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Abstract
In this paper, we propose an algorithm for solving the large-scale discrete
ill-conditioned linear problems arising from the discretization of linear
or nonlinear inverse problems. The algorithm combines some existing
regularization techniques and regularization parameter choice rules with a
randomized singular value decomposition (SVD), so that only much smaller
scale systems are needed to solve, instead of the original large-scale regularized
system. The algorithm can directly apply to some existing regularization
methods, such as the Tikhonov and truncated SVD methods, with some popular
regularization parameter choice rules such as the L-curve, GCV function,
quasi-optimality and discrepancy principle. The error of the approximate
regularized solution is analyzed and the efficiency of the method is well
demonstrated by the numerical examples.

(Some figures may appear in colour only in the online journal)

1. Introduction

We will consider the ill-conditioned linear system Ax = b arising from the discretization
of some linear inverse problem [10] or of the linearized system of some nonlinear inverse
problem [2, 13], where A is an m × n matrix and b is obtained from measurement data. For
an ill-posed inverse problem, its solution is usually very sensitive to the perturbation in the
measurement data b. In order to achieve a meaningful solution that changes stably with respect
to the perturbation in the data, one often adopts some regularization techniques [13]. Tikhonov
regularization is one of the most popular and effective techniques, which converts the solution
of the system Ax = b into the solution of the regularized least-squares system

min
x

{||Ax − b||2 + μ2||x||2}, (1)
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where constant μ is the so-called regularization parameter. The minimization problem (1) is
equivalent to the system

(AT A + μ2I)x = AT b. (2)

Suppose that we have the singular value decomposition (SVD) of matrix
A ∈ R

m×n(m � n), namely we can write A = U�V T , where U = (u1, . . . , um),
V = (v1, . . . , vn) are orthonormal matrices, and � = diag(σ1, . . . , σn) ∈ R

m×n, with σ1,
σ2, . . ., σn being the singular values and σ1 � σ2 � · · · � σn. Then the solution of (2), i.e.,
the Tikhonov regularized solution xμ, can be expressed as

xμ =
n∑

i=1

fi
uT

i b

σi
vi, (3)

where fi = σ 2
i /(σ 2

i + μ2) is the Tikhonov filter factor [29]. When replacing the filter factors
fi by 0s and 1s appropriately, we have the truncated SVD method (TSVD) [25], which
is another popular regularization method using the best low-rank approximation of A. The
TSVD regularized solution xk is given by

xk =
k∑

i=1

uT
i b

σi
vi,

where the positive integer k is the truncation parameter and is chosen such that the noise-
dominated small singular values are discarded.

As A arises mostly from the discretization of some compact operator, it has singular
values of quite small magnitude. One can easily see from (3) that the solution can be easily
contaminated by the perturbation in the measurement data b without the regularization, i.e.,
μ = 0. By introducing the regularization (μ �= 0), we may make a compromise between the
sensitivity of the problem and the perturbation of the measured data and greatly reduce the
effect caused by the contamination of the noise in the data.

A key issue for the success of the Tikhonov regularization is how to determine a reasonable
regularization parameter μ. There are several popular techniques in the literature for the
selection of effective regularization parameters. When the noise level is unknown, we may
use some heuristic methods, for example, the so-called L-curve method [26, 31], which uses
the plot of (log ||Axμ − b||, log ||xμ||) over a range of μ, i.e., the norm of the regularized
solution versus the corresponding residual norm. If there is a corner on the L-curve, one
can take the corresponding parameter μ as the desired regularization parameter. Many other
heuristic methods can be found in the literature, such as the generalized cross-validation (GCV)
function [15], the quasi-optimality criterion [46, 47], Brezinski–Rodriguez–Seatzu estimators
[4], Hanke–Raus rule [24], and so on. When the noise level is known, the discrepancy principle
[39, 41], the monotone error rule [45] and the balancing principle [35, 38] may be applied.

Once we have knowledge of the SVD of matrix A, we can determine the regularization
parameter by some of the aforementioned techniques, such as the L-curve, the GCV function
or the Brezinski–Rodriguez–Seatzu estimators. To see this, we can compute the regularized
solution xμ and the corresponding residual rμ = b − Axμ using (3) for a range of μ values.
Then either the L-curve, the GCV function or the Brezinski–Rodriguez–Seatzu estimators can
be easily applied to determine the desired parameter μ, and the corresponding solution xμ will
be viewed as our final regularized solution. So we can see that the SVD is a simple and efficient
tool for solving ill-posed discrete problems by Tikhonov regularization if we can afford the
computing of the SVD for the corresponding coefficient matrix A.

However, it is widely known that it may be infeasible or extremely expensive to compute
SVD when the concerned discrete inverse problem is of large scale. In this work, we shall
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investigate how to use the SVD to solve large-scale discrete inverse problems in a more feasible
and efficient manner. Certainly, we should not work on the original large systems directly,
due to the computational complexity, instability and memory limitation. Our approach is to
first greatly reduce the size of the original large-scale discrete system, and then apply some
existing regularizations combined with the SVD to solve the much reduced discrete system.
Clearly, the solution of the reduced system must still be a good approximation of the original
large system in order to ensure this approach works effectively. This is a challenging problem
and will be the central focus of this study.

In the remainder of this work, we will introduce some more efficient strategies to deal
with the large-scale discrete inverse problems, namely some randomized algorithms. These
strategies are based on some new randomized algorithms that have been developed recently in
the theoretical computer science community. They can greatly reduce the size of the original
discrete inverse problem, but require accessing the large matrix A only twice, which is very
crucial when the matrix is of large size. Moreover, these algorithms also work well for noisy
data, due to their randomness.

2. Algorithms and complexities

2.1. Randomized algorithms

The randomized algorithm has become more and more popular in the matrix approximation
in the last decade. It was realized that low-rank approximations can be obtained by randomly
sampling the columns of A according to a probability distribution that depends on the Euclidean
norms of the columns [14]. This has motivated many studies in this direction. By choosing
columns and rows simultaneously one can obtain the so-called CUR matrix decomposition
A ≈ CUR [12, 37], where C and R are randomly chosen from the columns and rows of A,

respectively, and U is a generalized inverse of their intersections. A low-rank approximation
in the form of an interpolative decomposition was derived in [36, 50] by using randomized
algorithms.

For large-scale systems, the randomized algorithms can be used to approximate the SVD
of the concerned coefficient matrices. This is the major interest of the current work, since we
need SVD to help find some reasonable regularization parameters through some parameter
choice rules that need to compute the SVD such as the L-curve and the GCV techniques, for
use in the Tikhonov regularizations for solving discrete inverse problems.

An approximation to SVD was provided in [50] by means of the interpolative
decomposition and was compared with the classical pivoted QR decomposition algorithm
in [9]. Randomized algorithms for the principle component analysis (PCA) were given and
analyzed in [42]. One such algorithm is listed here; see algorithm 1, which gives the best
rank-k approximation of A ∈ R

m×n, i.e., A ≈ U�V T , and meets the following error estimate

||A − U�V T || � Cm1/(4i+2)σk+1, (4)

Algorithm 1. Randomized algorithm for PCA.

1. Form a real l × m Gaussian random matrix �, and compute Y = �(AAT )iA for some positive
integer i � 1.
2. Using the SVD of Y , form a real n × k matrix Q with orthonormal columns, such that there exists
Z satisfying ||QZ − Y T || � σk+1(Y ).
3. Compute the m × k matrix B = AQ.
4. Form the SVD of B: B = U�W T .
5. Compute V = QW , and obtain the approximation A ≈ U�V T .
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where σk+1 is the (k + 1)th greatest singular value of A, and i is a non-negative integer in
algorithm 1 specified by the user to enhance the decay of the singular values, and it is sufficient
with i = 1 or 2 in many applications of PCA [42].

The integer l in algorithm 1 is usually selected such that k < l � m − k, for example,
l = k + 12 [42]. Although the algorithm is randomized, the estimate (4) holds with very
high probability (typically 1–10−15); see [42] for the details and different variants of this
algorithm. More about randomized algorithms can be found in the recent review paper [20].
The following algorithm 2 gives an important variant of algorithm 1, which will be fundamental
to our subsequent studies. This variant provides an approximation of the SVD of matrix A,
and was analyzed in [20]. We shall call it the randomized SVD (or RSVD).

Algorithm 2 (RSVD). Given A ∈ R
m×n(m � n) and l < n, compute an approximate SVD: A ≈ U�V T

with U ∈ R
m×l , � ∈ R

l×l and V ∈ R
n×l .

1. Generate an n × l Gaussian random matrix �.
2. Form the m × l matrix Y = A�.
3. Compute the m × l orthonormal matrix Q via QR factorization Y = QR.
4. Form the l × n matrix B such that B = QT A.
5. Compute the SVD of the small matrix B: B = W�V T .
6. Form the m × l matrix U = QW , then A ≈ U�V T .

