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We present a novel numerical method to the time-harmonic inverse medium scattering
problem of recovering the refractive index from noisy near-field scattered data. The
approach consists of two stages, one pruning step of detecting the scatterer support, and
one resolution enhancing step with nonsmooth mixed regularization. The first step is
strictly direct and of sampling type, and it faithfully detects the scatterer support. The sec-
ond step is an innovative application of nonsmooth mixed regularization, and it accurately
resolves the scatterer size as well as intensities. The nonsmooth model can be efficiently
solved by a semi-smooth Newton-type method. Numerical results for two- and three-
dimensional examples indicate that the new approach is accurate, computationally effi-
cient, and robust with respect to data noise.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

In this work we study the inverse medium scattering problem (IMSP) of determining the refractive index from near-field
measurements for time-harmonic wave propagation [8]. Consider a homogeneous background space Rd (d ¼ 2;3) that con-
tains some inhomogeneous media occupying a bounded domain X. Let ui ¼ eikx�d be an incident plane wave, with the incident
direction d 2 Sd�1 and the wavenumber k. Then the total field u induced by the inhomogeneous medium scatterers satisfies
the following Helmholtz equation [8]
Duþ k2n2ðxÞu ¼ 0; ð1Þ
where the function nðxÞ is the refractive index, i.e., the ratio of the wave speed in the homogeneous background to
that in the concerned medium at location x. The model (1) describes not only time-harmonic acoustic wave
propagation, but also electromagnetic wave propagation in either the transverse magnetic or transverse electric modes
[17, Appendix].

Next we let g ¼ ðn2 � 1Þk2, which combines the relative refractive index n2 � 1 with the wavenumber k. The coefficient g
characterizes the material properties of the inhomogeneity and is supported in the scatterer X � Rd. We denote by I ¼ gu the
induced current, and by Gðx; yÞ the fundamental solution to the Helmholtz equation in the homogeneous background, i.e.,
Gðx; yÞ ¼
i
4 H1

0ðkjx� yjÞ; d ¼ 2;
1

4p
ei kjx�yj

jx�yj ; d ¼ 3;

(
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where the function H1
0 refers to Hankel function of the first kind and zeroth-order. Then we can express the total field u as

follows [8]
u ¼ ui þ
Z

X
Gðx; yÞIðyÞdy: ð2Þ
By multiplying both sides of Eq. (2) by g, we arrive at the following integral equation of the second kind for the induced cur-
rent I
IðxÞ ¼ gui þ g
Z

X
Gðx; yÞIðyÞdy: ð3Þ
The reformulation (3) is numerically more amenable than the model (1) since all computation is restricted to the scatterer
support X, which is much smaller than the whole space Rd . Hence, the complexity is also very low. We will approximate the
solution to (3) by the mid-point rule (cf. Appendix A).

Next we let us ¼ u� ui be the scattered field, which is measured on a closed curve/surface C enclosing the scatterers X.
Then the IMSP is to retrieve the refractive index n2 or equivalently the coefficient g from (possibly very noisy) measurements
of the scattered field us, corresponding to one or several incident fields. In the literature, a number of reconstruction tech-
niques for the IMSP have been developed. These methods can be roughly divided into two groups: support detection and
coefficient estimate. The former group (including MUSIC [10,6], linear sampling method [7,3], factorization method [21]
and orthogonality sampling [23] etc.) usually is of sampling type, and aims at detecting the scatterer support efficiently.
The latter group generally relies on the idea of regularization (including Tikhonov regularization [2,24], iterative regulariza-
tion method [13,1,14], contrast source inversion [28], subspace regularization [5]), and aims at retrieving a distributed esti-
mate of the refractive index function. These approaches generally are more expensive, but their results may profile the
inhomogeneities more precisely.

In this paper, we shall develop a novel two-stage numerical method for the IMSP. The first step employs a direct sampling
method (DSM), recently developed in [17], to detect the scatterer support X stably and accurately. It is based on the follow-
ing index function
UðxpÞ ¼
jhus;Gð�; xpÞiL2ðCÞj
kuskL2ðCÞkGð�; xpÞkL2ðCÞ

8xp 2 eX; ð4Þ
where eX � X is a sampling domain. Numerically, the method is strictly direct and does not incur any linear matrix opera-
tions. The method can detect reliably the scatterer support X even in the presence of a large amount of data noises [17]. In
particular, a (much smaller) computational domain D � eX can be determined from the index U, and furthermore the restric-
tion UjD (up to a multiplicative constant) may serve as a first approximation to the unknown coefficient g.

