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Abstract. We investigate a qualitative method for imaging acoustic obstacles

in two and three dimensions by boundary measurements corresponding to hy-

persingular point sources. Rigorous mathematical justification of the imaging
method is established, and numerical experiments are presented to illustrate

the effectiveness of the proposed imaging scheme.

1. Introduction. In this paper we are concerned with the mathematical and nu-
merical investigation of imaging acoustic obstacles in two and three dimensions by
boundary measurements. This is a mathematical inverse boundary value problem
associated with the Helmholtz equation. The imaging problem in two dimensions
was studied in [26], where the cylindrical Bessel waves are implemented to meet
the imaging purpose. The cylindrical Bessel waves are standing waves and analytic
in the whole space. For the present study, we shall show that the singular point
sources can also serve the imaging and reconstruction process. The point sources are
spherical wave in three dimensions and the first kind Hankel function in two dimen-
sions, which are propagating waves and one of the most common ways in emanating
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waves. As point sources are easily realized in acoustics and electromagnetism, and
have been widely used in engineering; see, e.g. [10]. In two dimensions, we can
also use more general point sources with hypersingularity. Due to the singularity
(or hypersingularity) of the point sources, we need to develop essentially new tech-
niques to show that the qualitative imaging method developed in [26] working for
analytic sources remains valid for singular sources. Next, we shall briefly describe
the inverse problem of our interest and the new imaging approach.

Consider an impenetrable scatterer D, which is the open complement of an un-
bounded domain of C2 class in Rn, n = 2, 3. Without loss of generality, we assume
that D contains the origin. The time-harmonic acoustic wave propagation in Rn\D̄
is governed by the Helmholtz equation

(1) (∆ + k2)u = 0 in Rn\D̄,

where u represents the wave pressure and k > 0 is the wave number. On the
boundary of the obstacle ∂D, the wave exhibits various behaviors depending on the
physical properties of the underlying obstacle. If D is sound-soft, one has u|∂D = 0;
and if D is sound-hard, one has ∂u/∂ν = 0 on ∂D, where ν is the exterior unit
normal to ∂D; whereas if D is of impedance type, then it holds that ∂u/∂ν+iλu = 0
on ∂D, where λ ∈ C1(∂D) is a positive function. We shall write

(2) B(u) = 0 on ∂D,

to denote either of the aforementioned three boundary conditions or a more general
mixed boundary condition. We emphasize that the imaging/reconstruction method
developed for the inverse problem in the present paper is independent of any such
specific boundary condition, and no a priori knowledge of the underlying target
obstacles is required during the imaging process. However, we shall stick to the
sound-hard case in our subsequent discussions for the sake of exposition.

In non-invasive probings, one intends to image/identify the target obstacle D
by using the knowledge of the waves away from the object. Such non-invasive
techniques have been widely applied in many areas of science and technology, see,
e.g., [1, 4, 5, 8, 13, 22, 23, 30] and the references therein. Many quantitative and
qualitative imaging/reconstruction schemes have been developed in literature for
the inverse obstacle scattering problems; see, e.g., [2, 3, 6, 7, 9, 11, 12, 14, 16, 17,
18, 19, 20, 21, 23, 24, 26, 28, 29, 30]. In [26], a new qualitative imaging method
is proposed following the spirit of the linear sampling method originated in [12].
But the method makes use the near-field measurements encoded into the boundary
Dirichlet-to-Neumann (DtN) or Neumann-to-Dirichlet (NtD) operator. A novel
indicator function is generated which exhibits different behaviors depending on
whether the sampling point is inside or outside the obstacle, thus could be used
to identify the shape of the underlying obstacle. It is shown in [26] that the planar
or cylindrical waves could meet the reconstruction purpose. Considering the more
practical feasibility of the point sources, we will show rigorously in this work that
the point sources also fulfill the imaging/reconstruction requirements well. At the
same time, we extend the two-dimensional study in [26] to the three-dimensional
case, as well as to the important case with partial data (see Section 3).

Now we outline the main ingredients of the new imaging scheme using the near-
field data. Let Ω ⊂ Rn be a bounded C2 domain containing D such that Ω\D̄ is
connected. For the Helmholtz equation (1)–(2) confined over Ω\D̄, we impose the
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following boundary condition on the exterior boundary

(3) u = f ∈ H1/2(∂Ω) on ∂Ω.

It is assumed that 0 is not an eigenvalue to the problem (1)–(3). Hence, we have a
well-defined Dirichlet-to-Neumann map ΛD defined as

(4) ΛD(f) =
∂u

∂ν

∣∣∣∣
∂Ω

,

where u ∈ H1(Ω\D̄) is the unique solution to (1)–(3) and ν denotes the exterior
unit normal to ∂Ω. It is noted that knowing ΛD is equivalent to knowing the
Cauchy data set (u|∂Ω,

∂u
∂ν |∂Ω), which encodes the near-field wave measurements.

Let Ω̃ ⊂ Rn be a bounded C2 domain such that Ω b Ω̃ and Rn\ ¯̃
Ω is connected; see

Fig. 1 for the relative positions of domains D, Ω and Ω̃.

Figure 1. Ilustration of relative positions of domains D, Ω and Ω̃.

