Inverse Problems 22 (2006) 515-524

doi:10.1088/0266-5611/22/2/008

Uniqueness in an inverse acoustic obstacle scattering problem for both sound-hard and sound-soft polyhedral scatterers

Hongyu Liu and Jun Zou

Department of Mathematics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong

E-mail: hyliu@math.cuhk.edu.hk and zou@math.cuhk.edu.hk

Received 23 September 2005, in final form 23 January 2006 Published 15 March 2006 Online at stacks.iop.org/IP/22/515

Abstract

This paper addresses the uniqueness for an inverse acoustic obstacle scattering problem. It is proved that a general sound-hard polyhedral scatterer in $\mathbb{R}^N (N \ge 2)$, possibly consisting of finitely many solid polyhedra and subsets of (N - 1)-dimensional hyperplanes, is uniquely determined by *N* far-field measurements corresponding to *N* incident plane waves given by a fixed wave number and *N* linearly independent incident directions. A simple proof, which is quite different from that in Alessandrini and Rondi (2005 *Proc. Am. Math. Soc.* **6** 1685–91), is also provided for the unique determination of a general sound-soft polyhedral scatterer by a single incoming wave.

1. Introduction

In this paper, we are interested in an inverse acoustic scattering problem by an impenetrable obstacle *D*. To describe the scattering system, we shall use u^i , u^s and *u* to represent the incident, scattered and total field, respectively, where $u = u^i + u^s$, and $u^i(x) = \exp\{jkx \cdot d\}$ with $j = \sqrt{-1}$, $d \in \mathbb{S}^{N-1}$ being the incident direction and k > 0 being the wave number. Then, the direct scattering problem is described by the following Helmholtz equation:

$$\Delta u + k^2 u = 0 \qquad \text{in} \quad G = \mathbb{R}^N \setminus D. \tag{1}$$

The Helmholtz equation (1) is complemented by the Sommerfeld radiation condition

$$\lim_{r \to \infty} r^{(N-1)/2} \left(\frac{\partial u^s}{\partial r} - jku^s \right) = 0,$$
(2)

with r = |x| for $x \in \mathbb{R}^N$ and either of the following boundary conditions:

u = 0 on ∂G (the sound-soft obstacle), (3)

$$\frac{\partial u}{\partial v} = 0$$
 on ∂G (the sound-hard obstacle), (4)

where ν is the unit normal to ∂G pointing to the interior of G.

au

0266-5611/06/020515+10\$30.00 © 2006 IOP Publishing Ltd Printed in the UK 515

Throughout, we assume that the obstacle *D* is a general compact set in $\mathbb{R}^N (N \ge 2)$ with an open connected complement $G = \mathbb{R}^N \setminus D$.

It is known (cf [9]) that there exists a unique solution $u = u(D; k, d) \in H^1_{loc}(G)$ to (1)–(3) or (1), (2) and (4) if ∂G is Lipschitz continuous, and u is analytic on any compact set in G. The Sommerfeld radiation condition (2) characterizes the outgoing wave and enables us to have the following asymptotic behaviour for the scattered wave u^s :

$$u^{s}(x) = \frac{\mathrm{e}^{\mathrm{j}k|x|}}{|x|^{(N-1)/2}} \left\{ u_{\infty}(\hat{x}) + \mathcal{O}\left(\frac{1}{|x|}\right) \right\} \qquad \text{as} \quad |x| \to \infty, \tag{5}$$

where $\hat{x} = \frac{x}{|x|} \in \mathbb{S}^{N-1}$ and $u_{\infty}(\hat{x})$ is defined on the unit sphere \mathbb{S}^{N-1} , known as the far-field pattern (cf [2]). We shall also write $u_{\infty}(\hat{x}; D, k, d)$ to specify its dependence on the obstacle D, the wave number k and the incident direction d.

Now the inverse acoustic obstacle scattering problem (IAOSP) is to determine ∂G from the far-field pattern $u_{\infty}(\hat{x}; D, k, d)$ which can be observed. We remark that, due to the analyticity of the solution to the Helmholtz equation, if the far-field pattern is available in a surface element of the unit sphere \mathbb{S}^{N-1} , then it is also known in the whole unit sphere by the unique continuation. An important theoretical issue in IAOSP is the *uniqueness*, i.e., *is the correspondence between* $u_{\infty}(\hat{x}; D, k, d)$ and D one to one? This uniqueness is also closely related to finding effective reconstruction algorithms in practical applications.

This paper shall consider the uniqueness issue for the IAOSP with *polyhedral scatterers*. Let us first follow [1] to exactly describe the terminology *polyhedral scatterer*. An obstacle *D* is said to be a *polyhedral scatterer* if it is a compact subset of \mathbb{R}^N with connected complement $G = \mathbb{R}^N \setminus D$, and the boundary of *G* is composed of a finite union of cells. A cell, as defined in [1], is the closure of an open subset of an (N - 1)-dimensional hyperplane. Based on this definition, we can write a two-dimensional polyhedral scatterer *D* as

$$D = \left(\bigcup_{i=1}^m S_i\right) \cup \left(\bigcup_{l=1}^n L_l\right),$$

where each S_i is a polygon (screen) and each L_l is a line segment (crack), and write a three-dimensional polyhedral scatterer D as

$$D = \left(\bigcup_{i=1}^{m} P_i\right) \cup \left(\bigcup_{l=1}^{n} S_l\right),$$