The second step enhances the image resolution by a novel application of (nonsmooth) mixed regularization. With the
approximation UjD (up to a multiplicative constant) from the sampling step at hand, Eq. (3) gives an approximate induced
current bI as well as an approximate total field bu. Then we seek a regularized solution g to the linearized scattering equation
Z

D
Gðx; yÞbuðyÞgðyÞdy ¼ usðxÞ; ð5Þ
by an innovative regularization incorporating both L1 and H1 penalties. The L1 penalty promotes the sparsity of the solution
[26,4,11]. However, the estimate tends to be very spiky when the L1 penalty is used alone. Meanwhile, the conventional H1

penalty can only yield globally smooth but often overly diffusive profiles. In this work we shall propose a novel mixed model
that consists of a suitable combination of the L1 and H1 penalties. As we will see below, this mixed model can produce well
clustered and yet distributed solutions, thereby overcoming the aforementioned drawbacks of the models with one single
regularization. It is the mixed model that enables us to obtain a clear and accurate reconstruction of the inclusions: The
homogeneous background is vividly separated from the scatterers and both support and intensity of the inclusions are accu-
rately resolved.

Numerically, the L1 penalty term gives rise to a nonsmooth optimality condition, which renders its direct numerical treat-
ment inconvenient. Fortunately, by using complementarity functions, the optimality condition reduces to a coupled nonlin-
ear system for the sought-for coefficient g and the Lagrangian multiplier, which is amenable to efficient numerical solution.
We shall develop an efficient and stable semi-smooth Newton solver for the model via a primal–dual active-set strategy [19].
Overall, the direct sampling method is very cheap and reduces the computational domain D in the mixed model (cf. (5)) sig-
nificantly, which in turn makes the semi-smooth Newton method for the mixed model very efficient. Hence, the proposed
inverse scattering method is computationally very efficient.

The rest of the paper is structured as follows. In Section 2, we recall a novel direct sampling method for screening the
scatterer support X, and derive thereby an initial guess to the coefficient g. Then in Section 3 we develop an enhancement
technique based on the idea of mixed regularization, and an efficient semi-smooth Newton solver. Finally, we present
numerical results for two- and three-dimensional examples to demonstrate the accuracy and efficiency of the proposed in-
verse scattering method.
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2. A direct sampling method

In this section, we describe a direct sampling method (DSM) to determine the shape of the scatterers, recently derived in
[17]. We only briefly recall the derivation, but refer the readers to [17] for more details. Consider a circular curve C (d ¼ 2) or
a spherical surface C (d ¼ 3). Let Gðx; xpÞ be the fundamental solution in the homogeneous background. Then using the def-
initions of the fundamental solutions Gðx; xpÞ and Gðx; xqÞ and Green’s second identity, we deduce
2iIðGðxp; xqÞÞ ¼
Z

C
Gðx; xqÞ

@Gðx; xpÞ
@n

� Gðx; xpÞ
@Gðx; xqÞ

@n

" #
ds; ð6Þ
where the points xp and xq lie within the domain XC, i.e., the domain enclosed by the boundary C.
Next we approximate the right hand side of identity (6) by means of the Sommerfeld radiation condition for the Helm-

holtz equation, i.e.,
@Gðx; xpÞ
@n

¼ ikGðx; xpÞ þ h:o:t::
Consequently, we arrive at the following approximate relation
Z
C

Gðx; xpÞGðx; xqÞds � k�1
IðGðxp; xqÞÞ;
which is valid if the points xp and xq are not close to the boundary C.
Now, we consider a sampling domain eX enclosing the scatterer support X. Upon dividing eX into small elements fsjg, we

may approximate the integral in the scattering relation (2) by
usðxÞ ¼
Z
eX Gðx; yÞIðyÞdy �

X
j

wjGðx; yjÞ; ð7Þ
where yj 2 sj, and the weight wj is given by jsjjIj with jsjj being the area/volume of the jth element sj. The relation (7) is plau-
sible if the induced current I is regular in each element and the elements fsjg are sufficiently fine. It also admits a nice phys-
ical interpretation: the scattered field us at any fixed point x 2 C is a weighted average of that due to point scatterers located
at fyjg.

Combining the preceding two relations yields
Z
C

usðxÞGðx; xpÞds � k�1
X

j

wjIðGðyj; xpÞÞ: ð8Þ
Hence, if the sampling point xp is close to some point scatterer yj, i.e., yj 2 X, then Gðyj; xpÞ is nearly singular and takes a very
large value, contributing significantly to the sum in (8). Conversely, if the point xp is far away from all the physical point scat-
terers, then the sum will be very small due to the decay property of the fundamental solution Gðx; yÞ.