In algorithm 2, the index l is usually selected in the form l = k + p, where p is an
oversampling parameter and k corresponds to the rank-k specified in advance for the best
rank-k approximation of A [20]. To understand algorithm 2 more, we make some remark about
each step of the algorithm. Step 2 is used to extract the column information, i.e. the range of
A, and yields a matrix with much smaller columns (l < n). In step 3, an orthogonal matrix
Q is formed to represent the range of A, and it also gives the first approximation of the left
singular vectors of A. The matrix A is reduced to a smaller matrix in step 4, and the matrix BT

provides information on R(AT ) = N(A)⊥, or the range of right singular vectors. After SVD
on the small matrix in step 5, the first left singular vector approximation Q is modified by
W in step 6 to obtain the final approximation of the left singular vectors, leading to an SVD
approximation.

For the matrices of size m × n with m < n, we propose a variant of algorithm 2, i.e., the
following algorithm 3.

Algorithm 3 (RSVD*). Given A ∈ R
m×n(m < n) and l < m, compute an approximate rank-l SVD:

A ≈ U�V T with U ∈ R
m×l , � ∈ R

l×l and V ∈ R
n×l .

1. Generate an l × m Gaussian random matrix �.
2. Compute the l × n matrix Y = �A.
3. Compute the n × l orthonormal matrix Q via QR factorization Y T = QR.
4. Form the m × l matrix B = AQ.
5. Compute the SVD of a small matrix B: B = U�W T .
6. Form the n × l matrix V = QW , then A ≈ U�V T .

We have tried several other similar variants of algorithms 2 and 3. For example, we may
randomly choose l columns to form the matrix Y in algorithm 2. In this way, we can avoid the
matrix–matrix multiplication in step 2, therefore reducing the computational costs nearly by
half. Our numerical tests have shown that this variant can succeed for some cases but may fail
to give a good SVD approximation for more difficult problems, especially when l is small.
We have also tried the double projection of the form QQT APPT , where Q is defined as in
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algorithm 2, and P has a similar role to Q, i.e. the range of P should be a good approximation
of R(AT ) or N(A)⊥. That is, we can use A ≈ QQT APPT for the approximate SVD of A. This
variant works well in our numerical experiments in locating the regularization parameters and
finding the regularized solutions, but it nearly doubles the computational costs of algorithm 2.
Among all different variants we have tried numerically, we find algorithms 2 and 3 most
efficient and robust. Therefore, we shall mainly focus on these two algorithms in the rest of
this work.

2.2. Approximate regularized solutions by randomized SVD

In this section, we propose an algorithm that combines the randomized SVD addressed in
the previous section with some regularization techniques to solve the large-scale regularized
discrete inverse system (2). This seems to be the first time in the literature to solve the discrete
inverse problems in such a manner.

As discussed in the introduction, we can use the SVD to determine a desired regularization
parameter and find the corresponding solution to the regularized system (2). However, it may
not be feasible or efficient to use the SVD for large-scale systems. But in the rest of this
section, we show that it is possible to solve the large-scale systems efficiently, with the help
of the newly introduced randomized SVD.

Suppose that we have an approximate SVD of matrix A, i.e., A ≈ U�V T , whereU ∈ R
m×l ,

� ∈ R
l×l and V ∈ R

n×l . Then by replacing A by its approximate SVD, the regularized system
(2) can be approximated by

(V�2V T + μ2I)x = V�UT b, (5)

which gives an approximate regularized solution of (2):

xμ = V (�2 + μ2I)−1�UT b. (6)

For convenience, we set s = (σ1, . . . , σl )
T and t = (UT b)./s, where ./ is the

componentwise division. Let .∗ be the componentwise multiplication and f = ( f1, . . . , fl )
T

with fi = σ 2
i /(σ 2

i +μ2). Then the approximate regularized solution (6), its norm η and residual
norm ρ can be evaluated, respectively, by

xμ = V ( f . ∗ t),

η = ||xμ|| = || f . ∗ t||,
ρ = ||b − Axμ|| = ||b − U�( f . ∗ t)||

=
√

||(I − UUT )b||2 + ||UUT b − U�( f . ∗ t)||2
=

√
||(I − UUT )b||2 + ||UUT b − U ( f . ∗ (UT b))||2

=
√

β2
0 + ||(1 − f ). ∗ b̂||2,

where b̂ = UT b and β2
0 = ||(I − UUT )b||2 = ||b||2 − ||b̂||2.

Using the above formulae and the approximate SVD of A, the entire process of finding
a desired regularization parameter μ and an approximate regularized solution of (2) can be
summarized in the following algorithm.

Choosing a reasonable regularization parameter is crucial for the success of the Tikhonov
regularization. There exist many regularization parameter choice rules in the literature that
suit algorithm 4, but we have used only the L-curve rule [26, 31] in the description of the
algorithm. The L-curve rule determines a parameter by the plot of (log ||Axμ − b||, log ||xμ||)
over a range of μ.
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Algorithm 4. Given A ∈ R
m×n and b ∈ R

m, compute a regularized solution xμ.

1. Apply RSVD (algorithm 2 for m � n or algorithm 3 for m < n) for an approximate rank-l SVD of
A ≈ U�V T .
2. Choose the regularization parameter μ.

2.1 Compute b̂ = UT b, t = b̂./s, β2
0 = ||b||2 − ||b̂||2 .

2.2 Select p values of μ: μ1, μ2, . . ., μp .
For i = 1 : p, compute

f = ( f1, . . . , fl ) with f j = σ 2
j /(σ

2
j + μ2

i ),
ηi = || f . ∗ t||,
ρi =

√
β2

0 + ||(1 − f ). ∗ b̂||2.
End.

2.3 Form the L-curve by (log ρi, log ηi) and locate the corner of the L-curve and the corresponding
regularization parameter μ.

3. Compute the approximate regularized solution xμ.
3.1 Calculate f = ( f1, . . . , fl ) with f j = σ 2

j /(σ
2
j + μ2) ( j = 1, . . . , l) .

3.2 Form the regularized solution xμ = V ( f . ∗ t).

Next, we briefly review a few other regularization parameter choice rules. The GCV
function [15] is a choice rule that determines the regularization parameter by minimizing the
GCV function

G = ||(I − A(AT A + μ2I)−1AT )b||2
(tr(I − A(AT A + μ2I)−1AT ))2

= ||Axμ − b||2(
m − n + �n

i=1μ
2/(σ 2

i + μ2)
)2

, (7)

where we have used (2) and the SVD of A to derive the numerator and denominator (for
m � n), respectively. The GCV method intends to balance the data error and the regularization
error [26, 29].

Historically, the quasi-optimality criterion [46, 47] might be the first heuristic parameter
choice rule. Recently, a family of error estimators Ei and Êi of the form

E2
i = ci−1

0 c6−2i
1 ci−4

2 , Ê2
i = ci−1

0 c6−2i
1 ĉi−4

2

were proposed in [4] for any positive integer i, where Ei and Êi are the estimators of the error
||e|| := ||x − xμ|| and c0, c1, c2 and ĉ2 are four constants given, respectively, by

c0 = 〈rμ, rμ〉, c1 = 〈rμ, Arμ〉, c2 = 〈Arμ, Arμ〉, ĉ2 = 〈AT rμ, AT rμ〉,
with rμ = b − Axμ being the residual. Note that Ê3, called the Auchmuty estimator, is a lower
bound of ||e||, and can be written explicitly as

Ê3 = ||rμ||2||xμ||−1μ−2

by using the fact that AT rμ = μ2xμ. In general, E3 and Ê3 are the best of all the estimators Ei

and Êi [4].
All these above rules do not require data on the noise level explicitly. They are simple to

apply, popular and effective in many practical applications, despite some of their drawbacks
[3, 23, 34, 48, 49]. For instance, the L-curve corner may not exist. It is under-smoothing for
smooth solutions [23], and not convergent in the stochastic discrete data setting as the sample
size goes to infinity, where it leads to over-smoothing [49]. On the other hand, the GCV rule
may be unstable for the correlated noise, resulting in under-smoothing [3].

When the noise level is known, the discrepancy principle [39, 41], the monotone error rule
[45] and the balancing principle [35, 38] can be applied instead. The discrepancy principle
selects the regularization parameter such that the residual norm of the regularized solution
is about the same as the noise level in the data. The monotone error rule seeks the largest
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Table 1. Computational complexity.

RSVD RSVD* RRQR–SVD

Step 1 O(nl) O(ml) 4mnl − 2(m + n)l2 + 4
3 l3

Step 2 2mnl 2mnl 6nl2 + 20l3

Step 3 4ml2 − 4
3 l3 4nl2 − 4

3 l3 2ml2

Step 4 2mnl 2mnl 0
Step 5 6nl2 + 20l3 6ml2 + 20l3 –
Step 6 2ml2 2nl2 –

computable regularization parameter μ0 such that the error of the regularized solution in
(1) decreases monotonically as μ goes from 0 to μ0. For the iterative methods of the form
xk+1 = xk + AT wk, the monotone error rule chooses the regularization parameter to be the
first index k satisfying 〈rk + rk+1, wk〉/(2||wk||) � ε, with ε being the noise level [22]. The
balancing principle aims to balance the regularization error and the propagation noise error.

Comparisons of different parameter choice rules were given in [3, 21, 22], including some
recently proposed rules to ensure the convergence of the regularized approximation in the case
that the noise level is many times under- or overestimated [22]. It is noted [3] that the best
heuristic rules may perform better than the ones that use the noise level.