where each P_i is a polyhedron (real body) and each S_l is a cell (screen). We emphasize that a cell need not be an (N - 1)-dimensional polyhedron. Clearly, such a *polyhedral scatterer* is very general and it admits the simultaneous presence of finitely many solid- and crack-type obstacles. A very important and sharp result about the uniqueness for such general sound-soft *polyhedral scatterers* was obtained recently in [1], where it was proved that a single farfield measurement of one single incident plane wave with a fixed wave number and incident direction is sufficient for the unique determination of such a scatterer D. The proof in [1] is based on the study of the structure of the nodal set \mathcal{N}_u (see definition 2.3 in [1]) of u in the interior of G. A key step is to construct a so-called 'hidden path' which connects a point on ∂D to infinity, avoiding the critical points of \mathcal{N}_u but intersecting \mathcal{N}_u orthogonally. However, such construction heavily depends on ordering all the nodal domains, i.e., the connected components of the open set $G \setminus \mathcal{N}_u$, in a special desired manner. But to our regret, there seems to be a gap in the proof of such an ordering. More accurately speaking, the induction argument of [1] (see the proof of proposition 3.2 in [1]) does not necessarily go through all the nodal domains, but only a countable subset of them. This is one of the barriers for the extension of the method in [1] to our current sound-hard case. In fact, there are more difficulties caused by the essential difference between the Dirichlet problem and the Neumann problem.

There are few results concerning the unique determination of a sound-hard obstacle with a finite number of incident waves. The uniqueness for the simple balls with a single incident wave was given in [10]. In [4], a uniqueness result for a two-dimensional sound-hard polygon is presented by two incident plane waves under an extra 'non-trapping' condition, which was then relaxed in [6]. A more recent important advance in the uniqueness for the sound-hard polyhedral obstacle case was announced in [7]. It was demonstrated that a single sound-hard two-dimensional polygon D is uniquely determined by one single incident plane wave. The proof in [7] was based on the investigation of behaviours of the Neumann hyperplanes of the solution u (see definition 1) near ∂G . It is hard to extend the proof of [7] to higher dimensions. The main difficulty is caused by the much more complicated behaviours of the Neumann hyperplanes near ∂G in higher dimensions, and most of the arguments for the \mathbb{R}^2 case in [7] seem not to work for the higher dimensions.

The focus of this paper is on the uniqueness of an inverse acoustic scattering problem for a very general sound-hard case: the space can be any dimension larger than 1; the obstacle Dis a general *polyhedral scatterer* as described earlier. For example, in two dimensions, D may contain finitely many polygons and line segments. Our main result will demonstrate that Nfar-field patterns, corresponding to N incident plane waves given by a fixed wave number and N linearly independent incident directions, uniquely determine a *polyhedral scatterer* D in \mathbb{R}^N . This seems to be the best known uniqueness result in the literature for sound-hard scatterers of our general setting in \mathbb{R}^N ($N \ge 2$). Our proof shall rely on the reflection principle for the solutions to the Helmholtz equation, the same as in [1, 7]. But our arguments are carried out in a more elementary and simple manner, and work for both sound-hard and sound-soft cases, as well as for general dimensions and general *polyhedral scatterers*.

The rest of the paper is organized as follows. The next section is devoted to the sound-hard case. In section 3, uniqueness for the sound-soft case is treated.

2. Uniqueness for the sound-hard case

We first introduce some notation and definitions for the subsequent use. Let $u_l(x)$, l = 1, 2, ..., N, be the total fields of (1), (2) and (4) corresponding to the incident waves $\exp\{jkx \cdot d_l\}$, where $\{d_l\}_{l=1}^N$, with each $d_l \in \mathbb{S}^{N-1}$, are assumed to be linearly independent. We shall write $\mathcal{U} = \{u_1, u_2, ..., u_N\}$ and the operations on \mathcal{U} are always understood to be elementwise. For example, for any $\nu \in \mathbb{S}^{N-1}$,

$$\frac{\partial \mathcal{U}}{\partial \nu} = \left\{ \frac{\partial u_1}{\partial \nu}, \frac{\partial u_2}{\partial \nu}, \dots, \frac{\partial u_N}{\partial \nu} \right\},\,$$

and

$$\frac{\partial \mathcal{U}}{\partial \nu} = 0$$
 on *S* implies $\frac{\partial u_l}{\partial \nu} = 0$ on *S* for $l = 1, 2, ..., N$,

where *S* can be any hypersurface in *G* and ν is its outward normal. Throughout, we will denote an open ball in \mathbb{R}^N with centre *x* and radius *r* by $B_r(x)$, the closure of $B_r(x)$ by $\overline{B}_r(x)$ and the boundary of $B_r(x)$ by $S_r(x)$. Based on the earlier definition of a general polyhedral scatterer *D* of our interest, we can write the boundary of $G = \mathbb{R}^N \setminus D$ as

$$\partial G = \bigcup_{l=1}^{n} C_l \tag{6}$$

where each C_l is a cell in \mathbb{R}^N .