These facts lead us to the index function UðxpÞ in (4) for any xp in the sampling region eX. In practice, if a point xp satisfies
UðxpÞ � 1, then it likely lies within the support; whereas if UðxpÞ � 0, then the point xp most probably lies outside the sup-

port. Hence it serves as an indicator of the scatterer support. Consequently, we can determine a subdomain D � eX as one

approximate scatterer support. The subdomain D may be chosen as D ¼ fx 2 eX : UðxÞP lmaxx2 eXUðxÞg with l being a suit-
able cut-off value, i.e., the union of elements whose index values are not less than a specified fraction of the largest index

value over the sampling region eX. This choice will be adopted in our numerical experiments.
Moreover, the restriction UjD (up to a multiplicative constant cU) of the index U to the domain D may be regarded as a first

approximation to the sought-for coefficient g, where the constant cU is to compensate the fact that the index U is normalized
with a maximum of unity irrespective of the wavenumber k. The constant cU may be determined via a standard least-squares
procedure, based on either an approximate forward scattering model (i.e., the map from the coefficient g to the scattered
field us), e.g., Born approximation, or the full nonlinear scattering model defined by (1). In practice, a rough estimate of
its value would be sufficient. We note that this step involves only one scalar unknown, i.e., cU, hence it is computationally
cheap and numerically stable.

This method is of sampling type (cf. [22] for an overview of existing sampling methods), and its flavor closely resembles
the well established multiple signal classification [25,6,10] and linear sampling method [7,21]. However, unlike these existing
techniques, it works with a few (e.g., one or two) incident waves, is highly tolerant with respect to noise, and involves only
computing inner products with fundamental solutions rather than expensive matrix operations as in the other two tech-
niques. The robustness of the DSM is attributed to the fact that the (high-frequency) noise is roughly orthogonal to the
(smooth) fundamental solutions.

Lastly, we briefly comment on the connections and differences between the DSM and the orthogonality sampling (OS)
recently proposed by Potthast [23] (cf. also [12] for some theoretical justifications). The indicator function in the OS involves
computing the inner products of the far-field data with plane waves over the unit sphere [23, Eq. (1)]. Therefore, the two
methods share some similar features. Nonetheless, there are important differences in their goal, motivation and derivation.
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First, the OS was developed for detecting the location of the sound-soft/sound-hard obstacles, and motivated by an approx-
imate far-field relation [23, eq. (13)]. In contrast, the DSM is based on the index function (4), which is essentially motivated
by the important approximation (8) and the decay behavior of the fundamental solution in the homogeneous background
medium. Second, the OS was developed for far-field data, whereas the DSM was derived for near-field data. Third, the OS
was derived under the major assumption that the scatterers are small relative to the wavelength. However, the DSM was
derived without any assumption, except the physical Sommerfeld radiation condition.

3. Mixed regularization

The DSM in Section 2 extracts an accurate estimate D to the scatterer support X as well as a reasonable initial guess to the
medium coefficient g, i.e., cUUjD. In this part we attempt to refine the approximation cUUjD by exploiting the idea of non-
smooth mixed regularization. Given the approximation cUUjD, we can compute the induced current bI via (3) for each incident
wave and the corresponding total field bu on the domain D from (2). By substituting the approximation bu into Eq. (2), we
arrive at the following linearized problem of Lippmann–Schwinger type
Z

D
Gðx; yÞbuðyÞgðyÞdy ¼ usðxÞ x 2 C:
It is expected to deliver a reasonable approximation to the genuine nonlinear model if the index cUUjD is not drastically dif-
ferent from the sought-for coefficient g. It is convenient to introduce a linear integral operator K : L2ðDÞ# L2ðCÞ defined by
ðKgÞðxÞ ¼
Z

D
Gðx; yÞbuðyÞgðyÞdy: ð9Þ
We observe that the kernel Gðx; yÞbuðyÞ is smooth due to the analyticity of the fundamental solution Gðx; yÞ away from the
singularity and standard Sobolev smoothness of the total field buðyÞ (following from elliptic regularity theory [8]). Hence, the
linear operator K : L2ðDÞ# L2ðCÞ is compact. As a consequence, the linearized problem (9) is ill-posed in the sense that small
perturbations in the data can lead to huge deviations in the solution, according to the classical inverse theory [27], which is
reminiscent of the severe ill-posedness of the IMSP, and its stable and accurate numerical solution calls for regularization
techniques.

We determine an enhanced estimate of the coefficient g from the linearized problem (9) by solving the following varia-
tional problem:
min
1
2

Z
C
jKg� usj2dsþ a

Z
D
jgjdxþ b

2

Z
D
jrgj2dx: ð10Þ
In comparison with more conventional regularization techniques, the most salient feature of the model (10) lies in two pen-
alty terms: it contains both the L1 penalty and the H1 penalty, which exert drastically different a priori knowledge of the
sought-for solution. The scalars a and b are regularization parameters controlling the strength of respective regularization.

