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Abstract
In the reconstruction process of unknown multiple scattering objects in inverse
medium scattering problems, the first important step is to effectively locate
some approximate domains that contain all inhomogeneous media. Without
such an effective step, one may have to take a computational domain of a size
that is much larger than the actual sizes of all scattering objects, thus resulting
in huge additional computational effort. In this work, we propose a simple
and efficient multilevel reconstruction algorithm to help locate an accurate
position and the shape of each inhomogeneous medium. Then, other existing
effective but computationally more demanding reconstruction algorithms may
be applied in these initially located computational domains to achieve more
accurate locations and shapes of the scatterer and the contrast values over each
medium domain. The new algorithm exhibits several strengths: robustness
against noise, requiring fewer incidences, fast convergence, flexibility to deal
with scatterers of special shapes and advantages in computational complexity.

(Some figures may appear in colour only in the online journal)

1. Introduction

In this paper, we are concerned with numerical identifications of inhomogeneous medium
scatterers by scattered fields. The inverse scattering problem can find wide applications in
medicine, geophysics and biological studies. A large variety of numerical reconstruction
methods are available in the literature, such as the time-reversal multiple signal classification
(MUSIC) method [9, 15], the contrast source inversion (CSI) method [1, 17–19], the
continuation method [2], the subspace-based optimization method [4, 5], the linear sampling
or probing methods (LSM) [7, 12, 13, 16, 20], the parallel radial bisection method [14], etc. In
order to carry out any of these methods for the reconstruction of unknown multiple scattering
objects, the first important step is to effectively locate some approximate domains that contain
all scattering objects. Without such an effective step, one may have to take a computational
domain of a size that is much larger than the actual sizes of all scattering objects. In particular,
when multiple separated objects are present, and at least two of them are far away from each
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other, then one may need to set an initial computational/sampling domain to be sufficiently
large in order to ensure a safe covering of all scattering objects, easily selecting a domain
with an area or a volume of 30 or 40 times as large as the actual region required to cover
all inhomogeneous media. A much larger computational domain results usually in a huge
additional computational effort for the entire numerical reconstruction process, considering
the severe ill-posedness and strong nonlinearity of inverse medium scattering problems.

So it is of great significance for the reconstruction process of an inverse medium problem to
have an effective step that helps locate the initial regions covering each of the scattering objects.
In addition, this first step should be less expensive computationally and easy to implement
numerically. It is mostly challenging to realize this task and to provide an acceptable initial
location of each scattering object at the same time. A direct sampling method was proposed
recently in [8] for the purpose. The algorithm is computationally very cheap as it involves
computing only the inner product of the scattered field with fundamental solutions located
at sampling points. In this paper, we will propose a new algorithm for the purpose, and it
is completely different from the one in [8]. This new algorithm is an iterative one, and also
very cheap; only three matrix–vector multiplications are needed at each iteration, without any
matrix inversion or solutions of linear systems involved. Most interestingly, the algorithm can
first separate all disjoint inhomogeneous medium objects quickly, usually in a few iterations,
then refine its approximation successively and finally provide a good approximate domain for
each separated object.

It is worth mentioning that the multilevel algorithm to be presented here is essentially
different in nature from the multilevel linear sampling method developed in [12]: the new
method is much less sensitive to the so-called cut-off values, it works with much fewer
incident fields, and it does not need to solve an ill-posed far-field equation at every sampling
point. In addition, the new algorithm is robust against noise in the data. More importantly,
unlike most existing methods, the new method does not involve any optimization process or
matrix inversions, so it can be viewed as a direct sampling method. Another nice feature of
the new algorithm is that it is self-adaptive, that is, at each iteration it can remedy the possible
errors from the previous iterations. With an effective initial location of each scattering object,
we may then apply any existing efficient but computationally more demanding methods, e.g.,
the methods in [2, 5, 17, 18], for further refinement of the estimated location and shape of each
scattering object as well as for the recovery of the contrast profiles of different media. Finally,
we would like to emphasize that the new multilevel method aims only at weak scatterers. It
is well known that it is of great challenge to numerically reconstruct strong scatterers (i.e.,
scatterers with both high contrast values and large electrical sizes), since the wave behaviors
inside and among them are highly complex. So far there is still no efficient method that can
successfully tackle this problem, neither can our multilevel algorithm deal with it. However,
considering the fact that the LSM does not need to involve the wave interactions inside and
among scatterers, it may still be possible to locate strong scatterers if the number of incidences
is sufficient.