When iterative methods are used, such as CGLS, LSQR, Landweber’s method or
Kaczmarz’s method, the iterations may be terminated appropriately so that the errors are
controlled. In these cases, the iteration number plays the role of the regularization parameter
[28, 29].

A well-known result of Bakushinskii [1] states that for an infinite-dimensional ill-posed
problem, a parameter choice rule that does not explicitly use the noise level cannot yield a
convergent regularization method as the noise level tends to zero. Nevertheless, the exact noise
level is often not available for practical problems and the classical parameter choice rules such
as the discrepancy principle are not applicable. So the heuristic rules are rather popular and
often work reasonably in practice [3, 22].

2.3. Computational complexity

In this section, we shall discuss the computational complexity of the algorithms presented in
section 2.1. The cost of each step of algorithm 2 (RSVD) is listed in table 1. Note that we
use an economic QR factorization [17] to explicitly form the factor Q in step 3, and apply a
thin SVD [17] in step 5. For a given matrix A ∈ R

m×n, the flops count of the classical SVD
based on R-bidiagonalization is about 6mn2 + 20n3 [7, 17], while the cost of algorithm 2 is
only about 4mnl. For the cases where singular values decay rapidly, we can choose l 	 n.
According to the flops, the ratio of the cost for RSVD over that for the classical SVD is of the
order O( l

n ). Hence, algorithm 2 (RSVD) may be essentially less expensive than the classical
SVD (CSVD).

The above statements can be applied to algorithm 3 (RSVD*), which is a variant of
algorithm 2 for the case m < n. We can see that the major difference lies in step 5, where SVD
is applied on a small matrix. Recall that our aim is to perform the SVD for a matrix that has a
much smaller size compared to the original discrete system.

Note that if one uses a special structured random sampling matrix, for instance, a
subsampled random Fourier transform [50], one may have a substantial gain in terms of
execution time and the asymptotic complexity reduces to the order O(mn log l) for step 2 in
algorithm 2.

7
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In order to better understand the performance of the randomized algorithms (algorithms 2
and 3), we shall compare them with a deterministic method based on the rank revealing
QR (RRQR) with column pivoting. The rank revealing factorization has been widely applied
in the total least-squares problems, subset selection, regularization, low-rank approximation
and nonsymmetric eigenproblems; see [8] and the references therein. Although the RRQR
factorization may fail to reveal the numerical rank in some cases, it works quite well in
practice, like Gaussian elimination with partial pivoting applied to a linear system. In the lth
step of RRQR, we first find the column of largest norm and swap it with the lth column. Then
the lth orthogonal transformation, for example, Householder matrix, is performed [11]. The
RRQR with column pivoting yields

A	 = Q

[
R11 R12

0 R22

]
,

where 	 is a permutation matrix, R11 is a well-conditioned l × l upper triangular matrix and
R22 is sufficiently small. Let σl be the lth largest singular value. From the Courant–Fischer
minimax theorem [17], we know that σl(A) � σmin(R11) and σl+1(A) � σmax(R22). Hence if
||R22|| is small, then A has at least n − l small singular values, and it can be considered to have
the numerical rank l, and the first l columns of A	 form a well-conditioned basis for the range
of A within an approximate accuracy of σl+1(A) [19].

Algorithm 5 (RRQR–SVD). Given A ∈ R
m×n, use RRQR to achieve an SVD approximation

A ≈ U�V T with U ∈ R
m×l , � ∈ R

l×l and V ∈ R
n×l .

1. Generate the Householder QR factorization of A with column pivoting: A	 ≈ QR.
2. Generate the thin SVD: RT = V̂�ÛT , where V̂ ∈ R

n×l , �, Û ∈ R
l×l .

3. Compute the m × l matrix U = QÛ .
4. Form the n × l matrix V = 	V̂ via the permutation.

In algorithm 5, we use RRQR to achieve an approximate rank-l SVD. If we write the
matrix [R11, R12] as Rl×n and drop the small term R22, we have the truncated RRQR [28], i.e.,
Am×n	 ≈ Qm×lRl×n. One may improve the performance of the algorithm by using Stewart’s
pivoted QLP decomposition [44], but it will increase the total computational complexity.

The flops of algorithm 5 (RRQR–SVD) are also given in table 1, where the Householder
QR with column pivoting for an m×n matrix with rank l needs 4mnl −2(m+n)l2 + 4

3 l3 flops
[17]. We can see that its computational complexity is about the same order as algorithm 2.
But it is very time consuming to permute the data required in RRQR, while most flops for
RSVD are spent on the matrix–matrix multiplications, which are the so-called nice BLAS-3
operations, and the original large-scale matrix A is visited only twice. Furthermore, RSVD
works as robustly and accurately as RRQR–SVD for almost all the numerical examples that
we have tried; see section 4.

The new algorithm 4 can greatly reduce the size of the original problem by using
the randomized techniques. There exist other reduction processes, e.g., the ones using the
projection onto Krylov subspaces to reduce the size of the original discrete system (2), and
iterative methods based on the Arnoldi process [6] are good examples. The application of l
steps of the Arnoldi process to the matrix A with the initial vector b yields the decomposition

AWl = WlHl + ηl+1wl+1eT
l ≡ Wl+1H̄l,

8
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where W T
l Wl = I,Wle1 = b/||b||,W T

l wl+1 = 0, Hl is an l × l upper Hessenberg matrix, and
H̄l is the upper Hessenberg-like matrix formed by Hl and ηl+1eT

l . We then seek an approximate
solution of the form xμ = Wlz by minimizing∣∣∣∣

∣∣∣∣
[

H̄l

μI

]
z − ||b||e1

∣∣∣∣
∣∣∣∣ .

As H̄l is of size (l + 1) × l, this is a problem of smaller size.
For a large matrix, another solver based on the Lanczos bidiagonalization and the

quadrature rules can be used for the problem reduction [5]. The Lanczos bidiagonalization
procedure can be expressed as

AVl = UlCl + δl+1ul+1eT
l , ATUl = VlC

T
l ,

where V T
l Vl = I, UT

l Ul = I, UT
l ul+1 = 0, U1e1 = u1 = b/||b|| and Cl is an l × l lower

bidiagonal matrix. Then the regularization techniques are applied for Cl [40]. This is a
hybrid regularization using projection first and regularization second, instead of the direct
or iterative regularization [28]. The central idea is to reduce the large problem to a much
smaller one by projecting A onto some suitably chosen left and right subspaces like TSVD and
TGSVD methods [28]. On the other hand, Gauss quadrature rules [16, 18] can also be used
to estimate the solution and residual norms. Let φ(t) = (t + μ)−2, then we can verify that
||b − Axμ||2 = μ2bT φ(AAT )b, which can be estimated by μ2||b||2eT

1 φ(ClCT
l )e1 by applying

the l-point Gaussian quadrature rule [5, 33]. We then need to calculate (ClCT
l +μI)−1e1, which

can be obtained by minimizing∣∣∣∣
∣∣∣∣
[

CT
l

μ1/2I

]
y − μ1/2el+1

∣∣∣∣
∣∣∣∣ .

This reduction process enables us again to solve a problem of smaller size. Here, the l-point
Gaussian quadrature gives a lower bound of the residual norm, while the (l + 1)-point Gauss–
Radau quadrature provides a upper bound. The quality of the bounds depends on how well the
function φ can be approximated by a polynomial on the spectrum of A [33]. Similarly, we can
estimate the norm ||xμ|| of the regularized solution and obtain its lower and upper bounds; see
[5, 33] for details.

As seen from above, the Krylov subspace methods based on the Arnoldi process or
Lanczos procedure can also greatly reduce the size of the large-scale regularized system (2),
through which we can seek the approximate solution of the original system (2) by solving a
series of smaller problems. But these reduction methods need to access the coefficient matrix
A by l or 2l times and use the BLAS-2 operations, i.e., the matrix–vector multiplications.
The Lanczos procedure even requires the evaluation of matrix–vector products involving the
transpose of matrix A and reorthogonalization of the columns of Ul and Vl [6]. These are the
processes which are known to require essential CPU times when the size of A is very large.

3. Error estimates

Our proposed regularization method combined with the randomized SVD (i.e., algorithm 4)
consists of two stages. The first one is a stochastic process, which generates an approximate
SVD of matrix A by a randomized algorithm, while the second stage is deterministic,
using the resulting SVD approximation to select the regularization parameter and compute
the regularized solution. In order to find out the performance of this new algorithm, we
should understand the accuracy of the approximate regularized solution it provides and its
performance compared with the classical methods. The accuracies of the randomized SVD
and the approximate regularized solution will be analyzed in rest of this section, while its

9
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performance will be carried out numerically in the following section. We first introduce an
important estimate [20, 42].

Lemma 1 [20, corollary 10.9]. Suppose that A ∈ R
m×n has the singular values σ1 � · · · � σn.

Let � be an n × (k + p) standard Gaussian matrix with k + p � min{m, n} and p � 4, and Q
be an orthonormal basis for the range of the sampled matrix A�. Then

||A − QQT A|| � (1 + 6
√

(k + p)p log p)σk+1 + 3
√

k + p
(
� j>kσ

2
j

)1/2
(8)

with probability not less than 1 − 3p−p.