Definition 1. $\mathcal{Z}_{\mathcal{U}}$ is called a Neumann set of \mathcal{U} in G if

$$\mathcal{Z}_{\mathcal{U}} = \left\{ x \in G; \left. \frac{\partial \mathcal{U}}{\partial \nu} \right|_{\Pi \cap B_r(x) \cap G} = 0 \text{ for some } r > 0 \text{ and hyperplane } \Pi \text{ passing through } x \right\}$$

We have the following useful result:

Lemma 1. For any $x \in \mathcal{Z}_{\mathcal{U}}$, let Π be the corresponding hyperplane involved in the definition of $\mathcal{Z}_{\mathcal{U}}$ and $\widetilde{\Pi}$ be the open connected component of $\Pi \setminus D$ containing *x*, then

$$\left. \frac{\partial \mathcal{U}}{\partial \nu} \right|_{\widetilde{\Pi}} = 0. \tag{7}$$

Proof. By definition 1, we know that $\frac{\partial \mathcal{U}}{\partial \nu} = 0$ on $\Pi \cap B_r(x) \cap G$. Since \mathcal{U} is analytic in G (cf [2]), then $\frac{\partial \mathcal{U}}{\partial \nu}$ is analytic in N - 1 variables on $\Pi \setminus D$, which clearly lies in G. Now observing that $\Pi \cap B_r(x) \cap G$ is an open set on $\Pi \cap D$, we have $\frac{\partial \mathcal{U}}{\partial \nu} = 0$ on Π by analytic continuation.

We will refer to Π in the above lemma as the *Neumann hyperplane* in what follows, and obviously, it must be an open connected subset of a hyperplane and its boundary lies on ∂G . Now, we derive some important properties of the Neumann set $Z_{\mathcal{U}}$.

Lemma 2. The Neumann set $Z_{\mathcal{U}}$ and all Neumann hyperplanes are bounded. And $Z_{\mathcal{U}}$ is closed in the sense that for any sequence $\{x_n\}_{n=1}^{\infty} \subset Z_{\mathcal{U}}$, which converges to a point $x_0 \in G$, we must have $x_0 \in Z_{\mathcal{U}}$, i.e., there exists a Neumann hyperplane Π_0 passing through x_0 .

Proof. We first show the boundedness of $\mathcal{Z}_{\mathcal{U}}$. Set $\mathcal{U}^s(x) = \mathcal{U} - \exp\{jkx \cdot d\}$, with $d = \{d_1, d_2, \dots, d_N\}$ be the scattered fields, then we have

$$\lim_{|x| \to \infty} |\nabla \mathcal{U}^s(x)| = 0, \tag{8}$$

i.e., $\lim_{|x|\to\infty} |\nabla u_l^s(x)| = 0$ (l = 1, 2, ..., N). The limit (8) can be shown following the proof of lemma 9 in [4]. Now we demonstrate the boundedness of $\mathcal{Z}_{\mathcal{U}}$ by contradiction. If $\mathcal{Z}_{\mathcal{U}}$ is unbounded, then there must exist a Neumann hyperplane $\widetilde{\Pi}$ which connects to infinity. To see this, we first note that *D* is bounded, so one can bound *D* by a ball $B_R(0)$ with sufficiently large radius *R*. By the unboundedness of $\mathcal{Z}_{\mathcal{U}}$, we know there must exist a point $y \in \mathcal{Z}_{\mathcal{U}} \cap (\mathbb{R}^N \setminus \overline{B}_R(0))$, then the corresponding Neumann hyperplane $\widetilde{\Pi}_y$ containing *y* must connect to infinity. Next, using (7) and (8), we have

$$\lim_{v\in\widetilde{\Pi}:|x|\to\infty}|\partial_{v}\exp\{jkx\cdot d\}|=0,$$

where $\nu \in \mathbb{S}^{N-1}$ is the unit normal to $\widetilde{\Pi}$. Hence,

$$\lim_{x\in\widetilde{\Pi}:|x|\to\infty}|jk(d\cdot\nu)\exp\{jkx\cdot d\}|=0.$$

Noting that $k \neq 0$, we have $d \cdot v = 0$, or equivalently,

$$\nu \cdot d_l = 0, \qquad l = 1, 2, \dots, N.$$

But this is impossible since $\nu \in \mathbb{S}^{N-1}$ and $\{d_l\}_{l=1}^N$ are linearly independent. Therefore, $\mathcal{Z}_{\mathcal{U}}$ must be bounded. Clearly, the above proof has also demonstrated that all Neumann hyperplanes must be bounded.

Next, we shall show the closeness of $\mathcal{Z}_{\mathcal{U}}$. Let $\{x_n\}_{n=1}^{\infty}$ be a sequence in $\mathcal{Z}_{\mathcal{U}}$ and $x_0 \in G$, such that $\lim_{n\to\infty} x_n = x_0$. Taking a sufficiently small hypercube $T_r(x_0)$ of edge length r and

centred at x_0 such that the closure of $T_r(x_0)$ lies entirely in G. Without loss of generality, we may assume that $\{x_n\}_{n=1}^{\infty} \subset T_r(x_0)$. Let Π_n be the Neumann hyperplane through x_n such that

$$\left.\frac{\partial \mathcal{U}}{\partial \nu_n}\right|_{\widetilde{\Pi}_n \cap T_r(x_0)} = 0,$$

where v_n is the unit normal to Π_n . Let us write $v(x_n) = v_n$, then by possibly extracting a subsequence, we may assume that $v(x_n) \to v_0$ as $n \to \infty$ and write $v(x_0) = v_0 \in \mathbb{S}^{N-1}$. Let Π_0 be a hyperplane through x_0 and have v_0 as its normal, then we can show that for any $P_0 \in \Pi_0 \cap T_r(x_0)$, there exists a sequence of points $\{P_n\}_{n=1}^{\infty}$ such that $P_n \in \Pi_n$ for each n, where Π_n is the hyperplane in \mathbb{R}^N containing the Neumann hyperplane Π_n and $\lim_{n\to\infty} P_n = P_0$. To see this, let L be the straight line through P_0 with direction v_0 , then any point $P \in L$ is given by

$$P = P_0 + t v_0$$
 for some $t \in \mathbb{R}$.

