) ⊂ σ(K̃D). The proof 
of σ(ι(K̃(i)

m )) = σ(K̃(i)
m ) 
⋃
{0} is the same. �

Lemma 3.2 and the Fredholm alternative yield that ε∗−1 + ι(K̃D) is invertible over L2(D̂) if and only 
if ε∗−1 + K̃D is invertible over L2(D). Moreover, from the definition, we can show as in section 2 that 
ι(K̃D) ∈ S2(L2(D̂)) and then apply (2.24) to obtain the following resolvent estimate for ε∗−1 + ι(K̃D) that

∣∣∣∣∣∣∣∣ (ε∗−1 + ι(K̃D)
)−1

∣∣∣∣∣∣∣∣
L2(D̂)

≤ 1
d
(
−ε∗−1, σ(ι(K̃D))

) exp
(

C1,R

d
(
−ε∗−1, σ(ι(K̃D))

)2 + 1
2

)

= 1
d
(
−ε∗−1, σ(K̃D)

) exp
(

C1,R

d
(
−ε∗−1, σ(K̃D)

)2 + 1
2

)
. (3.9)

Here the last equality comes from Lemma 3.2 and the fact that σ(K̃D) must have zero as its accumulation 
point, since L2(D) is infinite dimensional. The above argument also applies to the operators ι(K̃(i)

m ) for 
m ∈ Z, i = 1, 2, where the resolvent estimate reads

∣∣∣∣∣∣∣∣ (ε∗−1 + ι(K̃(i)
m ))

)−1
∣∣∣∣∣∣∣∣
L2((0,R̂),r dr)

≤ 1
d
(
−ε∗−1, σ(K̃(1)

m )
) exp

⎛⎜⎝ CmC1,R

d
(
−ε∗−1, σ(K̃(1)

m )
)2 + 1

2

⎞⎟⎠ . (3.10)

Furthermore, we can easily recover the relationship between ι(K̃B(0,R)) and ι(K̃(i)
m ) for any D such that 

B(0, R) ⊂ D from their definitions. In fact, for any f ∈ L2(D) in the form f = φ(r)eimθ, where (r, θ) ∈ D, 
we have in polar coordinates that

ι(K̃B(0,R))[f ](h, θ) = ι(K̃(1)
m )[φ](h)eimθ , ι(K̃∗

B(0,R))[f ](h, θ) = ι(K̃(2)
m )[φ](h)eimθ , (3.11)

where the operators ι(K̃(i)
m ) for m ∈ Z, i = 1, 2, are the extensions to L2((0, R̂θ), r dr) with the radii R̂θ

being defined as R̂θ := sup{r : (r, θ) ∈ D} for different θ ∈ [0, 2π]. Although the extensions ι(K̃(i)
m ) are 

now different for different angles θ, no difficulty will arise in understanding the properties of ι(K̃B(0,R)) via 

estimating ι(K̃(1)
m ), since the conclusions of Lemma 3.2 and (3.10) do not depend on the choice of R̂ and 

thus can be applied to different choices of radii.
From now on, we will no longer distinguish between the operators K̃D and ι(K̃D) whenever there is no 

ambiguity, and by an abuse of notation, we denote both operators by K̃D, likewise for the operators K̃(i)
m

and ι(K̃(i)
m ) for m ∈ Z, i = 1, 2.

Then we move to our main focus of this subsection, which is to obtain the shape derivative of the 
scattering coefficients for a domain D along a perturbation h ∈ C1(∂D). Now let ε∗ be given. For any 
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bounded C2-domain D in R2, let Dδ be a δ-perturbation of D along the variational direction h ∈ C1(∂D) as 
in (3.1). For such perturbations of the domain D, we investigate the difference between Wnm(Dδ, ε∗) and 
Wnm(D, ε∗). We first estimate the difference K̃Dδ − K̃D, where both operators K̃Dδ and K̃D are regarded 
as the extended operators on L2 (Dδ

⋃
D
)
. Indeed, from the fact that the singularity type of the function 

H
(1)
0 is logarithmic, there exists a constant CR depending only on the radius R such that the estimate

||K̃Dδ − K̃D||L2(B(0,R)) ≤ CR δ (3.12)

holds for δ small enough with R being such that D � B(0, R). Therefore, we can repeatedly apply the 
following resolvent identities(

ε∗−1 + K̃Dδ

)−1
−
(
ε∗−1 + K̃D

)−1
=
(
ε∗−1 + K̃Dδ

)−1
(K̃D − K̃Dδ )

(
ε∗−1 + K̃D

)−1
(3.13)

=
(
ε∗−1 + K̃D

)−1
(K̃D − K̃Dδ)

(
ε∗−1 + K̃Dδ

)−1
(3.14)

to obtain the following expression of the difference of scattering coefficients for any n, m ∈ Z,

Wnm(Dδ, ε∗) −Wnm(D, ε∗)

=
〈
Jn(r)einθ,

[(
ε∗−1 + K̃Dδ

)−1
−
(
ε∗−1 + K̃D

)−1
]

[Jm(r)eimθ]
〉

L2(D)

+
〈(

ε∗−1 + K̃∗
Dδ

)−1
[Jn(r)einθ], sgn(h) Jm(r)eimθ

〉
L2(D

⋃
Dδ\D

⋂
Dδ)

= −
〈(

ε∗−1 + K̃∗
D

)−1
[Jn(r)einθ], (K̃Dδ − K̃D)

(
ε∗−1 + K̃D

)−1
[Jm(r)eimθ]

〉
L2(D)

+
〈(

ε∗−1 + K̃∗
D

)−1
[Jn(r)einθ], sgn(h) Jm(r)eimθ

〉
L2(D

⋃
Dδ\D

⋂
Dδ)

+ O(δ2), (3.15)

where the last equality comes from the resolvent identities and (3.12). Now for any L1 function f , considering 
the fact that the shape derivative of the integral

I(D) =
∫
D

f(x)dx (3.16)

is given by the following boundary integral

D I(D)[h] =
∫
∂D

f(x)h(x) ds(x) , (3.17)

we have for x ∈ D
⋃

Dδ and φ ∈ L2(D
⋃

Dδ) that

(K̃Dδ − K̃D)[φ](x) = − i

4

∫
(D
⋃

Dδ)\(D
⋂

Dδ)

sgn(h)H(1)
0 (|x− y|)φ(y)dy

= −δ
i

4

∫
∂D

H
(1)
0 (|x− y|)h(y)φ(y) ds(y) + O(δ2) . (3.18)

Therefore, by substituting the above expression into (3.15), a direct expansion of the integral together with 
Fubini’s theorem yields the following expression for the first term in (3.15):
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−
〈(

ε∗−1 + K̃∗
D

)−1
[Jn(r)einθ], (K̃Dδ − K̃D)

(
ε∗−1 + K̃D

)−1
[Jm(r)eimθ]

〉
L2(D)

= δ
i

4

∫
D

∫
∂D

H
(1)
0 (|x− y|)h(y)

[(
ε∗−1 + K̃D

)−1
[Jm(r)eimθ]

]
(y) dy

[(
ε∗−1 + K̃∗

D

)−1 [Jn(r)einθ]
]
(x) dx

+O(δ2)

= −δ

〈[(
ε∗−1 + K̃D

)−1 [Jm(r)eimθ]
] [

K̃∗
D

(
ε∗−1 + K̃∗

D

)−1
[Jn(r)einθ]

]
, h

〉
L2(∂D)

+ O(δ2). (3.19)

Likewise, for the second term in (3.15), we derive that〈(
ε∗−1 + K̃∗

D

)−1
[Jn(r)einθ], sgn(h) Jm(r)eimθ

〉
L2(D

⋃
Dδ\D

⋂
Dδ)