Under a very mild assumption on p, the estimate (8) can be simplified [20]:

||A − QQT A|| � (1 + 9
√

k + p
√

min{m, n})σk+1. (9)

We see from algorithm 2 that U�V T = QW�V T = QBT = QQT A; hence
||A − U�V T || = ||A − QQT A||, and lemma 1 indicates that we can obtain a good SVD
approximation with very high probability.

Next, we study the accuracy of the regularized solution xμ generated by algorithm 4
through the approximated SVD. First, we recall that the condition number measures the
sensitivity of the least-squares solution and demonstrates how the least-squares solution is
affected by the perturbations in A and b.

Lemma 2 [17, theorem 5.3.1]. Suppose A is of full rank, xLS and x̂LS are given by

xLS = argmin||Ax − b||, x̂LS = argmin||(A + δA)x̂ − (b + δb)||,
where A and δA are in R

m×n with m > n, b and δb are in R
m and ||δA|| < σn(A). Define

θ ∈ (0, π/2) by sin θ = ||b−AxLS||
||b|| and let ε = max

{
||δA||
||A|| ,

||δb||
||b||

}
. Then we have

||x̂LS − xLS||
||xLS|| � ε[νLS sec θ + (1 + νLS tan θ )κ(A)] + O(ε2), (10)

where κ(A) is the condition number κ(A) = σ1(A)/σn(A) and νLS = ||AxLS||/(σn(A)||xLS||).
Noting that νLS � κ(A), the upper bound in (10) can be changed to the following one:

||x̂LS − xLS||
||xLS|| � ε(2 sec θκ(A) + tan θκ(A)2) + O(ε2). (11)

The sensitivity of the least-squares solution is roughly proportional to the quantity κ(A) +
ρLSκ(A)2, where ρLS = ||b − AxLS|| and the factor κ(A)2 cannot be improved [17].

Now consider the regularized system (2). Clearly, its regularized solution xμ solves

min

∣∣∣∣
∣∣∣∣
[

A
μI

]
x −

[
b
0

]∣∣∣∣
∣∣∣∣ . (12)

Let A = [
A
μI

]
, and its condition number is given by κ(A) = ||A||||A†||, where A† is the

Moore–Penrose generalized inverse [17]. We can establish the following important estimate
on κ(A).

Lemma 3. Suppose A is of full rank. Then the condition number of A associated with the
problem (12) is bounded by

κ(A) �
√

σ 2
1 + μ2

(
μ

σ 2
n + μ2

+ max
1�i�n

σi

σ 2
i + μ2

)
, (13)

where σ1, σ2, . . ., σn are the singular values of A, and σ1 � · · · � σn.

10
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Proof. Since A has full column rank, its Moore–Penrose inverse can be expressed as

A† = (ATA)−1AT = (AT A + μ2I)−1[AT , μI].

The upper bound of the 2-norm of A† can be estimated as follows:

||A†|| = max
||y||=1

||(AT A + μ2I)−1[AT , μI]y||
= max

||[yT
1 ,yT

2 ]||=1
||(AT A + μ2I)−1AT y1 + μ(AT A + μ2I)−1y2||

� max
||[yT

1 ,yT
2 ]||=1

||(AT A + μ2I)−1AT y1|| + max
||[yT

1 ,yT
2 ]||=1

μ||(AT A + μ2I)−1y2||

� max
||[yT

1 ,yT
2 ]||=1

||(AT A + μ2I)−1AT y1||
||y1|| + max

||[yT
1 ,yT

2 ]||=1

μ||(AT A + μ2I)−1y2||
||y2||

� max
y1

||(AT A + μ2I)−1AT y1||
||y1|| + max

y2

μ||(AT A + μ2I)−1y2||
||y2||

= ||(AT A + μ2I)−1AT || + μ||(AT A + μ2I)−1||.
Consider the SVD of A, namely A = U�V T , where � = diag(σ1, . . . , σn) ∈ R

m×n, U ∈ R
m×m

and V ∈ R
n×n are orthogonal matrices. We can check that

AT A + μ2I = V (�2 + μ2I)V T

and

(AT A + μ2I)−1AT = V (�2 + μ2I)−1�UT ,

which implies

||(AT A + μ2I)−1AT || = max
1�i�n

σi

σ 2
i + μ2

, ||(AT A + μ2I)−1|| = 1

σ 2
n + μ2

.

The 2-norm of A can be obtained by

||A|| = max
x

||Ax||
||x|| =

√
max

x

||Ax||2
||x||2 + μ2 =

√
σ1(A)2 + μ2.

From the above, we derive that

κ(A) = ||A||||A†|| �
√

σ 2
1 + μ2

(
μ

σ 2
n + μ2

+ max
1�i�n

σi

σ 2
i + μ2

)
.

�

Note that the assumption that A has full rank in lemma 3 is unnecessary, since A is
obviously of full column rank when μ �= 0. Because of the simple fact that σi

σ 2
i +μ2 � 1

2μ
(μ �= 0)

for all σi (1 � i � n), we have the following simplified bound:

κ(A) �
√

σ 2
1 + μ2

(
μ

σ 2
n + μ2

+ 1

2μ

)
,

which can be further reduced to κ(A) � 3
2μ

√
σ 2

1 + μ2. A slightly tighter upper bound can be
obtained for the case with μ � σn:

κ(A) � σn + μ

σ 2
n + μ2

√
σ 2

1 + μ2, (14)

by noting that σi

σ 2
i +μ2 � σn

σ 2
n +μ2 for μ � σn.

For the extreme case of μ = 0, namely without the regularization, the upper bounds in
(13) and (14) are reduced to σ1/σn, which is quite large for the ill-conditioned inverse system.

11
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Under an appropriate regularization, the condition number κ(A) can be well bounded as it is
seen from (13).

By algorithm 2, we obtain an approximate SVD of A, i.e., A ≈ Ã = U�V T . Then
algorithm 4 uses the approximation Ã to determine the regularization parameter for use in the
least-squares system

min

∣∣∣∣
∣∣∣∣
[

Ã
μI

]
x −

[
b
0

]∣∣∣∣
∣∣∣∣ . (15)

This can be regarded as a perturbed version of (12). For the sake of simplicity, we define

Ã = [
Ã
μI

]
. Then, we have the following relation for the perturbation:

||Ã − A|| = ||Ã − A|| = ||U�V T − A|| = ||A − QQT A||.
This can be estimated by lemma 1, and we know that it is bounded by the smallest singular
values of A.

Now using lemmata 1–3, we can derive the following estimate.

Theorem 1. Let σ1 � · · · � σn be the singular values of matrix A, and

c = 1 + 6
√

(k + p)p log p + 3
√

(k + p)(n − k), C = c/σ1.

Assume that algorithm 2 is performed with the Gaussian matrix � ∈ R
n×(k+p) to achieve the

SVD approximation of matrix A, xμ and x̂μ are the solutions of (12) and (15), respectively,
with respect to the regularization parameter μ. Then, we have

||x̂μ − xμ||
||xμ|| � C

(
2 sec θκ + tan θκ2) σk+1 + O(σ 2

k+1) (16)

with probability not less than 1 − 3p−p, where κ is the upper bound of κ(A) given by (13),
and θ is defined by sin θ = ρLS/||b||2 with ρLS = √||b − Axμ||2 + μ2||xμ||2.

Proof. Assuming that Ã = U�V T is the SVD approximation of A achieved by algorithm 2
using the Gaussian matrix � ∈ R

n×(k+p), we have

Ã = U�V T = QQT A.

Then, it follows from lemma 1 that

||Ã − A|| = ||A − QQT A|| � cσk+1

with probability not less than 1 − 3p−p.

Let A = [
A
μI

]
and define δA = [

Ã
μI

] − [
A
μI

]
. We can check that ||δA|| = ||Ã − A|| �

cσk+1(A). Using the fact that σ1(A) � σ1(A), we have
||δA||
||A|| � cσk+1

σ1(A)
� Cσk+1. (17)

Let B = [
b
0

]
. By definition, xμ and x̂μ are given, respectively, by

xμ = argmin||Ax − B||, x̂μ = argmin||(A + δA)x − B||.
Then using (17) and (11) or lemma 2, we obtain

||x̂μ − xμ||
||xμ|| � Cσk+1

(
2 sec θκ + tan θκ2

) + O(σ 2
k+1),

where the upper bound, κ =
√

σ 2
1 + μ2

(
μ

σ 2
n +μ2 + max

1�i�n
σi

σ 2
i +μ2

)
is given by lemma 3, and

sin θ = ρLS/||b||2 with ρLS = ||B − Axμ|| = √||b − Axμ||2 + μ2||xμ||2. �

12



Inverse Problems 29 (2013) 085008 H Xiang and J Zou

Since κ is well bounded using the regularization parameter, the upper bound in (16) is of
order O(σk+1). Hence, the relative error of the regularized solution obtained from algorithm 4
and the regularized solution generated by the classical methods is small.