Consider the following first kind integral equation

(5)

∫
∂Ω̃

(ΛD − Λ0)u(x; y)g(y)ds(y) =
∂G(x, z)

∂ν(x)
, x ∈ ∂Ω, z ∈ Ω

where u(x; y) is a class of point sources located at y ∈ ∂Ω̃, Λ0 denotes the DtN
map without the inclusion D, and G(x, y) is the Green’s function for the Helmholtz
equation in Ω with a vanishing Dirichlet boundary value on ∂Ω. The function g(y)
generated by (5) will play the role of an indicator in identifying ∂D in our imaging
algorithm.

The method can be adjusted so that the NtD data is used. For this purpose,
one imposes the following boundary condition on the exterior boundary for the
Helmholtz equation (1)–(2) confined over Ω\D̄:

(6)
∂u

∂ν
= h ∈ H−1/2(∂Ω) on ∂Ω.

Again 0 is assumed not to be an eigenvalue to the problem (1)–(3). Then we define
the NtD map ΥD by

(7) ΥD(h) = u|∂Ω,
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where u ∈ H1(Ω\D̄) is the unique solution to (1), (2) and (6). The counterpart to
the integral equation (5) is then given by

(8)

∫
∂Ω̃

(ΥD −Υ0)u(x; y)g(y)ds(y) = GN (x, z), x ∈ ∂Ω, z ∈ Ω,

where Υ0 is the NtD map without the inclusion D. The function GN (x, z) is
the Green’s function for the Helmholtz equation on Ω with a vanishing Neumann
boundary value on ∂Ω.

The rest of the paper is organized as follows. In Section 2, we develop the
imaging/reconstruction method based on the DtN map with point sources. In
Section 3, we show that the imaging/reconstruction scheme developed also works by
making use of partial wave emissions, and demonstrate how to modify our imaging
scheme to the case with the NtD data. In Section 4, we present extensive numerical
experiments to illustrate the effectiveness of the proposed method.

2. Imaging by point sources with DtN map. In this section, we develop the
imaging/reconstruction scheme based on the DtN map with point sources as in-
puts. The discussion will be addressed for point sources in three dimensions and
hypersingular ones in two dimensions. The singular source is of the form in three
dimensions:

ik

4π
h

(1)
0 (k|x− y|) = eik|x−y|/4π|x− y|, x ∈ Ω̄, y ∈ ∂Ω̃,

where h
(1)
0 (t), t ∈ R, is the first-kind spherical Hankel function of zeroth order, and

of the following form in two dimensions:

w(x, y) =
i

4
H(1)
m (k|x− y|)eimφ̂, x− y = |x− y|eiφ̂,

where x = |x|eiφx ∈ Ω̄ and y = |y|eiφy ∈ ∂Ω̃, and H
(1)
m (t), t ∈ R, is the first-kind

Hankel function of mth order.
Associated with the point-source in three dimensions, we introduce its Herglotz

wave function:

(9) (Pg)(x) := wg(x) =

∫
∂Ω̃

ik

4π
h

(1)
0 (k|x− y|)g(y)ds(y) , x ∈ Ω̄ , y ∈ ∂Ω̃

for g ∈ L2(∂Ω̃), and define

(10) Ups :=

{
wg(x);wg(x) =

∫
∂Ω̃

ik

4π
h

(1)
0 (k|x− y|)g(y)ds(y), g(y) ∈ L2(∂Ω̃)

}
.

Similarly we introduce the following Hankel-Herglotz wave function associated with
the two-dimensional hypersingular point-source:

(11) (Hg)(x) := wg(x) =

∫
∂Ω̃

i

4
H(1)
m (k|x− y|)eimφ̂g(y)ds(y), x ∈ Ω̄

for g ∈ L2(∂Ω̃), and define
(12)

Uh :=

{
wg(x);wg(x) =

∫
∂Ω̃

i

4
H(1)
m (k|x− y|)eimφ̂g(y)ds(y), g(y) ∈ L2(∂Ω̃)

}
.

Next, in light of the linear superposition for the Helmholtz system, we have the
following two propositions.
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Proposition 1. Let u(x; y) ∈ H1(Ω\D̄) be the solution to the Helmholtz equation
(1.1)-(1.3) associated with the Dirichlet boundary value f(x, y) = w(x, y)|∂Ω with

w(x, y) =
ik

4π
h

(1)
0 (k|x− y|) in three dimensions and w(x, y) =

i

4
H

(1)
m (k|x− y|)eimφ̂

in two dimensions. Let wg be a Herglotz wave function (point-source or Hankel
resp.). Then the solution to

(13)

{
(∆ + k2)u = 0 in Ω\D̄
u|∂D = 0, u|∂Ω = wg|∂Ω

is given by

ug(x) =

∫
∂Ω̃

u(x; y)g(y)ds(y).

Using Proposition 1, it is straightforward to see that the solution to the following
boundary value problem

(14)

{
(∆ + k2)v(x; y) = 0 in Ω\D̄
v|∂D = −f(x, y), v|∂Ω = 0

is given by v(x; y) = u(x; y)− w(x, y).

Proposition 2. Let v(x; y) ∈ H1(Ω\D̄) be the solution to the Helmholtz equa-
tion (14) associated with the Dirichlet boundary value f(x, y) = w(x, y)|∂D with

w(x, y) =
ik

4π
h

(1)
0 (k|x− y|) in three dimensions and w(x, y) =

i

4
H

(1)
m (k|x− y|)eimφ̂

in two dimensions. Let wg be a Herglotz wave function (point-source or Hankel
resp.). Then the solution to the system

(15)

{
(∆ + k2)v = 0 in Ω\D̄
v|∂D = −wg|∂D, v|∂Ω = 0 .

can be represented by

vg(x) =

∫
∂Ω̃

v(x; y)g(y)ds(y).