= δ

〈[(
ε∗−1 + K̃D

)−1 [Jm(r)eimθ]
] [

Jn(r)einθ
]
, h

〉
L2(∂D)

+ O(δ2). (3.20)

Therefore, combining the above two estimates shows that

Wnm(Dδ, ε∗) −Wnm(D, ε∗)

= δε∗−1
〈[(

ε∗−1 + K̃D

)−1 [Jm(r)eimθ]
] [(

ε∗−1 + K̃∗
D

)−1
[Jn(r)einθ]

]
, h

〉
L2(∂D)

+O(δ2) . (3.21)

Hence, if we define the following L2(∂D)-duality gradient function ∇Wnm(D, ε∗) of the form of

∇Wnm(D, ε∗) := ε∗−1
[(
ε∗−1 + K̃D

)−1 [Jm(r)eimθ]
] [(

ε∗−1 + K̃∗
D

)−1
[Jn(r)einθ]

]
, (3.22)

then the shape derivative of the scattering coefficient Wnm(D, ε∗) along the variational direction h is given 
by

DWnm(ε∗, D)[h] = 〈∇Wnm(ε∗, D), h 〉L2(∂D) . (3.23)

In particular, for the case where D is a circular domain D = B(0, R), we have from the decomposition of 
the operator K̃D the following simple expression of ∇Wnm(D, ε∗):

∇Wnm(B(0, R), ε∗) = ε∗−1
[(

ε∗−1 + K̃(2)
m

)−1
[Jm]

]
(R)
[(

ε∗−1 + K̃(2)
n

)−1
[Jn]
]

(R) ei(n−m)θ .

Consequently, we get that

DWnm(B(0, R), ε∗)[h] = ε∗−1
[(

ε∗−1 + K̃(1)
m

)−1
[Jm]

]
(R)
[(

ε∗−1 + K̃(1)
n

)−1
[Jn]
]

(R)Fθ [h] (n−m) ,

where Fθ [h] (n −m) is the (n −m)-th Fourier coefficient of the function h on L2(S1). This gives the following 
key result on the shape derivative of Wnm(D, ε∗).

Theorem 3.3. Suppose that ε∗ > 0 is given. For any C2-domain D and n, m ∈ Z, the shape derivative of the 
scattering coefficient Wnm(D, ε∗) along the variational direction h ∈ L2(∂D) is given by
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DWnm(D, ε∗)[h] = 〈∇Wnm(D, ε∗), h 〉L2(∂D) , (3.24)

where ∇Wnm is defined by

∇Wnm(D, ε∗) = ε∗−1
[(
ε∗−1 + K̃D

)−1 [Jm(r)eimθ]
] [(

ε∗−1 + K̃∗
D

)−1
[Jn(r)einθ]

]
. (3.25)

In particular, if the domain D is a circular domain D = B(0, R), then for any Dδ as a δ-perturbation of D
along the variational direction h ∈ C1(∂D), we have

Wnm(Dδ, ε∗) −Wnm(D, ε∗) = δ C(ε∗, n,m)Fθ [h] (n−m) + O(δ2), (3.26)

with

C(ε∗, n,m) := ε∗−1
[(

ε∗−1 + K̃(1)
m

)−1
[Jm]

]
(R)
[(

ε∗−1 + K̃(1)
n

)−1
[Jn]
]

(R) . (3.27)

From the above theorem, we obtain in the linearized case that the scattering coefficient Wnm gives us 
precise information about the (m − n)-th Fourier mode of the perturbation h.

Therefore, the magnitude of the coefficients Wnm and C(ε∗, n, m) shall be responsible for the resolution 
in imaging Dδ. Note that the function C(ε∗, n, m) depends now on the spectra of both K̃(1)

m and K̃(1)
n . The 

change and growth of the coefficients Wnm and C(ε∗, n, m) with respect to ε∗ will be the main focus of the 
next section.

4. Asymptotic behaviors of eigenvalues over a circular domain and the phenomenon of super-resolution

In the previous section, we have obtained a relationship between the coefficients Wnm of a perturbed 
circular domain Dδ and the Fourier coefficients of the perturbation h. In this section, we investigate the 
decay of the eigenvalues of K̃(1)

m and analyze the behavior with respect to ε∗ of Wnm and C(ε∗, n, m)
for different values of n and m. Then the phenomenon of super-resolution is explained based on several 
important implications stated in two main theorems of this section, Theorems 4.6 and 4.9. The former 
provides the clear asymptotic behavior of the eigenvalues of a related operator, while the latter gives a reason 
for the stronger sensitivity of the Fourier modes of higher orders when the reciprocal of a contrast comes 
close to the real parts of the reciprocals of the respective eigenvalues simultaneously. These two theorems 
combine to provide a justification of the experimentally observed phenomenon about super-resolution for 
some specific high contrasts as described in the theorems. For this purpose, we first introduce the following 
Riesz decomposition.

4.1. Riesz decomposition of the operators K̃D and K̃(1)
m

To continue our analysis on the operators K̃D and K̃(1)
m , we first recall the following well-known classical 

spectral theorem for general compact operators (not necessarily self-adjoint or normal) in a Hilbert space 
[19].

Proposition 4.1. Let K be a compact operator on a Hilbert space H, σ(K) := {λ ∈ C| λ − K is singular}
be its spectrum, and σp(K) be its point spectrum consisting of all the eigenvalues of K. Then the following 
results hold:

1. If λ �= 0, then we have that λ ∈ σ(K) if and only if λ ∈ σp(K) the point spectrum (Fredholm’s 
alternative).
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2. For all λ ∈ σ(K) such that λ �= 0, there exists a smallest mλ such that Ker(λ − K)mλ = Ker(λ −
K)mλ+1. Denoting the space Ker(λ −K)mλ by Eλ := Ker(λ −K)mλ , we have dim(Eλ) < ∞. Moreover, 
Ran(λ −K)mλ is a closed subspace and H = Ker(λ −K)mλ

⊕
Ran(λ −K)mλ .

3. σ(K) is countable and 0 is the only accumulation point of σ(K) for dim(H) = ∞.
4. The map z → (z −K)−1 admits poles at z ∈ σ(K).

Now we aim to apply the above theorem to K̃D, which is compact but not normal, to obtain a spectral 
decomposition of the operator K̃D and the space L2(D). In order to do so, we shall assert the following 
elementary lemma.

Lemma 4.2. Let K̃D be defined as in (2.10), and K̃∗
D be its L2 adjoint, then we have

σ(K̃D)\σp(K̃D) = {0} and σ(K̃∗
D)\σp(K̃∗

D) = {0} .

Proof. Let us first consider the operator K̃D. From Theorem 4.1, we directly have that

σ(K̃D)\{0} = σp(K̃D)\{0} .

Therefore, in order to prove our assertion, it suffices to show that 0 /∈ σp(K̃D). In fact, let us assume 
φ ∈ L2(D) is such that K̃D[φ] = 0. Then from the definition of K̃D, we get that

0 = (Δ + 1)
(
K̃D[φ]

)
= φ ,

and therefore φ = 0. This shows that 0 /∈ σp(K̃D), and therefore our assertion for the operator K̃D holds. A 
same argument applying to the operator K̃∗

D results in our second assertion that σ(K̃∗
D)\σp(K̃∗

D) = {0}. �
Now, we are ready to apply Theorem 4.1 to K̃D to obtain the following decomposition of the space L2(D).

Lemma 4.3. Let the space Eλ be the generalized eigenspace of the operator K̃D for the eigenvalue λ defined 
as in Theorem 4.1. Then the following decomposition holds

L2(D) =
⊕

λ∈σp(K̃D)

Eλ . (4.1)

Proof. From Lemma 4.2, it follows directly that 0 /∈ σp(K̃∗
D) and ker(K̃∗

D) = {0}. Hence we have that

L2(D) =
(
Ker(K̃∗

D)
)⊥

= Ran(K̃D) .

