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This work is concerned with the numerical implementation of the discrepancy principle for nonsmooth
Tikhonov regularization for linear inverse problems. First, some theoretical properties of the solutions to
the discrepancy equation, i.e., uniqueness and upper bounds, are discussed. Then, the idea of Padé ap-
proximation is exploited for designing model functions with model parameters iteratively updated. Two
algorithms are proposed for its efficient numerical realization, i.e., a two-parameter algorithm based on
model functions and a quasi-Newton method, and their convergence properties are briefly discussed. Nu-
merical results for four nonsmooth models are presented to demonstrate the accuracy of the principle and
to illustrate the efficiency and robustness of the proposed algorithms.
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1. Introduction

This work considers determining regularization parameters in nonsmooth Tikhonov regularization.
We will focus on linear inverse problems that can be written

K x = yδ, (1.1)

where x ∈ X and yδ ∈ Y refer to the unknown and the noisy data, respectively. The spaces X and
Y are Banach spaces with their respective norms denoted by ‖ · ‖X and ‖ · ‖Y , with X being reflexive.
The reflexivity of X is not essential. In the case of a Hilbert space, its norm will simply be denoted
by ‖ · ‖. The operator K : X → Y is linear and bounded. The accuracy of the data yδ relative to the
exact data y† = K x† is measured by the noise level δ2 = φ(x†, yδ), where the fidelity φ(x, yδ) :
X × Y �→ {0} ∪ R+ measures the proximity of the model output K x to the data yδ . Some widely-used
choices include 1

2‖K x − yδ‖2
L2 , ‖K x − yδ‖L1 and

∫
(K x − yδ log K x) + C , which are statistically

suitable for Gaussian, (impulsive) Laplacian and Poissonian noise, respectively.
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Inverse problems are numerically challenging due to their inherent ill-posedness in the sense that
small perturbations of the data can cause large deviations in the solution. One standard procedure is
regularization, which minimizes the Tikhonov functional

Jη(x) = φ(x, yδ) + ηψ(x), (1.2)

and takes its minimizer xη as an approximation, where η is the regularization parameter. The penalty
ψ(x) encodes the a priori information, and some common choices include 1

ν ‖x‖ν
Lν , 1

2‖x‖2
Hm and |x |T V .

Nonsmooth models have attracted considerable attention; see Burger & Osher (2004); Resmerita (2005);
Hofmann et al. (2007); Hein & Hofmann (2009); Hofmann & Yamamoto (2010), for theoretical studies.

The choice of η represents one of the most challenging issues; see Engl et al. (1996); Vogel (2002);
Jin & Zou (2009). The discrepancy principle (Morozov, 1966) is very popular due to its rigorous foun-
dation and a posteriori nature. Theoretically, existence and consistency of the rule were studied in
Tikhonov et al. (1998). In Bonesky (2009), convergence rates were derived under appropriate source
conditions. The principle determines the parameter η(δ) such that it solves

φ(xη, yδ) = δ2. (1.3)

Since xη is only implicitly defined via the functional Jη, in practice the principle amounts to solving a
highly nonlinear and potentially nonsmooth equation in η.

The numerical realization of the principle has not received due attention despite its practical sig-
nificance. This is especially important for nonsmooth models since their efficient minimization can be
highly nontrivial and their repeated solutions can be computationally very demanding. Among existing
approaches the model function approach (MFA) stands out prominently (Ito & Kunisch, 1992; Ku-
nisch & Zou, 1998; Xie & Zou, 2002). Ito & Kunisch (1992) proposed a four-parameter model function
for nonlinear parameter identification problems. Later, Kunisch & Zou (1998) derived a two-parameter
model function for linear inverse problems, which was further improved in Xie & Zou (2002). Recently,
it has also been applied to other choice rules (Heng et al., 2010). Nonetheless, all these studies focus on
the L2–L2 model, and a direct extension to nonsmooth models is not viable because these derivations
hinge essentially on the inner product structure of Hilbert spaces.

In this paper we provide some light on the aforementioned numerical aspects of the principle. First,
we provide some properties (uniqueness and upper bound) of the discrepancy equation, i.e., equation
(1.3). Then, we discuss differentiability of the value function and generalize MFA in Kunisch & Zou
(1998) and Xie & Zou (2002) via Padé approximants, which enables us to develop analogous strategies
for general nonsmooth models. These represent our essential contributions. A hybrid algorithm combin-
ing the steady global convergence of the MFA and the fast local convergence of a quasi-Newton method
is also proposed.

The rest of the paper is structured as follows. Section 2 discusses the discrepancy equation and
derives some theoretical results. Section 3 studies the differentiability of the value function and the
numerical solution of the discrepancy equation. Section 4 presents some numerical results for four non-
smooth models, i.e., L2–T V , L2–�1, L1–T V and elastic net, to demonstrate the accuracy and optimality
of the principle and to illustrate the efficiency and robustness of the algorithms.