Remark 3.1. The right-hand side b in theorem 1 can be regarded as the measured data
containing noise. To explicitly take into account the noisy data, we use b to stand for the exact
data and bδ for the noisy data. Then, we can consider the regularized solutions of the following
two problems (with Bδ = [bδ, 0]T ):

xμ = argmin||Ax − Bδ||, x̂μ = argmin||(A + δA)x − Bδ||,
and obtain the same error estimates to (16) by following the arguments in the proof of theorem 1.
More explicitly, if we assume the relative noise level of the form δ = ||bδ−b||

||b|| � Cσk+1 and
consider the solutions to the following two problems:

xμ = argmin||Ax − B||, x̂μ = argmin||(A + δA)x − Bδ||,
then we have ε = max

{ ||δA||
||A|| , δ

}
� Cσk+1 by using (17), and obtain similar error estimates

to (16) by using lemma 2. We note that xμ above is the regularized solution of the original
problem without noise and x̂μ is the regularized solution of our randomized algorithm for the
noise contaminated problem.

4. Numerical experiments

In this section, we apply the newly proposed algorithm 4 to 14 examples of different linear
inverse problems to illustrate the performance of the algorithm for solving the discrete
large-scale inverse system Ax = b, which is converted to the solution of the least-squares
system (2).

Example 1. (CMRS, [6]). Let Cn be an auxiliary matrix Cn, such that Cn = (c jk)
n
j,k=1 with

entries

c jk = exp

(
π

2 j − 1

4n − 2
cos π

2k − 1

2n − 1

)
.

Suppose Cn has the SVD, Cn = Un�nV T
n , then we define the testing matrix A ∈ R

2n×n to
be A = U2n�V T

n , where � ∈ R
2n×n is a diagonal matrix with its diagonal elements being

exp(− 2
5 ( j − 1)) for j = 1, 2, . . . , n, U2n and Vn are the left and right orthogonal matrices

in the SVDs of C2n and Cn, respectively. Let x be a vector with standard normal distributed
entries, i.e., x = randn(n, 1), then we define the right-hand side vector to be b = Ax.

Example 2. (RST, [42]). We form matrix A by A = UA�AV T
A , where UA and VA are a 2n × 2n

Hadamard matrix (a unitary matrix with entries ±1/
√

2n) and an n × n Hadamard matrix,
respectively, and �A is a 2n × n diagonal matrix with its diagonal entries given by

σ j =
{
(σk+1)

� j/2/5, j = 1, 2, . . . , 10,

σk+1
n− j

n−11 , j = 11, 12, . . . , n,

where � j is the greatest integer less than or equal to j. In our testings, we choose k = 10 and
σk+1 = 1.0 × 10−6, and form vector b by b = Ax with x being a vector of all ones.

Examples 3–14 (Matrices from the regularization tools [30]). We choose the remaining 12
testing problems from Hansen’s regularization tools (version 4.1) [27, 30]; see table 2. The
parameter Nσ in the third column of table 2 represents the number of singular values which
are not less than 10−6 when the matrix sizes are chosen to be n = 100 except in PARALLAX and
RST. Among these 12 matrices, there are three matrices, namely DERIV2, HEAT and PHILLIPS, in

13
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Figure 1. The decay of singular values of the 14 testing problems, with the matrix size set to
100 × 100 except that PARALLAX, CMRS and RST are of sizes 26 × 100, 100 × 50 and 96 × 48,
respectively.

Table 2. The 14 testing matrices, with Nσ being the number of singular values larger than 10−6.

No. Matrix Nσ Descriptions (see also [30])

1 BAART 6 Discretization of the first kind Fredholm integral equation
2 CMRS 35 Matrix of size n × (n/2) adapted from example 4.1 in [6]
3 DERIV2 100 Computation of the second derivative
4 FOXGOOD 9 Severely ill-posed test problem
5 GRAVITY 25 1D gravity surveying problem
6 HEAT 95 Inverse heat equation
7 I_LAPLACE 17 Inverse Laplace transformation
8 PARALLAX 15 Stellar parallax problem with the size of 26 × n
9 PHILLIPS 100 Phillips’ famous test problem

10 RST 10 Matrix of size n × (n/2) adapted from the example in [42]
11 SHAW 12 1D image restoration model
12 SPIKES 14 Test problem with a ‘spiky’ solution
13 URSELL 4 Integral equation with no square integrable solution
14 WING 4 Test problem with a discontinuous solution

which the singular values are not well separated and decay slowly, while the singular values
of other matrices decay rapidly; see figure 1.

In all our numerical experiments, the observation data bδ are generated from the exact
data b by adding noise in the form

bδ = b + δ||b|| s

||s|| = b + ε
s

||s|| ,

where s is a random vector, s = randn(n, 1) if not specified otherwise, ε = δ||b|| is the
so-called noise level and δ is the relative noise level [29].
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We shall compare the performance of the new algorithm 4 with some other algorithms,
and test two different regularization techniques, i.e., Tikhonov regularization and TSVD,
and five different parameter choice strategies, i.e., the L-curve rule, the GCV rule, the quasi-
optimality criterion, the Auchmuty estimator Ê3 and the discrepancy principle. The algorithmic
performance is checked in the following aspects: the computed regularization parameters
compared with the optimal parameters, the accuracies of the regularized solutions compared
with the optimal solutions and the CPU times of algorithms.

In the subsequent numerical tables, we shall use the following notation. μ stands for
the regularization parameter, err for the relative error ||x − xμ||2/||x||2 of the regularized
solution xμ and the exact solution x, and the optimal parameter μ for Tikhonov regularization
is the minimizer of ψ(ρ) = ||x − xμ|| with μ = 10ρ by the fminsearch function of MATLAB,
using as a starting point the logarithm of the parameter furnished by the GCV [4]. The
optimal solution for TSVD regularization and its corresponding regularization parameter k are
achieved similarly, i.e., we compute the regularized solutions with a range of parameters k and
choose the optimal one to minimize the norm of the error between the regularized and exact
solutions; ratio stands for the norm of the error of the regularized solution divided by the norm
of the error corresponding to the optimal solution when the same regularization technique is
used with various regularization parameter choice rules; ratio∗ stands for the error norm of
the approximate solution obtained via RSVD divided by the error norm of the approximate
solution to the original large-scale system via CSVD when the same regularization technique
and same parameter choice rule are used.

Table 3 shows the numerical results when the Tikhonov regularization using RSVD and
the classical SVD, respectively, are applied to example 5, GRAVITY, for size n = 1000, while
table 4 shows the same as table 3 except that Tikhonov regularization is replaced by the TSVD.
One can observe from these two tables that the results by the new algorithm using RSVD are
quite comparable with that by CSVD. But as we shall find out later on (cf tables 6–8), the new
algorithm is much less expensive.

When the matrices are too large, the classical SVD does not work, either due to the memory
limitation or the numerical instability of smallest singular values. For the supercomputer
that is accessible to us, we find that when the matrix size reaches about 8000, either
CSVD does not work or it generates singular values with very poor accuracies. But the
new algorithm 4 with the help of the randomized SVD works well up to the matrix size
n = 100 000. Table 5 shows the results by Tikhonov regularization combined with RSVD
(i.e., algorithm 4) and TSVD regularization combined with the RSVD for four examples with
the matrix sizes n = 30 000 and n = 100 000. The regularization parameters k (for TSVD)
or μ (for RSVD), the relative errors and the ratios are also given in table 5, but not the
‘ratio*’, since the matrix sizes are too large to run for the classical SVD. Figure 2 gives the
computed solutions for example 11, SHAW, with n = 100 000, when Tikhonov regularization
is applied with five different regularization parameter choice strategies. We can see from
both table 5 and figure 2 that the new algorithm 4 with RSVD works quite satisfactorily
even when the index l is very small, l = 50, and all the computed solutions by different
regularization parameter choice rules are indistinguishable, except for the one by the Auchmuty
estimator.

Next we carry out some numerical experiments to compare the CPU times of different
algorithms. The relative noise level is set to be δ = 1% unless otherwise specified. The sizes
of the testing matrices are all set to be n = 1000 except that the matrices for PARALLAX, CMRS

and RST are of sizes 26 × 1000, 1000 × 500 and 1024 × 512, respectively. The actual CPU
times are recorded, and the following tests are done using MATLAB R2008b in a laptop with
Intel Core 2 Duo P8400 2.26G and 2GB DDR2.
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Table 3. Tikhonov regularization using CSVD and RSVD on the matrix GRAVITY with size n = 1000. Notations ‘err’, ‘ratio’ and ‘ratio*’ are defined in section 4. The results in columns
3–8 on the left correspond to Gaussian noise, while the results in columns 9–14 on the right correspond to uniformly distributed noise in [−1,1].