This proves the lemma after applying Theorem 4.1. �
We can now restrict the action of K̃D on the invariant subspaces Eλ and consider the linear operator 

(K̃D) |Eλ
: Eλ → Eλ over the finite dimensional spaces Eλ. By directly applying the Jordan theory to the 

finite-dimensional linear operator (K̃D) |Eλ
, we get that Eλ can be decomposed into Eλ =

⊕
1≤i≤Nλ

Ei
λ for 

some Nλ such the operator (K̃D) |Eλ
can be written as

(K̃D) |Eλ
=

∑
K̃i,λ, (4.2)
1≤i≤Nλ
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where the operators K̃i,λ : Ei
λ → Ei

λ admit the action of the following Jordan block under a choice of basis 
eiλ in Ei

λ:

J i
λ :=

⎛⎜⎜⎜⎜⎝
λ 1 . . . . . . 0
0 λ 1 . . . 0
...

...
. . .

...
...

0 . . . . . . λ 1
0 . . . . . . . . . λ

⎞⎟⎟⎟⎟⎠ , (4.3)

as matrices of size smaller than or equal to mλ. With these notations at hand, we are now able to obtain 
a decomposition of the operator K̃D by combining the decompositions of its respective restricted linear 
operators (K̃D) |Eλ

as follows

K̃D =
∑

λ∈σp(K̃D)

∑
1≤i≤Nλ

K̃i,λ , (4.4)

keeping in mind that a summation over λ stands for a direct sum over the respective actions in each 
invariant subspaces Eλ following the direct sum decomposition of L2(D) in (4.1). A similar argument for 
such a decomposition of the operator K̃D can also be found in [26].

For the sake of simplicity, for a given n ∈ N and a given Riesz basis w, i.e., a complete frame in L2(D), 
supposing that v is a finite subset of w, we shall often write, for any φ ∈ L2(D), (φ)v,L2(D) ∈ C

n as the 
coefficients of φ in front of the vectors in v when expressed in the Riesz basis w, i.e., if

φ =
∑
wi∈w

biwi , (4.5)

for coefficients bi ∈ C and v = (wk1 , wk2 , . . . , wkn
), then (φ)v,L2(D) = (bk1 , bk2 , . . . , bkn

). Also, for any 
a = (a1, . . . , an) ∈ C

n, and any given finite frame v = (v1, v2, . . . , vn) in L2(D), we write

vT a :=
n∑

i=1
aivi , (4.6)

and, for any φ ∈ L2(D), the L2 inner product of v and φ as

〈v, φ〉L2(D) :=
(
〈v1, φ〉L2(D), 〈v2, φ〉L2(D), . . . , 〈vn, φ〉L2(D)

)
∈ C

n . (4.7)

With these notations, we can write (4.4) in terms of the frame 
⋃

λ∈σp(K̃D)
⋃

1≤i≤Nλ
eλ as follows:

K̃D =
∑

λ∈σp(K̃D)

∑
1≤i≤Nλ

(
eiλ
)T

J i
λ( · )ei

λ,L
2(D), (4.8)

where the superscript T denotes the transpose as described in (4.6). Therefore, substituting the above 
expression of K̃D into (2.19), we have

Wnm(D, ε∗) =
〈
Jn(r)einθ, (ε∗−1 + K̃D)−1[Jm(r)eimθ]

〉
L2(D)

=
∑

λ∈σp(K̃D)

∑
1≤i≤Nλ

[〈
Jn(r)einθ, eiλ

〉
L2(D)

]T
[J i

ε∗−1+λ]−1 [Jm(r)eimθ
]
ei
λ,L

2(D) . (4.9)

The above expression gives a general decomposition of the scattering coefficient Wnm(D, ε∗).
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Next, we consider the special domain D = B(0, R). From Proposition 2.7 we shall focus on the operators 
K̃

(1)
m for m ∈ Z. Similar to the previous argument, we can see that the operators K̃(1)

m are compact on 
L2((0, R), r dr). Moreover, it is direct to obtain the following lemma for K̃(1)

m similar to Lemma 4.2.

Lemma 4.4. Let K̃(1)
m be defined as in (2.29), and 

(
K̃

(1)
m

)∗
be its L2 adjoint, then we have

σ(K̃(1)
m )\σp(K̃(1)

m ) = {0} and σ
((

K̃(1)
m

)∗)
\σp

((
K̃(1)

m

)∗)
= {0} .

Proof. We follow a same argument as in the proof of Lemma 4.2. By directly applying Theorem 4.1, it 
suffices to show that 0 /∈ σp(K̃(1)

m ), in order to prove our claim for K̃(1)
m . Assume φ ∈ L2((0, R), r dr) is such 

that K̃(1)
m [φ] = 0. Then from the definition of K̃(1)

m , we get that

0 =
(

1
r
∂rr∂r + 1 − m2

r2

)(
K̃(1)

m φ(r)
)
eimθ = (Δ + 1)K̃(1) (φ(r)eimθ

)
= φ(r)eimθ ,

which gives φ = 0. This proves our assertion for the operator K̃(1)
m . The same argument applies to 

(
K̃

(1)
m

)∗
for the remaining part of our assertion. �

A same argument as in the proof of Lemma 4.3 results in the following lemma.

Lemma 4.5. Let the space Em,λ be the generalized eigenspace of the operator K̃(1)
m for the eigenvalue λ defined 

as in Theorem 4.1. Then the following decomposition holds

L2((0, R), r dr) =
⊕

λ∈σp

(
K̃

(1)
m

)Em,λ . (4.10)

Following a same argument as we did for K̃D to the new operator K̃m, we apply the Jordan decomposition 
theorem to the finite-dimensional linear operator (K̃m) |Em,λ

: Em,λ → Em,λ over the invariant subspace. 
Combining this with the previous lemma, we get that there exists a complete basis 

⋃
λ

⋃
0≤i≤Nm

λ
eim,λ over 

L2((0, R), r dr) with each eim,λ spanning the subspace Ei
m,λ such that K̃m admits the action of a Jordan 

block, denoted by J i
m,λ, with respect to the basis when acting on the invariant subspace Ei

m,λ. Moreover, 
adopting the same notations as previously introduced, we can write(

ε∗−1 + K̃(1)
m

)−1
=

∑
λ∈σp(K̃(1)

m )

∑
1≤i≤Nm

λ

(
eim,λ

)T [J i
m,ε∗−1+λ]−1( · )ei

m,λ,L
2((0,R),r dr), (4.11)

and a similar expansion holds for K̃(2)
m . Again, we keep in mind that the summation over λ stands for a direct 

sum over the respective actions in each invariant subspaces Em,λ following the direct sum decomposition of 
L2((0, R), r dr) in (4.10).

Now, using the orthogonality of {eimθ}m∈Z on L2(S1), for a given contrast ε∗ such that −ε∗−1 is not an 
eigenvalue of K̃(1)

m , we have that

Wnm(D, ε∗)

= δnm

〈
Jn,
(
ε∗−1 + K̃(1)

m

)−1
[Jm]

〉
L2((0,R),r dr)

= δnm
∑
˜(1)

∑
1≤i≤Nm

[〈Jn(r), eim,λ〉L2((0,R),rdr)]T [J i
m,ε∗−1+λ]−1( Jm(r) )ei

m,λ,L
2((0,R),r dr). (4.12)
λ∈σ(Km ) λ
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Finally, the following remarks are in order. For D = B(0, R), the action of K̃D on each of the subspace 
Ei

m,λe
imθ of L2(D) is invariant and admits the same Jordan block representation as K̃(1)

m acting on Ei
m,λ

of L2((0, R), rdr). Hence, the decomposition

L2(D) =
⊕
m∈Z

⊕
λ∈σp

(
K̃

(1)
m

)
⊕

1≤i≤Nm
λ

Ei
m,λe

imθ

coincides with the original Jordan block decomposition of K̃D,

L2(D) =
⊕

λp∈σ(K̃)

⊕
1≤i≤Nλ

Ei
λ .