2. Problem description

Consider an inverse scattering problem where the scatterer �, possibly consisting of
several separated disjoint components, is located in a homogeneous background medium
R

d (d = 2, 3). We assume that the scattered obstacles are illuminated successively by a
number of plane wave incident fields uinc

j (x), j = 1, 2, . . . , Ni. For each plane wave incidence,
the scattered field usca

j (xs
q) is measured by the receivers at locations xs

1,. . ., xs
Ns

; see figure 1 for
the incidences and receivers located on a circle S.
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Figure 1. Geometrical model of the scattering problem.

The inverse scattering problem is to determine the contrast function or index of refraction,
χ(x) for any point x varying in the scatterer �, given a set of scattering data usca

j (xs
q). The

contrast χ has a very important property, i.e., it vanishes outside the scattering objects. For
each incident field uinc

j , the total field u j satisfies the Helmholtz equation [7],

�u j(x) + k2(χ(x) + 1)u j(x) = 0, x ∈ R
d, (2.1)

where k is the wavenumber of the homogeneous background medium. The total field uj can
be represented by the integral equation [7],

u j(x) = uinc
j (x) + k2

∫
�

g(x, x′)χ(x′)u j(x′) dv(x′), (2.2)

where g(x, x′) is the Green function of the homogeneous background medium,

g(x, x′) =

⎧⎪⎨
⎪⎩

i

4
H (1)

0 (k|x − x′|) for d = 2,

eik|x−x′|

4π |x − x′| for d = 3,

where H (1)

0 is the zero-order Hankel function of a first kind. We note that the total field uj

may stand for the acoustic pressure in an acoustic scattering problem, or for the electric field
vector in an electromagnetic scattering, or for the particle-velocity vector in an elastodynamic
scattering. The scattered field is measured on the boundary S of a domain, which is sitting
outside the scatterer �. We introduce a sampling domain D that completely cover the scatterer
�. As the contrast function χ vanishes outside �, with the help of (2.2), we can write the
scattered field as

usca
j (x) = u j(x) − uinc

j (x) = k2
∫

D
g(x, x′)χ(x′)u j(x′) dv(x′), x ∈ S. (2.3)

For the sake of convenience, we shall often introduce the contrast source function

w j(x) = χ(x)u j(x), x ∈ D. (2.4)

Then, we can write (2.2) and (2.3) in the following more compact forms:

w j(x) = χ(x)uinc
j (x) + χ(x)(GDw j)(x), x ∈ D (2.5)

and

usca
j (x) = (GSw j)(x), x ∈ S, (2.6)

3
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where GD and GS are the two integral operators given by

(GDw)(x) = k2
∫

D
g(x, x′)w(x′) dv(x′) ∀x ∈ D,

(GSw)(x) = k2
∫

D
g(x, x′)w(x′) dv(x′) ∀x ∈ S.

Equations (2.5) and (2.6) will be the two fundamental equations for our proposed multilevel
initialization algorithm.

3. Approximate contrast source by backpropagation

We can easily see that the support of the contrast source function w = χu describes the exact
locations and geometries of all the inhomogeneous media, which generate the scattered field
usca. The aim of this work is to propose a fast and less expensive algorithm that can help locate
all the inhomogeneous media and provide good initial guesses for some computationally
more demanding iterative algorithms to find more accurate locations and shapes of all the
inhomogeneous media and the approximations of the contrast function χ .

Our algorithm will rely on the approximate contrast source obtained by backpropagation.
Backpropagation is widely used in inverse medium scatterings; see [11, 18] and the references
therein. In this section, we shall give a rigorous mathematical explanation of the approximate
contrast source by backpropagation. Let (·, ·)L2(S) and (·, ·)L2(D) be the scalar products,
respectively, in L2(S) and L2(D), and G∗

s : L2(S) → L2(D) be the adjoint of the operator
Gs: L2(D) → L2(S). G∗

s is called the backpropagation operator and given by

(G∗
Sw)(x) = k2

∫
S

g(x, x′)w(x′) ds(x′) ∀x ∈ D.

