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ABSTRACT

A fully three-dimensional, nonlinear, time-dependent spherical interface dynamo is investigated using a
finite-clement method based on the three-dimensional tetrahedralization of the spherical system. The
spherical interface dynamo model consists of four zones: an electrically conducting and uniformly rotating
core, a thin differentially rotating tachocline, a uniformly rotating turbulent convection envelope, and a
nearly insulating exterior. The four regions are coupled magnetically through matching conditions at the
interfaces. Without the effect of a tachocline, the conventional nonlinear a? dynamo is always stationary,
axisymmetric, and equatorially antisymmetric even though numerical simulations are always fully three-
dimensional and time dependent. When there is no tachocline, the azimuthal field is confined to the
convection zone while the poloidal magnetic field penetrates into the radiative core. The effects of an interface
dynamo with a tachocline having a purely axisymmetric toroidal velocity field are as follows: (1) the action of
the steady tachocline always gives rise to an oscillatory dynamo with a period of about 2 magnetic diffusion
units, or about 20 yr if the magnetic diffusivity in the convection zone is 108 m? s~!; (2) the interface dynamo
solution is always axisymmetric, selects dipolar symmetry, and propagates equatorward (for the assumed
form of «v) although the simulation is fully three-dimensional; (3) the generated magnetic field mainly concen-
trates in the vicinity of the interface between the tachocline and the convection zone; and (4) the strength of
the toroidal magnetic field is dramatically amplified by the effect of the tachocline. Extensions of Cowling’s
theorem and the toroidal flow theorem to multilayer spherical shell regions with radially discontinuous

magnetic diffusivities are presented.
Subject heading: Sun: magnetic fields

1. INTRODUCTION

It is widely accepted that large-scale solar magnetic
activity, such as the 11 yr sunspot cycle, is the manifestation
of magnetohydrodynamic processes occurring in the deep
solar interior (Parker 1955; Moffatt 1978; Stix 1989). Signifi-
cant progress has been made in understanding these proc-
esses through the recognition that a highly differentially
rotating transition zone between the convection and radia-
tive regions of the Sun, the solar tachocline, plays an essen-
tial role (Schou 1991; Spiegel & Zahn 1992; Parker 1993;
Weiss 1994; Gough et al. 1996; Dikpati & Charbonneau
1999). It has been suggested that the solar tachocline is a
strongly stably stratified layer with a thickness up to about
10% of the solar radius (Kosovichev 1996).

The solar tachocline is an ideal location for the generation
and storage of the Sun’s strong azimuthal magnetic fields. If
the strong azimuthal fields were stored in the convection
zone, they would be expelled by magnetic buoyancy on a
timescale that is too short compared to the solar cycle. In
other words, the large-scale solar surface magnetic activities
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can be interpreted as a result of the rising and emerging of
tachocline-seated, strong toroidal magnetic fields driven by
magnetic buoyancy (e.g., Weiss 1994). The existence of the
tachocline leads naturally to the concept of the interface
dynamo first proposed by Parker (1993), in which the gener-
ation of a weak poloidal magnetic field and a strong toroidal
magnetic field takes place in separate fluid regions with dis-
continuous magnetic diffusivities across their interface.
Parker’s interface dynamo provides a way of generating a
strong toroidal magnetic field in the vicinity of the
tachocline while avoiding the dilemma of the a-quenching
in the convection zone.

In Parker’s Cartesian model (Parker 1993), turbulent
convective motions produce an a-effect generating a weak
magnetic field B, in an upper region with a large eddy
magnetic diffusivity \,,. In a lower region with a reduced mag-
netic diffusivity \,,, a uniform shear generates a strong azimu-
thal magnetic field B,,. Parker showed that the linear, mean
field, interface dynamo allows solutions in the form of a sur-
face wave confined to propagate along the interface between
the two fluid regions. More importantly, he demonstrated
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that the ratio of the maximum magnetic field strengths on the
two sides of the interface follows the scaling relation

(3.~ () g

When A\, /A, > 1, a strong toroidal magnetic field in the shear
region can be generated by a weak magnetic field in the
turbulent convection region.