This variational problem (10) allows us to determine a coefficient g which is distributed yet clustered, i.e., exhibiting a
clear groupwise sparsity structure in the canonical pixel basis. This a priori knowledge is plausible for localized inclu-
sions/inhomogeneities in a homogeneous background. The model (10) is derived from the following widely accepted obser-
vations. The L1 penalty promotes the sparsity of the solution [26,4,11], i.e., the solution is very much localized. Hence, the
estimated background is homogeneous. However, if the L1 penalty is used alone, the solution tends to be very spiky and
may miss numerous physically relevant pixels in the sought-for groups. That is, the desirable groupwise structure is not pre-
served. Meanwhile, the more conventional H1 penalty [27] yields a globally smooth profile, but the solution is often overly
diffusive. Consequently, the overall structure stands out clearly, but the retrieved background is very blurry, which may lead
to erroneous diagnosis of the number of the inclusions as well as their sizes. In order to promote simultaneously these dis-
tinct features of the sought-for coefficient, i.e., sparsely distributed groupwise structures in a homogeneous background, a
natural idea would be to combine the L1 penalty with the H1 penalty, in the hope of retaining the strengths of both models.
As we shall see below, the idea does work very well, and the model is very effective for enhancing the resolution of the esti-
mate to the coefficient g.

The general idea of mixed regularization, i.e., using multiple penalties, has proved very effective in promoting several dis-
tinct features simultaneously. This general idea has been pursued in the imaging community [18] previously. However, to
the best of our knowledge, the model (10) has not been explored in the literature, let alone its efficient and accurate numer-
ical treatment. A detailed mathematical analysis of the model (10) is beyond the scope of the present paper. We refer inter-
ested readers to [15] for some preliminary results on mixed regularization and to [20] for a related model (elastic-net).

To fully explore the potentials of the model (10), an efficient and accurate solver is required. We shall develop a semi-
smooth Newton type method, which allows extracting very detailed features of the solutions to the model (10). The starting
point of the algorithm is the necessary optimality condition of the variational problem (10), which reads
K�Kg� bDg� K�us 2 �a@wðgÞ; ð11Þ
where wðgÞ ¼ kgkL1 and the subdifferential @wðgÞ [19] is the set-valued signum function, which is defined pointwise as
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@wðgÞðxÞ ¼
1; if gðxÞ > 0;
½�1;1� if gðxÞ ¼ 0;
�1; if gðxÞ < 0:

8><>:

Due to the convexity of the functional, the relation (11) is also a sufficient condition. Hence it suffices to solve the inclu-

sion (11), for which there are several different ways, e.g., iterative soft shrinkage [9,29], augmented Lagrangian method/
alternating direction method or semi-smooth Newton method [19]. We shall develop a (new) semi-smooth Newton method
to efficiently solve the inclusion (11). To this end, we recall the celebrated complementarity condition [19]
k ¼ kþ cg
maxð1; jkþ cgjÞ ð12Þ
for any c > 0, which will be fixed at a constant in the implementation, and k serves as a Lagrange multiplier. It can be directly
verified by pointwise inspection that the complementarity condition (12) is equivalent to the inclusion k 2 @wðgÞ (cf. [19]).
With the help of the complementarity condition (12), we arrive at the following equivalent nonlinear system in the primal
variable g and dual variable k:
K�Kg� bDg� K�us þ ak ¼ 0;
k� kþcg

maxð1;jkþcgjÞ ¼ 0:

(

Then we apply the semi-smooth Newton algorithm using a primal–dual active set strategy. The complete implementation

is listed in Algorithm 1. The technical details for deriving the crucial Newton step (Step 5) are deferred to Appendix B, which
involves damping and regularization. A natural choice of the stopping criterion at Step 6 is based on monitoring the change
of the active set A ¼ fx 2 D : jkþ cgj 6 1g: if the active sets for two consecutive iterations coincide, then we may terminate
the algorithm, cf. [19].

Algorithm 1: Primal–dual active set method

1: Initialize g0 and k0, and set c > 0.
2: for k ¼ 0; . . . ;K do

3: Set the active set Ak and inactive set Ik respectively by
Ak ¼ fx 2 D : jkk þ cgkj 6 1g;
I k ¼ fx 2 D : jkk þ cgkj > 1g:
4: Compute a and b by
a ¼ kk

maxðjkkj;1Þ
and b ¼ kk þ cgk

jkk þ cgkj
;

and set dk ¼ jkk þ cgkj and Fk ¼ abt .

5: Solve for ðgkþ1; kkþ1Þ from the system
K�Kgkþ1 � bDgkþ1 � K�us þ akkþ1 ¼ 0 on I k;

kkþ1 � c 1
dk�1
ðI � FkÞgkþ1 � kk

maxðjkk j;1Þ ¼ 0;

gkþ1 ¼ 0 on Ak:
6: Check the stopping criterion.
7: end for
8: output approximation gK .
The main computational effort of the algorithm lies in the Newton update at Step 5: each iteration requires solving a
(dense) linear system. We note that the dual variable k can be expressed in terms of the primal variable g and on the active
setA, the coefficient g vanishes identically. Thus in practice, we solve only a linear system for g on the inactive set I ¼ D n A.
An important feature of the algorithm is that the linear system becomes smaller and smaller and also less and less ill-con-
ditioned as the iteration proceeds, while the iterate captures more and more refined details of the inhomogeneous medium
regions. If the exact solution is indeed sparse (many zero entries), then the system size, i.e., jI j, usually shrinks quickly as the
iteration proceeds. The numerical experiments indicate that the convergence of the algorithm is rather steady and fast.