Since v(x; y) = u(x; y) − w(x, y) in Ω\D̄, we note the following relation for our
subsequent study

(16)
∂v(x; y)

∂ν(x)

∣∣∣∣
∂Ω

= ΛD(f(x, y)|∂Ω)− Λ0(f(x, y)|∂Ω)

We next introduce two function spaces:

H1
∆(Ω\D̄) := {u ∈ H1(Ω\D̄); (∆ + k2)u = 0 in Ω\D̄ and u|∂Ω = 0},

H
−1/2
∆ (∂Ω) := {∂u

∂ν
|∂Ω; u ∈ H1

∆(Ω\D̄)},

where the boundary values ∂u
∂ν |∂Ω and u|∂Ω are all understood in the sense of traces.

Obviously, H1
∆(Ω\D̄) and H

−1/2
∆ (∂Ω) are both Banach spaces. Corresponding to

these two spaces, we introduce two operators. Let S : L2(∂Ω̃) → H1
∆(Ω\D̄) be

defined as

(17) Sg(x) :=

∫
∂Ω̃

v(x; y)g(y)ds(y).
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By (15), we see Sg(x)|∂D = −wg(x)|∂D and Sg(x)|∂Ω=0. Then we define L :

L2(∂Ω̃)→ H
−1/2
∆ (∂Ω) by

(18) Lg(x) :=

∫
∂Ω̃

∂v(x; y)

∂ν(x)
g(y)ds(y).

It is easily seen that
∂Sg

∂ν
(x)|∂Ω = Lg(x). We are now in a position to present the

crucial first kind integral equation for gz ∈ L2(∂Ω̃):

(19) (Lgz)(x) =
∂G(x, z)

∂ν(x)
, x ∈ ∂Ω, z ∈ Ω,

which we know from (16) is equivalent to (cf. equation (5))

(20)

∫
∂Ω̃

(ΛD − Λ0)(f(x, y))gz(y)ds(y) =
∂G(x, z)

∂ν(x)
, x ∈ ∂Ω, z ∈ Ω .

Now we give a more specific description on the Green’s function G(x, z) required

in (19) and (20). Henceforth, we write Φ(x, y) =
ik

4π
h

(1)
0 (k|x − y|) and Φ(x, y) =

i
4H

(1)
0 (k|x−y|) respectively as the three- and two-dimensional fundamental solutions

associated with the operator −∆− k2. We take G(x, z) = Φ(x, z)− p(x, z), where
p(x, z) is the (unique) solution to

(21) (∆ + k2)p(x, z) = 0 in Ω ; p(x, z)|∂Ω = Φ(x, z)|∂Ω

for any fixed z ∈ Ω. It is readily seen that G(x, z) ∈ H1
∆(Ω\D̄) if z ∈ D, and this

implies ∂G(x,z)
∂ν(x) |∂Ω ∈ H−1/2

∆ (∂Ω) if z ∈ D. For the case when the artificial domain Ω

is a central disk of radius R > 0 in R2, an analytic expression of G(x, z) is derived
in Section 4, [26]. By a similar derivation, one has that if Ω is a central ball of
radius R > 0 in R3,

(22) G(x, z) = Φ(x, z)−
∞∑
n=0

n∑
m=−n

ikh
(1)
n (kR)jn(k|z|)Y mn (ẑ)

jn(kR)
jn(k|x|)Y mn (x̂),

for x = |x|x̂ ∈ ∂Ω and z = |z|ẑ ∈ Ω.

The function gz ∈ L2(∂Ω̃) in (19) (or equivalently in (20)) shall play the key role
as an indictor function in identifying the boundary ∂D of the scatterer, depending
on its different behaviors when z lies inside or outside D. We shall demonstrate the
following behaviors of gz.

Theorem 2.1. For the solution gz to (19) or (20), we have

(i) If z ∈ D, then for every ε > 0, there exists gz,ε ∈ L2(∂Ω̃) such that

(23) ‖Lgz,ε(x)− ∂G(x, z)

∂ν(x)
‖H−1/2(∂Ω) ≤ ε.

Moreover, for every z∗ ∈ ∂D and every choice of gz,ε ∈ L2(∂Ω̃) in (23),

(24) lim
z→z∗

‖gz,ε‖L2(∂Ω̃) =∞ and lim
z→z∗

‖vgz,ε‖H1(D) =∞.

(ii) If z ∈ Ω\D̄, one can solve (19) by the Tikhonov regularization to have a

regularized solution gz,ε in L2(∂Ω̃), depending on a regularizer ε > 0. That
is, gz,ε is the unique solution to the regularized system

(25) (εI + L∗L) g = L∗
∂G(·, z)
∂ν

.
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Moreover, only one of the following two possibilities occurs to the sequence
{gz,ε}: either there exists a sequence εn → 0+ such that

(26) lim
εn→0+

‖Lgz,εn(x)− ∂G(x, z)

∂ν(x)
‖H−1/2(∂Ω) = 0,

and

(27) lim
εn→0+

‖gz,εn‖L2(∂Ω̃) =∞;

or, there exists a constant C > 0 such that for all ε > 0,

(28) ‖Lgz,ε(x)− ∂G(x, z)

∂ν(x)
‖H−1/2(∂Ω) ≥ C.