There have been a number of important extensions, with
different emphases, of Parker’s interface dynamo model.
One extension focuses on further understanding the
fundamental generation mechanism of interface dynamos.
MacGregor & Charbonneau (1997) considered a different
interface dynamo in which the shear flow and a-effects are
spatially localized in the form of delta functions on either
side of the interface. Because the shear flow and «-effects are
spatially separated, the effect of magnetic diffusion plays a
more important role compared to the model with a uni-
formly distributed shear and a. By introducing the action of
the Lorentz force using the Malkus-Proctor mechanism,
Tobias (1997) investigated the nonlinear modulation of
Parker’s interface dynamo, demonstrating that the gener-
ated magnetic field can be temporally modulated. The
modulated interface dynamo is capable of producing the
long-term modulation of the basic solar magnetic cycle and
recurrent grand minima (see also Brandenburg et al. 1989;
Tobias, Weiss, & Kirk 1995; Ponty, Gilbert, & Soward
2001).

Parker’s Cartesian interface dynamo has also been
extended to spherical geometry (e.g., Charbonneau &
MacGregor 1997; Markiel & Thomas 1999; Dikpati &
Charbonneau 1999). Spherical interface dynamos usually
employ a solar-like internal differential rotation profile from
the helioseismic inversion (e.g., Brown et al. 1989; Schou
et al. 1998),

0, 0<r<r,
Q(r,0)=q F(r)GO), ri<r<r., (2)
G(9), n<r<r,,

where Q(r, 0) represents the differential rotation, (r, 6, ¢) are
spherical polar coordinates with # =0 at the axis of
rotation, and r;, r;, r, denote the radii of the inner core, the
interface between the convection zone and the tachocline,
and the outer surface of the convection zone, respectively.
It is important that

dr
dr

>

1 dG’
rdf|’

As far as magnetic field generation is concerned, the radial
shear F(r) in the tachocline plays a much more significant
role than the latitudinal variation G(6). In a linear spherical
interface dynamo model, Charbonneau & MacGregor
(1997) found a class of dynamo solutions that rely on the
latitudinal shear G(0) and that are distinct from the usual
interface modes controlled by the radial shear F(r). How-
ever, Markiel & Thomas (1999) showed that this class of
dynamo solutions is invalid and results from an incorrect
magnetic field boundary condition imposed at the interface
between the core and the tachocline. The result of Markiel
& Thomas (1999) demonstrated that the magnetic boundary
condition can play a critical role in determining the key
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features of an interface dynamo and that the radial shear in
the tachocline dominates the process of magnetic field
generation even though latitudinal shear is present.

The primary aim of the present paper is to provide an
improved understanding of the magnetic field generation
process in a spherical interface dynamo through three-
dimensional finite-element simulations. Following the basic
interface dynamo concept of Parker (1993; see also
MacGregor & Charbonneau 1997), our interface dynamo
model assumes a separation between the «-effect and shear
flow regions: the convectional « is nonzero only in the con-
vection zone, while the differential rotation only occurs in the
tachocline. There are two major reasons why we neglect the
weaker pole-equator differential rotation in the convection
zone. First, as suggested by many existing models, the weak
latitudinal shear G(6) in the convection zone is unlikely to
play a dominant role in the dynamo action. More signifi-
cantly, by separating the two induction sources spatially, we
can isolate and identify the effect of a strong shear flow by
switching on or off the action of the tachocline and hence
provide insight into the interface generation mechanism.