4. Numerical experiments

In this part, we present numerical results for several two- and three-dimensional examples to showcase the proposed
two-stage inverse scattering method, for both exact and noisy data. The wave number k is fixed at 2p, and the wavelength
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is set to k ¼ 1. The exact scattered field us is obtained by first solving the integral Eq. (3) for the induced current I and then
substituting the current I into the integral representation (2). Here the integral Eq. (3) is discretized by a mid-point rule; see
Appendix A for details. The noisy scattered data us

d are generated pointwise by the formula
Fig. 1.
first an
us
dðxÞ ¼ usðxÞ þ �fmax

x2C
jusðxÞj;
where � refers to the relative noise level, and both the real and imaginary parts of the noise f ¼ fðxÞ follow the standard
Gaussian distribution. The index U, its restriction UjD and the enhanced approximation g by the mixed model will be dis-
played. As was mentioned in Section 2, we choose the subdomain D (approximate scatterer support) based on the formula
D ¼ fx 2 eX : UðxÞP lmaxx2eXUðxÞg, where the cut-off value l is taken in the range ð0:5;0:7Þ. The choice of the cutoff value l
affects directly the size of the domain D, but does not cause much effects on the reconstructions. Unless otherwise specified,
the multiplicative constant cU is set to unity.

Like in any regularization technique, an appropriate choice of regularization parameters (a,b) in the mixed model (10) is
crucial for the success of the proposed inverse scattering method. There have been a number of choice rules [16] for one sin-
gle parameter, but very little is known about the mixed model. We shall choose the pair (a,b) in a trial and error manner,
which suffices our goal of illustrating the significant potentials of the mixed model for inverse scattering. In Algorithm 1,
the parameter c is set to 50, and both g0 and k0 are initialized to zero. The maximum number K of Newton iterations is
50. In all the experiments, the convergence of the algorithm is achieved within about 10 iterations. All the computations
were performed on MATLAB 7.12.0 (R2011a) on a dual-core desktop computer with 2 GB RAM.

4.1. Two-dimensional examples

Unless otherwise specified, one incident direction d is employed for two-dimensional problems, and it is fixed at 1ffiffi
2
p ð1;1ÞT.

We have experimented with various measurement surfaces (of different radii and geometries), and found that the results are
not sensitive to the choice of the measurement surface C as long as it is not too close to the physical scatterers. In the below,
the scattered field us is always measured at 30 points uniformly distributed on a circle of radius 5. The sampling domain eX is
fixed at ½�2;2�2, which is divided into a uniform mesh consisting of small squares of width h ¼ 0:01. The subdomain D for the
integral Eq. (9) is divided into a coarser uniform mesh consisting of small squares of width 0:02.

Our first example illustrates the method for two separate scatterers.

Example 1. We consider two separate square scatterers in the following two scenarios

(a) The scatterers are of width 0.2 and centered at ð�0:8;�0:7Þ and ð0:3; 0:9Þ, respectively, and the coefficient g in both
region is 1.

(b) The scatterers are of width 0.3 and centered at ð�0:25;0Þ and ð0:25;0Þ, respectively, and the coefficient g in the former
and latter is 1.5 and 1, respectively.
Numerical results for Example 1(a): (a) true scatterer, (b) index U, (c) index UjD (restriction to the subdomain D) and (d) sparse reconstruction. The
d second rows refer to exact data and the data with 20% noise, respectively.



Table 1
Regularization parameters (a,b) for the examples.

Example 1(a) 1(b) 2 3 4

� ¼ 0% (2.0e�6,1.5e�9) (8.0e�6,1.4e�8) (7.0e�6,1.0e�9) (1.0e�5,6.0e�9) (2.5e�9,4.0e�14)
� ¼ 20% (3.0e�6,2.0e�9) (8.5e�6,9.0e�9) (7.0e�6,5.0e�9) (3.0e�5,1.0e�8) (2.5e�9,5.0e�14)