2. Properties of discrepancy equation

This section discusses uniqueness and bounds of solutions to equation (1.3). We shall make the following
assumptions: (a) and (b) are standard for the existence of minimizers to Jη, and x̃ in (c) can often be set
to x̃ = 0.
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ASSUMPTIONS 2.1 The non-negative functionals φ and ψ in equation (1.2) satisfy

(a) for any η > 0 the functional Jη(x) in (1.2) is coercive;

(b) the functionals φ(x, y) and ψ(x) are weakly lower semicontinuous, i.e., φ(x, y) � lim infn→∞
φ(xn, y) and ψ(x) � lim infn→∞ ψ(xn) for any sequence {xn} ⊂ X converging weakly to x ;

(c) there exists an x̃ ∈ X such that it minimizes ψ(x) over X with ψ(x̃) = 0.

The minimizers xη, with the set denoted by S(η), of Jη may be nonunique. Hence, the functions η �→
φ(xη, yδ) and η �→ ψ(xη) may be set-valued. However, they are monotone (Tikhonov & Arsenin, 1977;
Tikhonov et al., 1998).

LEMMA 2.2 The functions φ(xη, yδ) and ψ(xη) are monotone in η in that for any xη1 ∈ S(η1) and any
xη2 ∈ S(η2) there hold

(η1 − η2)(ψ(xη1) − ψ(xη2)) � 0 and (η1 − η2)(φ(xη1 , yδ) − φ(xη2 , yδ)) � 0.

There exists at least a positive solution to equation (1.3) if limη→0 φ(xη, yδ) < δ2, limη→∞ φ(xη, yδ) >
δ2 and φ(xη, yδ) is continuous in η. The continuity of φ(xη, yδ) in η is ensured by the uniqueness of the
minimizer to Jη, and it holds for strictly convex models, e.g., L2–L p with 1 < p � 2 and L2–T V and
L2–�1 with injective K . Uniqueness is necessary for the continuity of φ(xη, yδ); see Chan & Esedoḡlu
(2005) for L1–T V .

The solution to equation (1.3) may be nonunique, even if it does exist. Under the continuity condi-
tion, the set of solutions can form a closed interval. We shall examine the uniqueness issue, which has
rarely been discussed. The next result reveals one simple uniqueness condition.

LEMMA 2.3 Let the functional Jη satisfy S(η1) ∩ S(η2) = ∅ for distinct η1, η2 > 0. Then, equation
(1.3) has a unique solution η(δ) > 0.

Proof. We proceed by means of contradiction. Assume that there exist two distinct solutions η1 and η2
to equation (1.3), i.e., φ(xη1 , yδ) = φ(xη2 , yδ) = δ2. By the minimizing property of the minimizers
xη1 ∈ S(η1) and xη2 ∈ S(η2) and the fact that xη2 
∈ S(η1) from the assumption S(η1) ∩ S(η2) = ∅, we
have

φ(xη1 , yδ) + η1ψ(xη1) < φ(xη2 , yδ) + η1ψ(xη2),

which consequently implies that ψ(xη1) < ψ(xη2). However, reversing the roles of η1 and η2 gives a
contradictory inequality ψ(xη2) < ψ(xη1). �

To exploit Lemma 2.3, we first derive a result characterizing the solution xη. It also gives an explicit
formula for computing η∗ from the data yδ for Hilbertian Y and ψ(x) being a norm on X (or its power).
We denote by ‖ · ‖X∗ the norm of the dual space X∗ of the space X , and by 〈·, ·〉 both the duality pairing
between X∗ and X and the inner product on a Hilbert space. Also we recall the subdifferential ∂ψ(x)
of ψ at x , i.e., ∂ψ(x) = {ζ ∈ X∗ : ψ(x ′) � ψ(x) + 〈ζ, x ′ − x〉 for all x ′ ∈ X}.
THEOREM 2.4 Let Y be a Hilbert space, φ(x, yδ) = 1

2‖K x − yδ‖2, ψ(x) = 1
p ‖x‖p

X with p � 1, and

‖K ∗yδ‖X∗ 
= 0. Furthermore, let η∗ = ‖K ∗yδ‖X∗ if p = 1 and η∗ = +∞ if p > 1. Then, for η � η∗,
xη = 0 and for η < η∗, there hold

〈K ∗(K xη − yδ), xη〉 = −pηψ(xη) and ‖K ∗(yδ − K xη)‖X∗ = η‖xη‖p−1
X .

Conversely, if the above relations hold, then xη is a minimizer of Jη.
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Proof. First, we note that the optimality condition for xη reads

K ∗(K xη − yδ) + ηζη = 0,

where ζη ∈ ∂ψ(xη). We discuss the cases p > 1 and p = 1 separately.
For p > 1, ∂ψ(xη) = jp(xη), the duality mapping of weight g(t) = t p−1 (Cioranescu, 1990,

Theorem 4.4). It satisfies

‖ jp(xη)‖X∗ = ‖xη‖p−1
X and 〈jp(xη), xη〉 = ‖x‖p

X .