Theorem 2.1 suggests the following procedure to determine if a point z ∈ Ω
lies inside D or not. For two cut-off values c1, c2 > 0, one first finds a Tikhonov
regularized solution gz,ε to (19). If ‖gz,ε‖L2(∂Ω̃) > c1, one counts z ∈\D; Otherwise

one can further compute the residual Lgz,ε−∂G(·, z)/∂ν. If the norm of this residual
is less than c2, one counts z ∈ D, otherwise z ∈\D. We refer to Fig. 1 for a schematic
illustration.

Numerical Reconstruction Scheme (DtN)

Select two cut-off values c1, c2 > 0.
Step 1. Collect the measurement data ∂u(x;y)

∂ν on ∂Ω corresponding to

the excitation f(x, y) on ∂Ω for different y ∈ ∂Ω̃ .
Step 2. Select a sampling mesh Th over the domain Ω.
Step 3. For each sampling mesh point z ∈ Th, compute a Tikhonov
regularized solution gz,ε to (19).
Step 4. If ‖gz,ε‖L2(∂Ω̃) > c1, we count z ∈\D; otherwise we compute the

residual Lgz,ε − ∂G(·, z)/∂ν. If the norm of this residual is less than c2,
we count z ∈ D; otherwise we count z ∈\D.

The proof of Theorem 2.1 follows a similar argument to that of Theorem 2.5 in
[26], provided the following crucial results can be established in characterizing the
operator L defined in (18).

Theorem 2.2. The operator L : L2(∂Ω̃)→ H
−1/2
∆ (∂Ω) is a linear compact opera-

tor. If k2 is not a Dirichlet eigenvalue for −∆ in Ω\D̄, Ω and D respectively, L is

injective and has a dense range in H
−1/2
∆ (∂Ω).

The proof of Theorem 2.2 relies on following results.

Lemma 2.3. Assume that k2 is not a Dirichlet eigenvalue for −∆ in Ω. With re-
spect to H1/2(∂D)-norm, the traces of point-source- or Hankel-Herglotz wave func-
tions are dense in the space formed by the traces of the solutions to the Helmholtz
equation on ∂D.

Proof. Recall that Φ(x, y) is the fundamental solution associated with the operator
−∆− k2. We first show the traces of spaces Ups and Uh (with m = 0) in (10) and

(12) on ∂Ω are both dense in H1/2(∂Ω). The claims follow if we can demonstrate
that any ϕ(x) ∈ H−1/2(∂Ω) satisfying

(29)

∫
∂Ω

∫
∂Ω̃

Φ(x, y)g(y)ds(y)ϕ(x)ds(x) = 0, ∀g ∈ L2(∂Ω̃)
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must be identically zero. By (29), along with the Fubini’s Theorem, we see

(30) h(y) :=

∫
∂Ω

Φ(x, y)ϕ(x)ds(x) = 0 for y ∈ ∂Ω̃.

By the mapping properties of the single layer potential operator (cf.[27]), we know

h(y) ∈ H1
loc(Rn\∂Ω), and h(y) = 0 on ∂Ω̃ by (30). Noting h(y) is a radiating

solution to the Helmholtz equation in Rn\ ¯̃
Ω, we know h(y) = 0 in Rn\ ¯̃

Ω by the
uniqueness of the solutions to the exterior Dirichlet problem (cf. [13]). And by
further use of the unique continuation we have h(y) = 0 in Rn\Ω̄. For the clarity,
we denote in the sequel by γ+ and γ− the one-sided trace operators respectively
for the disjoint domains Ω and Rn\Ω̄. Again by the properties of the single layer
potential operator, we know γ−h(y) = γ+h(y) = 0 on ∂Ω. Since (∆ + k2)h(y) = 0
in Ω, we can easily see h(y) = 0 also in the domain Ω by our assumption that
k2 is not a Dirichlet eigenvalue for −∆ in Ω. Now it follows readily by the jump
properties of the single layer potential operator (cf. [27]) that

ϕ(x) = γ+ ∂h(y)

∂ν
− γ− ∂h(y)

∂ν
= 0 on ∂Ω,

which proves our early claims that the restrictions of spaces Ups and Uh in (10)

and (12) (with m = 0) on ∂Ω are both dense in H1/2(∂Ω). Clearly the denseness
implies that Ups and Uh are dense in the space formed by all H1(Ω) solutions to
the Helmholtz equation, which in turn completes the proof of the desired result in
Lemma 2.3.

It remains to consider the case with hypersingular sources in two dimensions,
namely m ≥ 1 for Uh in (12). It suffices for us to show that any ϕ(x) ∈ H−1/2(∂Ω)
satisfying

(31)

∫
∂Ω

∫
∂Ω̃

i

4
H(1)
m (k|x− y|)eimφ̂g(y)ds(y)ϕ(x)ds(x) = 0, ∀g ∈ L2(∂Ω̃)

must be identically zero. (31) is equivalent to

(32) H(y) :=

∫
∂Ω

i

4
H(1)
m (k|x− y|)eimφ̂ϕ(x)ds(x) = 0 ∀ y ∈ ∂Ω̃.

Since H(y) is a radiating solution to the Helmholtz equation in R2\ ¯̃
Ω, we see H(y) =

0 in R2\ ¯̃
Ω by the uniqueness of the solutions to the exterior Dirichlet problem. Next,

let B(0, R1) be a sufficiently large central ball of radius R1 such that Ω̃ b B(0, R1)
and k2 is not a Dirichlet eigenvalue for −∆ in B(0, R1). Clearly, we have H(y) = 0
for y ∈ R2\B(0, R1). Now substituting the following representation (cf. Appendix
D.2, [10] or Theorem 2.12, [32])