Fig. 2. Numerical results for Example 1(b): (a) true scatterer, (b) index U, (c) index UjD (restriction to the subdomain D) and (d) sparse reconstruction. From
top to bottom, the rows refer to exact data, noisy data with 10% and 20%, respectively.
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The two scatterers in Example 1(a) are well apart from each other. The recovery of the scatterer locations by the index U
is quite satisfactory, especially upon noting that we have just used one incident wave. Two distinct scatterers are observed
for both exact data and the data with 20% noise, cf. Fig. 1(b). However, the magnitudes are inaccurate, and the estimate suf-
fers from spurious oscillations in the homogeneous background, due to the ill-posed nature of the IMSP and the oscillating
behavior of fundamental solutions. Nonetheless, two localized square subregions D (each of width 0:4) encompass the modes
of the index U, see Fig. 1(c), and may be taken as an approximate scatterer support. In Fig. 1(c), the entire sampling domain eX
is shown, and the two small squares represent the approximate support D. Outside of the domain D, the index UjD is set to
zero, i.e., identical with homogeneous background, and will not be updated during the enhancing step. The enhancing step is
initialized with UjD (i.e., with cU ¼ 1), and the results are shown in Fig. 1(d). The regularization parameters for getting the
reconstructions, which are determined in a trial-and-error manner, are presented in Table 1. The enhancement of the
approximation UD over the domain D is clear: the recovered background is now mostly homogeneous, and the magnitudes
and sizes of the recovered scatterers agree well with the exact ones. This shows clearly the significant potentials of the pro-
posed mixed regularization for inverse scattering problems. The numbers in Table 1 also shed valuable insights into the
mixed model (10): the value of the regularization parameter a is much larger than that of b. Hence, the L1 penalty plays
a predominant role in ensuring the sparsity of the solution, whereas the H1 penalty yields a locally smooth structure.

The two scatterers in Example 1(b) stay very close to each other, and thus it is rather challenging for precise numerical
reconstruction. The detection of the scatterer locations by the index U, see Fig. 2(b), is still very impressive. In particular, it
clearly distinguishes the two separate scatterers with their locations correctly retrieved, and this remains stable for data
with up to 20% noise. The mixed regularization is performed on a square D (of width 1) enclosing the two modes in the index
U, see Fig. 2(c). This choice of the inversion domain D allows possibly connecting of the modes. However, the enhancement



Fig. 3. Numerical results for Example 2: (a) true scatterer, (b) index U, (c) index UjD (restriction to the subdomain D) and (d) sparse reconstruction. The first
and second rows refer to exact data and the data with 20% noise, respectively.

Fig. 4. Numerical results for Example 3: (a) true scatterer, (b) index U, (c) index UjD (restriction to the subdomain D) and (d) sparse reconstruction. The first
and second rows refer to exact data and the data with 20% noise, respectively.
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step correctly recognizes two separate scatterers, with their magnitudes and sizes in excellent agreement with the exact
ones. Also the estimated background is very crispy. Surprisingly, the estimate deteriorates only slightly in that the right scat-
terer elongates a little bit towards the left scatterer as the noise level � increases from 0 to 20%. Although not presented, we
would like to note that for this particular example, the reconstructions are still reasonable for data with 30% noise. Hence the
proposed inverse scattering method is very robust with respect to the data noise.

Next we consider a ring-shaped scatterer.

Example 2. The scatterer is one ring-shaped square located at the origin, with the outer and inner side lengths being 0:6 and
0:4, respectively. The coefficient g of the scatterer is 1. Two incident directions d1 ¼ 1ffiffi

2
p ð1;1ÞT and d2 ¼ 1ffiffi

2
p ð1;�1ÞT are

considered.

Ring-shaped scatterer represents one of most challenging objects to recover, and it is highly nontrivial even with multiple
scattered field data sets, especially noting the ring has a small thickness. It has been observed that one single incident field is
insufficient to completely resolve the ring structure, and only some parts of the ring can be resolved, depending on the inci-
dent direction d [17]. Hence we employ two incident waves in the directions d1 ¼ 1ffiffi

2
p ð1;1ÞT and d2 ¼ 1ffiffi

2
p ð1;�1ÞT in order to

yield sufficient amount of information about the scatterer, and accordingly, the index function U is defined as follows



Fig. 5. Numerical results for Example 4 with exact data: (a) true scatter, (b) index U, (c) index UjD (restriction to the subdomain D) and (d) sparse
reconstruction. From the top to bottom: the cross sectional images at x2 ¼ 0:07;0:10;0:13;0:16;0:19, and 0.22, respectively.
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Fig. 6. Numerical results for Example 4 with 20% noise in the data: (a) true scatter, (b) index U, (c) index UjD (restriction to the subdomain D) and (d) sparse
reconstruction. From the top to bottom: the cross sectional images at x2 ¼ 0:07;0:10;0:13;0:16;0:19, and 0:22 respectively.
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UðxpÞ ¼ max
i
fUiðxpÞg 8xp 2 eX;
where the function Ui refers to the index for the ith data set. The numerical results with the exact data and 20% noise in the
data are shown in Fig. 3. With just two incident waves, the index U can provide a quite reasonable estimate of the ring shape.
Despite some small oscillations, the overall profile stands out clearly, and remains very stable for up to 20% noise in the data.
The enhancing step via mixed regularization provides a very crispy estimate of the ring structure: the recovered scatterer has
a clear ring structure, which agrees excellently with the exact one in terms of both magnitude and size. The presence of 20%

data noise causes visible deterioration to the reconstruction, see Fig. 3(d). Nonetheless, the enhanced reconstruction still
exhibits a clear ring shape, and it represents a very good approximation to the true scatterer upon noting the large amount
of data noise.