Consequently, the desired relations follow directly. Conversely, the two relations imply directly that
(Cioranescu, 1990)

η−1K ∗(yδ − K xη) = jp(xη) ∈ ∂ψ(xη),

which is a sufficient condition for the optimality of xη by noting the convexity of Jη.
Meanwhile, for p = 1, by Cioranescu (1990, Proposition 3.4), we have ∂ψ(x) = {x∗ ∈ X∗ :

〈x∗, x〉 = ‖x‖X , ‖x∗‖X∗ = 1} for x 
= 0. Therefore, at xη 
= 0, the two relations obviously hold, and the
converse follows as before. If xη = 0, the minimizing property implies that for any h ∈ X and ε > 0,

1
2‖K (εh) − yδ‖2 + ηψ(εh) � 1

2‖yδ‖2.

Letting ε → 0+ yields ηψ(h) − 〈K h, yδ〉 � 0. Since the inequality holds for arbitrary h ∈ X and
‖K ∗yδ‖X∗ 
= 0, we have η � η∗ = ‖K ∗yδ‖X∗ . The converse follows by reversing the arguments. �

REMARK 2.5 In the case where ψ(x) is a seminorm (or its power), i.e., ψ(x) = 1
p |x |p

X with p � 1,

then at a minimum xη, the identity 〈K ∗(K xη − yδ), xη〉 = −pηψ(xη) remains valid. However, an
explicit characterization of the critical value η∗ is missing.

Now we can state the uniqueness for some nonsmooth models, e.g., 1
p ‖ · ‖p

L p and | · |T V .

COROLLARY 2.6 Assume that η∗ > 0. Let φ(x, yδ) = 1
2‖K x − yδ‖2 and ψ(x) = 1

p‖x‖p
X

(
or 1

p |x|pX
)

with p � 1. If there exists an η < η∗ satisfying equation (1.3), then it is unique.

Proof. In the light of Remark 2.5 it suffices to show the norm case. Assume that there exist two distinct
η1, η2 < η∗ both satisfying equation (1.3). Then, by Theorem 2.4, the solutions xη1 ∈ S(η1) and
xη2 ∈ S(η2) satisfy

〈K ∗(yδ − K xηi ), xηi 〉 = ηi‖xηi ‖p
X , i = 1, 2.

This implies S(η1) ∩ S(η2) = ∅, and the assertion follows from Lemma 2.3. �
The next corollary is a direct consequence of Theorem 2.4.

COROLLARY 2.7 Assume that η∗ > 0. Let φ(x, yδ) = 1
2‖K x − yδ‖2 and ψ(x) = 1

p‖x‖p
X

(
or 1

p |x|pX
)

with p � 1. Then, φ(xη, yδ) and ψ(xη) are strictly monotone on the interval ]0, η∗].

Finally, we derive an upper bound for the solution to equation (1.3) for the case φ(x, yδ) = 1
2‖K x −

yδ‖2 and ψ(x) = 1
p ‖x‖p

X . It may be used as an initial guess in iterative algorithms for solving equation
(1.3).

THEOREM 2.8 Let φ(x, yδ) = 1
2‖K x − yδ‖2 and ψ(x) = 1

p ‖x‖p
X (p � 1). Then, for the choice

η = ‖K‖p
L(X,Y )

(‖yδ‖−δ)p−1 δ, there holds the estimate ‖K xη − yδ‖2 � δ2.
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Proof. From Theorem 2.4 we have ηpψ(xη) = −〈K ∗(K xη − yδ), xη〉 = 〈yδ − K xη, K xη〉. Applying
the Cauchy–Schwarz inequality gives

η � ‖K xη−yδ‖‖K xη‖
pψ(xη) .

Consequently, we have

η � ‖K xη−yδ‖‖K xη‖
pψ(xη) = ‖K xη−yδ‖‖K xη‖p

‖xη‖p
X ‖K xη‖p−1 .

Now the inequality ‖K xη‖ � ‖K‖L(X,Y )‖xη‖X implies that

η � ‖K xη−yδ‖‖K‖p
L(X,Y )

‖K xη‖p−1 � ‖K xη−yδ‖‖K‖p
L(X,Y )

(‖yδ‖−‖K xη−yδ‖)p−1 ,

by noting that ‖K xη‖ � ‖yδ‖ − ‖K xη − yδ‖. The desired estimate follows from the
inequality. �

Hence, the value η by the principle is at most of order δ, i.e., O(δ). This shows suboptimality of
the principle in Hilbert spaces: it cannot achieve optimal convergence rates for the source parameter ν
within the range ] 1

2 , 1] since then optimality can only be realized for η larger than O(δ) (Engl et al.,
1996).