Noting that the equation for the hyperplane Π_n is given by

$$(P - x_n) \cdot v_n = 0$$
 for any $P \in \Pi_n$.

Since $\nu_n \to \nu_0$ as $n \to \infty$, we can assume that $\nu_n \cdot \nu_0 \neq 0$ for $n \in \mathbb{N}$. Then by straightforward calculations, we can show that *L* intersects with each Π_n , and the intersection point is given by

$$P_n = P_0 + t_n v_0$$
 with $t_n = \frac{(x_n - P_0) \cdot v_n}{v_0 \cdot v_n}$, $n = 1, 2,$

Using the facts that

$$(P_0 - x_0) \cdot v_0 = 0, \qquad \lim_{n \to \infty} x_n = x_0,$$

we see

 $\lim_{n \to \infty} t_n = \lim_{n \to \infty} \frac{(x_n - P_0) \cdot v_n}{v_0 \cdot v_n} = \lim_{n \to \infty} \frac{(x_n - x_0) \cdot v_n}{v_0 \cdot v_n} + \lim_{n \to \infty} \frac{(x_0 - P_0) \cdot v_n}{v_0 \cdot v_n} = 0,$

this implies

$$\lim_{n\to\infty}P_n=P_0.$$

Since P_n converges to $P_0 \in \Pi_0 \cap T_r(x_0)$ along the ν_0 -direction, we may assume that for all $n, P_n \in T_r(x_0)$, i.e., $P_n \in \widetilde{\Pi}_n \cap T_r(x_0)$. Noting that $\nabla \mathcal{U}$ is continuous in the closure of $T_r(x_0)$, we have

$$\frac{\partial \mathcal{U}}{\partial \nu_0}(P_0) = \nabla \mathcal{U}(P_0) \cdot \nu_0 = \lim_{n \to \infty} \nabla \mathcal{U}(P_n) \cdot \nu_n = 0.$$

Thus, we have $x_0 \in \mathcal{Z}_{\mathcal{U}}$. The proof is completed.

Next, we recall a fundamental property for a connected set (see theorem 3.19.9 in [5]), which will be used in our subsequent arguments.

Lemma 3. Let *E* be a metric space, $A \subset E$ be a subset and $B \subset E$ be a connected set such that $A \cap B \neq \emptyset$ and $(E \setminus A) \cap B \neq \emptyset$, then $\partial A \cap B \neq \emptyset$.

Now, we are ready to present our main uniqueness result for a sound-hard polyhedral scatterer.

Theorem 1. Let $d_l \in \mathbb{S}^{N-1}$, l = 1, 2, ..., N, be N linearly independent directions and k > 0 be fixed. A polyhedral scatterer D described in (6) is uniquely determined by the far-field patterns $\mathcal{U}_{\infty} = \{u_{1,\infty}, u_{2,\infty}, ..., u_{N,\infty}\}$.

Proof. We shall prove the theorem by contradiction. First, we follow [1] and [7] to show that if theorem 1 does not hold, then we can assume that there exists a Neumann hyperplane $\widetilde{\Pi}_1$ in $G = \mathbb{R}^N \setminus D$. To see this, let D' be a polyhedral scatterer different from D and u' be the solution to (1), (2) and (4) when D is replaced by D'. And similarly, we write $\mathcal{U}' = \{u'_1, u'_2, \dots, u'_N\}$ and $\mathcal{U}'_{\infty} = \{u'_{1,\infty}, u'_{2,\infty}, \dots, u'_{N,\infty}\}$ for the total fields and far-field patterns corresponding to the incident waves $\exp\{jkx \cdot d_l\}, l = 1, 2, \dots, N$.

If the theorem is not true, then we can assume $\mathcal{U}_{\infty} = \mathcal{U}'_{\infty}$ for *N* given linearly independent $d_l \in \mathbb{S}^{N-1}, l = 1, 2, ..., N$, and fixed k > 0. Letting Ω be the unbounded connected component of $\mathbb{R}^N \setminus (D \cup D')$, then by theorem 2.13 [2] we infer that $\mathcal{U} = \mathcal{U}'$ over Ω .

First, we can see $\partial \Omega \subset D \cap D'$ from the connectedness of both G and $G' = \mathbb{R}^N \setminus D'$. Indeed, if $\partial \Omega \subset D \cap D'$, then we must have $\Omega = \mathbb{R}^N \setminus D = \mathbb{R}^N \setminus D'$. To see this, we first observe that $\Omega \subset \mathbb{R}^N \setminus D$ and $\Omega \subset \mathbb{R}^N \setminus D'$ by noting $\Omega \subset \mathbb{R}^N \setminus (D \cup D')$. On the other hand, if there exist $x \in \mathbb{R}^N \setminus D$ and $x' \in \mathbb{R}^N \setminus D'$ such that $x \notin \Omega$ and $x' \notin \Omega$, we obtain from lemma 3 (with $A = \Omega$ and $B = \mathbb{R}^N \setminus D$ or $B = \mathbb{R}^N \setminus D'$) that $\partial \Omega \cap (\mathbb{R}^N \setminus D) \neq \emptyset$ and $\partial \Omega \cap (\mathbb{R}^N \setminus D') \neq \emptyset$, which contradicts the assumption that $\partial \Omega \subset D \cap D'$, thus leading to $\mathbb{R}^N \setminus D \subset \Omega$ and $\mathbb{R}^N \setminus D' \subset \Omega$. Therefore, $\Omega = \mathbb{R}^N \setminus D = \mathbb{R}^N \setminus D'$, which implies $D = D' = \mathbb{R}^N \setminus \Omega$. But this contradicts the fact that D and D' are two different polyhedral scatterers.