We shall need the following backpropagation subspace of L2(D),

Vb = span{G∗
s usca},

which is formed by all the fields generated by the backpropagation G∗
s on the scattered data

usca. It follows from (2.6) that

usca(x) = (GSw)(x), x ∈ S. (3.1)

The backpropagation is to seek a best approximate solution wb to the equation (3.1) in the
backpropagation subspace Vb, namely

||usca − Gswb||2L2(S)
= min

vb∈Vb

||usca − Gsvb||2L2(S)
. (3.2)

It is easy to see that the solution wb to (3.2) solves the variational system,

(usca − Gswb, Gsvb)L2(S) = 0 ∀ vb ∈ Vb, (3.3)

or equivalently,

(Gswb, Gsvb)L2(S) = (G∗
s usca, vb)L2(D) ∀ vb ∈ Vb. (3.4)

As wb, vb ∈ Vb, we can write

wb = λ G∗
s usca, vb = μ G∗

s usca, (3.5)

for some constants λ and μ. Substituting the two expressions into (3.4), we obtain

λ =
||G∗

s usca||2L2(D)

||GsG∗
s usca||2L2(S)

, (3.6)

which gives the approximate contrast source by backpropagation,

wb =
||G∗

s usca||2L2(D)

||GsG∗
s usca||2L2(S)

G∗
s usca. (3.7)
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4. A multilevel sampling algorithm

In this section, we propose a fast multilevel sampling algorithm to find the locations and
geometric shapes of all the inhomogeneous media, which are described by the contrast function
χ in (2.1). The algorithm proceeds iteratively, and carries out two important steps at each
iteration based on the two fundamental equations (2.5) and (2.6), namely the state and field
equations, respectively. In the first step, we apply the backpropagation technique to compute
an approximate contrast source w j corresponding to each incident uinc

j ( j = 1, 2, . . . , Ni). It
follows from (3.7) that this approximation is given by

w j =
||G∗

Susca
j ||2L2(D)

||GSG∗
Susca

j ||2L2(S)

G∗
Susca

j , j = 1, 2, . . . , Ni. (4.1)

With these approximate contributions w j of the exact contrast source w corresponding to each
incident uinc

j , we approximate the contrast χ pointwise by minimizing the residual equation
corresponding to the state equation (2.5), namely

min
χ(x)∈R1

Ni∑
j=1

∣∣(χuinc
j − w j + χGDw j

)
(x)

∣∣2
, (4.2)

which yields an explicit formula to compute an approximate contrast value χ(x) at every point
x ∈ D when an approximate contrast source w j is available,

χ(x) = Re

⎛
⎝

∑Ni
j=1 w j(x)

(
uinc

j + GDw j)(x)∑Ni
j=1 |(uinc

j + GDw j)(x)|2

⎞
⎠ , (4.3)

where the overbear denotes the complex conjugate and Re means taking the real part of a
complex number. We remark that it may not be always effective to consider only the real
part as in (4.3), especially for those lossy scatterers whose contrast values may have a small
real part but a large imaginary part. In those cases, we may take the absolute value of the
reconstructed contrast function in (4.3).

Clearly both (4.1) and (4.3) are rather crude, in general, and may provide rather poor
approximations for the exact contrast source w and contrast profile χ [6]. But, as will be seen,
when we combine these two poor approximations in a novel manner with some multilevel
technique, it generates a very efficient and robust algorithm for locating an accurate position
and the shape of each inhomogeneous medium.

We emphasize that the unique goal of this work is to develop a simple and less expensive
algorithm that can help to locate an approximate position and shape of each inhomogeneous
medium, but it is not designed for an accurate approximation of the contrast values of the
inhomogeneous media.

The basic idea that motivates our algorithm is based on the following simple observation.
We know that the exact contrast function χ(x) vanishes outside the scatterer �, so its support
provides the location and shape of the scatterer �, which is formed by all the inhomogeneous
media. This observation, along with the previous two explicit evaluation formulae (4.1) and
(4.3) and a novel multilevel technique, forms the foundation of our new multilevel sampling
algorithm.