3. Numerical algorithms

In this section we develop efficient algorithms for solving equation (1.3). Generally, equation (1.3) is
highly nonlinear, nonconvex and potentially nonsmooth, and thus, its numerical treatment is nontrivial.
We will exploit the idea of model functions (Ito & Kunisch, 1992; Kunisch & Zou, 1998; Xie & Zou,
2002). Our essential contributions here include a differentiability result and interpreting model functions
via Padé approximation. First, we introduce the value function

F(η) := Jη(xη) = min
x∈X

Jη(x).

3.1 Value function

Here we collect some important analytical properties of the function F(η).

LEMMA 3.1 The function F(η) is continuous and monotonically increasing.

Proof. The assertion follows directly from the minimizing property of xη. �

LEMMA 3.2 The following limits hold for the function F(η):

lim
η→0+ F(η) = lim

η→0+ φ(xη, yδ) ≡ φ0 and lim
η→+∞ F(η) = lim

η→+∞ φ(xη, yδ) ≡ φ∞. (3.1)

Proof. Assumption 2.1(c) and the minimizing property of xη imply

F(η) ≡ φ(xη, yδ) + ηψ(xη) � φ(x̃, yδ) + ηψ(x̃) = φ(x̃, yδ) < +∞, (3.2)
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and a trivial lower bound for F(η) is 0, i.e., F(η) is uniformly bounded. Hence, both limits in (3.1)
make sense. There exists an xε ∈ X such that φ0 � φ(xε, yδ) � φ0 + ε and by the extremal property
of xη,

φ0 � φ(xη, yδ) + ηψ(xη) � φ(xε, yδ) + ηψ(xε) � φ0 + ε + ηψ(xε).

Letting η → 0+ gives φ0 � limη→0+ F(η) � φ0 + ε. This shows the first assertion.
Let {ηn}n be a sequence tending to infinity. By Lemma 2.2 and inequality (3.2), ψ(xηn ) → 0 and

φ(xηn , yδ) → φ∞. Hence, by Assumption 2.1(a), {xηn }n is uniformly bounded, and there exists a sub-
sequence, also denoted {xηn }n , and some x∗ ∈ X , such that xηn → x∗ weakly and ψ(x∗) = 0. Now
Assumption 2.1(b) and the minimizing property of xηn yield

φ(x∗, yδ) � lim inf
n→∞ φ(xηn , yδ) � lim sup

n→∞
φ(xηn , yδ)

� lim sup
n→∞

{φ(xηn , yδ) + ηnψ(xηn ) − ηnψ(x∗)}
� lim sup

n→∞
{φ(x∗, yδ) + ηnψ(x∗) − ηnψ(x∗)} = φ(x∗, yδ),

i.e., limn→∞ φ(xηn , yδ) = φ(x∗, yδ). Letting n −→ ∞ in the inequality φ(xηn , yδ) � φ(xηn , yδ) +
ηnψ(xηn ) � φ(x∗, yδ) establishes the second assertion. �

In practice, φ0 and φ∞ are often straightforward to obtain: φ0 is the minimal value of φ(x, yδ) over
the space X , while φ∞ is the minimal value of φ(x, yδ) over the subset of X which annihilates ψ .

Finally, we show a differentiability result for F(η).

THEOREM 3.3 If the function ψ(xη) is continuous at η̃ > 0, then F(η) is differentiable at η̃ and

F ′(η̃) = ψ(xη̃).

Proof. For η > η̃, from the minimizing property of xη̃, the relation

F(η) − F(η̃) = [φ(xη, yδ) − φ(xη̃, yδ) + η̃(ψ(xη) − ψ(xη̃))] + (η − η̃)ψ(xη) � (η − η̃)ψ(xη)
(3.3)

follows. Similarly, by the minimizing property of xη, we deduce

F(η) − F(η̃) = φ(xη, yδ) − φ(xη̃, yδ) + η(ψ(xη) − ψ(xη̃)) + (η − η̃)ψ(xη̃) � (η − η̃)ψ(xη̃).
(3.4)

Hence, inequalities (3.3)–(3.4) yield

ψ(xη) � F(η)−F(η̃)
η−η̃ � ψ(xη̃).

The claim now follows from the continuity of ψ(xη) at η̃. �

Throughout, we shall assume that ψ(xη) is continuous in η.

3.2 Two numerical algorithms

We shall develop two algorithms, i.e., MFA and a quasi-Newton method.
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The idea of the MFA is as follows (Kunisch & Zou, 1998; Xie & Zou, 2002). First, by Theorem 3.3,
one rewrites equation (1.3) equivalently as

F(η) − ηF ′(η) = δ2, (3.5)

and approximates F(η) with a model function mk(η) at the kth iteration given by

mk(η) = b + ck
tk+η ,

where b, ck and tk are constants to be determined. In existing MFA implementations the constant b
is fixed by imposing further assumptions on the asymptotes of mk(η): in Kunisch & Zou (1998) the
condition mk(0) = 0 was enforced, whereas in Xie & Zou (2002), b was set to 1

2‖yδ‖2, i.e., b = φ∞.
We interpret the model mk(η) as a Padé approximation of F(η) with suitable constraint on the

asymptotes. Then, existing algorithms (Kunisch & Zou, 1998; Xie & Zou, 2002) are reproduced by
enforcing the asymptotes mk(0) = 0 and mk(+∞) = 1

2‖yδ‖2, respectively. This interpretation is new
and crucial for subsequent developments since the derivations in Kunisch & Zou (1998) and Xie & Zou
(2002) hinge essentially on the inner product structure. Due to its better theoretical underpinnings and
numerical performance, we focus on the variant in Xie & Zou (2002), i.e., fixing b at φ∞. So, we arrive
at the model

mk(η) = φ∞ + ck
tk+η .