Tikhonov + CSVD

Optimal L-curve GCV Quasiopt Ê3 Discrep Optimal L-curve GCV Quasiopt Ê3 Discrep

δ = 10−4 μ 6.10E-3 5.84E-4 3.99E-3 6.65E-3 4.37E-2 7.99E-3 5.00E-3 5.84E-4 8.92E-4 1.08E-2 4.29E-2 9.04E-3
err 5.22E-3 2.29E-2 5.82E-3 5.24E-3 1.24E-2 5.41E-3 3.53E-3 3.70E-2 2.79E-2 5.66E-3 1.24E-2 4.98E-3
ratio 1 4.39 1.11 1.00 2.38 1.04 1 10.5 7.91 1.60 3.51 1.41

δ = 10−2 μ 4.24E-2 4.72E-2 7.58E-2 9.25E-2 5.42E-1 1.21E-1 1.11E-1 5.44E-2 6.55E-2 1.23E-1 5.42E-1 1.29E-1
err 1.59E-2 1.61E-2 2.00E-2 2.22E-2 5.75E-2 2.54E-2 2.67E-2 3.44E-2 3.09E-2 2.68E-2 5.65E-2 2.70E-2
ratio 1 1.01 1.26 1.40 3.62 1.60 1 1.29 1.16 1.00 2.12 1.01

Tikhonov + RSVD(l = 20)

δ = 10−4 μ 6.12E-3 1.55E-4 3.99E-3 6.66E-3 4.37E-2 8.27E-3 4.99E-3 2.86E-4 8.57E-4 1.08E-2 4.29E-2 8.89Ee-3
err 5.23E-3 5.05E-2 5.84E-3 5.25E-3 1.24E-2 5.46E-3 3.51E-3 5.18E-2 2.87E-2 5.66E-3 1.24E-2 4.91E-3
ratio 1 9.66 1.12 1.00 2.37 1.04 1 14.8 8.17 1.61 3.53 1.40
ratio* 1.00 2.21 1.00 1.00 1.00 1.01 0.99 1.40 1.03 1.00 1.00 0.99

δ = 10−2 μ 4.24E-2 8.77E-3 7.58E-2 9.26E-2 5.42E-1 1.21E-1 1.12E-1 8.24E-3 6.54E-2 1.23E-1 5.42E-1 1.29E-1
err 1.59E-2 8.36E-2 2.00E-2 2.22E-2 5.75E-2 2.54E-2 2.67E-2 2.20E-1 3.09E-2 2.68E-2 5.65E-2 2.70E-2
ratio 1 5.26 1.26 1.40 3.62 1.60 1 8.26 1.16 1.00 2.12 1.01
ratio* 1.00 5.19 1.00 1.00 1.00 1.00 1.00 6.40 1.00 1.00 1.00 1.00
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Table 4. TSVD regularization using CSVD and RSVD on the matrix GRAVITY with size n = 1000. Notations k, ‘err’, ‘ratio’ and ‘ratio*’ are defined in section 4. The results in columns
3–7 on the left correspond to Gaussian noise, while the results in columns 8–12 on the right correspond to uniformly distributed noise in [−1,1].

TSVD + CSVD

Optimal L-curve GCV Quasiopt Ê3 Optimal L-curve GCV Quasiopt Ê3

δ = 10−4 k 13 15 12 20 8 13 15 15 13 8
err 3.30E-3 2.65E-2 4.68E-3 2.08E-1 1.93E-2 4.53E-3 4.39E-2 4.39E-2 4.53E-3 1.93E-2
ratio 1 8.03 1.42 63.0 5.85 1 9.69 9.69 1.00 4.27

δ = 10−2 k 9 10 7 8 3 8 8 8 7 3
err 1.71E-2 2.94E-2 2.88E-2 2.19E-2 1.65E-1 2.24E-2 2.24E-2 2.24E-2 2.93E-2 1.65E-1
ratio 1 1.72 1.68 1.28 9.65 1 1.00 1.00 1.31 7.35

TSVD + RSVD(l = 20)

δ = 10−4 k 13 16 12 16 8 13 14 15 17 8
err 3.30E-3 2.71E-2 4.68E-3 2.71E-2 1.93E-2 4.53E-3 1.66E-2 4.43E-2 4.68E-2 1.93E-2
ratio 1 8.21 1.42 8.21 5.85 1 3.66 9.78 1.03 4.27
ratio* 1.00 1.02 1.00 0.13 1.00 1.00 0.38 1.01 1.03 1.00

δ = 10−2 k 9 7 7 8 3 8 8 8 7 3
err 1.71E-2 2.88E-2 2.88E-2 2.19E-2 1.65E-1 2.24E-2 2.24E-2 2.24E-2 2.93E-2 1.65E-1
ratio 1 1.68 1.68 1.28 9.65 1 1.00 1.00 1.31 7.35
ratio* 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table 5. Tikhonov regularization and TSVD regularization using RSVD for two large-scale cases of sizes n = 30 000 and n = 100 000.

Tikhonov regularization + RSVD(l = 50) TSVD regularization + RSVD(l = 50)

(n = 30 000, δ = 10−4) Optimal L-curve GCV Quasiopt Ê3 Optimal L-curve GCV Quasiopt Ê3

FOXGOOD μ or k 1.45E-04 3.95E-06 1.57E-04 2.17E-04 4.53E-03 5 6 5 5 2
err 3.67E-04 8.63E-02 3.94E-04 7.78E-04 1.19E-02 1.03E-03 2.33E-03 1.03E-03 1.03E-03 3.11E-02
ratio 1 236 1.07 2.12 32.5 1 2.26 1.00 1.00 30.3

GRAVITY μ or k 2.86E-03 2.59E-05 5.99E-04 2.22E-03 4.37E-02 14 15 14 15 8
err 3.04E-03 6.55E-02 8.17E-03 3.17E-03 1.24E-02 2.76E-03 4.18E-03 2.76E-03 4.18E-03 1.93E-02
ratio 1 21.5 2.68 1.04 4.09 1 1.52 1.00 1.52 7.01

PHILLIPS μ or k 5.95E-03 1.34E-03 4.75E-03 5.36E-03 4.14E-02 25 32 21 4 9
err 1.46E-03 4.16E-03 1.42E-03 1.38E-03 5.94E-03 1.35E-03 2.59E-03 1.62E-03 3.30E-01 1.29E-02
ratio 1 2.85 0.97 0.95 4.07 1 1.93 1.21 245 9.60

SHAW μ or k 1.11E-05 1.46E-05 1.28E-04 2.39E-04 7.23E-03 11 9 9 11 6
err 1.84E-02 1.94E-02 2.93E-02 3.10E-02 4.74E-02 2.25E-02 3.21E-02 3.21E-02 2.25E-02 1.10E-01
ratio 1 1.05 1.59 1.68 2.57 1 1.43 1.43 1.00 4.90

Tikhonov regularization + RSVD(l = 100) TSVD regularization + RSVD(l = 100)

(n = 100 000, δ = 10−5) Optimal L-curve GCV Quasiopt Ê3 Optimal L-curve GCV Quasiopt Ê3

FOXGOOD μ or k 3.45E-05 3.22E-07 2.94E-05 5.33E-05 1.20E-03 6 8 6 8 3
err 1.98E-04 6.48E-02 2.21E-04 3.16E-04 4.45E-03 3.77E-04 8.90E-04 3.77E-04 8.90E-04 7.21E-03
ratio 1 327 1.11 1.59 22.46 1 2.36 1.00 2.36 19.14

GRAVITY μ or k 2.64E-04 1.84E-06 1.98E-04 2.01E-04 1.11E-02 17 19 16 19 10
err 1.03E-03 4.07E-02 1.06E-03 1.05E-03 5.92E-03 8.73E-04 1.25E-03 1.18E-03 1.25E-03 9.47E-03
ratio 1 39.6 1.03 1.03 5.75 1 1.43 1.35 1.43 10.84

PHILLIPS μ or k 1.38E-03 1.62E-04 1.01E-03 1.52E-03 1.18E-02 37 74 37 4 12
err 4.50E-04 2.73E-03 4.91E-04 4.50E-04 2.06E-03 4.56E-04 2.39E-03 4.56E-04 3.30E-01 4.19E-03
ratio 1 6.07 1.09 1.00 4.58 1 5.24 1.00 725 9.19

SHAW μ or k 2.32E-06 8.51E-07 1.04E-05 1.51E-05 2.69E-03 12 13 10 11 7
err 6.49E-03 3.51E-02 1.78E-02 1.86E-02 4.25E-02 1.71E-02 1.37E-01 1.94E-02 1.92E-02 4.76E-02
ratio 1 5.41 2.74 2.86 6.56 1 8.03 1.14 1.13 2.79
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Figure 2. The Tikhonov regularized solutions for example SHAW of size n = 100 000 using RSVD
(l = 50), with 1% relative noise.

Table 6. Comparison of the computation time and solution accuracy when using RRQR–SVD and
RSVD. The size of testing matrices is 2000, and l = 20. The CPU time for algorithm 6 to achieve
the approximated SVD is tRRQR–SVD (in seconds); and tRSVD is the CPU time of RSVD. Here
errLc and errGCV are the computed relative errors via using the L-curve and the GCV function,
respectively.

RRQR–SVD RSVD

Matrix tRRQR–SVD errLc errGCV tRSVD errLc errGCV

BAART 1.37 3.91E-01 3.88E-01 0.057 1.53E-01 1.63E-01
DERIV2 1.36 2.55E-01 2.54E-01 0.057 1.90E-01 2.11E-01
FOXGOOD 1.38 2.84E-01 2.84E-01 0.057 7.78E-02 3.05E-02
GRAVITY 1.37 1.58E-01 1.48E-01 0.057 2.95E-01 2.06E-02
HEAT 1.39 1.14E-01 1.14E-01 0.058 1.21E-01 9.19E-02
I_LAPLACE 1.36 5.26E-01 5.26E-01 0.130 2.92E-01 2.21E-01
PHILLIPS 1.35 1.15E-01 1.13E-01 0.057 3.37E-02 1.48E-02
SHAW 1.36 2.15E-01 2.15E-01 0.058 4.44E-02 4.85E-02
SPIKES 1.66 5.46E-01 5.28E-01 0.057 5.57E-01 5.23E-01
WING 1.33 8.25E-01 8.25E-01 0.057 5.97E-01 6.04E-01

Tables 7 and 8 show the following CPU times: tCSVD and tRSVD for computing the classical
SVD and the randomized SVD, respectively, tLc (resp. tGVC) for generating the L-curve (resp.
the GCV curve). In addition, the computed regularization parameters μLc or μGVC and the
relative errors ‘err’ of the regularized solutions are also presented. We have used Hansen’s
regularization tools with 200 points to generate each L-curve or GCV curve [30].