Using the previous conclusion that $\partial \Omega \subset D \cap D'$, we must have $(\partial G' \setminus D) \cap \partial \Omega \neq \emptyset$ or $(\partial G \setminus D') \cap \partial \Omega \neq \emptyset$. Without loss of generality, we may assume the first case held and therefore there exists a point $\tilde{x}' \in (\partial G' \setminus D) \cap \partial \Omega$. We can also assume that \tilde{x}' belongs to the interior of one of the cells composing $\partial G'$, and so there exists a hyperplane Π_1 and r > 0such that $\tilde{x}' \in S_1 = \Pi_1 \cap B_r(\tilde{x}') \subset (\partial G' \setminus D) \cap \partial \Omega$. Since $\mathcal{U} = \mathcal{U}'$ in Ω , by noting $\frac{\partial \mathcal{U}}{\partial \nu} = 0$ on $S_1 \subset \partial G'$, we have $\frac{\partial \mathcal{U}}{\partial \nu} = 0$ on S_1 . Hence, \tilde{x}' is contained in the Neumann set of \mathcal{U} in G and S_1 is contained in a Neumann hyperplane of \mathcal{U} in G, which we denote by $\widetilde{\Pi}_1$.

Next, we start from this Neumann hyperplane Π_1 to build up a contradiction.

In the following, a curve $\gamma = \gamma(t)(t \ge 0)$ is said to be regular if it is C^1 -smooth and $\frac{d}{dt}\gamma(t) \ne 0$. And the notation Π_l , with *l* being an integer, shall always represent a hyperplane in \mathbb{R}^N , which contains a Neumann hyperplane $\widetilde{\Pi}_l$. Since *G* is an unbounded open connected set, hence the open set $G \setminus \widetilde{\Pi}_1$ must contain an open connected component, denoted as \widetilde{G} , which connects to the infinity. In fact, \widetilde{G} is unique because $\widetilde{\Pi}_1$ is bounded by lemma 2 and *G* cannot be divided by $\widetilde{\Pi}_1$ into more than one unbounded open component, otherwise ∂G is unbounded. Thus, $\widetilde{\Pi}_1$ lies on $\partial \widetilde{G}$, due to the fact that every point on $\widetilde{\Pi}_1$ is in *G* and so can be connected to the infinity. Next, we fix an arbitrary point $x_1 \in \widetilde{\Pi}_1$. Let $\gamma = \gamma(t)(t \ge 0)$ be a regular curve such that $\gamma(0) = x_1, \gamma(t)(t > 0)$ lies entirely in \widetilde{G} and $\lim_{t\to\infty} |\gamma(t)| = +\infty$. Clearly, γ lies on one side of Π_1 , that is, $\gamma(t) \in \Pi_1$ iff t = 0, and we set $t_1 = 0$ (we refer to [8, 11] for the properties of open connected set). For convenience, we choose $\gamma(t)$ to be as 'straight' as possible in the sense that there are as few snakelike portions as possible. For example, we may let $\gamma(t)$ be given by consecutively connected line segments in \widetilde{G} but with C^1 -smooth junctions to connect two neighbouring line segments and let it be a straight line outside a sufficiently large ball containing *D*.

Next, define the distance between two sets *A* and *B* in \mathbb{R}^N as usual:

$$\mathbf{d}(A, B) = \inf_{x \in A, y \in B} |x - y|.$$

Let

$$\mathbf{d}_l = \mathbf{d}(\gamma, C_l), \qquad l = 1, 2, \dots, n, \tag{9}$$

and

$$\dot{\mathbf{r}}_0 = \frac{1}{2} \min_{1 \le l \le n} \mathbf{d}_l. \tag{10}$$

Noting that γ is a closed set in \mathbb{R}^N and $\{C_l\}_{l=1}^n$, which form ∂G , are compact sets, it can be readily seen that $\mathbf{d}_l > 0, l = 1, 2, ..., n$, are attainable. Hence, $r_0 > 0$ and for any point $x \in \gamma(t)$, we have $\bar{B}_{r_0}(x) \subset G$.