Then, by enforcing interpolation conditions at ηk , i.e.,

mk(ηk) = φ∞ + ck
tk+ηk

= F(ηk) and m′
k(ηk) = − ck

(tk+ηk)2 = F′(ηk),

we derive

ck = − (F(ηk )−φ∞)2

F ′(ηk )
and tk = φ∞−φ(xηk ,yδ)

ψ(xηk ) − 2ηk .

Hence, ck is negative for ηk < η∗, and tk is generally nondeterminate, and positive if and only if

φ∞ − φ(xηk , yδ) − 2ηkψ(xηk ) > 0, (3.6)

which, by Lemma 3.2, holds if ηk is sufficiently small.
If the condition tk > 0 holds, the definition of mk gives

lim
η→+∞ mk(η) = φ∞ = lim

η→+∞ F(η),

lim
η→+∞ m′

k(η) = 0 = lim
η→+∞ F ′(η).

Moreover, by its definition,

m′
k(η) = − ck

(tk+η)2 > 0 and m′′
k (η) = 2ck

(tk+η)3 < 0.

In view of Lemmas 2.2 and 3.1 and Theorem 3.3 the model mk(η) preserves the asymptotic behaviour,
monotonicity and concavity of F(η). Hence, we arrive at an approximation to equation (3.5),

Gk(η) ≡ mk(η) − ηm′
k(η) = δ2, (3.7)

which is computationally more tractable than equation (1.3) because of the simplicity of mk(η). Note
that G ′

k(η) = −2ckη
(tk+η)3 > 0, i.e., Gk(η) preserves the monotonicity of φ(xη, yδ).

The next result shows the local solvability of equation (3.7).
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LEMMA 3.4 If tk > 0 and φ(xηk , yδ) is close to δ2, then there exists a unique positive solution to
equation (3.7).

Proof. The approximate equation (3.7) at the kth step reads φ∞ + ck
tk+η + η ck

(tk+η)2 = δ2. We discuss

two cases separately, i.e., F(ηk) − ηk F ′(ηk) > δ2 and F(ηk) − ηk F ′(ηk) < δ2. In the former case, by
the monotonicity, it suffices to show

lim
η→0+(mk(η) − ηm′

k(η)) = φ∞ + ck
tk

< δ2.

Substituting the formulas for ck and tk and observing Theorem 3.3 gives(
φ(xηk , yδ) − δ2

)(
φ∞ − φ(xηk , yδ) − 2ηkψ(xηk )

)
< η2

kψ(xηk )
2,

which together with the assumption yields the assertion. In the latter case the assertion follows directly
from limη→+∞(φ∞ + ck

tk+η + η ck
(tk+η)2 ) = φ∞ > δ2. �

A direct implementation of the procedure is at best locally convergent because equation (3.7) is
only locally solvable. To construct a globally convergent algorithm we replace Gk(η) by its relaxation
(Xie & Zou, 2002)

Ĝk(η) = Gk(η) + αk

(
Gk(η) − φ(xηk , yδ)

)
,

where the relaxation constant αk is chosen such that

Ĝk(η) = δ2 (3.8)

always has a unique solution. If φ(xηk , yδ) > δ2, this can be achieved by prescribing Ĝk(0) = α̂δ2

for all α̂ ∈ [0, 1), which consequently suggests αk = Gk (0)−α̂δ2

φ(xηk ,yδ)−Gk (0)
. It follows from the monotonicity

of Gk(η) that 1 + αk > 0 if φ(xηk , yδ) > δ2, and thus, Ĝk(η) preserves monotonicity. Now, we can
describe a two-parameter algorithm (TPA for short); see Algorithm 1. The algorithm terminates if the
relative change |ηk+1 − ηk |/|ηk | falls below a given tolerance.

Algorithm 1 Two-parameter algorithm (TPA)

1: Choose η0, α̂ and K , and set k = 1.
2: for k = 1, . . . , K do
3: Solve (1.2) for xηk , compute F(ηk) and F ′(ηk), and update tk and ck ;
4: set the kth model function mk(η) = φ∞ + ck

tk+η , and set Gk = mk(η) − ηm′
k(η);

5: solve for ηk+1 from the relaxed discrepancy equation
(

1 + Gk (0)−α̂δ2

φ(xηk ,yδ)−Gk (0)

)
Gk(η) = δ2 + Gk (0)−α̂δ2

φ(xηk ,yδ)−Gk (0)
φ(xηk , yδ);

6: check the stopping criterion.
7: end for
8: output approximations ηK and xηK .