For the description of the algorithm, we first introduce two new concepts, the smallest
distance and the first gap interval with index M. For a given finite positive non-decreasing
sequence, {χ1, χ2, . . ., χm}, its smallest distance is the positive smallest one among all
the distances between two neighboring elements, namely dist(χi, χi+1), i = 1, 2, . . . , m − 1.
Among all these m−1 distances, if there exists some j such that 2 � j � m−1 and the distance

5
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dist(χ j, χ j+1) is M times larger than the smallest distance of the sequence {χ1, χ2, . . . , χ j},
then [χ j, χ j+1] is called a gap interval. The first such interval is called the first gap interval.

Now we are ready to state our new algorithm.

Multilevel sampling algorithm.

(1) Choose a sampling domain D that contains the scatterer �.
Select a uniform (coarse) mesh on D, consisting of square (2D) or cubic (3D) elements;
write the mesh as D0.
Select a tolerance ε and an index M; set an initial cut-off value c0 := 0 and k := 1.

(2) Compute an approximate value of the contrast χk(x) at each grid point x ∈ Dk−1, using
the formulae (4.1) and (4.3). Then do the following:

(2.1) Order all the values of χk(x) satisfying χk(x) � ck−1 into a non-decreasing sequence.
Find the first gap interval of the sequence with index M.
Choose the right endpoint of this first gap interval with index M as the next cut-off
value ck.

(2.2) If χk(x) � ck at a grid point x, select all the grid points of the elements which share
x as one of their vertices.
Remove all the grid points in Dk−1, which are not selected.
Update Dk−1 by all those selected grid points.

(3) If |ck − ck−1| � ε, set Dk := Dk−1 and go to step 4;
otherwise refine the mesh Dk−1 to obtain Dk; set k := k + 1 and go to step 2.

(4) Output all grid points in Dk for the domains of all inhomogeneous media.

We would like to make an important remark about the index M used in the multilevel
sampling algorithm. This index is basically a limit value to help separate numerically the
contrast values of the homogeneous background medium from those of the inhomogeneous
media. Its motivation lies in the fact that the exact contrast value of the homogeneous
background medium is 0, while the ones for the inhomogeneous media are usually significantly
larger in magnitude since we are comparing 0 (homogeneous medium) and non-zero
(inhomogeneous media), so it is reasonable to locate the interval where the contrast values
have the first expected large jump (namely the first gap interval with index M, and M is to
measure the jump), then classify the grid points with the small contrast values (less than
the cut-off value, i.e., the right endpoint of the first gap interval) as the background medium
region, and the grid points with the larger contrast values (larger than the cut-off value) as the
inhomogeneous medium regions.

The effectiveness of the multilevel algorithm is not so sensitive to the choice of the index
M and mostly we can take it in the range 80–120. For all the numerical experiments we show
in the following section, we have simply fixed M to be 100.

We can easily see that the above multilevel sampling algorithm does not involve any
optimization process or matrix inversions, and its major cost is to update the contrast values
using the explicit formulae (4.1) and (4.3) at each iteration, and the computational sampling
domain Dk shrinks as the iteration goes. So the algorithm is rather simple and less expensive.
In addition, as the cut-off values are basically to distinguish the homogeneous background
medium where χ(x) vanishes and the inhomogeneous media where χ(x) should be essentially
different from 0 (it can be small, say 0.3, which is still relatively large in magnitude when
compared with zero), so our cut-off values are rather easy to choose and insensitive to the
size and physical features of scatterers. In fact, the cut-off value can start simply with zero,
then it is updated automatically with the iteration. As we shall see from numerical examples

6
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in the following section, the algorithm works well with few incidents, even with one; and it
is self-adaptive, namely it can recover some elements that have been removed in the previous
iterations due to computational errors. In terms of these aspects, this new multilevel sampling
algorithm outperforms the popular linear sampling methods [16], including the improved
multilevel variant [12].

Remark 4.1. Many existing refinement techniques can be used for the mesh refinement
required in step 3. In all our numerical experiments, we have adopted the simple bisection
technique, namely, we divide each square element into four equal sub-squares in 2D, or divide
each cubic element into eight equal smaller cubes in 3D.

5. Numerical simulations

In this section, we present several examples to verify the effectiveness and robustness of the
newly proposed multilevel sampling algorithm.

We first use the state and field equations (2.5) and (2.6) (more accurately, their discrete
forms (A.1) and (A.2)) to generate the synthetic scattered field data. To do so, equation (A.1) is
solved first for the field w j for each incident field uinc

j , then the scattered data usca
j is computed

from (A.2). Sufficiently fine meshes are used to ensure reliable accuracies of the synthetic
data.