Therefore, we readily get 
⋃

m∈Z
σp(K̃(1)

m ) = σp(K̃D), and the sum (4.12) constitutes a part of the sum (4.9)
with all the other terms in (4.9) being zero. In the next section, we will focus on the decay of the eigenvalues 
of K̃m and the asymptotic expansion for the eigenvalues and eigenfunctions of the operators. This will allow 
us to better understand the behavior of Wnm and C(ε∗, n, m).

4.2. Asymptotics of the eigenvalues and eigenfunctions of K̃(i)
m

Intuitively, we can expect that the eigenvalues of K̃(1)
m are distributed closer to 0 as |m| increases for the 

following reason. Considering (2.33) together with the asymptotic expressions (2.27) and (2.35) of Jm and 
Ym as m → ∞, we have the following bound for the operator norm of K̃m for m ∈ Z:

||K̃(1)
m ||L2((0,R)rdr) ≤

C ′
R

m2 (4.13)

for some constant C ′
R depending on R. Then we obtain the estimate for the spectral radius of K̃m from the 

Gelfand theorem:

sup
λ∈σ(K̃(1)

m )
|λ| = lim

n→∞

∣∣∣∣∣∣∣∣ (K̃(1)
m

)n ∣∣∣∣∣∣∣∣ 1n ≤ C ′
R

m2 . (4.14)

This implies that the spectrum σ(K̃(1)
m ) actually lies inside σ(K̃) 

⋂
B(0, C

′
R

m2 ). However, this argument is 
heuristic.

Therefore, we intend to obtain a rigorous asymptotic expansion of the eigenvalues for the operators K̃m. 
For this purpose, we first restrict ourselves to the discussion of the operators for m ∈ N, and consider the 
equation K̃(1)

m f = λf with λ �= 0. Since we have

(
1
r
∂rr∂r + 1 − m2

r2

)(
K̃(1)

m f
)
eimθ = (Δ + 1)K̃(1) (feimθ

)
= feimθ, (4.15)

we obtain for m �= 0 the following equivalence

K̃(1)
m f = λf ⇔

⎧⎪⎪⎨⎪⎪⎩
(

1
r∂rr∂r + 1 − 1

λ − m2

r2

)
f = 0 ,

f(0) = 0 ,
f(R) = − i

∫ R
rJ (r)f(r)drH(i)(R) .

(4.16)
4 0 m m
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Enumerating the eigenvalues λ of K̃(1)
m as λm,l in descending order of their magnitudes, and writing eim,l

as the unique eigenfunction in the Jordan basis eim,λm,l
for each i, we are bound to have the following form 

for the eigenpair of the operator for all i,

(λm,l, e
i
m,l) =

(
λm,l, Jm

(√
1 − 1

λm,l
r

))
. (4.17)

The above statement implies that the geometric multiplicities of all the eigenvalues of K̃(1)
m should be Nλ = 1

(while the algebraic multiplicities are still unknown for the time being). For the sake of simplicity, we denote 
the frame e1

m,λm,l
by em,l, and also the eigenfunction e1

m,l by em,l. Substituting (4.17) into (4.16), together 
with the following well-known property of Lommel’s integrals [24] that for all n ∈ N and for all a, b > 0
with a �= b:

R∫
0

[Jn(ar)]2rdr = R2

2 [Jn(aR)2 − Jn−1(aR)Jn+1(aR)] , (4.18)

R∫
0

Jn(ar)Jn(br)rdr = R

a2 − b2
[bJn(aR)Jn−1(bR) − aJn−1(aR)Jn(bR)] , (4.19)

we get the following equation for λm,l:

Jm

(√
1 − 1

λm,l
R

)

= i

4Rλm,lH
(i)
m (R)

[√
1 − 1

λm,l
Jm(R)Jm−1

(√
1 − 1

λm,l
R

)

−Jm−1(R)Jm

(√
1 − 1

λm,l
R

)]
. (4.20)

Now since λm,l → 0 as l → ∞, from the following well-known asymptotic of Jn [24] for all n:

Jn (z) =
√

2
πz

cos
(
z − 2n + 1

4 π

)
+ O(z−3/2) , (4.21)

we obtain the following estimate for m, n, l ∈ N:

Jn

(√
1 − 1

λm,l
R

)
=
√√√√ 2

πR
√

1 − 1
λm,l

cos
(√

1 − 1
λm,l

R− 2n + 1
4 π

)
+ O(|λm,l|3/4) . (4.22)

Hence, substituting this expression into (4.20), we shall directly infer that the eigenvalues λm,l satisfy the 
following bound:

Jm

(√
1 − 1

λm,l
R

)
= O(|λm,l|3/4) , (4.23)

which has a decay order higher than the one in (4.22). With this observation, we shall expect that the terms √
1 − 1

λm,l
R should be close to the l-th zeros of the Bessel functions of Jm as l grows, which is indeed the 

case following the argument below.
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For the sake of exposition, we shall often denote by am,l the zeros of the m-th Bessel function of the 
first kind, i.e., Jm(am,l) = 0, arranged in ascending order. Then it follows from (4.21), the inverse function 
theorem and the Taylor expansion that∣∣∣∣am,l −

2m + 4l − 1
4 π

∣∣∣∣ < C(m + 2l)−1/2 → 0 as l → ∞ . (4.24)

Then, again from (4.21), we have

J ′
m (am,l) − (−1)l

√
2

πam,l
= O(am,l

−3/2) , (4.25)

which, combined with (4.23), leads to

R

√
1 − 1

λm,l
− am,l = O(am,l

−1/2) . (4.26)

This gives us the following estimate for λm,l:

R

√
1 − 1

λm,l

/(
(m + 2l)π

2 − π

4

)
→ 1 as l → ∞ . (4.27)

Therefore, we obtain the following decay rate of the eigenvalues,

λm,l

/(
4R2

π2
1

(m + 2l)2

)
→ −1 as l → ∞ . (4.28)

Moreover, using (4.26) and the fact that Jm is holomorphic, we have the following uniform estimate for the 
eigenfunctions:∣∣∣∣∣

∣∣∣∣∣Jm
(√

1 − 1
λm,l

r

)
− Jm

(am,l

R
r
)∣∣∣∣∣
∣∣∣∣∣
C0((0,R))

≤ C||J ′
m||L∞((0,R))am,l

−1/2 < C(m + 2l)−1/2
. (4.29)

Note that the set {Jm
(am,l

R r
)
}∞l=1 forms a complete orthogonal basis in L2((0, R), r dr). Hence, the above 

estimate actually implies that the eigenfunctions of K̃(1)
m approach in the sup-norm to an orthogonal basis 

in L2((0, R), r dr) for all m ∈ N. From (2.33), together with the fact that a−m,l = am,l from (2.32), the 
above analysis also holds for K̃(1)

−m.
The following theorem summarizes the main eigenvalue and eigenfunction estimates for the operator 

K̃
(1)
m .

Theorem 4.6. For all m ∈ Z\{0}, the eigenpairs of the operator K̃(1)
m are of the form

(λm,l, em,l) =
(
λm,l, Jm

(√
1 − 1

λm,l
r

))
for l ∈ N , (4.30)

where the eigenvalues λm,l satisfy the following asymptotic behavior

λm,l

/(
4R2

2
1

2

)
→ −1 as l → ∞ . (4.31)
π (|m| + 2l)
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Fig. 1. (a) Spectral radius of K̃(1)
m for m = 0, 1, . . . , 11. (b) Norms of eigenvalues λm,l, l = 1, 2, . . . , 15, for operators K̃(1)

m , m =
0, 1, . . . , 7, as in the legend. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.)