As we can see from the total CPU times, i.e., column ‘T ’ in table 7, the new algorithm
using RSVD is about 30 times faster than the method using the classical SVD when the
L-curve rule is used; the new algorithm is about 100 times faster when the GCV rule is
used; see table 8. If we just compare the CPU times of SVD, not counting any regularization
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Table 7. Comparison of the computation times for the matrix of size 1000 with the L-curve to
locate the regularization parameter. In RSVD, we choose l = 20. T = tCSVD + tLc or tRSVD + tLc.
μLc stands for the regularization parameter that corresponds to the L-curve’s corner and err is the
relative error of the computed solution. There are no exact solutions for the cases PARALLAX and
URSELL.

CSVD + L-curve RSVD + L-curve

Matrix tCSVD tLc T (s) μLc err tRSVD tLc T (s) μLc err

BAART 10.7 0.142 10.8 1.39E-02 1.53E-01 0.019 0.251 0.270 1.63E-03 1.36E-01
CMRS 1.51 0.129 1.63 1.37E-03 9.83E-01 0.012 0.278 0.290 6.60E-02 9.93E-01
DERIV2 10.7 0.125 10.8 6.74E-04 2.00E-01 0.020 0.240 0.260 3.89E-04 1.96E-01
FOXGOOD 11.1 0.125 11.3 4.50E-03 1.78E-02 0.019 0.247 0.266 1.19E-03 3.91E-02
GRAVITY 10.7 0.118 10.9 4.72E-02 1.61E-02 0.020 0.245 0.264 8.77E-03 8.36E-02
HEAT 8.35 0.125 8.47 3.19E-01 8.35E-01 0.019 0.234 0.253 2.12E-03 1.28E-01
I_LAPLACE 5.28 0.214 5.49 6.81E+00 8.46E-01 0.046 0.253 0.299 1.43E-03 3.41E-01
PARALLAX 0.01 0.185 0.19 6.61E-02 – 0.005 0.255 0.260 6.33E-02 –
PHILLIPS 8.98 0.150 9.13 5.15E-02 3.24E-02 0.024 0.297 0.321 2.75E-02 5.76E-02
RST 3.60 0.156 3.75 6.85E-03 1.14E-02 0.013 0.308 0.321 1.86E-03 4.42E-02
SHAW 10.7 0.148 10.8 1.74E-02 6.05E-02 0.020 0.252 0.271 1.69E-03 1.07E-01
SPIKES 10.7 0.148 10.8 5.37E-01 6.47E-01 0.020 0.251 0.271 5.05E-02 6.68E-01
URSELL 11.8 0.153 11.9 1.83E-03 – 0.019 0.246 0.265 3.52E-05 –
WING 10.8 0.152 10.9 1.57E-03 6.02E-01 0.019 0.249 0.268 2.35E-04 6.08E-01

Table 8. Comparison of the computation time for the matrices of size 1000 when using CSVD or
RSVD (l = 20) together with GCV. Here, μGVC is the regularization parameter which minimizes
the GCV function. Other parameters are similar to those in table 7.

CSVD + GCV RSVD + GCV

Matrix tCSVD tGVC T (s) μGVC err tRSVD tGVC T (s) μGVC err

BAART 10.6 0.053 10.7 5.63E-03 1.23E-01 0.016 0.072 0.088 5.63E-03 1.23E-01
CMRS 1.45 0.058 1.51 6.98E-04 9.83E-01 0.009 0.097 0.106 5.65E-04 9.83E-01
DERIV2 10.7 0.087 10.8 4.42E-04 1.87E-01 0.016 0.081 0.097 4.11E-04 1.92E-01
FOXGOOD 11.2 0.053 11.2 6.07E-03 2.06E-02 0.018 0.079 0.098 6.09E-03 2.06E-02
GRAVITY 10.8 0.053 10.9 7.58E-02 2.00E-02 0.017 0.081 0.097 7.58E-02 2.00E-02
HEAT 8.19 0.092 8.29 1.73E-03 6.62E-02 0.016 0.085 0.101 2.52E-03 9.24E-02
I_LAPLACE 5.26 0.068 5.33 2.06E-02 2.04E-01 0.043 0.072 0.115 2.06E-02 2.04E-01
PARALLAX 0.00 0.077 0.08 5.33E-15 – 0.003 0.078 0.081 1.14E-02 –
PHILLIPS 8.99 0.070 9.06 7.76E-02 2.12E-02 0.017 0.095 0.112 7.78E-02 1.93E-02
RST 3.59 0.070 3.66 1.21E-02 4.96E-03 0.010 0.093 0.103 1.21E-02 4.96E-03
SHAW 10.7 0.073 10.8 9.41E-03 5.18E-02 0.016 0.075 0.091 9.42E-03 5.18E-02
SPIKES 10.7 0.070 10.7 5.11E-01 6.47E-01 0.016 0.072 0.089 5.11E-01 6.47E-01
URSELL 11.8 0.081 11.8 4.52E-08 – 0.016 0.067 0.083 4.13E-08 –
WING 10.8 0.070 10.8 1.48E-03 6.02E-01 0.017 0.072 0.089 1.48E-03 6.02E-01

technique, we find that RSVD (with l = 20) is almost 500 times faster than CSVD. The
advantage of the new algorithm with RSVD becomes much more significant when the sizes
of the systems become larger. For example, when the matrix size is 5000, RSVD is about
1000 times faster than the classical SVD.

We have also compared our randomized algorithm with the deterministic method,
algorithm 6 (RRQR–SVD). In order to ensure the fairness of the comparisons for the CPU
times, we have implemented step 1 in algorithm 6 in language C by calling the mexFunction in
MATLAB. For the matrix of size 2000, CSVD needs more than 80 s on average, and RRQR–SVD
is about 60 times faster than CSVD to achieve an SVD approximation, while RSVD is more
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than 1000 times faster; see table 6. In terms of CPU times, RRQR–SVD performs faster than
CSVD, but much slower and less efficiently than RSVD, since it needs to access the data many
times to choose the columns of maximum norm and to permute the data, while the product
involving A in the randomized algorithm can be evaluated in a single sweep and is amenable
to the BLAS-3 operations.

Finally, we make a remark that one may use the GPU technique to accelerate the
computation of RSVD, especially steps 2 and 4 in algorithm 2. These two steps are the
most expensive steps in RSVD, though they are just two matrix–matrix multiplications. These
two steps are well suited for the GPU implementation [32, 43]. We can use the mexFunction
in MATLAB and CUDA programming to implement these two steps on GPU.

5. Concluding remarks

In this work, we have proposed an algorithm for solving large-scale discrete ill-conditioned
linear problems arising from the discretization of linear and nonlinear inverse problems, based
on the randomized SVD and some existing regularization techniques. The algorithm preserves
basically the same successful locations of the regularization parameters and achieves about the
same accurate regularized solutions as the classical SVD, but with much less computational
effort. More importantly, the classical SVD may not work or work very poorly for large-scale
discrete inverse systems due to the computational complexity, the numerical instability and
memory limitation. Compared with the deterministic approach, such as the rank revealing
QR factorization, the new algorithm also demonstrates much better performance. The RRQR-
based SVD approximation is slower since it needs to access the data many times to choose the
columns of the maximum norm and permute the data. By combining the randomized SVD with
classical regularization techniques, our new algorithm can convert the large-scale problems
to small-scale ones so that the SVD-type methods can still be applied, and with a reasonably
acceptable accuracy for the approximated solution. The error estimates of the approximate
solutions have been derived, and many numerical experiments have demonstrated that the new
algorithm can indeed reduce the problem size greatly and save the entire computational time
essentially. The new algorithm admits obvious out-of-core and parallel implementation, hence
is also well suited for the GPU acceleration.
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Birkhäuser)

21

http://dx.doi.org/10.1016/0041-5553(84)90253-2
http://dx.doi.org/10.1007/978-1-4612-3700-6


Inverse Problems 29 (2013) 085008 H Xiang and J Zou

[3] Bauer F and Lukas M A 2011 Comparing parameter choice methods for regularization of ill-posed problems
Math. Comput. Simul. 81 1795–841

[4] Brezinski C, Rodriguez G and Seatzu S 2008 Error estimates for linear systems with applications to regularization
Numer. Algorithms 49 85–104

[5] Calvetti D, Golub G H and Reichel L 1999 Estimation of the L-curve via Lanczos bidiagonalization BIT Numer.
Math. 39 603–19

[6] Calvetti D, Morigi S, Reichel L and Sgallari F 2000 Tikhonov regularization and the L-curve for large discrete
ill-posed problems J. Comput. Appl. Math. 123 423–46