Now we list the parameters that are used in our numerical simulations. The wave number
k and wave length λ are taken to be k = 2π and λ = 1. For two dimensions, the number of
incidences and receivers are set to be Ni = 6 and Ns = 30, respectively, and the incident wave
directions are evenly distributed on the unit circle, while the receivers are equally distributed
on the circle of radius 5λ. For three dimensions, the number of incidences and receivers are set
to be Ni = 20 and Ns = 182, respectively, the incident wave directions are evenly distributed
on the unit sphere, while the receivers are equally distributed on the surface of the sphere
of radius 5λ. The index M of the first gap interval and the tolerance parameter ε are chosen
to be 100 and 10−3, respectively. In the two-dimensional numerical simulations, the mesh
refinement during the multilevel algorithm is carried out based on the simple bisection rule,
namely each square element is divided into four equal subsquares, so we have hk = 0.4λ/2k,
where k is the kth refinement, and h0 and hk are, respectively, the mesh sizes of the initial
mesh and the mesh after the kth refinement. Moreover, random noises are added to the exact
scattering data in the following form:

usca
j (x) := usca

j (x)[1 + ξ (r1, j(x) + ir2, j(x))], j = 1, 2, . . . , Ni,

where r1, j(x) and r2, j(x) are two random numbers varying between -1 and 1, and ξ corresponds
to the level of the noise, which is usually taken to be 10% unless specified otherwise. All the
programs in our experiments are written in MATLAB and run on a 2.83 GHz PC with 4GB
memory.

5.1. Two-dimensional reconstructions

Example 1. This example shows a scatterer � consisting of two squares of side length 0.3λ,
located, respectively, at (−0.3λ,−0.3λ) and (0.3λ, 0.3λ), with their contrast values being
1 and 2, respectively; see the two red squares in figure 3(a). We take the sampling domain
D = [−1.2λ, 1.2λ] × [−1.2λ, 1.2λ], which is quite large compared to the scatterer �, with
an area 64 times the area of one scatterer component. More importantly, we see that these two
small objects are quite close to each other.
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Figure 2. Comparisons of the noise-free data (blue circles) and the data with 10% noise (red stars)
for example 1: the real part (a) and imaginary part (b) on the circle of radius 5, with the x-axis
representing angles from 0 to 2π .

D D

(a) (b)

(c) (d)

D D

Figure 3. (a) The initial (coarse) mesh on the sampling domain for example 1; (b)–(d)
Reconstructions at the first, third and fifth iterations.
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D D

D D

(b)(a)

(d)(c)

Figure 4. (a) The initial (coarse) mesh on the sampling region for example 2; (b)–(d)
Reconstructions at the first, third and sixth iterations.

Table 1. Information about the grid points at each iteration for example 1.

Iteration 1 2 3 4 5

Number of removed grid points 32 18 41 64 59
Number of remaining grid points 17 31 56 118 401
Number of total grid points 49 49 97 182 460

We first show some figures to compare the exact data with the noisy data. When the exact
data is polluted with 10% noise, and 30 receivers are used to measure the data corresponding
to one incidence, the exact and noisy data are shown in figure 2(a) for the real part of the data,
and figure 2(b) for the imaginary part.

The numerical reconstructions are shown in figures 3(b)–(d), respectively, for the first,
third and fifth iterations. One can observe from the figures that the algorithm converges
very fast and provides quite accurate locations of the two medium components in only five
iterations. Moreover, we can see an important advantage of the algorithm, i.e., it can separate
the disjoint medium components quickly. One can find more detailed behavior of the algorithm
from table 1, which lists the number of grid points that remained or were removed after each
iteration.
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Figure 5. The reconstructed contrast values and the first gap intervals of the first six iterations for
example 2.

Table 2. Information about the grid points at each iteration for example 2.

Iteration 1 2 3 4 5 6

Number of removed grid points 32 18 33 84 13 10
Number of remaining grid points 17 31 64 98 452 1604
Number of total grid points 49 49 97 182 465 1614

Example 2. This example is the same as example 1, except that the contrast values of the two
medium components are now variable functions, namely

χ(x, y) = sin
π(10|x| − 1.5)

3
sin

π(10|y| − 1.5)

3
.