(33) H(1)
m (k|x− y|)eimφ̂ =

∞∑
n=−∞

Jn−m(k|x|)e−i(n−m)φxH(1)
n (k|y|)einφy

for |y| > |x| into (32) yields

(34) H(y) =

∞∑
n=−∞

i

4

∫
∂Ω

Jn−m(k|x|)e−i(n−m)φxϕ(x)ds(x)H(1)
n (k|R1|)einφy = 0

for all y ∈ ∂B(0, R1). Since H
(1)
n (kR1) 6= 0, ∀n ∈ Z, we derive from (34) that

(35)

∫
∂Ω

Jn(k|x|)einφxϕ(x)ds(x) = 0, ∀n ∈ Z.
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Using the following expansion of H
(1)
0 (k|x− y|) (cf. [10])

(36) H
(1)
0 (k|x− y|) =

∞∑
n=−∞

Jn(k|x|)H(1)
n (k|y|)ein(φy−φx) for |y| > |x|,

and multiplying H
(1)
n (k|y|)einφy to the complex conjugate of equation (35) and then

summing up for all n ∈ Z, we obtain

h(y) =

∫
∂Ω

i

4
H

(1)
0 (k|x− y|)ϕ(x)ds(x) = 0 ∀ y ∈ R2\B(0, R1).

Now by a similar argument to the first part of this proof, we can show that ϕ(x) = 0.
This completes the proof of Lemma 2.3.

Proof of Theorem 2.2. With the help of Lemma 2.3, the compactness and denseness
of the operator L can be established by similar arguments to those for Theorem 2.3

in [26]. So we need only to show the injectivity of L. Suppose that g ∈ L2(∂Ω̃)

and Lg = 0, which imply that Sg = 0 and ∂Sg
∂ν = Lg = 0 on ∂Ω. By the unique

continuation, we know Sg = 0 in Ω\D̄, hence wg = −Sg = 0 on ∂D, which further
gives wg(x) = 0 in D. Then by the unique continuation again, we know wg = 0 in

Ω̃. Next, we continue our discussions separately for the singular and hypersingular
point sources.

First for the case with the singular point source Φ(x, y) =
ik

4π
h

(1)
0 (k|x − y|) or

i

4
H

(1)
0 (k|x− y|), we set

(37) T (x) = wg(x) =

∫
∂Ω̃

Φ(x, y)g(y)ds(y).

By the mapping property of the single layer potential operator, we know that T (x) ∈
H1
loc(Rn\∂Ω̃) and is a radiating solution to the Helmholtz equation in Rn\ ¯̃

Ω. Since

γ+T (x) = γ−T (x) = 0 on ∂Ω̃, we know T (x) = 0 in Rn\Ω̃ by the uniqueness of
the exterior Dirichlet problem of the Helmholtz equation. Therefore we obtain the
desired result that

g(x) = γ+ ∂T (x)

∂ν
− γ− ∂T (x)

∂ν
= 0 on ∂Ω̃.

Then for the case with the hypersingular point sources in two dimensions, we set

(38) P (x) = wg(x) =

∫
∂Ω̃

i

4
H(1)
m (k|x− y|)eimφ̂g(y)ds(y).

We can choose a central disk B(0, R2) b Ω̃ of radius R2 > 0 such that k2 is not a
Dirichlet eigenvalue for −∆ in B(0, R2). Plugging the expansion (33) into (38), we
have

P (x) =

∞∑
n=−∞

i

4

∫
∂Ω̃

H(1)
n (k|y|)einφyg(y)ds(y)Jn−m(k|R2|)e−i(n−m)φx = 0

for x ∈ ∂B(0, R2). Since Jn(kR2) 6= 0 for arbitrary n, we readily know from the
previous relation that

(39)

∫
∂Ω̃

H(1)
n (k|y|)einφyg(y)ds(y) = 0, ∀n ∈ Z.
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Now for any x ∈ B(0, R2), by multiplying Jn(k|x|)e−inφx to equation (39) and then
summing them over all n ∈ Z we obtain

(40)

∫
∂Ω̃

Φ(x, y)g(y)ds(y) = 0 for x ∈ B(0, R2),

where Φ(x, y) = i/4H
(1)
0 (k|x − y|) and we have used the following expansion of

H
(1)
0 (k|x− y|) (see [10])

H
(1)
0 (k|x− y|) =

∞∑
n=−∞

Jn(k|x|)H(1)
n (k|y|)ein(φy−φx) for |y| > |x| .

Finally, by a similar argument to that for the first case, one can verify directly that
g = 0. This completes the proof of the injectivity of operator L, thus the proof of
Theorem 2.2.

3. Imaging by partial wave emissions and the NtD map. In the reconstruc-
tion scheme developed in Section 2, we have basically made use of the point sources

emitted from every point lying on ∂Ω̃; see the schematic illustration in Fig. 1. In
this section, we first show that it is sufficient for us to make use of the point sources

emitted only from part of ∂Ω̃. Assume that Γ is an open analytic arc in R2 or

an open analytic surface in R3, which is an open patch on the boundary ∂Ω̃ of a

bounded analytic domain Ω̃ ⊂ Rn. Then, all our studies and the results in Sec-

tion 2 still hold with ∂Ω̃ replaced by Γ. Next we shall outline the major necessary
modifications in the development of the imaging/reconstruction scheme using the
point sources emitted only from Γ.