There are a number of new features in our interface
dynamo model in comparison to existing spherical models.
All existing interface dynamo models are axisymmetric. The
significance of nonaxisymmetric magnetic fields in mean
field dynamo modeling has not been fully explored (Moss &
Brandenburg 1995). This paper presents the first fully
three-dimensional interface dynamo using a finite-element
method in which neither spatial nor temporal symmetries
are imposed. It is also the first magnetically coupled four-
zone interface dynamo model. For mathematical and
numerical convenience, many interface dynamo models
assume the perfectly electrically conducting condition at the
interface between the radiative zone and the tachocline. This
assumption magnetically decouples the radiative zone from
the tachocline and introduces a possible current sheet at the
interface. The critical importance of the magnetic coupling
between the tachocline and core was carefully demonstrated
by Gough & Mclntyre (1998). Moreover, the assumption of
a highly stably stratified shear tachocline with a reduced
magnetic diffusivity leads to \,/\, < 1 (Parker 1993), where
A, and )\, are magnetic diffusivities for the tachocline and
the convection zone, respectively. This assumption implies a
moderate magnetic diffusivity ratio, \;/)\, between the
tachocline and the radiative zone, where J; is the magnetic
diffusivity of the radiative zone. An approximation for a
perfectly electrically conducting condition at the interface
requires \;/A\, — 0, not \;/\, — 0. It follows that the mag-
netic boundary condition at the interface may not be
assumed to be perfectly conducting although the magnetic
diffusivity J; in the radiative zone is indeed much smaller
than that in the convection zone. By assuming a moderate
ratio \;/A,, which requires solutions of the induction equa-
tion in the radiative zone, our model couples all the zones of
the interface dynamo magnetically. It is also becoming
increasingly recognized that global instabilities of the strong
shear flows would lead to a nonaxisymmetric flow in the
tachocline (e.g., Gilman & Fox 1997; Cally 2001; Ponty
et al. 2001; Dikpati & Gilman 2001a, 2001b). This paper is
the first study of the nonlinear interface dynamo driven by a
nonaxisymmetric tachocline.

The remainder of the paper is organized as follows. After
discussing the mathematical formulation of the problem
for the interface dynamo model in § 2, we present the
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finite-element formulation of the model in § 3. The results of
our three-dimensional simulation are discussed in § 4. In § 5
we close the paper with a summary and some remarks.

2. MATHEMATICAL FORMULATION

The spherical interface dynamo model consists of four
different zones as illustrated in Figure 1. The inner radiative
sphere, 0 < r < r;, with constant magnetic diffusivity A,
rotates uniformly with the angular velocity Q. If we assume
a reference frame that rotates with ;, the magnetic field B;
in the radiative core is governed by the equations

OB,
ot

+AVXVXB =0, (3)

V-B,=0. (4)

The magnetic field B; cannot be generated in this uniformly
rotating sphere. Above the radiative core is the tachocline, a
region of strong differential rotation, ©f2,, where Q is in
the same direction as €, || is the amplitude of the differ-
ential rotation, and 2, is the dimensionless profile. In the
tachocline r; <r <r, the differential rotation shears
the weak poloidal magnetic field, which is generated in the
convection zone and penetrates into the tachocline. The
result is a strong magnetic field B, in the tachocline. This
amplification process is described by the equations

V-B, =0, (6)

where u = (Q¢€),) X r and ), is the magnetic diffusivity in
the tachocline. We assume a fully turbulent convection zone

Fig. 1.—Geometry of the three-dimensional, four-zone, interface
dynamo model: 0 < r < r;, the uniformly rotating, electrically conducting
core with magnetic diffusivity \; r; <r <r, the differentially rotating
tachocline with magnetic diffusivity \; r, < r < rg, the uniformly rotating
convection zone with magnetic diffusivity \,; and r > ry, the exterior with
large magnetic diffusivity A,. Here n is the unit normal vector.
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in the region r, < r < r,. We also assume that the convec-
tion zone rotates uniformly with angular velocity €;. In this
zone with eddy magnetic diffusivity \,, where \;/\, < 1, a
weak magnetic field B, is generated by an a-effect. The non-
linear o2 dynamo in the convection zone is described by

OB, B, |’
=,V X — -2V X
ET o, [a (r, 0, ¢, Beq B, Ao VXB,,
(7)
V-B,=0, (8)

where «, is a positive parameter, By is the equipartition
magnetic field in the convection zone, and the three-
dimensional nonlinear function «(r,0, ¢, |B,/Beg|") is
related to the local a-quenching, as will be discussed later.