The next theorem shows the monotone convergence of the algorithm for ‘large’ initial guesses. Its
proof parallels that in Xie & Zou (2002), and hence, it is omitted.
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THEOREM 3.5 Let the solution η† to equation (1.3) be unique, and let η0 satisfy φ(xη0 , yδ) > δ2.
Then, the sequence {ηk}k generated by the TPA is well defined. Moreover, the sequence is either finite,
i.e., it terminates at some ηk satisfying φ(xηk , yδ) � δ2, or it is infinite and converges to η† strictly
monotonically decreasingly.

Numerically, the TPA converges robustly, but the local convergence is slow. To improve the overall
performance we hybridize it with the secant method. The variant of secant method adopted is shown
in Algorithm 2, where the stopping criterion is identical to Algorithm 1. It computes ηk+1 in the η−1

coordinate when ηk over-regularizes and in the η coordinate when ηk under-regularizes. Despite the
nonlinearity of equation (1.3), Algorithm 2 has a large convergence basin. The next result sheds some
light on the L2–L2 model.

Algorithm 2 Secant method
1: Choose η0, η1 and K , and set k = 1.
2: for k = 1, . . . , K do
3: Compute the residual φ(xηk , yδ);
4: if φ(xηk , yδ) > δ2, compute ηk+1 by

η̃k+1 = 1
ηk

− (φ(xηk ,yδ)−δ2)(ηk−1−ηk )

ηk−1ηk (φ(xηk ,yδ)−φ(xηk−1 ,yδ))
, ηk+1 = 1

η̃k+1
;

otherwise, compute ηk+1 by

ηk+1 = ηk − (φ(xηk ,yδ)−δ2)(ηk−ηk−1)

φ(ηk ,yδ)−φ(ηk−1,yδ)
;

5: solve (1.2) for the Tikhonov solution xηk+1 ;
6: check the stopping criterion.
7: end for
8: output approximations ηK and xηK .

LEMMA 3.6 In the case of φ(x, yδ) = 1
2‖K x − yδ‖2 and ψ(x) = 1

2‖Lx‖2, then φ
(
xη−1 , yδ

)
is

convex in η.

Proof. Let α = η−1, then xα solves (αK ∗K + L∗L)xα = αK ∗yδ . Letting rα = K xα − yδ we can check

that dxα
dα and d2xα

dα2 satisfy

(αK ∗K + L∗L) dxα
dα = −K ∗rα and (αK ∗K + L∗L) d2xα

dα2 = −2K ∗K dxα
dα .

Denoting by Qα the bounded inverse operator (αK ∗K + L∗L)−1 gives

dxα
dα = −Qα K ∗rα and d2xα

dα2 = 2Qα K ∗K Qα K ∗rα.

Consequently,

d2

dα2
1
2‖K xα − yδ‖2 =

〈
K xα − yδ, K d2xα

dα2

〉
+

〈
K dxα

dα , K dxα
dα

〉
= 3‖K Qα K ∗rα‖2 � 0.
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This concludes the proof of the lemma. �
Hence, the function φ(xη−1 , yδ) is convex in η for the L2–L2 model, and Newton type methods

converge monotonically in exact arithmetic. For nonsmooth models the convexity may not hold, but
nonetheless numerical experiments are very encouraging.

4. Numerical experiments and discussions

This section presents numerical results for four benchmark inverse problems adapted from the package
Regularization Tool (Hansen, 1998) to illustrate the accuracy and optimality of the principle and the
robustness and efficiency of the algorithms. These are Fredholm integral equations of the first kind
with kernel k(s, t) and solution x†(t). The discretized linear system is of the form Kx = yδ with size
300 × 300. The model is referred to as φ–ψ type, e.g., L1–T V denotes L1 fidelity and T V penalty.
Table 1 summarizes their main features: the degree of ill-posedness (Cond is the condition number)
and continuity of φ(xη, yδ). The initial guess for η is η0 = 1.0, and the hybrid algorithm is initialized
with four iterations of the TPA. The constant α̂ is fixed at 1

4 as in Xie & Zou (2002). The minimization
problems arising from the L2–T V , L2– �1 and L1–T V models are solved by an iteratively reweighted
least squares method (Clason et al., 2010) and that from the L2–elastic net model by a Newton-type
method (Jin et al., 2009).

Unless otherwise specified the data yδ is generated as follows: yδ
i = yi +maxi{|yi |}εξi , where the ξi

follow the standard normal distribution and ε is the relative noise level. The accuracy of the solution xη

is measured by the relative error e = ‖xη − x†‖L2/‖x†‖L2 . For each example we also present the
optimal choice ηopt, i.e., the one achieving the minimal error e, by solving equation (1.2) for 100
logarithmically-uniformly-distributed points over the interval [1×10−15, 1×10−1]. The subscripts opt
and dp denote the optimal solution and that by the discrepancy principle, respectively, whereas tpa and
sm denote the results by the TPA and the hybrid algorithm, respectively. The number in the parenthe-
ses denotes the number of iterations and that for the hybrid algorithm includes initialization with four
iterations of the TPA.