First of all, the indicator function gz ∈ L2(∂Ω̃) from (19) or (20) is changed
naturally into the solution gz ∈ L2(Γ) to the following first-kind integral equation

(41)

∫
Γ

(ΛD − Λ0)(f(x, y))gz(y)ds(y) =
∂G(x, z)

∂ν(x)
, x ∈ ∂Ω, z ∈ Ω,

where f(x, y) are the point sources as stated in Propositions 1 and 2. One can show
that this modified indicator function gz would exhibit the same behaviors as those

described in Theorem 2.1 with ∂Ω̃ replaced by Γ. To that end, it suffices to show

that the modified operator L, namely the operator in (18) with ∂Ω̃ replaced by Γ,
still possesses those properties stated in Theorem 2.2. The idea for its proof would
be the same as that for Theorem 2.2 in the full emissions case, with only some slight
modification in proving the denseness of the modified operator L as described in
the following. In fact, for the argument of the denseness of the modified operator
L, following the proof of Lemma 2.3, (29) becomes

(42)

∫
∂Ω

∫
Γ

Φ(x, y)g(y)ds(y)ϕ(x)ds(x) = 0, ∀g ∈ L2(Γ),

which implies

(43) h(y) :=

∫
∂Ω

Φ(x, y)ϕ(x)ds(x) = 0 for y ∈ Γ.

Since Γ is an open portion of the analytic boundary ∂Ω̃, we have by the analytic

continuation that h(y) = 0 on ∂Ω̃, from which one further deduces that function
ϕ in (42) is identically zero, thus verifying the denseness. For the two-dimensional
case with hypersingular point sources, the modification is similar.
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In the rest of this section, we briefly mention the necessary modifications for all
of our earlier study with the DtN map to be extended to the case with NtD map.
The counterpart to (20) is given by

(44)

∫
∂Ω̃

(ΥD −Υ0)(f(x, y))gz(y)ds(y) = GN (x, z), x ∈ ∂Ω, z ∈ Ω ,

where f(x, y) = ∂w(x, y)/∂ν|∂Ω with w(x, y) being the point-sources as stated in
Propositions 1 and 2. GN in (44) is given by GN (x, z) = Φ(x, z) − q(x, z), where
q(x, z) for any fixed z ∈ Ω is the (unique) solution to the system

(45) (∆ + k2)q(x, z) = 0 in Ω; ∂q(x, z)/∂ν = ∂Φ(x, z)/∂ν on ∂Ω .

For the case when Ω is a central disk of radius R > 0 in R2, an analytic expression
of G(x, z) is constructed (see Section 4, [26]). By a similar construction, one can
show directly that if Ω is a central ball of radius R > 0 in R3,

(46) GN (x, z) = Φ(x, z)−
∞∑
n=0

n∑
m=−n

ikh
(1)
n
′(kR)jn(k|z|)Y mn (ẑ)

jn
′
(kR)

jn(k|x|)Y mn (x̂).

for x = |x|x̂ ∈ ∂Ω and z = |z|ẑ ∈ Ω. In the following, we set

(47) Ŝgz(x) :=

∫
∂Ω̃

(ΥD −Υ0)(f(x, y))gz(y)ds(y),

then (44) becomes

(48) Ŝgz(x) = GN (x, z), x ∈ ∂Ω, z ∈ Ω.

Under the condition that k2 is not a Dirichlet eigenvalue to −∆ in D and Ω, it is
straightforward to modify all the corresponding arguments in Section 2 to show the
following theorem on the behaviors of the solution gz to (44) or (48).

Theorem 3.1. For the solution gz to (44) or (48), we have

(i) If z ∈ D, then for every ε > 0 there exists gz,ε to (48) such that

(49) ‖Ŝgz,ε(x)−GN (x, z)‖H1/2(∂Ω) ≤ ε.

Moreover, for every z∗ ∈ ∂D and every choice of gz,ε ∈ L2(∂Ω̃) in (49),

(50) lim
z→z∗

‖gz,ε‖L2(∂Ω̃) =∞ and lim
z→z∗

‖vgz,ε‖H1(D) =∞.

(ii) If z ∈ Ω\D̄, one can solve (48) by the Tikhonov regularization to have a

regularized solution gz,ε in L2(∂Ω̃), depending on a regularizer ε. That is,
gz,ε is the unique solution to the system

(51) (εI + Ŝ∗Ŝ)g = Ŝ∗GN (·, z).
Moreover, only one of the following two possibilities occurs to the sequence
{gz,ε}: either there exists a sequence εn → 0+ such that

(52) lim
εn→0+

‖Ŝgz,εn(x)−GN (x, z)‖H1/2(∂Ω) = 0

and

(53) lim
εn→0+

‖gz,εn‖L2(∂Ω̃) =∞ ;

or, there exists a positive constant C such that for all ε > 0,

(54) ‖Ŝgz,ε(x)−GN (x, z)‖H1/2(∂Ω) ≥ C.
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Based on Theorem 3.1, we can propose the following reconstruction scheme using
the NtD map.

Numerical Reconstruction Scheme (NtD)

Select two cut-off values c1, c2 > 0.

Step 1. Collect the measurement data u(x; y) on ∂Ω corresponding to

∂w(x, y)/∂ν on ∂Ω for different y ∈ ∂Ω̃.
Step 2. Select a sampling mesh Th over the domain Ω.
Step 3. For each sampling point z ∈ Th, compute a Tikhonov regular-
ized solution gz,ε to the equation (48).
Step 4. If ‖gz,ε‖L2(∂Ω̃) > c1, we count z ∈\D; otherwise we compute the

residual Ŝgz,εn(x) − GN (x, z). If the norm of this residual is less than
c2, we count z ∈ D; otherwise we count z ∈\D.