The numerical reconstructions are shown in figures 4(b)–(d) for the first, third and sixth
iterations. Again, we observe from the figures that the algorithm converges fast, provides very
satisfactory locations of the two medium components in only six iterations, and can separate
the disjoint medium components quickly.

For a better understanding of the first gap interval, we present in figure 5 the reconstructed
contrast values of the remaining grid points and the first gap intervals obtained in the first six
iterations. For the plots of the fifth and sixth iterations we have selected only the first 200
and 300 grid points (in a non-decreasing order as the algorithm did), otherwise the points
are too many to show in one plot, and the first gap intervals are also difficult to see. As we
observe from figure 5(f) that there is nearly no first gap interval at iteration 6, indicating that
the remaining grid points are nearly all inhomogeneous media when the algorithm converges.

To see the more detailed behavior of the algorithm in terms of grid points, we have listed
in table 2 the number of grid points that remained or were removed after each iteration.

Example 3. This example considers a scatterer � of a thin annulus with the inner and outer
radii being 0.3λ and 0.5λ, respectively, and centered at the origin. The contrast value χ(x) is

10
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D D

D D

(b)(a)

(d)(c)

Figure 6. (a) The initial (coarse) mesh on the sampling region for example 3; (b)–(d)
Reconstructions at the first, third and fourth iterations.

Table 3. Information about the grid points at each iteration for example 3.

Iteration 1 2 3 4

Number of removed grid points 204 20 37 76
Number of remaining grid points 21 45 111 303
Number of total grid points 225 65 148 379

2 inside the thin annulus. The sampling domain D is taken to be a square of side length with
5.6λ, as shown in figure 6(a).

It is easy to see the sampling domain D has an area about 62 times as large as the annulus,
and the annulus has a very thin thickness, i.e., 0.2λ. The numerical reconstructions are shown
in figures 6(b)–(d) for the first, third and fourth iterations. As for the previous two examples, the
reconstructions are quite satisfactory and accurate locations for the scatterer can be achieved.
Table 3 gives more detailed information about the number of grid points that remained or were
removed after each iteration of the multilevel algorithm.

Example 4. This example considers a scatterer � of the Austria profile with two cylinders
of radii 0.2λ and the ring of the inner and outer radii being 0.3λ and 0.6λ, respectively. The

11
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D D

D D

(b)(a)

(d)(c)

Figure 7. (a) The initial (coarse) mesh on the sampling region for example 4; (b)–(d)
Reconstructions at the second, third and fourth iterations.

contrast value χ(x) is set to 1 inside the Austria. The sampling domain D is taken to be a
square of side length with 4.8λ, as shown in figure 7(a).

It is easy to see that the sampling domain D has an area about 21 times as large as the Austria
profile, and the annulus has a very thin thickness, i.e., 0.3λ. The numerical reconstructions are
shown in figures 7(b)–(d) for the second, third and fourth iterations. As for the previous three
examples, the reconstructions are quite satisfactory and accurate locations for the scatterer are
achieved. Moreover, the algorithm can separate the top two small circles from the annulus,
although the distances between them are rather small.

As we have emphasized earlier, a good feature of the multilevel algorithm is its self-
adaptiveness. We may see from figure 7 that the result from the second iteration (figure 7(b))
has excluded four subregions (two on the top middle and two near the bottom left and right) of
the inhomogeneous media, but they are basically recovered at the next iteration (figure 7(c)).
So the self-adaptiveness of the algorithm may remedy some possible errors from the previous
iterations at a current step.

Example 5. In this example, we test the algorithm with partial data to reconstruct an
inhomogeneous scatterer. We use only two incidences at directions, d =

√
2

2 (1, 1) and√
2

2 (−1, 1), and nine receivers evenly distributed on the top half of the circle of radius 5λ. The
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D D

D D

(b)(a)

(d)(c)

Figure 8. (a) The initial (coarse) mesh on the sampling region for example 5; (b)–(d)
Reconstructions at the first three iterations.

sampling domain D is selected to be a square of side length with 5.6λ, as shown in figure 8(a).
The inhomogeneous medium is a small circle of radius 0.5 with a contrast value 1, and the
result is shown in figure 8. We can compute that the sampling domain D has an area about
40 times as large as the small circular profile.