The exterior to the convection zone, r, < r <r,, IS
assumed to be nearly electrically insulating with magnetic
diffusivity A\, and rotating uniformly with angular velocity
Q,. Its magnetic field B, is governed by

0B,
ot

+AVX(VXB)=0, 9)

V-B,=0. (10)
For sufficiently large magnetic diffusivity A, such that

Ae
" >1,

the magnetic field B, in the exterior represents an approxi-
mate potential field that is also part of the numerical
dynamo solution.

We nondimensionalize length by the thickness of the con-
vection zone d = (r, — r;), magnetic field by the equiparti-
tion field B.y, and time by the magnetic diffusion time
Tm = d?/ ), of the convection zone. The resulting four sets
of dimensionless equations for the four zones (all variables
in the rest of the paper are nondimensional) are

OB;

o = BVXVXE, 0<r<r, (1)
V-B,=0, 0O<r<r, (12)
%:RmVx(uxBl)fﬂ,VxVXB,, r<r<r
(13)
VeB=0, s (14)

aalio = R,V X [a(r,6,0,|B,")B,] =V XV X B,
re<r<r,, (15
VeB, =0, r<r<r,, (16)
aalie:_gmvaxBe, o <1< T, (17)
VB, =0, ro<r<r,. (18)

There are five nondimensional quantities that characterize
the interface dynamo model: the magnetic diffusivity ratios
Bis Bs B, the magnetic & Reynolds number R,, and the
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magnetic w Reynolds number R,,, which are defined by

Ai A A
ﬁi_Xl7 61_Xt7 ﬁm_)\_::a
do d?|Q
RQ—)\—UO, m — |>\00‘

The governing equations are solved subject to a number of
matching and boundary conditions at the interfaces. At the
three interfaces of the four zones, r = r;, r,, and ry, all com-
ponents of the magnetic field and the tangential component
of the electrical field are continuous. These conditions yield

(Bi—B,)=0 atr=r;,

rX[GVXBi+Ry(uXB,)—3VXB]=0 atr=r;,

(B,—B,)=0 atr=r,,

r X [R,(uxXB,)— 3V XB, —R,aB,+V X B,] =0
atr=r;,

(B.—B,)=0 atr=r,,

rX B,V X B+ RoaB, ~VXB,)=0 atr=r,, (19)

where r is the position vector. For the boundary condition
at the outer bounding surface of the dynamo solution
domain, r = r,,, an approximation must be made. Since
there are no sources at infinity, i.e.,

B.=0(r?) asr— oo, (20)

we can approximate the magnetic field boundary condition
atr =r,, as

3
B.=0 atr=r,with <r—) >1. (21)

To

Equations (11)—(18), together with the matching and boun-
dary conditions given by equations (19) and (21), define a
nonlinear spherical interface dynamo problem. For given
parameters of the model such as R, and R,,, numerical solu-
tions of the nonlinear interface dynamo are sought using a
fully three-dimensional finite-element method.

In the system given by equations (11)—(18) it is the strong
toroidal flow (R, > 1) in the tachocline that dominates the
process of magnetic field generation. However, it should be
pointed out that dynamo action cannot occur in the first
place without the «a-effect in the convection zone regardless
of the amplitude of the toroidal flow. An extension of the
toroidal flow theorem (Bullard & Gellman 1954) to the solar
context characterized by radially discontinuous magnetic
diffusivities in multilayer spherical geometry is given in
Appendix A. We also extend Cowling’s theorem (Cowling
1934) in a sphere to the multilayer spherical system in
Appendix B.