Finally, we would like to mention that the previous study for the reconstruction
scheme with the NtD map can be equally extended to the case with only partial
wave emissions.

4. Numerical experiments and discussions. In this section, we present numer-
ical experiments to illustrate the applicability and effectiveness of the new recon-
struction scheme developed in the previous sections for the inverse obstacle scat-
tering using near fields in two and three dimensions. Some key parameters are
selected as follows: R = 5.5 for the radius of the surrounding disk Ω, R1 = 6.5 for

the radius of fictitious disk Ω̃ in two dimensions (ball in three dimensions, resp.),
k = 1 for the wave number, m = 3 for the order of hypersingular point sources in
two dimensions, δ = 1% for the noise level, and c = (cx, cy)T for the object shifting
with displacements cx and cy from the origin in two dimensions.

In the sequel, all the synthetic near-field data of the direct problems are gener-
ated by solving the variational equation corresponding to the system (1)-(2) with
isoparametric quadratic finite elements on sufficiently fine meshes and encoded as
the NtD map, which measures the potential data u given the Neumann input data.
The near-field data generated on the boundary ∂Ω are then subjected pointwise to
the uniform random noise of the form:

(55) U = U + δ r1|U | exp(iπ r2) ,

where U may be the measurement data from u or ∂u
∂ν , r1 and r2 are two uniform ran-

dom numbers, both ranging from -1 to 1, and δ represents the noise level. For each
mesh point z, the corresponding integral equation is discretized through the mid-
point quadrature rule at the equidistantly distributed collocation points along the
boundary ∂Ω in two dimensions, or transformed in the spherical coordinate system
for spherical quadrature with equally spaced nodes in both latitudinal and longi-
tudinal directions in three dimensions. The resulting linear systems are solved by
using the Tikhonov regularization technique, with the corresponding regularization
parameters determined by the generalized Morozov discrepancy principle.

For obstacle imagings in two dimensions, we shall test three different scatterers:
a unit disk of radius 1, a kite-shaped object, which are denoted by Di and K,
respectively, and a combination of Di and K (possibly at different locations). These
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scatterers can be parameterized as follows:

Disk: x(t) = (cos t, sin t), 0 ≤ t ≤ 2π,(56)

Kite: x(t) = (cos t+ 0.65 cos 2t− 0.65, 1.5 sin t), 0 ≤ t ≤ 2π.(57)

In two dimensions, the measurement data depend on two variables: the obser-
vation location x on the medium boundary Γ and the incident direction d from
the unit circle in R2, where we write x = (R cos(φ), R sin(φ)) with φ ∈ [−π, π],
and d = (cos(θ), sin(θ)) with θ ∈ [−π, π]. We compute the near-field measurement
data at 100 equidistantly distributed observation points xj = (R cosφj , R sinφj),
φj = 2jπ/100− π, j = 1, 2, . . . , 100, corresponding to 100 equidistantly distributed
incident directions dj = (cos θj , sin θj), θj = 2jπ/100− π, j = 1, 2, . . . , 100, around
the surrounding medium circle. We may identify the observation points and incident
directions with the index sequence {1, 2, . . . , 100} and illustrate the measurement
data by the contour plots of the corresponding 100× 100 matrices as shown in the
following examples. Hereafter, the norms of the indicator function gz and the resid-

ual of the integral equation ∂G(x,z)
∂ν(x) −Lgz in the NtD case are denoted by g-norm and

the res-norm, respectively. Furthermore, these norms are plotted by transformation
via 10-based logarithm for better visualization.

Example 1. Unit disk obstacle with c = (−1.5,−1.5)T .
The contour plot of the g-norm indicator function is shown in Figure 2(a), indicat-

ing a good reconstruction of the buried unit disk with the cut-off value Vcut = −0.127
as shown in Figure 2(b). For the res-norm case, the contour plot and the identified
object with the cut-off value Vcut = −2.03 are shown in Figures 2(c) and (d), re-
spectively. One observes that both indicator functions (g-norm or res-norm) work
well for this example and the unknown object can soundly be detected with correct
location and approximate shape and size. The blow-up behavior of the g-norm,
predicted by our theoretical result, is clearly shown in Figure 2(a). The res-norm
indicator function also reveals a pattern of blow-up, which has never been investi-
gated in literature before and makes a distinct difference for the obstacle imaging
between using near-field and far-field data. Unlike the usual sampling methods
using far-field data (see [31] and references therein), we have now two groups of
indicator functions which can be both used for numerical reconstructions.

Example 2. Kite obstacle with c = (0, 0)T .
We test a non-convex kite-shaped obstacle in this example. From the contour

plots of the g-norm and res-norm indicator functions, we get the reconstructed
obstacle; see Figures 3(a) (with Vcut = 0.159) and (b) (with Vcut = −1.91). In
particular the non-convex part is approximated very well, which shows that our
reconstruction algorithm is a promising imaging scheme for even non-convex obsta-
cles.