As one may see, the location of the inhomogeneous medium is basically accurate, with the
top boundary quite well reconstructed but the bottom boundary less accurately reconstructed.
The reconstructions seem reasonable as we have only two incidences and measurements on
the top part.

5.2. Reconstruction for the contrast function χ

Many numerical methods are available in the literature for reconstructing the contrast
profile function χ . These methods are usually more refined and accurate than the new
multilevel method for recovering both the geometric shapes and the contrast functions of
the inhomogeneous media, but they are usually more complicated technically and much
more demanding computationally, as they mostly involve nonlinear optimizations and matrix
inversions. Without a reasonably good initial location for each inhomogeneous medium, we
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Figure 9. True scatterer for (a) example 1 and (d) example 3. The reconstructions by ESCI
applied to the originally selected computational region for (b) example 1 and (e) example 3. The
reconstructions by ESCI applied to the domain provided by the multilevel sampling algorithm for
(c) example 1 and (f) example 3.

may have to take a much larger sampling domain than the actual size of the inhomogeneous
media for these methods, so they can be extremely time consuming, especially in three
dimensions. Using the newly proposed multilevel algorithm in section 4, we can first locate a
much smaller sampling domain than usual (or the one we originally selected) in a numerical
reconstruction for the contrast χ . Then we can apply any existing reconstruction algorithms
for more accurate reconstructions, starting with an initial sampling domain provided by the
multilevel algorithm. This may save us a great fraction of the entire computational costs.
Based on above few observations, we think that there is a significant advantage to applying
an optimization-type method to the domain achieved by the multilevel sampling algorithm.
For comparison, we show some numerical tests using the popular extended contrast source
inversion (ECSI) method [18] and the newly proposed multilevel method combined with
ECSI.

We consider the same scatterer � and the setups as in examples 1 and 3 of section 5.1;
see figures 9(a) and (d). Then we apply the ECSI method [18] with mesh size h = 0.015λ,

respectively, to the originally selected computational regions and the reconstructed domains (cf
figures 3(d) and 6(d)) by the multilevel algorithm. The reconstructions are shown in figures 9(b),
(c), (e) and (f). The four figures are the inverted images of ECSI when it is terminated at the
relative L2-norm error ε = 10−2 of the reconstructed contrast values. Clearly, figures 9(c)
and (f) give much better reconstructions than figures 9(b) and (e), with quite satisfactory
reconstructions of both locations and contrast values. Figure 10 shows the convergence curves
in terms of the relative L2-norm errors against the number of iterations. It is obvious that the
ECSI with the help of the multilevel algorithm gives more accurate reconstructions, and with
much less computational effort.
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Figure 10. Convergence curve by ECSI applied to the originally selected computational region
for (a) example 1 and (b) example 3. Convergence curve by ECSI applied to the domain achieved
from the multilevel sampling algorithm for (c) example 1 and (d) example 3.

D D

(b)(a)

Figure 11. Scatterers imbedded in a large sampling domain: (a) two cubic components close to
each other in example 6; (b) a torus in example 7.
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D D

D D

(b)(a)

(d)(c)

Figure 12. Numerical reconstructions by the first fourth iterations for example 6.

5.3. Three-dimensional reconstructions

Example 6. This example tests a three-dimensional scatterer � consisting of two small cubic
components,

�1 = [−0.45λ,−0.15λ]3, �2 = [0.15λ, 0.45λ]3.

The two squares are quite close to each other, both with constant contrast values 2; see
figure 11(a). We take the sampling domain to be D = [−1.2λ, 1.2λ]3, which is about 500 times
of the volume of �1 or �2.

We take an initial mesh size of h0 = 0.8λ in the multilevel algorithm. The mesh refinement
during the multilevel algorithm is carried out based on the bisection rule, namely hk = 0.8λ/2k,
where k is the kth refinement, and hk is the mesh size after the kth refinement. The numerical
reconstructions are shown in figure 12. As for the previous two-dimensional examples, the
reconstructions are quite satisfactory and accurate locations for the scatterer can be achieved,
and two inhomogeneous medium objects can be quickly separated. From table 4, we can see
more detailed information on the number of grid points that remained or were removed after
each iteration of the multilevel algorithm.
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(b)(a)

(d)(c)

Figure 13. Numerical reconstructions by the first three iterations for example 7; (d) is the same as
(c), but viewed from a different angle.