Moreover, the eigenfunctions also have the following uniform estimate:∣∣∣∣∣
∣∣∣∣∣Jm

(√
1 − 1

λm,l
r

)
− Jm

(am,l

R
r
)∣∣∣∣∣
∣∣∣∣∣
C0((0,R))

= O((|m| + 2l)−1/2) . (4.32)

This theorem is very important for the analysis of the behaviors of Wnm and C(ε∗, n, m). Fig. 1 shows 
the distribution of eigenvalues of K̃(1)

m for R = 10 with different values of m. It not only illustrates that the 
spectral radius decreases as the value of m increases (which agrees with the estimate (4.14)); but also that, 
for a fixed number l ∈ N, the magnitude of the l-th eigenvalue of K̃(1)

m decreases in general monotonically 
with respect to increment of m (which agrees with (4.31)). Eigenfunctions of K̃(1)

m for some values of m are 
also plotted in Fig. 2 for a better illustration of the behavior of eigenfunctions.

4.3. Tail behavior of the series representation of Wnm and C(ε∗, n, m) and the super-resolution 
phenomenon

In this subsection, we deduce very useful information on the behaviors of Wnm and C(ε∗, n, m) from the 
asymptotic behaviors of eigenpairs of K̃(1)

m derived in the previous subsection.

4.3.1. Tail behavior of the series representation of Wnm

We first focus on the scattering coefficients Wnm(D, ε∗) when D = B(0, R). Form (2.34), it is known that 
Wnm = 0 when n �= m, therefore the only interesting case is when n = m. Again, we shall first consider 
m ∈ N. From the analysis in the previous subsection that the geometric multiplicities of all the eigenvalues 
of K̃(1)

m are Nm
λ = 1, we already obtain from (4.12) that

Wmm(D, ε∗) =
∞∑
l=0

[〈Jm(r), em,l〉L2((0,R),rdr)]T [Jm,ε∗−1+λm,l
]−1( Jm(r) )em,l,L2((0,R),r dr).

For the sake of simplicity, from now on we shall often denote

λ̃m,l := 1
a2
m,l

and ẽm,l := Jm

(am,l

R
r
)
. (4.33)
1 − R2
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Fig. 2. Real and imaginary parts of the first 4 eigenfunctions of K̃(1)
m , m = 1, 2, 3. (1a) Real parts of eigenfunctions of K̃(1)

1 ; 
(1b) imaginary parts of eigenfunctions of K̃(1)

1 ; (2a) real parts of eigenfunctions of K̃(1)
2 , and so forth. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.)

From (4.18) and (4.32), together with the completeness and orthogonality of ẽm,l in L2((0, R), r dr) and the 
Parseval’s identity, we readily obtain that, fixing any m ∈ N and for any given ε, there exists N(m) such 
that for all i > N(m), we have

∣∣∣∣〈em,i, ẽm,j〉L2((0,R),rdr) − δij
R2

J2
m+1(am,j)

∣∣∣∣ < εij , (4.34)
2
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where 
∑

j ε
2
ij < ε2. Therefore, for a large N1(m), the span of {em,l}∞l=N1(m) has a finite dimensional orthog-

onal complement. This follows that there exists a large N2(m) > N1(m) such that the algebraic multiplicity 
of λm,l is 1. Therefore, we directly obtain

Wmm(D, ε∗) = S1,m(ε∗) + S2,m(ε∗), (4.35)

where the sums Si,m(ε∗), i = 1, 2, are defined by

S1,m(ε∗) :=
N2(m)∑
l=0

[〈Jm(r), em,l〉L2((0,R),rdr)]T [Jm,ε∗−1+λm,l
]−1( Jm(r) )em,l,L2((0,R),r dr) (4.36)

S2,m(ε∗) :=
∞∑

l=N2(m)+1

αm,l

ε∗−1 + λm,l
, (4.37)

with the coefficients αm,l being defined, for all m, l, as

αm,l := 〈Jm(r), em,l〉L2((0,R),rdr)( Jm(r) )em,l,L2((0,R),r dr). (4.38)

Note that for any ε∗ ≥ −2 Re
(
λ−1
m,N2(m)

)
, we have |S1,m(ε∗)| < Cm for some constant Cm. Therefore, if we 

want to investigate the behavior of (4.35) for large ε∗, we shall focus on the term S2,m(ε∗). For this purpose, 
we analyze the limiting behavior of αm,l as l increases. Now, from (4.19) and (4.32), we have the following 
estimate for the inner product:

〈Jm(r), em,l〉L2((0,R),rdr) − λ̃mlam,lJm(R)Jm−1(am,l) = O(a−1/2
m,l ) . (4.39)

From (4.21) we get

Jm±1 (am,l) − (−1)l
√

2
πam,l

= O(am,l
−3/2) , (4.40)

and hence it follows that

〈Jm(r), em,l〉L2((0,R),rdr)

/
(−1)lλ̃m,la

1/2
m,l

√
2
π
Jm(R) → 1 as l → ∞ . (4.41)

From (4.34), we obtain that the coefficient of Jm(r) of em,l with respect to the Jordan basis approaches to 
the orthogonal project of Jm(r) on the subspace em,l, whence the following holds

( Jm(r) )em,l,L2((0,R),r dr)

/ 〈Jm(r), em,l〉L2((0,R),rdr)
R2

2 [J2
m−1(am,l)]

→ 1 as l → ∞ . (4.42)

Combining the above several limiting behaviors (4.41) and (4.42) yields

αm,l

/
2λ̃m,l

2
a2
m,l

J2
m(R)
R2 → 1 as l → ∞ , (4.43)

which can further be reduced to the following asymptotic behavior by combining (4.26), (4.28) and 
(4.33),
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αm,l

/
2λm,lJ

2
m(R) → −1 as l → ∞ . (4.44)

From (2.32) and (2.33), the conclusions also hold for the case with −m ∈ N.
The above analysis can be summarized in the following theorem.

Theorem 4.7. Let D = B(0, R) be a circular domain. For all m ∈ Z\{0}, there exist constants N(m) ∈ N and 

Cm > 0 such that, for any given contrast value ε∗ > −2 Re
(
λ−1
m,N(m)

)
, the scattering coefficient Wmm(D, ε∗)

has the following decomposition

Wmm(D, ε∗) = S1,m(ε∗) + S2,m(ε∗), (4.45)

where S1,m(ε∗) has a uniform bound

|S1,m(ε∗)| < Cm , (4.46)

whereas S2,m(ε∗) is of the form

S2,m(ε∗) =
∞∑

l=N2(m)+1

αm,l

ε∗−1 + λm,l
, (4.47)

where the coefficients αm,l have the following limiting behavior

αm,l

/
2λm,lJ

2
m(R) → −1 as l → ∞ . (4.48)

This decomposition of the coefficient Wmm gives us a clear picture of the behavior of Wmm as ε∗ grows. 
When ε∗ increases, ε∗−1 passes through the values −Re(λm,l) ∼ (|m| + 2l)−2 for large l. If λm,l ∈ R, ε∗−1

directly passes through the pole. Therefore Wmm grows from a finite value rapidly to a directional complex 
infinity ∞eiθ for some θ, and then comes back from −∞eiθ to a finite value after ε∗−1 passes through it. 
Otherwise, if λm,l /∈ R, then ε∗−1 does not directly hit the pole. However, since λm,l ∼ −(|m| +2l)−2 where 
(|m| + 2l)−2 are real, Im(λm,l) is very small for large l. Hence, as ε∗−1 moves close to −Re(λm,l), it comes 
close to the pole. Therefore, Wmm grows from a comparably small value very rapidly to a complex value of 
very large modulus, and then drops back to a small value after passing through −Re(λm,l). The behavior 
of Wmm is consequently very oscillatory as ε∗ grows. Moreover, from (4.48) we have for a fixed pair of m, l
that

αm,l

ε∗−1 + λm,l
→ −2J2

m(R) (4.49)

as ε∗ → ∞, and therefore it is clear that there is no hope on any convergence behavior of Wmm as ε∗ grows 
to infinity.