4.1 Example 1: L2–T V (Numerical differentiation, adapted from deriv2)

The functions k and x† are given by

k(s, t) =
{

s(t − 1), s < t,
t (s − 1), s � t,

and x†(t) =
{

1, 1
3 < t � 2

3 ,
0, otherwise,

and the integration interval is [0, 1]. The exact solution x† is piecewise constant, and thus, T V penalty
is suitable. The initial guess η0 is taken to be 1×10−2.

TABLE 1 Numerical examples

Example Description φ(xη, yδ) Cond(K) Noise Program φ–ψ

1 Differentiation Continuous 1.09×105 Gaussian deriv2 L2–T V
2 Phillips Continuous 2.14×108 Gaussian phillips L2–�1

3 Deblurring Discontinuous 7.35×108 Impulsive blur L1–T V
4 2D deblurring Continuous 3.26×105 Gaussian blur L2–elastic net
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We observe from Table 2 that the parameter ηdp (by the discrepancy principle) agrees very well with
the optimal one ηopt, albeit its value is slightly larger. Furthermore, the accuracy errors edp and eopt do
not differ much. The TPA converges steadily and fast, see Fig. 1(a,b), and it yields an acceptable and
even very accurate approximation, in terms of the error, within eight iterations. The algorithm tends to
accelerate as the noise level decreases. However, its local convergence is slow, and it requires many
iterations to reach a very accurate approximation of the solution to equation (1.3) (see Fig. 1(c)) where
the symbol G refers to |φ(xη, yδ) − δ2|. The hybrid algorithm converges locally very fast. The initial
guesses given by the TPA are smaller than but very close to η∗ beyond which xη does not change, and
φ(xk−1, yδ) and φ(xk, yδ) are close to φ(x∞, yδ). Nonetheless, the iterates are rather steady, and the
convergence is swift. The secant method is very efficient in decreasing G, which is useful when an
accurate estimate of the true noise level is available. The solution is accurate and stable for ε up to 5%;
see Fig. 2 and Table 2. The T V solution exhibits a typical staircasing effect: it is piecewise constant and
its magnitude is slightly distorted.

Now we compare the algorithms with a direct method based on sampling at ηk = η0qk−1, q ∈ (0, 1).
Clearly, the efficiency of this method depends crucially on the shrinkage factor q: the smaller is the
factor q , the more accurate is the selected parameter, but at the expense of increased computing efforts.
Also, the attainable accuracy is inherently limited by discrete sampling. We evaluate the method also
on the data set with ε = 5%, and set q = 0.9 and η0 = 1×10−2. The error e after eight iterations of
the method is 8.68×10−1, which is far inferior to those in Table 2. The best possible result is achieved
after 35 iterations: the selected parameter η and the error e are 2.78×10−4 and 2.53×10−1, respectively,
which represents a good approximation to ηdp and edp. However, it achieves G at 4.83×10−7, and this
can be realized by the hybrid algorithm within 10 iterations; cf. Fig. 2. Hence, the hybrid algorithm is
preferred to the direct method. Although not presented, we would like to note that similar observations
can be made for other examples.

4.2 Example 2: L2–�1 (Sparse reconstruction, adapted from Phillips’ problem)

Let φ(t) = [
1+cos π t

3

]
χ|t−s|<3 with χ being the indicator function, and S = [−3,−2.96]∪[0.6, 0.64]∪

[3, 3.04]. The functions k and x† are given by k(s, t) = φ(s − t) and x†(t) = χS , and the integration
interval is [−6, 6]. The exact solution x† has a sparse representation in the pixel basis, and thus, the �1

penalty is suitable.
The matrix K is of full rank, and by Corollary 2.6, the solution to equation (1.3) is unique. The

parameter ηdp is practically identical to the optimal one ηopt for all five noise levels; see Table 3. Inter-
estingly, the value of η in both cases decreases at the rate η ∼ δ, and the error e apparently decreases
also as e ∼ δ. Hence, the �1 penalty circumvents the well-known saturation phenomenon for Tikhonov
regularization in Hilbert spaces. The algorithms achieve a fast and steady convergence; cf. Fig. 3(a).
The approximations after eight iterations are already very close to the exact one, and the hybrid algo-
rithm yields more accurate results. Figure 4 shows the prominent feature of the sparsity-promoting �1

penalty: the locations of all three small spikes are perfectly detected, and their retrieved magnitudes are
reasonably accurate.