In the above two examples, the magnitude of the coefficient g is relatively small, and thus the normalized index UjD alone
can serve as a reasonable first estimate. The following example illustrates the approach for recovering a coefficient with large
intensity magnitudes.

Example 3. The example consists of two square scatterers of width 0:3, one centered at ð�0:25;0Þ and the other at ð0;25;0Þ,
respectively. The coefficient g in the former and the latter is 30 and 20, respectively.

The numerical results are shown in Fig. 4, where the multiplicative constant cU is determined by the least-squares meth-
od with a value 16:3 for both exact and noisy data. A comparison with Fig. 2 clearly indicates that the index functions U for
Examples 1(b) and 3 are almost identical for either the exact or the noisy data. Therefore, the direct sampling method is
capable of accurately detecting the support of medium scatterers with large magnitudes. With the approximation cUUD as
the first estimate to the coefficient g, the enhanced profile agrees excellently with the exact one: the background is clean,
the two scatterers are clearly separately from each other, and their magnitudes are quantitatively correct, thereby showing
clearly the feasibility of the proposed two-stage method.

4.2. Three-dimensional example

Our last example shows the feasibility of the method for three-dimensional problems.

Example 4. We consider two cubic scatterers of width 0:1 centered at ð0:35;0:15;0:15Þ and ð�0:35;0:15;0:15Þ, respectively.
One single incident field with direction d ¼ 1ffiffi

3
p ð1;1;1ÞT is used, and the coefficient g of the scatterers is taken to be 1.

The scattered field us is measured at 600 points uniformly distributed on the surface C of a cubic of width 10, (i.e., 10
points in each direction). To simulate the scattered field data, we take the sampling domain eX to be the cubic ½�1;1�3, which
is divided into a uniform mesh consisting of small cubes of width h ¼ 0:01. The inversion domain D for the integral Eq. (9) is
divided into a coarser mesh consisting of small cubes of width 0.03.

The numerical results for Example 4 with exact data are shown in Fig. 5(b), where each row represents a cross-sectional
image along the second coordinate axis x2. The scatterer support estimated by the index U agrees reasonably with the exact
one, and away from the boundary of the true scatterers, the magnitude of U decreases quickly. However, the reconstructed
profile is slightly diffusive in comparison with the exact one, which is reminiscent of the decay property of fundamental solu-
tions. The nonsmooth mixed regularization (10) is carried out on two cubic subregions (of width 0:36k), cf. Fig. 5(c). Like
before, a significant improvement in the resolution is observed: the sparse estimate is much more localized in comparison
with the index U, and also the magnitude is close to the exact one; see Fig. 5(d). The presence of 20% data noise does not
worsen much the index U and the sparse reconstruction, cf. Fig. 6. Hence the reconstruction algorithm is highly tolerant with
respect to data noise.

Lastly, we briefly comment on the computational efficiency of the overall inverse scattering procedure. The first step with
the index involves only computing inner products and is embarrassingly cheap and easily parallelized. The accuracy of the
support detection is quite satisfactory, and thus a large portion of the sampling domain eX can be pruned from inversion, i.e.,
jDj 	 jeXj. Hence, the enhancement via mixed regularization is also rather efficient.

5. Concluding remarks

We have presented a novel two-stage inverse scattering method for the inverse medium scattering problem of recovering
the refractive index from near-field scattered data. The efficiency and accuracy of the method stem from accurate support
detection by the sampling strategy and group sparsity-promoting of the mixed regularization technique. The former is com-
putationally very efficient, and reduces greatly the computational domain for the more expensive inversion via nonsmooth
mixed regularization, while the latter achieves an enhanced resolution with the magnitudes and sizes comparable with the
exact ones. The numerical results for two- and three-dimensional examples clearly confirm these observations.

These promising experimental results raise a number of interesting questions for further studies. First, the potentials of
mixed regularization have been clearly demonstrated. It is of great interest to shed theoretical insights into the model as well
as to design efficient acceleration strategies, which for three-dimensional problems remains very challenging. Some partial
theoretical results can be found in [15]. Also of much practical relevance is an automated choice of regularization
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parameters. Second, the reconstructions were obtained with the linearized model, which represents only an approximation
to the genuine nonlinear IMSP model. It would be interesting to justify the excellent performance of the linearization pro-
cedure. Third, the robustness of the approach to noise is outstanding when compared with more conventional inverse scat-
tering algorithms, especially noting the limited amount of the data for performing the inversion step. The mechanism of the
robustness is not yet completely clear.
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Appendix A. Numerical method for forward scattering