3. FINITE-ELEMENT FORMULATION

There are two major different numerical approaches for
solving a dynamo problem in spherical geometry. The first
one, which is widely employed in the spectral method, is the
poloidal and toroidal decomposition of a magnetic field so
that the solenoidal condition such as equation (14) is auto-
matically satisfied (for example, Glatzmaier & Gilman
1982; Zhang & Busse 1989). This decomposition increases
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the second-order induction equation to a fourth-order
equation requiring higher order shape functions when a
finite-element method is employed. This usually results in
inefficiency and complexity for a finite-element method. The
second approach, used in this paper, is to adopt primitive
variables for the magnetic field and solve both the dynamo
equation and the solenoidal condition. In this case, the
dynamo problem represents an overdetermined mathemati-
cal problem. This is because we have only three unknowns
(B,, By, B,) but four equations in each zone.

We need to construct a mathematically equivalent
dynamo problem that is not overdetermined. This can be
achieved by introducing an auxiliary pressure into the
dynamo equation. The finite-element formulation of our
dynamo model is then given by the following four sets of
modified equations: In the radiative zone,

OB;
ot

:—ﬂ,‘VXVXB[—FVp[, O<r<ry, (22)

V:.B,=0, 0<r<ry, (23)

where the auxiliary pressure p; is the fourth variable needed
for the closure of the problem. In the tachocline,

B
%:RmVx(uxB,)—ﬂthva,Jert,

r<r<r,, (24
VB, =0, ri<r<r,. (25)

In the convection zone,

a;;” =R,V X [a(r,0,¢,|B,|")B,] —V X V X B, +Vp, ,
r<r<r,, (26)
VeB, =0, ri<r<r,. (27)
In the exterior region,
8£e:—ﬁmVXVxBe+Vpe, Fo <1 <rm, (28)

V'Be:(), Fo <1 <Tp. (29)

The conditions that the auxiliary pressures must be
continuous at the interfaces yield

pi=p atr=r;,
P =po atr=r;,
Po=pe atr=r,. (30)

On the outer spherical surface r = r,,, we impose
pe=0 atr=r,. (31)

Therefore, the auxiliary pressures are analytically exactly
zero or numerically very small everywhere. It follows that
the dynamo problem defined by equations (11)—(18) is
mathematically equivalent to that defined by equations
(22)—(29). The physical pressure in the Navier-Stokes equa-
tion and the auxiliary pressure used here in the dynamo
equation are fundamentally different.

Ideally, we should take the ratio (r,/r,) as large as
possible. However, it was shown that the numerical dynamo
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solutions are not significantly affected when (r,, /r(,)3 >
O(10) (Chan et al. 2001). Practically, we take

r\3
() -
Fo
throughout the paper, which gives a reasonably accurate

approximation to (r,,/r,)’ — co. For the ratios of magnetic
diffusivities in the different zones, we use

Bm =200 s 0.01 < ﬁ,’ <0.1 s

0.01 <, <0.1

in our simulations.

The weak formulation for the interface dynamo using a
finite-element approximation is defined by the following
four sets of equations: In the radiative zone,

9/ W,"B,'dV:—/(ﬂiVXBi'VXWi-Fp[V'Wj)dV
ot Vi V;

—/ (5[?‘XVXB—pii’)'WidS7
oV
(32)

[ av-Bav—o. (33)
V.

i

where 7 is a unit vector in the radial direction, W; and ¢; are
the weighting functions, V; denotes the domain 0 < r < r;,
and OV; denotes the interface between the radiative zone
and the tachocline at » = r;. In the tachocline, we have

% W,-Bth:/[(RmuXB,*ﬂtVXB,)-V
Vi

t

X W, +pV-W]dV
+/6V[Rmﬁ>< (u X B,)+ Bt X V

X é,—kp,i‘]- W, dS
—/W[Rmifx (X B,)+ B X V

X B, +Pti’] -W.dsS , (34)

/ ¢V+B;dV =0, (35)