For this kite example, we have also tested the possibility of using partial point
source emission waves for imaging purpose. The emission angle is reduced from
the full range [−π, π) (full circle) to [−π, 0] (lower half circle), and then further to
[−π/2, 0] (lower right quarter circle in the fourth quadrant). For partial emission
waves from lower half circle, we see in Figure 4 that the lower part of the kite is
better reconstructed than its upper part, in particular in the lower left wing tip of
the kite. Compared with full-range emission case, the obstacle is more deformed
due to the lack of full data while the shape of the kite is still identifiable using
half of the measurement data. When the emission range is further restricted on
the lower right quarter circle, Figure 5 tells us that only the rough location of the
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Figure 2. Example 1. Contour plots of the g-norm indicator
(a) and res-norm indicator (c). Reconstructed obstacles from the
g-norm (b) and res-norm (d) with the reference obstacle in the red
line and reconstructed one in the blue line.
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Figure 3. Example 2. Reconstructed obstacles from the g-norm
(a) and res-norm (b) with the reference obstacle in the red line and
reconstructed one in the blue line.
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Figure 4. Example 2 with partial emission waves from lower half
circle. Reconstructed obstacles from the g-norm (a) and res-norm
(b) with the reference obstacle in the red line and reconstructed
one in the blue line.
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Figure 5. Example 2 with partial emission waves from lower
left quarter circle. Reconstructed obstacles from the g-norm (a)
and res-norm (b) with the reference obstacle in the red line and
reconstructed one in the blue line.

kite and the lower part facing the emission angles can be reasonably approximated,
and the upper left part of the kite cannot be imaged well due to the limited data
and the fast decay properties of hypersingular point sources. This example verifies
our claim in Section 3 and endows practitioners with the chance to obtain rough
image information based on limited emission waves, for instance, in case that only
location and crude shape are preferred, such as mine detection..

Example 3. A combination of disk and kite obstacles with cdisk = (−2,−2) and
ckite = (2, 2)T .

Based on the contour plot of the g-norm indicator function, the reconstructed
obstacle components are shown in Figure 6(a) (with Vcut = 0.182); On the other
hand, the reconstruction based on the contour plot of the res-norm indicator func-
tion is shown in Figure 6(b) (with Vcut = −2.47). We can see that, due to strong
interaction from the close distance, those parts of different objects facing each other

Inverse Problems and Imaging Volume 7, No. 2 (2013), 545–563



560 Jingzhi Li, Hongyu Liu, Hongpeng Sun and Jun Zou

0.182

0.182

−5 −4 −3 −2 −1 0 1 2 3 4 5

−5

−4

−3

−2

−1

0

1

2

3

4

5

−2.47

−2.47

−5 −4 −3 −2 −1 0 1 2 3 4 5

−5

−4

−3

−2

−1

0

1

2

3

4

5

(a) (b)

Figure 6. Example 3. Reconstructed obstacles from the g-norm
(a) and res-norm (b) with the reference obstacle in the red line and
reconstructed one in the blue line.

are attracted to a certain degree, which causes those parts looks a bit deformed.
Nevertheless, the identified object is still a reasonable approximation of the original
multi-component unknown obstacle. In this example, the reconstruction based on
the g-norm indicator seems better than that based on the res-norm, particularly for
those parts facing each other.

We emphasize that the choice of the cut-off values is crucial for the quality of the
numerical reconstruction. The same strategy we proposed in [25] can be extended
here for the determination of the cut-off values we need in the obstacle imaging, by
taking the advantage of the mutual interaction between obstacle components. We
are now using this example to illustrate the effectiveness of such choice scheme.

In fact, we may think only the kite obstacle is the unknown scatterer in this
example. To reconstruct its shape, we place a reference (known) obstacle component
into the physical surrounding, e.g., the unit disk in the example. Then we carry out
our reconstruction algorithm, and read out the cut-off value from the isoline which
matches best the reference obstacle component, namely the unit disk. Then we take
this cut-off value to further recover other unknown obstacle components, e.g., the
kite in this example. We see clearly that the cut-off values of the two objects are
correlated with each other due to the mutual interaction of the wave between the
objects. Furthermore, those parts of objects facing each other are slightly attracted
due to much stronger interaction effects with smaller distance between those parts.

Finally, we test two three-dimensional examples. The scatterers are chosen to
be respectively a unit ball centered at the origin and an acorn parametrized by
ρ2(θ) = 9

25 ( 17
4 + 2 cos(3θ)) evolving around the z-axis [15, 13]; see Figures 7(a) and

8(a). The observed data are measured in 41× 41 pairs of equally-spaced latitudinal
and longitudinal coordinates on the surrounding sphere ∂Ω with point source waves
emitted from 41×41 pairs of equally-spaced latitudinal and longitudinal directions.

Example 4. Unit ball obstacle centered at the origin.
The computational region is approximated by triangulation in Figures 7(b). The

reconstructed obstacles are shown in Figure 7(c) based on the g-norm indicator with
the cut-off value 0.142, and in Figure 7(d) based on the res-norm indicator with the
cut-off value −0.8157.
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(a) (b)

(c) (d)

Figure 7. Example 4 with the singular point source. Exact
shape of the unit sphere (a) and triangulation (b). Reconstructed
obstacles from the g-norm (e) (Vcut = 0.142) and res-norm (f)
(Vcut = −0.815), respectively.

Example 5. Acorn obstacle.
The last example is a three-dimensional nonconvex scatterer, and the computa-

tional region is approximated by triangulation in Figures 8(b). Figures 8(c) and
8(d) show the reconstructed shapes for the acorn with the g-norm and res-norm
indicators, respectively, with cut-off value being 0.098 and −0.632. The location,
shape and size of the reconstructed object are all well approximated if noise is taken
into account. Once again, this example demonstrate the applicability of the indi-
cators to determine a reasonably approximated unknown obstacle for practical use
in three dimensions.
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