Furthermore, from (4.31) that the asymptotic λm,l ∼ −(|m| + 2l)−2 holds and the limit comparison test, 
we have for a fixed ε∗ > −2 Re

(
λ−1
m,N(m)

)
that

|Wnm(D, ε∗)| ≤ δnm

(
Cm + C ′

m

d(−ε∗−1, σ(K̃(1)
m ))

J2
m(R)

∞∑
l=0

|λm,l|
)

(4.50)

≤ δnm

(
Cm + C ′

m

d(−ε∗−1, σ(K̃(1)
m ))

R|m|+|n|

|m||m||n||n|

)
. (4.51)
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Corollary 4.8. Let D = B(0, R). For all m ∈ Z\{0}, there exist constants N(m) ∈ N and Ci,m, i = 1, 2 such 

that, for any given contrast value ε∗ > −2 Re
(
λ−1
m,N(m)

)
, the scattering coefficient Wnm(D, ε∗) satisfies the 

following estimate for all n ∈ Z,

|Wnm(D, ε∗)| ≤ δnm

(
C1,m + C2,m

d(−ε∗−1, σ(K̃(1)
m ))

R|m|+|n|

|m||m||n||n|

)
. (4.52)

This clearly improves the estimate (2.37).

4.3.2. Tail behavior of the series representation of C(ε∗, n, m)
We now focus on the behaviors of the coefficients C(ε∗, n, m), which will help us to understand the 

phenomenon of super-resolution. We first focus on the case when n, m ∈ N. We recall the expression of the 
coefficient C(ε∗, n, m) in (3.27):

C(ε∗, n,m) := ε∗−1
[(

ε∗−1 + K̃(1)
m

)−1
[Jm]

]
(R)
[(

ε∗−1 + K̃(1)
n

)−1
[Jn]
]

(R) .

It remains to study the term 
(
ε∗−1 + K̃

(1)
m

)−1
[Jm](R). From the previous subsection, the geometric mul-

tiplicities of all the eigenvalues of K̃(1)
m are Nm

λ = 1, and the algebraic multiplicities of eigenvalues λm,l of 
K̃

(1)
m are also 1 for l > N2(m) (see Theorem 4.7). Together with the regularity of Jm, we readily obtain as 

in the previous subsection that

C(ε∗, n,m) = ε∗−1(s1,n(ε∗) + s2,n(ε∗))(s1,m(ε∗) + s2,m(ε∗)), (4.53)

where the sums si,m(ε∗), (i = 1, 2) are defined by

s1,m(ε∗) :=
N2(m)∑
l=0

(em,l(R))T [Jm,ε∗−1+λm,l
]−1( Jm(r) )em,l,L2((0,R),r dr), (4.54)

s2,m(ε∗) :=
∞∑

l=N2(m)+1

βm,l

ε∗−1 + λm,l
(4.55)

with the coefficients βm,l being given for all m, l by

βm,l := (Jm(r) )em,l,L2((0,R),r dr)Jm

(√
1 − 1

λm,l
R

)
. (4.56)

Similarly to the previous subsection, for any ε∗ ≥ −2 Re
(
λ−1
m,N2(m)

)
, we have |s1,m(ε∗)| < Cm for some 

constant Cm. Therefore, we can study the behavior of (4.53) for large ε∗ by investigating the limiting 
behavior of βm,l in the series s2,m(ε∗).

Substituting (4.22), (4.26) and (4.28) into (4.20), we readily derive

Jm

(√
1 − 1

λm,l
R

)/
(−1)l i4λm,la

1/2
m,lH

(1)
m (R)Jm(R)

√
2R
π

→ 1 as l → ∞ . (4.57)

Together with (4.41) and (4.42), we conclude that
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βm,l

/
i

2
√
Rλm,lJ

2
m(R)H(1)

m (R) → −1 as l → ∞ . (4.58)

Combining the above results with (2.32) and (2.33), we obtain the following decomposition of C(ε∗, n, m).

Theorem 4.9. Let D = B(0, R) be a circular domain. For all p ∈ Z\{0}, there exist constants N(p) ∈ N and 

Cp > 0 such that, for any n, m ∈ Z\{0} and any contrast value ε∗ > −2 max
{
Re
(
λ−1
n,N(n)

)
,Re
(
λ−1
m,N(m)

)}
, 

the coefficient C(ε∗, n, m) (3.27) admits the following decomposition:

C(ε∗, n,m) = ε∗−1(s1,n(ε∗) + s2,n(ε∗))(s1,m(ε∗) + s2,m(ε∗)) . (4.59)

For all p ∈ Z\{0}, s1,p(ε∗) satisfies the uniform bound

|s1,p(ε∗)| < Cp , (4.60)

whereas s2,p(ε∗) is given by

s2,p(ε∗) =
∞∑

l=N2(p)+1

βp,l

ε∗−1 + λp,l
, (4.61)

where the coefficients βp,l have the following limiting behavior

βp,l

/
i

2
√
Rλp,lJ

2
p (R)H(1)

p (R) → −1 as l → ∞ . (4.62)

Similarly to the previous subsection, the aforementioned decomposition of C(ε∗, n, m) clearly illustrates 
the behavior of C(ε∗, n, m) as ε∗ grows and ε∗−1 passes through the values −Re(λp,l) ∼ (|p| + 2l)−2 with 
p = n, m. If λp,l ∈ R, ε∗−1 directly hits the pole. Therefore C(ε∗, n, m) first grows from a finite value 
rapidly to a directional complex infinity ∞eiθ for some θ, then back from −∞eiθ to a finite value after 
passing through it. Otherwise if λp,l /∈ R and when l is large, ε∗−1 does not pass through the pole, but 
comes very close to it. Hence, C(ε∗, n, m) grows rapidly from a considerably small value to a complex value 
of very large modulus, then drops to a small value after passing through −Re(λp,l). Moreover, for a fixed 
pair of p, l, we have

βp,l

ε∗−1 + λp,l
→ − i

2
√
RJ2

p (R)H(1)
p (R) (4.63)

as ε∗ → ∞. Therefore, we can see that C(ε∗, n, m) has very oscillatory behavior as ε∗ grows.

4.4. The super-resolution phenomenon

Although C(ε∗, n, m) is very oscillatory as ε∗ grows, the aforementioned behavior and series decomposi-
tion of C(ε∗, n, m) gives a clear explanation of the super-resolution phenomenon for high-contrast inclusions. 
It is because, what we have actually proved is that, in the shape derivative of the scattering coefficients of a 
circular domain, there are simple poles corresponding to the complex resonant states, and therefore peaks 
at the real parts of these resonances. Hence, as the material contrast ε∗ increases to infinity and is such 
that it hits the real part of a resonance, the sensitivity in the scattering coefficients becomes very large and 
super-resolution for imaging occurs.
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To put it more accurately, let us recall (3.26). Suppose D = B(0, R), then for any δ-perturbation of D, 
Dδ, along the variational direction h ∈ C1(∂D), we have

Wnm(Dδ, ε∗) −Wnm(D, ε∗) = δ C(ε∗, n,m)Fθ [h] (n−m) + O(δ2) .