[7] Chan T F 1982 An improved algorithm for computing the singular value decomposition ACM Trans. Math.
Softw. 8 72–83

[8] Chan T F and Hansen P C 1992 Some applications of the rank revealing QR factorization SIAM J. Sci. Stat.
Comput. 13 727–41

[9] Cheng H, Gimbutas Z, Martinsson P G and Rokhlin V 2005 On the compression of low rank matrices SIAM J.
Sci. Comput. 26 1389–404

[10] Colton D and Kress R 1998 Inverse Acoustic and Electromagnetic Scattering Theory 2nd edn (Berlin: Springer)
[11] Demmel J W 1997 Applied Numerical Linear Algebra (Philadephia, PA: SIAM)
[12] Drineas P, Kannan R and Mahoney M W 2006 Fast Monte Carlo algorithms for matrices: III. Computing a

compressed approximate matrix decomposition SIAM J. Comput. 36 184–206
[13] Engl H W, Hanke M and Neubauer A 1996 Regularization of Inverse Problems (Dordrecht: Kluwer)
[14] Frieze A, Kannan R and Vempala S 2004 Fast Monte-Carlo algorithms for finding low-rank approximations

J. ACM 51 1025–41
[15] Golub G H, Heath M and Wahba G 1979 Generalized cross-validation as a method for choosing a good ridge

parameter Technometrics 21 215–23
[16] Golub G H and Meurant G 2010 Matrices, Moments and Quadrature with Applications (Princeton, NJ: Princeton

University Press)
[17] Golub G H and Van Loan C F 2013 Matrix Computations 4th edn (Baltimore, MD: John Hopkins University

Press)
[18] Golub G H and von Matt U 1997 Tikhonov regularization for large scale problems Workshop on Scientific

Computing ed G H Golub, S H Lui, F Luk and R J Plemmons (New York: Springer) pp 3–26
[19] Gu M and Eisenstat S C 1996 Efficient algorithms for computing a strong rank-revealing QR factorization SIAM

J. Sci. Comput. 17 848–69
[20] Halko N, Martinsson P and Tropp J 2011 Finding structures with randomness: probabilistic algorithms for

constructing approximate matrix decompositions SIAM Rev. 53 217–88
[21] Hamarik U, Palm R and Raus T 2009 On minimization strategies for choice of the regularization parameter in

ill-posed problems Numer. Funct. Anal. Opt. 30 924–50
[22] Hamarik U, Palm R and Raus T 2011 Comparison of parameter choices in regularization algorithms in case of

different information about noise level Calcolo 48 47–59
[23] Hanke M 1996 Limitations of the L-curve method in ill-posed problems BIT Numer. Math. 36 287–301
[24] Hanke M and Raus T 1996 A general heuristic for choosing the regularization parameter in ill-posed problems

SIAM J. Sci. Comput. 17 956–72
[25] Hansen P C 1987 The truncated SVD as a method for regularization BIT Numer. Math. 27 543–53
[26] Hansen P C 1992 Analysis of discrete ill-posed problems by means of the L-curve SIAM Rev. 34 561–80
[27] Hansen P C 1994 Regularization tools: a Matlab package for analysis and solution of discrete ill-posed problems

Numer. Algorithms 6 1–35
[28] Hansen P C 1998 Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion

(Philadelphia, PA: SIAM)
[29] Hansen P C 2010 Discrete Inverse Problems, Insight and Applications (Philadelphia, PA: SIAM)
[30] Hansen P C 2008 Regularization Tools, Version 4.1 for Matlab 7.3 www2.imm.dtu.dk/∼pch/Regutools
[31] Hansen P C and O’Leary D P 1993 The use of the L-curve in the regularization of discrete ill-posed problems

SIAM J. Sci. Comput. 14 1487–503
[32] Kirk D B and Hwu W W 2010 Programming Massively Parallel Processors: A Hands-On Approach (San Mateo,

CA: Morgan Kaufmann)
[33] Lagomasino G L, Reichel L and Wunderlich L 2008 Matrices, moments, and rational quadrature Linear Algebra

Appl. 429 2540–54
[34] Leonov A S and Yagola A G 1997 The L-curve method always produces an unremovable systematic error Vestn.

Mosk. Univ. 3 6 17–9 (in Russian)
[35] Lepskii O V 1990 On a problem of adaptive estimation in Gaussian white noise Theor. Probab. Appl.

35 454–66

22

http://dx.doi.org/10.1016/j.matcom.2011.01.016
http://dx.doi.org/10.1007/s11075-008-9163-1
http://dx.doi.org/10.1023/A:1022383005969
http://dx.doi.org/10.1016/S0377-0427(00)00414-3
http://dx.doi.org/10.1145/355984.355990
http://dx.doi.org/10.1137/0913043
http://dx.doi.org/10.1137/030602678
http://dx.doi.org/10.1007/978-3-662-03537-5
http://dx.doi.org/10.1137/1.9781611971446
http://dx.doi.org/10.1137/S0097539704442702
http://dx.doi.org/10.1007/978-94-009-1740-8
http://dx.doi.org/10.1145/1039488.1039494
http://dx.doi.org/10.1080/00401706.1979.10489751
http://dx.doi.org/10.1137/0917055
http://dx.doi.org/10.1137/090771806
http://dx.doi.org/10.1080/01630560903392941
http://dx.doi.org/10.1007/s10092-010-0027-4
http://dx.doi.org/10.1007/BF01731984
http://dx.doi.org/10.1137/0917062
http://dx.doi.org/10.1007/BF01937276
http://dx.doi.org/10.1137/1034115
http://dx.doi.org/10.1007/BF02149761
http://dx.doi.org/10.1137/1.9780898719697
http://dx.doi.org/10.1137/1.9780898718836
http://dx.doi.org/10.1137/0914086
http://dx.doi.org/10.1016/j.laa.2008.04.047
http://dx.doi.org/10.1137/1135065


Inverse Problems 29 (2013) 085008 H Xiang and J Zou

[36] Liberty E, Woolfe F, Martinsson P G, Rokhlin V and Tygert M 2007 Randomized algorithms for the low-rank
approximation of matrices Proc. Natl Acad. Sci. 104 20167–72

[37] Mahoney M W and Drineas P 2009 CUR matrix decompositions for improved data analysis Proc. Natl Acad.
Sci. 106 697–702

[38] Mathe P 2006 The Lepskii principle revisited Inverse Problems 22 L11–L15
[39] Morozov V A 1966 On the solution of functional equations by the method of regularization Sov. Math.—Dokl.

7 414–7 (www.ams.org/mathscinet-getitem?mr=0208819)
[40] O’Leary D P and Simmons J A 1981 A bibiagonalization-regularization procedure for large-scale regularization

of ill-posed problems SIAM J. Sci. Stat. Comput. 2 474–89
[41] Phillips D L 1962 A technique for the numerical solution of certain integral equations of the first kind J. Assoc.

Comput. Mach. 9 84–97
[42] Rokhlin V, Szlam A and Tygert M 2009 A randomized algorithm for principal component analysis SIAM J.

Matrix Anal. Appl. 31 1100–24
[43] Sanders J and Kandrot E 2010 CUDA by example: An Introduction to General-Purpose GPU Programming

(Reading, MA: Addison-Wesley)
[44] Stewart G W 1999 The QLP approximation to the singular value decomposition SIAM J. Sci.

Comput. 20 1336–48
[45] Tautenhahn U and Hamarik U 1999 The use of monotonicity for choosing the regularization parameter in

ill-posed problems Inverse Problems 15 1487–505
[46] Tikhonov A and Arsenin V 1977 Solutions of Ill-posed Problems (New York: Wiley)
[47] Tikhonov A and Glasko V 1965 Use of the regularization method in nonlinear problems USSR Comput. Math.

Math. Phys. 5 93–107
[48] Titarenko V N and Yagola A G 2000 Application of the GCV method for well-posed and ill-posed problems

Vestn. Mosk. Univ. 3 4 15–8 (in Russian)
[49] Vogel C R 1996 Non-convergence of the L-curve regularization parameter selection method Inverse

Problems 12 535–47
[50] Woolfe F, Liberty E, Rokhlin V and Tygert M 2008 A fast randomized algorithm for the approximation of

matrices Appl. Comput. Harmon. Anal. 25 335–66

23

http://dx.doi.org/10.1073/pnas.0709640104
http://dx.doi.org/10.1073/pnas.0803205106
http://dx.doi.org/10.1088/0266-5611/22/3/L02
http://www.ams.org/mathscinet-getitem?mr=0208819
http://dx.doi.org/10.1137/0902037
http://dx.doi.org/10.1145/321105.321114
http://dx.doi.org/10.1137/080736417
http://dx.doi.org/10.1137/S1064827597319519
http://dx.doi.org/10.1088/0266-5611/15/6/307
http://dx.doi.org/10.1016/0041-5553(65)90150-3
http://dx.doi.org/10.1088/0266-5611/12/4/013
http://dx.doi.org/10.1016/j.acha.2007.12.002

	1. Introduction
	2. Algorithms and complexities
	2.1. Randomized algorithms
	2.2. Approximate regularized solutions by randomized SVD
	2.3. Computational complexity

	3. Error estimates
	4. Numerical experiments
	5. Concluding remarks
	Acknowledgments
	References