Let $\tilde{x}_2^+ = \gamma(\tilde{t}_2) \in S_{r_0}(x_1) \cap \gamma$, and $\tilde{x}_2^- \in S_{r_0}(x_1)$ be the symmetric point of \tilde{x}_2^+ with respect to Π_1 . We remark that by lemma 3, γ must intersect $S_{r_0}(x_1)$, but the intersection need not necessarily be a unique point. For definiteness, we take $\tilde{t}_2 = \max\{t > 0; \gamma(t) \in S_{r_0}(x_1)\}$. Now, let G_1^+ be the connected component of $G \setminus \widetilde{\Pi}_1$ containing \widetilde{x}_2^+ and G_1^- be the connected component of $G \setminus \Pi_1$ containing \tilde{x}_2^- . It is remarked that it may happen that $G_1^+ = G_1^-$. We denote by R_1 the reflection with respect to Π_1 , then let E_1^+ be the connected component of $G_1^+ \cap R_1(G_1^-)$ containing \tilde{x}_2^+ and E_1^- be the connected component of $G_1^- \cap R_1(G_1^+)$ containing \tilde{x}_2^- . Observe that $E_1^+ = R_1(E_1^-)$, and if we set $E_1 = E_1^+ \cup \Pi_1 \cup E_1^-$, then E_1 contains the closed ball $\bar{B}_{r_0}(x_1)$. Moreover, E_1 is a connected open set with the boundary composed of subsets of the cells $\{C_l\}_{l=1}^n$ and $\{R_1(C_l)\}_{l=1}^n$. One can easily verify that $\mathcal{U}(x) - R_1\mathcal{U}(x)$, where $R_1\mathcal{U}(x) = \mathcal{U}(R_1(x))$, is a solution to the Helmholtz equation in E_1 with zero Dirichlet and Neumann data on $\Pi_1 \cap \overline{B}_{r_0}(x_1)$, therefore $\mathcal{U}(x) = R_1 \mathcal{U}(x)$ in E_1 by Holmgren's theorem (cf theorem 6.12 in [3]), i.e., \mathcal{U} is even symmetric in E_1 with respect to the hyperplane Π_1 . This indicates $\frac{\partial \mathcal{U}}{\partial \nu_1}\Big|_{E_1 \cap \Pi_1} = 0$, where ν_1 is the unit normal to Π_1 . Next, we show that E_1 is bounded. Clearly, we first see ∂E_1 , ∂G_1^{\pm} and $R_1(\partial G_1^{\pm})$ are bounded by our construction. If E_1 is unbounded, then E_1 would contain $\mathbb{R}^N \setminus B_r(x_1)$ for some sufficiently large r > 0. Then using $\frac{\partial U}{\partial v_1}\Big|_{E_1 \cap \Pi_1} = 0$ and analytic continuation, $\Pi_1 \setminus B_r(x_1)$ are parts of some Neumann hyperplanes. This contradicts lemma 2, and so E_1 is bounded. Now by the unboundedness of γ , there must exist a $t_2 > \tilde{t}_2$, such that $x_2 = \gamma(t_2) \in \partial E_1$. Noting ∂E_1 is composed of subsets of the cells $\{C_l\}_{l=1}^n$ and $\{R_1(C_l)\}_{l=1}^n$, \mathcal{U} takes zero Neumann data on ∂E_1 by using the fact that $R_1\mathcal{U}(x) = \mathcal{U}(x)$ in E_1 . Thus by analytic continuation, $x_2 \in \partial E_1$ implies the existence of a Neumann hyperplane passing through x_2 , which we denote by Π_2 , and we have $x_2 = \gamma(t_2) \in \mathcal{Z}_{\mathcal{U}}$. Furthermore, we may assume that $\gamma(t_2)$ is the 'last' point on γ to intersect Π_2 , that is,

$$t_2 = \max\{t > 0; \gamma(t) \in \widetilde{\Pi}_2\} < \infty.$$

The following two facts shall be crucial: Π_2 is different from Π_1 , since Π_1 intersects γ only at x_1 ; the length of $\gamma(t)$ from t_1 to t_2 is larger than r_0 , i.e.,

$$|\gamma(t_1 \leqslant t \leqslant t_2)| \ge |\gamma(t_1 \leqslant t \leqslant \tilde{t}_2)| \ge r_0.$$

Next, let $\tilde{x}_3^+ = \gamma(\tilde{t}_3) \in S_{r_0}(x_2) \cap \gamma$, and $\tilde{x}_3^- \in S_{r_0}(x_2)$ be the symmetric point of \tilde{x}_3^+ with respect to Π_2 , then let G_2^+ be the connected component of $G \setminus \widetilde{\Pi}_2$ containing \tilde{x}_3^+ and G_2^- be the connected component of $G \setminus \widetilde{\Pi}_2$ containing \tilde{x}_3^- . Denote by R_2 the reflection with respect to Π_2 , and let E_2^+ be the connected component of $G_2^+ \cap R_2(G_2^-)$ containing \tilde{x}_3^+ and E_2^- be the connected component of $G_2^- \cap R_2(G_2^+)$ containing \tilde{x}_3^- . Set $E_2 = E_2^+ \cup \widetilde{\Pi}_2 \cup E_2^-$, then we see that E_2 contains the closed ball $\overline{B}_{r_0}(x_2)$ and its boundary is composed of subsets of the cells $\{C_l\}_{l=1}^n$ and $\{R_2(C_l)\}_{l=1}^n$. By a similar argument as used earlier for deriving $x_2 = \gamma(t_2)$ and $\widetilde{\Pi}_2$, there exists a point $x_3 = \gamma(t_3)$ $(t_3 > t_2)$ and a Neumann hyperplane $\widetilde{\Pi}_3$ passing through x_3 . Again, we may assume that x_3 is the 'last' point to pass through Π_3 . We see that $\widetilde{\Pi}_3$ is different from $\widetilde{\Pi}_1$ and $\widetilde{\Pi}_2$, since $x_1 = \gamma(t_1)$ and $x_2 = \gamma(t_2)$ are, respectively, the last point to pass through $\widetilde{\Pi}_1$ and $\widetilde{\Pi}_2$, and the length of $\gamma(t)$ from t_2 to t_3 is larger than r_0 , i.e.,