As one might recall from (2.28), Wnm(Dδ, ε∗) always decays exponentially as |n|, |m| increase. Hence, it is 
always of exponential ill-posedness to recover the higher order Fourier modes of the perturbation h. The 
inversion process to recover the k-th Fourier mode Fθ [h] (k) becomes less ill-posed if C(ε∗, n, m) is large 
for some n, m ∈ Z such that k = n − m. This not only makes the respective scattering coefficients more 
apparent than the others, but also lowers the condition number of the inverse process to reconstruct the 
respective Fourier mode. From the analysis in the previous subsection, this can only be made possible when 
ε∗−1 comes close to −Re(λp,l) for some p = n, m and for some l ∈ N.

Now, suppose ε∗ is close to the following resonant value 
(
Kπ
2R − π

4R
)2 where K ∈ N is large. Then, from 

the fact that the eigenvalues λp,l of the operators K̃(1)
p follow the asymptotics:

−λ−1
p,l ∼

(
π(|p| + 2l)

2R − π

4R

)2

, (4.64)

we see that ε∗−1 is close to −Re(λ−1
p,l(p)) for all p ∈ Z such that |p| +2 l(p) = K for some l(p) ∈ N. Therefore, 

ε∗−1 comes close to −Re(λ−1
K,0), −Re(λ−1

K−2,1), −Re(λ−1
K−4,2), . . . , −Re(λ−1

K−2[K2 ],[K2 ]) simultaneously where [·]
is the floor function. This in turn boosts up the magnitudes of all the terms βp,l(p)

ε∗−1+λp,l(p)
whenever p is of the 

form p = −K + 2s, s = 0, 2, . . . , K. These terms dominate the series s2,p(ε∗), hence we obtain the following 
approximations of s2,p(ε∗) for all p = −K + 2s, s = 0, 2, . . . , K:

s2,p(ε∗) ≈ − i

2
√
RJ2

p (R)H(1)
p (R) (K − 0.5)−2

4−1π2R−2ε∗−1 − (K − 0.5)−2 .

Now we see from Theorem 4.9 that the coefficients C(ε∗, n, m) have the following approximations for n, m ∈
Z when ε∗ is very close to the resonant values 

(
Kπ
2R − π

4R
)2 for large K:

C(ε∗, n,m)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

≈ Mn,m,R (K − 0.5)−6 (4−1π2R−2ε∗−1 − (K − 0.5)−2)−2

if both of n,m have the form −K + 2s, s = 0, 2, . . . ,K ;
≈ Mn,m,R (K − 0.5)−4 (4−1π2R−2ε∗−1 − (K − 0.5)−2)−1

if only one of n,m has the form −K + 2s, s = 0, 2, . . . ,K ;
is very small otherwise,

where Mn,m,R are some constants depending only on n, m and R. Here, the term (4−1π2R−2ε∗−1 − (K −
0.5)−2)−1 is very large, and makes the Fourier coefficients Fθ [h] (n −m) visible for n, m ∈ {−K + 2s : s =
1, 2, . . . , K} for accurate classification of the shapes. The above mechanism is possible only when ε∗ increases 
up to one of the resonant values 

(
Kπ
2R − π

4R
)2 when K is large. This explains the increasing likelihood of 

obtaining super-resolution as ε∗ increases.
Now, for a given ε∗, consider the following bounded linear map over the space l2±(C) of two-sided sequences 

(al)∞l=−∞ such that 
∑∞

l=−∞ a2
l < ∞,

A(ε∗) : l2±(C) → l2±(C) ⊗ l2±(C)

(al)∞l=−∞ → (C(ε∗, n,m) an−m)∞ . (4.65)
n,m=−∞
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By Theorem 3.3, we know the shape derivative of (Wnm(D, ε∗))∞n,m=−∞ in the variational direction h is 
given by

DW (D, ε∗)[h] = A(ε∗)Fθ [h] . (4.66)

Hence, we can conclude that the least-squared map

[A(ε∗)]∗[A(ε∗)] : l2±(C) → l2±(C)

(al)∞l=−∞ →
( ∑

n−m=l

|C(ε∗, n,m)|2 al

)∞

l=−∞

(4.67)

is a diagonal operator, and the l-th singular value sl(A) is of the form

sl(A) =
√ ∑

n−m=l

|C(ε∗, n,m)|2 . (4.68)

Therefore, from the above analysis on C(ε∗, n, m) when ε∗ is close to the resonant values 
(
Kπ
2R − π

4R
)2, we 

can observe that the singular values sl become large and comparable to each other, making the inversion 
of many Fourier modes well-conditioned. This implies a much higher resolution of the modes of h, and also 
for reconstructing the geometry of Dδ in the linearized case. This provides a good understanding towards 
the recently observed phenomenon of super-resolution in the physics and engineering communities.

5. Numerical experiments

In this section, we present some numerical experiments on the behaviors of the scattering coefficients for 
some domains as the contrast ε∗ grows, and numerically illustrate the phenomenon of super-resolution.

In the following 2 examples, we consider an infinite domain of homogeneous background medium with 
its material coefficient being 1. An inclusion Dδ is then introduced as a perturbation of a circular domain 
D = B(0, R) for some R > 0 and δ > 0 lying inside the homogeneous background medium, with its contrast 
chosen to be ε∗ = a2

m,l/R
2 − 1 running over all m, l such that am,l ≤ 18.901. The exact values of the zeros 

of Bessel functions are found in [27].
In order to generate the far-field data for the forward problem and the observed scattering coefficients, 

we use the SIES-master package developed by H. Wang [28].
The forward problem is solved by computing the solutions (φm, ψm) of (2.8) for |m| ≤ 25 using rectangular 

quadrature rule with mesh-size s/1024 along the boundary of the target, where s denotes the length of the 
inclusion boundary. The scattering coefficients of Dδ of orders (n, m) for |n|, |m| ≤ 25 are then calculated 
as the Fourier transform of the far-field data.

In order to test the robustness of the super-resolution phenomenon, we introduce some multiplicative 
random noise in the scattering coefficients in the form:

W γ
nm(Dδ, ε∗) = Wnm(Dδ, ε∗) (1 + γ(η1 + iη2)) , (5.1)

where ηi, i = 1, 2, are uniformly distributed between [−1, 1] and γ refers to the relative noise level. In both 
examples below, we always set the noise level to be γ = 5%.

Since the purpose of our numerical experiments is to illustrate the phenomenon of super-resolution as 
ε∗ increases, we assume that both R and ε∗ are known and use the following regularized inversion method 
suggested from the linearized problem (3.26) to recover the k-th Fourier mode for |k| ≤ 50 from the observed 
noisy scattering coefficients W γ

nm(Dδ, ε∗), |n|, |m| ≤ 25:
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Fig. 3. Inclusion shape in Example 1. Left: shape of the domain; Right: comparison of the domain with a circle.

δFθ [h]recovered (k) =
∑

n−m=k, |n|,|m|≤25

W γ
nm(Dδ, ε∗) −Wnm(D, ε∗)

C(ε∗, n,m) + α
, (5.2)

where α is a regularization parameter. The coefficients Wnm(D, ε∗) used in the inversion process are calcu-
lated using the same method as previously mentioned for the forward problem without adding noise, and 
the coefficients C(ε∗, n, m) are calculated by the following approximations

C(ε∗, n,m) ≈
(
Wnm(Dδ0(n−m), ε∗) −Wnm(D, ε∗)

)
/δ0 (5.3)

for |n|, |m| ≤ 25, where Dδ0(k) are defined as domains with the following boundaries for |k| ≤ 50,

∂Dδ0(k) := {x̃ = R(1 + δ0e
ikθ) : θ ∈ (0, 2π]} (5.4)

with δ0 chosen to be δ0 = 0.1.

Example 1. As a toy example, we first consider a flori-form shape Dδ described by the following parametric 
form (with δ = 0.1):

r = 0.3(1 + δ cos(3θ) + 2δ cos(6θ) + 4δ cos(9θ)) , θ ∈ (0, 2π] , (5.5)

which is a perturbation of the domain D := B(0, 0.3); see Fig. 3 (left) for the domain and Fig. 3 (right) for 
the comparison between the domains Dδ and D.