4.3 Example 3: L1–T V (Deblurring one-dimensional image)

The functions k and x† are given by k(s, t) = 1
4
√

2π
e− (s−t)2

32 χ|s−t |<15 and x†(t) = χ[101,200], and

the integration interval is [0, 300]. The data are corrupted by additive random-valued impulsive
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FIG. 1. The convergence of (a) η, (b) e and (c) G for Example 1 with 5% noise.

FIG. 2. The numerical solutions for Example 1 with 5% noise: (a) discrepancy principle versus optimal choice and (b) TPA versus
hybrid algorithm.

noise as follows:

yδ
i =

{
yi + σmξi with probability r,
yi with probability 1 − r,

where ξi follows the standard Gaussian distribution, the constant σm := ε max1�i�300 |yi |. The exact
noise level δ2 is dictated by the corruption percentage r and the standard deviation σm . The L1 fidelity
and T V penalty are adopted to cope with impulsive noises and to reconstruct piecewise constant solu-
tions (Chan & Esedoḡlu, 2005), respectively. The initial guess η0 is 10. We note that the L1–T V model
is not covered by the theory herein because of the nonuniqueness of minimizers to the functional Jη

(Chan & Esedoḡlu, 2005).
The value ηdp is close to the optimal one ηopt for all noise levels (cf. Table 4), with ηopt determined

by sampling η over the interval [1×10−5, 1×101] at 100 points. Interestingly, ηopt remains unchanged
as the noise level varies by 3 orders of magnitude and also the variation of ηdp is negligible. Here,
the parameter η is characteristic: at some values the solution profile undergoes sudden transition and the
profile might change little when η varies without crossing these values (Chan & Esedoḡlu, 2005). The
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FIG. 3. The convergence of (a) η, (b) e and (c) G for Example 2 with 5% noise.

FIG. 4. The numerical solutions for Example 2 with 5% noise: (a) discrepancy principle versus optimal choice and (b) TPA versus
hybrid algorithm.

numerical results for r = 0.5 are far more accurate than those for r = 0.3, which shows the profound
effect of the percentage r .

The TPA converges steadily (cf. Fig. 5), but very slowly: the 20th iterate represents only a rough
approximation. The blame is attributed to clustering points around a solution to equation (1.3), which
might render a rational approximation of F(η) nearly invalid. A steady and fast convergence of Algo-
rithm 2 is again observed, and the convergence is achieved within 12 iterations. Observing the large
amount of noise, the reconstruction agrees well with the exact one; see Fig. 6. Hence, the TPA can
provide a rough but visually acceptable estimate, despite the fact that the value η and error grossly
overestimate the optimal ones.

4.4 Example 4: L2-elastic net (Two-dimensional image deblurring)

This is the blur example from Hansen (1998). We set the parameters N=50, band=5 and sigma=1.2.
The true solution is shown in Fig. 8. We used elastic net, i.e., ψ(x) = ‖x‖�1 + γ

2 ‖x‖2
�2 , with a fixed

γ = 1×10−3, which statistically favours a grouping effect (Zou & Hastie, 2005).
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FIG. 5. The convergence of (a) η, (b) e and (c) G for Example 3 with r = 0.5 and ε = 0.5 noise.

FIG. 6. The numerical solutions for Example 3 with r = 0.5 and ε = 0.5 noise: (a) discrepancy principle versus optimal choice
and (b) TPA versus hybrid algorithm.

FIG. 7. The convergence of (a) η, (b) e, and (c) G for Example 4 with δ2 = 1.25×10−1.
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FIG. 8. The numerical solutions for Example 4 with δ2 = 1.25×10−1.

The TPA and the secant method both converge very steadily and rapidly, but the local convergence
of the TPA is far slower; cf. Fig. 7. Nonetheless, three to four iterations of the TPA already agree well
with the exact solution. The parameter ηdp is 1.41×10−2, and it is well approximated by eight iterations
of either algorithm (ηtpa = 1.44×10−2, ηsm = 1.41×10−2). It is smaller than the optimal choice, i.e.,
3.03 × 10−2. Visually, all four solutions are reasonable and fairly close to each other; cf. Fig. 8. This
is also indicated by the errors, i.e., eopt = 4.46×10−1, edp = 5.05×10−1, etpa = 5.03×10−1 and
esm = 5.05×10−1. This again shows the feasibility of the principle and the efficiency of the algorithms.

5. Concluding remarks

We have studied several numerical aspects of the discrepancy principle. The uniqueness of the solution
to the discrepancy equation was shown. This was achieved by deriving an explicit characterization of the
solution sets. Two numerical algorithms for its efficient realization were proposed, and their convergence
properties were also briefly discussed. The TPA was based on the idea of Padé approximation, generaliz-
ing the idea of model functions. The hybrid algorithm drastically enhances its local convergence by the
secant method. Numerical results show that the algorithms achieve a fast and steady convergence, and
the principle achieves almost optimal convergence rates. Theoretically, it is of much interest to further
investigate the convergence of the algorithms in the case of inexact minimization the functional Jη, as
often occurs in practical scenarios.
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