$$|\gamma(t_2 \leqslant t \leqslant t_3)| \geqslant r_0.$$

Continuing with the above procedure, we can construct a strictly increasing sequence $\{t_n\}_{n=1}^{\infty}$ such that for any $n, x_n = \gamma(t_n) \in \mathbb{Z}_U$ and $\widetilde{\Pi}_n$ is a Neumann hyperplane passing

through x_n . Moreover, those Neumann hyperplanes are different from each other, and the length of $\gamma(t)$ from t_n to t_{n+1} is not less than r_0 , i.e.,

$$|\gamma(t_n \leqslant t \leqslant t_{n+1})| \geqslant r_0. \tag{11}$$

Since $\mathcal{Z}_{\mathcal{U}}$ is bounded and $\lim_{t\to\infty} |\gamma(t)| = +\infty$, so we must have $\lim_{n\to\infty} t_n = t_0$ for some finite t_0 . Otherwise, we would have $\lim_{n\to\infty} t_n = +\infty$ due to the fact that t_n is strictly increasing and this further implies $\lim_{n\to\infty} |\gamma(t_n)| = +\infty$, contradicting that $\gamma(t_n) = x_n \in \mathcal{Z}_{\mathcal{U}}$ for each n and the boundedness of $\mathcal{Z}_{\mathcal{U}}$. Finally, because $\gamma(t)$ is a C^1 -smooth curve, we must have that

$$\lim_{n \to \infty} |\gamma(t_n \leqslant t \leqslant t_{n+1})| = \lim_{n \to \infty} \int_{t_n}^{t_{n+1}} |\gamma'(t)| \, \mathrm{d}t = 0, \tag{12}$$

which contradicts the inequality (11), thus completes the proof of theorem 1.

3. Uniqueness for the sound-soft case

In this section, we extend the arguments in the previous section to the sound-soft case, but with some adaptations, which, we think, might provide some alternative thinking for the further study of the uniqueness issues for IAOSP. Such a uniqueness result was given in [1], but there seems to exist some gap in its proof, as we have pointed out in the introduction. Below we shall provide a different and relatively simpler proof.

In correspondence with the *Neumann set* and *Neumann hyperplane* for the sound-hard case, we introduce the *Dirichlet set* and *Dirichlet hyperplane* for the current sound-soft case. Let u(x) be the total field to (1)–(3) associated with a single incident wave $u^i(x) = \exp\{jkx \cdot d\}$ with fixed k and d.

Definition 2. \mathcal{D}_u is called a Dirichlet set of u in G, if

 $\mathcal{D}_{u} = \{x \in G; u|_{\Pi \cap B_{r}(x) \cap G} = 0 \text{ for some } r > 0 \text{ and hyperplane } \Pi \text{ passing through } x\}.$

Similar to lemma 1, we have

Lemma 4. For any $x \in D_u$, let Π be the corresponding open connected component of $\Pi \setminus D$ containing *x*, then the following holds:

$$u|_{\widetilde{\Pi}} = 0. \tag{13}$$

We will refer to Π in the above lemma as the *Dirichlet hyperplane* in the following. Obviously, the same as the *Neumann hyperplane*, a Dirichlet hyperplane must be an open connected subset of a hyperplane and its boundary lies on ∂G .

The following lemma is a counterpart of lemma 2 for the sound-hard case.

Lemma 5. The Dirichlet set \mathcal{D}_u and all Dirichlet hyperplanes are bounded. And \mathcal{D}_u is closed in the sense that for any sequence $\{x_n\}_{n=1}^{\infty} \subset \mathcal{D}_u$, which converges to a point $x_0 \in G$, then we have $x_0 \in \mathcal{D}_u$, i.e., there exists a Dirichlet hyperplane Π_0 passing through x_0 .

Proof. For the boundedness of \mathcal{D}_u , we refer to lemma 3.1 in [1]. And the closeness of \mathcal{D}_u can be proved in a similar way to the proof of lemma 2.

Now, the uniqueness result is stated in the following theorem.

Theorem 2. The polyhedral scatterer D described in (6) is uniquely determined by a single far-field pattern u_{∞} corresponding to an incident wave $\exp\{jkx \cdot d\}$ with k > 0 and $d \in \mathbb{S}^{N-1}$ fixed.

Proof. By contradiction, similar to the proof of theorem 1, we can assume that there exists a Dirichlet hyperplane $\widetilde{\Pi}_1$ in $G = \mathbb{R}^N \setminus D$. Then the rest of the proof can be carried out in the same way as for the sound-hard case in theorem 1. But to provide a possible alternative thinking for the uniqueness for the inverse acoustic scattering problem, we shall present a different analysis below to prove theorem 2. As done in theorem 1, with the help of the reflection principle for the Dirichlet problem and the auxiliary function u(x) + Ru(x), we can find a countable set of distinct Dirichlet hyperplanes $\{\widetilde{\Pi}_n\}_{n=1}^{\infty}$ and a sequence of points $x_n = \gamma(t_n)$ with $\{t_n\}_{n=1}^{\infty}$ being a strictly increasing sequence and x_n lying on $\widetilde{\Pi}_n$. Like in the proof of theorem 1, we can choose a uniform radius r_0 for the balls $B_{r_0}(x_n)(n = 1, 2, ...)$. But for our purpose, we specifically choose a sequence of balls $B_{r_n}(x_n)$ lying entirely in Gwith distinct radii r_n . Also, we can find a finite t_0 such that $t_n \to t_0$ as $n \to \infty$ and a Dirichlet hyperplane $\widetilde{\Pi}_0$ passing through $x_0 = \gamma(t_0)$. Further, there exists a sufficiently small hypercube $T_r(x_0)$ such that $\widetilde{\Pi}_n \cap T_r(x_0) \to \widetilde{\Pi}_0 \cap T_r(x_0)$ as $n \to \infty$, in the sense that for any $P_0 \in \widetilde{\Pi}_0 \cap T_r(x_0)$, there exists in the unit normal v_0 -direction to $\widetilde{\Pi}_0$ a sequence $\{P_n\}_{n=1}^{\infty}$, with $P_n \in \Pi_n$ for each $n \in \mathbb{N}$, given by