The relative magnitudes of the scattering coefficients max|m−n|=k |Wnm(Dδ, ε∗)|/ maxm
=n |Wnm(Dδ, ε∗)|
are plotted for k = 6, 9 in Fig. 4.

From Fig. 4, we can clearly observe that, as ε∗ grows, the relative magnitude of the scattering coefficient 
corresponding to the ±k-th Fourier mode grows from a smaller magnitude to larger magnitude, and the 
peaks become apparent when ε∗ hits the respective zeros of the Bessel functions.

From the relative magnitudes shown in the above figures, we observe that the off-diagonal scattering co-
efficients are more apparent and are therefore best conditioned for inversion when ε∗ = 1971.2481, 3627.456. 
The scattering coefficients of the respective contrasts are plotted in Fig. 5 (left), together with ε∗ = 63.2669
corresponding to the first zero of J0 as a comparison.

We notice from Fig. 6 that the scattering coefficients corresponding to higher Fourier modes become 
more apparent as ε∗ increases. We then apply the aforementioned inversion process, with the regularization 
parameter chosen as α = 1 × 10−8. The magnitudes of the recovered Fourier modes and the reconstructed 
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Fig. 4. Relative magnitudes of the scattering coefficients in Example 1. Left: the fraction of max|m−n|=6{|Wnm(Dδ, ε∗)|}/
maxm �=n{|Wnm(Dδ, ε∗)|}, Right: the fraction of max|m−n|=9{|Wnm(Dδ, ε∗)|}/ maxm �=n{|Wnm(Dδ, ε∗)|}.

Fig. 5. Illustration of super-resolution in Example 1: magnitude of scattering coefficients, |Wnm(Dδ, ε∗)| where −10 ≤ m, n ≤ 10. 
Left: ε∗ = 63.2669; right: ε∗ = 1971.2481; bottom: ε∗ = 3627.456.

domains are shown in Figs. 6 and 7, respectively. We can clearly see that the fine features are more and 
more apparent as ε∗ grows along the specific contrasts that we choose. Notice also that the fine features are 
of a magnitude smaller than 0.4, which is much smaller than half of the operating wavelength, π.
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Fig. 6. Illustration of super-resolution in Example 1: magnitude of recovered Fourier coefficients, Fθ [h]recovered (k), −10 ≤ k ≤ 10. 
Left: ε∗ = 63.2669; right: ε∗ = 1971.2481; bottom: ε∗ = 3627.456.

In fact, with fine features are of a magnitude smaller than 0.4 ≈ 0, 1π, we do not expect to recover any 
of these feature with incidence field of wavelength 2π. The original domain has a shape with boundary 
perturbation consisting of 3 Fourier modes, i.e. k = 3, 6, 9. As we expected from exponential ill-posedness, 
we do not usually expect to recover the high Fourier modes in the perturbation, especially for k = 9 in 
normal situation. However in our experiment, we can see that as the contrast increases and hits some of 
the values ε∗ = a2

m,l/R
2 − 1, the higher Fourier modes becomes more apparent. In particular, as seen from 

Figs. 6 and 7, with ε∗ = 63.2669, only the 3-th Fourier mode is present and the magnitude overshoots, at 
ε∗ = 1971.2481, the 6-th Fourier mode comes out, and when ε∗ = 3627.456, even the 9-th Fourier mode 
becomes notable. We cannot expect the recovered magnitude of the respective Fourier modes to be exact 
considering the severe exponential ill-posed-ness nature, the long wave-length of the incidence as well as 
noise added. However, the very fact that even the 9-th Fourier modes becomes notable when it represents 
features of only 1/20 of the wavelength of the incidence is very exciting, and confirms the super-resolution 
phenomenon observed in experiments.

Example 2. We try the following right-angled isosceles triangle Dδ, which is a perturbation of the domain 
D := B(0, 0.2); see Fig. 8 (left) for the domain and Fig. 8 (right) the comparison between the domains Dδ

and D. This case is substantially harder, since the perturbation h consists of many Fourier modes and is 
no longer smooth.
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Fig. 7. Illustration of super-resolution in Example 1: exact and recovered domains. Left top: exact domain. Right top: ε∗ = 63.2669; 
left bottom: ε∗ = 1971.2481; right bottom: ε∗ = 3627.456.

Fig. 8. Inclusion shape in Example 2. Left: shape of the domain; Right: comparison of the domain with a circle.

The relative magnitudes of the scattering coefficients max|m−n|=k |Wnm(Dδ, ε∗)|/ maxm
=n |Wnm(Dδ, ε∗)|
are plotted for k = 1, 2, . . . , 6, in Fig. 9. From this figure, we can see that the relative magnitude of the 
scattering coefficient corresponding to the ±k-th Fourier mode comes out more often when ε∗ becomes large.

We observe from the relative magnitudes shown in the above figures that the scattering coefficients are 
best-conditioned for inversion when ε∗ = 5237.1406. The scattering coefficients of the respective contrast are 
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Fig. 9. Relative magnitudes of the scattering coefficients in Example 2. The fraction of max|m−n|=k{|Wnm(Dδ, ε∗)|}/
maxm �=n{|Wnm(Dδ, ε∗)|} for k = 1, ..., 6 from left to right and from top to bottom.

then plotted in Fig. 10, together with ε∗ = 143.6006 corresponding to the first zero of J0 as a comparison. 
The aforementioned inversion process is then applied with regularization parameter chosen as α = 1 ×10−6. 
Figs. 11 and 12 respectively show the magnitude of the recovered Fourier modes and the reconstructed 
domains. We can see that the shape obtained from ε∗ = 143.6006 provides us an understanding that the 
shape is with three angles, and the angle size and dimensions fit in the exact domain. However, the shape 
consists of three large troughs on the three edges of the triangle. The shape obtained from ε∗ = 5237.1406
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Fig. 10. Illustration of super-resolution in Example 2: magnitude of scattering coefficients, |Wnm(Dδ, ε∗)| where −10 ≤ m, n ≤ 10. 
Left: ε∗ = 143.6006; right: ε∗ = 5237.1406.

Fig. 11. Illustration of super-resolution in Example 2: magnitude of recovered Fourier coefficients, Fθ [h]recovered (k), −10 ≤ k ≤ 10. 
Left: ε∗ = 143.6006; right: ε∗ = 5237.1406.

contains more high Fourier modes are present; now that the right angle is better approximated as well 
as less troughs present compared with that from ε∗ = 143.6006, but the two sharper angles becomes less 
apparent because the higher Fourier modes becomes more dominant. Moreover, the scattering coefficients 
of ε∗ = 5237.1406 are large enough for accurate classification.

6. Concluding remarks

In this paper, we have for the first time established a mathematical theory about super-resolution in the 
context of imaging high-contrast inclusions. We have found both analytically and numerically that at some 
high resonant values of the contrast, super-resolution in reconstructing the shapes of the inclusions can be 
achieved.

Our approach opens a new avenue for mathematical imaging and focusing in resonant media. Many 
challenging problems are still to be solved in this direction. It would be very interesting to generalize our 
approach to justify the fact that super-resolution can be achieved using structured light illuminations [29,
30]. It is also a very challenging yet important problem to extend our theory to a general shape to provide an 
explanation of super-resolution for non-circular domains. Furthermore, it would be both mathematically and 
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Fig. 12. Illustration of super-resolution in Example 2: exact and recovered domains. Left: exact domain. Right: ε∗ = 143.6006; 
bottom: ε∗ = 5237.1406.

physically very interesting to develop our approach for electromagnetic and elastic wave imaging problems 
of high-contrast inclusions.
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