We denote by J the index set of grid points of a uniformly distributed mesh with a mesh size h > 0 and consider square
cells
Bj ¼ Bj1 ;j2 ¼ x1
j1
; x2

j2

� �
þ � h

2
;
h
2

� �

 � h

2
;
h
2

� �

for every tuple j ¼ ðj1; j2Þ belonging to the index set J. Assume that the domain [j2JBj contains the scatterer support X. We
use the mid-point quadrature rule to evaluate the operator K, and hence the integral (3) is approximated by
Ik � gk

X
j2J

Gk;jIjh
2 ¼ gkuiðxkÞ
where Ik ¼ IðxkÞ and gk ¼ gðxkÞ, and the off-diagonal entries Gk;j and the diagonal entries Gk;k are given by Gk;j ¼ Gðxk; xjÞ and
Gk;k ¼
1

h2

Z
�h

2;
h
2ð Þ2

Gðx; 0Þdx;
respectively. The diagonal entries can be accurately computed by tensor-product Gaussian quadrature rules. The resulting
system can be solved using standard numerical solvers, e.g., Gaussian elimination, if the cardinality of the index set J is med-
ium, and iterative solvers like GMRES. The extension of the procedure to 3D problems is straightforward.

Appendix B. Semi-smooth Newton method

In this part, we derive a semi-smooth Newton method for minimizing (10). The optimality condition of the variational
problem reads
K�Kgþ ak� bDg� K�us ¼ 0;
k� kþcg

maxð1;jkþcgjÞ ¼ 0;

(

where k is the Lagrange multiplier (dual variable). The second line, the complementarity function, equivalently expresses the
inclusion k 2 @kgkL1 , which can be checked directly by pointwise inspection. Thereby, we effectively transforms the inclusion
(11) into a numerically amenable nonlinear system. It follows directly from the complementarity relation
k ¼ kþ cg
maxð1; jkþ cgjÞ ð13Þ
that on the active set A ¼ fx 2 D : jkþ cgjðxÞ 6 1g;g vanishes identically. Otherwise, both the dual variable k and the primal
variable g need to be solved. We shall solve the system by a semi-smooth Newton method [19]. First observe that the New-
ton step (with the increments for k and g denoted by dk and dg, respectively) applied to the following reformulation of Eq.
(13) (on the set I ¼ D n A)
kjkþ cgj � ðkþ cgÞ ¼ 0
is given by
jkþ cgjdkþ k
kþ cg
jkþ cgj ½dkþ cdg� � ðdkþ cdgÞ þ kjkþ cgj � ðkþ cgÞ ¼ 0;
or equivalently with the notation kþ ¼ kþ dk and gþ ¼ gþ dg, we have
kþjkþ cgj þ k
kþ cg
jkþ cgj ½k

þ þ cgþ� ¼ kjkþ cgj þ ½kþ þ cgþ�:
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Next we apply the idea of damping and regularization to the equation and thus get
kþjkþ cgj þ h½kþ þ cgþ� kþ cg
jkþ cgj

k
maxðjkj;1Þ ¼ ½k

þ þ cgþ� þ hjkþ cgj k
maxðjkj;1Þ :
Here, the purpose of the regularization step k
maxðjkj;1Þ is to automatically constrain the dual variable k to ½�1;1�. The damping

factor h is automatically selected to achieve the stability. To this end, we let d ¼ jkþ cgj; eg ¼ d� 1; a ¼ k
maxðjkj;1Þ, and b ¼ kþcg

jkþcgj.
We arrive at
kþðeg þ 1Þ þ h½kþ þ cgþ�ab ¼ ½kþ þ cgþ� þ had:
Thus we have
kþ ¼ 1eg þ hab
½1� hab�cgþ þ hdeg þ hab

a

To arrive at a simple iteration scheme, we set hdegþhab
¼ 1, i.e., h ¼ d�1

d�ab 6 1. Consequently, we obtain a simple iteration
kþ ¼ 1� ab
d� 1

cgþ þ k
maxðjkj;1Þ ;
where we have used the relation 1�habegþhab
¼ 1�ab

d�1 . Substituting this into the first equation gives
K�Kgþ þ a
1� ab
d� 1

cgþ � bDgþ ¼ K�us � a
k

maxðjkj;1Þ : ð14Þ
We note that one only needs to solve Eq. (14) on the inactive set I , since on the active set A, there always holds gþ ¼ 0. This
has an enormous computational consequence: the size of the linear system in (14) can be very small if jI j is small, i.e., the
solution is sparse. This last relation shows also clearly the sparsity of the solution, and this provides a crispy estimate of the
background. Upon obtaining the solution gþ, one can update kþ on the sets I and A according to the second and the first
equation, respectively. Lastly, we would like to remark on the consistency of the scheme: if the sequence generated by
the semi-smooth Newton method converges, then the limit satisfies the complementarity relation (13) as desired.
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