$$P_n = P_0 + t_n \nu_0, \qquad t_n = \frac{(x_n - P_0) \cdot \nu_n}{\nu_0 \cdot \nu_n}, \quad n = 1, 2, \dots,$$
 (14)

and P_n converges to P_0 . Now, if there are infinitely many P_n s which are different from each other, then using $P_n \to P_0$ as $n \to \infty$, we may assume that $P_n \in \widetilde{\Pi}_n \cap T_r(x_0)$ for all $n \in \mathbb{N}$. This implies

$$\frac{\partial u}{\partial v_0}(P_0) = \lim_{n \to \infty} \frac{u(P_n) - u(P_0)}{t_n} = 0.$$

Due to our construction, all Dirichlet hyperplanes Π_n are different from each other. Next, we claim that $\frac{\partial u}{\partial v_0} = 0$ a.e. on $\Pi_0 \cap T_r(x_0)$. If this is not true, we would have a sufficiently small ball $B_{\tilde{r}}(Q_1) \subset T_r(x_0)$, where $Q_1 \in \Pi_0$, such that for every $P_0 \in B_{\tilde{r}}(Q_1) \cap \Pi_0$, only finitely many out of the sequence $\{P_n\}_{n=1}^{\infty}$ given in (14) are different from each other. Thus, there exists an $N_0 \in \mathbb{N}$ such that $t_n = 0$ for $n > N_0$, namely, $P_0 \in \Pi_n$ for $n > N_0$. Now, we choose N points $Q_l \in B_{\tilde{r}}(Q_1) \cap \Pi_0(l = 1, 2, ..., N)$ such that the vectors $Q_1Q_l(2 \leq l \leq N)$ are linearly independent. Let $N_l \in \mathbb{N}$ be the integer such that $Q_l \in \Pi_n$ for $n > N_l$, l = 1, 2, ..., N, and $M = \max\{N_1, ..., N_l\}$, then for n > M, we have $Q_1Q_l \subset \Pi_n$, for all $l \geq 2$. Since $Q_1Q_l, l = 2, ..., N$, are linearly independent and all lie on both Π_n and Π_0 , then Π_n must coincide with Π_0 when n > M. This contradicts our construction that $\{\Pi_n\}_{n=1}^{\infty}$ are countable different Dirichlet hyperplanes. So, we have demonstrated that $\frac{\partial u}{\partial v_0} = 0$ a.e. on $\Pi_0 \cap T_r(x_0)$, which implies $\frac{\partial u}{\partial v_0} = 0$ in $\Pi_0 \cap T_r(x_0)$ by the analyticity of u. Noting that we also have u = 0on $\Pi_0 \cap T_r(x_0)$, then by Holmgren's theorem we must have u = 0 over G. But this contradicts lemma 5, so completes the proof of theorem 2.

Ackowledgments

The authors wish to thank the anonymous referees for their constructive comments. The work of JZ was substantially supported by Hong Kong RGC Grants (Projects 404105 and 403403).

References

- Alessandrini G and Rondi L 2005 Determining a sound-soft polyhedral scatterer by a single far-field measurement Proc. Am. Math. Soc. 6 1685–91
- [2] Colton D and Kress R 1998 Inverse Acoustic and Electromagnetic Scattering Theory 2nd edn (Berlin: Springer)
- [3] Colton D and Kress R 1983 *Integral Equation Method in Scattering Theory* (New York: Wiley)
 [4] Cheng J and Yamamoto M 2003 Uniqueness in an inverse scattering problem within non-trapping polygonal
- obstacles with at most two incoming waves Inverse Problems 19 1361-84
- [5] Dieudonné J 1969 Foundations of Modern Analysis (New York: Academic)
- [6] Elschner J and Yamamoto M 2004 Uniqueness in determining polygonal sound-hard obstacles *Technical Report* UTMS 2004–6 (Graduate School of Mathematical Sciences, The University of Tokyo)
- [7] Elschner J and Yamamoto M 2005 Uniqueness in determining polygonal sound-hard obstacles with a single incoming wave *Preprint* 1038 (Weierstraß-Institut f
 ür Angewandte Analysis und Stochastik, Berlin, Germany)
- [8] Lang S 1993 Complex Analysis 3rd edn (New York: Springer)
- McLean W 2000 Strongly Elliptic Systems and Boundary Integral Equations (Cambridge: Cambridge University Press)
- [10] Yun K 2001 The reflection of solutions of Helmholtz equation and an application Commun. Korean Math. Soc. 16 427–36
- [11] Stein E M and Shakarchi R 2003 Complex Analysis II, Princeton Lectures in Analysis (Princeton, NJ: Princeton University Press)