Table 4. Information about the grid points at each iteration for example 6.

Iteration 1 2 3 4

Number of removed grid points 18 170 122 287
Number of remaining grid points 46 53 127 398
Number of total grid points 64 223 249 685

Example 7. In this test, we consider a torus scatterer (see figure 11(b)), with a contrast value 2.
The torus has the following representation,

(R −
√

x2 + y2)2 + z2 = r2,

where r = 0.1λ and R = 0.4λ (R is the radius from the center of the hole to the center of the
torus tube, r is the radius of the tube). The sampling domain is taken to be D = [−1.2λ, 1.2λ]3,
which is about 170 times the volume of the torus.

We take an initial mesh size of h0 = 0.4λ in the multilevel algorithm. The mesh refinement
during the multilevel algorithm is carried out based on the rule hk = 0.4λ/2k, where k is the
kth refinement, and hk is the mesh size after the kth refinement. The numerical reconstructions
are shown in figure 13. As for the previous two-dimensional examples, the reconstructions are
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Table 5. Information about the grid points at each iteration for example 7.

Iteration 1 2 3

Number of removed grid points 244 390 516
Number of remaining grid points 99 135 249
Number of total grid points 343 525 765

quite satisfactory and accurate locations for the scatterer can be achieved. Again, we can find
more information from table 5 on the number of grid points that remained or were removed
after each iteration of the multilevel algorithm.

6. Concluding remarks

This work proposes a multilevel sampling algorithm which helps to locate an initial
computational domain for the numerical reconstruction of inhomogeneous media in inverse
medium scatterings. The algorithm is an iterative process which starts with a large sampling
domain, and reduces the size of the domain iteratively based on the cut-off values, which
are computed adaptively by using the updated contrast source strengths and contrast values
at each iteration. The iterative algorithm can be viewed actually as a direct method, since
it involves only matrix–vector operations and does not need any optimization process or to
solve any large-scale ill-posed linear systems. The algorithm works with very few incident
fields and its cut-off values are easy to compute and insensitive to the sizes and shapes of
the scatterers, as well as the noise in the data. This is a clear advantage of the algorithm over
some popular existing sampling methods such as the linear sampling type methods, where the
cut-off values are sensitive to the noise and difficult to choose, and the number of incident fields
cannot be small. In addition, the multilevel algorithm converges fast and can easily separate
multiple disjoint scattering components, often with just a few iterations to find a satisfactory
initial location of each object. Another nice feature of the new algorithm is that it is self-
adaptive, that is, it can remedy the possible errors from the previous levels at each current
level. With an effective initial location of each object, we may then apply any existing efficient
but computationally more demanding methods for the further refinement of the estimated
shape of each scattering object as well as for the recovery of the contrast profiles of different
media. However, we would like to emphasize that the new multilevel method aims only at
weak scatterers. We know from the numerical point of view that it is rather challenging to
reconstruct strong scatterers. There is still no efficient method that can successfully tackle this
problem, and neither can our multilevel algorithm deal with it. Nevertheless, with the linear
sampling method it may still be possible to locate strong scatterers if the number of incidences
is sufficient, since it does not involve wave interactions inside and among scatterers.
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Appendix. Discretization

In the numerical implementations of the multilevel sampling algorithm proposed in section 4,
we have to discretize all the integrals involved. In this appendix, we discuss briefly the
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numerical discretization of these integrations. We illustrate only the discretizations of the state
and field equations (2.5) and (2.6), as all other integrations involved in the algorithm can be
approximated similarly. To do so, we divide the domain D into smaller rectangular or cubic
elements, whose centers are denoted as x1, x2, . . . , xL.

Using the coupled-dipole method or discrete dipole approximation [3, 10], we can
discretize (2.5) by

w j(xl ) = χ(xl )u
inc
j (xl ) + k2χ(xl )

∑
n�=m

Ang(xm, xl )w j(xl ), l = 1, 2, . . . , L, (A.1)

where An is the area or volume of the nth element. Similarly, we can discretize equation (2.6)
at every point x ∈ S by

usca
j (x) = k2

L∑
l=1

Ang(x, xl )w j(xl ) for j = 1, 2, . . . , Ni. (A.2)
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