Vi

where W, and ¢, are the weighting functions, V, denotes the
domain r; < r <r, and OV, denotes the interface between
the convection zone and the tachocline at r = r,. In the
convection zone, we obtain

2/ W,B,dV :/ {[R.c(|B,")B, —V X B,]+V
ot Jy, v,
X W, +p,Ve W, dv
+/ [R.a(|B,|*)B, — i X V
oV,
X B, + pi| - W,dS
—/ [Roo(|Bo[*)B, —F X V
av,

X B, + poi]+ W,dS | (36)
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/ gV -B,dV =0 (37)
where W, and ¢, are the weighting functions, V/, denotes the
domain r, <r <r,, and 9V, denotes the interface between
the convection zone and the exterior at r = r,. In the ex-
terior region, V,, defined by the region r, < r < r,,, we have

2/ We-BedV:/(—ﬁerBg-V
8t v, Vv,
X W,+pVW,)dV
Jr/ (BeF X VX B, — pi)+ W, dS ,
av,

(38)
/ 4V BodV =0, (39)
V.

where W, and ¢, are the weighting functions and we have
made use of the boundary conditions at r = r,.

After the three-dimensional tetrahedralization of the
whole spherical system, the finite-element approximation
for the magnetic field and the pressure can be written as

B = (Biva7BovB€)

ST BON,(), Y BUON (), S BL(ON(r),

J J

ZBQ(r)N,»(r)] , (40)

P = (phptapmp(’)

- | S0 0. S o),
J

j 7
Z%(OM/(V)] ; (41)

where M;(r) and N;(r) are shape functions defined in each
tetrahedron element and B’ and p/, for example, denote the
value of B; and p; at the jth node. The shape functions M;(r)
in a tetrahedron are defined by

My =1L,
Mz = L3,

M, =1L,,
Mi= Ly, (42)

where L; (j =1, 2, 3, 4) are the volume coordinates for a
tetrahedron, and satisfy

4
Mi(r) =65, > Mr)=1. (43)

The shape functions N;(r) in a tetrahedron are defined by

Ny = Li(2L; - 1),
Ny = Ly(2Ls — 1),

Ny = Ly,(2L, — 1),
Ny =Ly(2Ls — 1),

Ns =4L1Ly, Ng=4LLs,
N7 =4LiLy, Ng=4LL;,
No =4L,L4, Nip=4L3L4 (44)
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and satisfy
Nir) =65, D N =1. (45)

In other words, there are four nodes for the pressure in each
tetrahedron (the four corners) and 10 nodes for the mag-
netic field (the four vertices and six middle points of the six
edges of each tetrahedron). The weight functions are
selected to be the same as the expansions used in equations
(40) and (41).

After substitution of equations (40) and (41) and the cor-
responding weight functions into equations (32)—(39), we
evaluate the integral over the spherical zone as a sum of inte-
grals over the tetrahedron element domains. After carrying
out the integration over all the tetrahedra and coupling the
four zones together by the magnetic field matching condi-
tions, we obtain a system of nonlinear ordinary differential
equations. The system represents a typical saddle point
problem. A Crank-Nicholson scheme is then used for time
integration wherein the nonlinear term is treated explicitly
by a second-order extrapolation while all the linear terms
are treated explicitly. The resulting linear system is solved
by an iterative method.

4. SIMULATIONS OF THE SPHERICAL
INTERFACE DYNAMO

4.1. Stationary Conventional Dynamos

First, we switch off the interface dynamo by setting
R,, = 0 in equation (24) so that the tachocline disappears
and becomes part of the uniformly rotating radiative core.
In the noninterface dynamo simulation, we take

u('} 97 ¢) = (H¢,ur7u9) = (0, O’ 0) , r; <r S r
- 1
a(r,0,¢) = sinzé)cosesin[w (r r,)] -
(ro =1)] (1 +|B,[?)
rt<rSr0 ) (46)

where (ug, u,, up) denote the three components of the veloc-
ity in spherical polar coordinates. The o formula assumes
that the strength of the a-effect will be suppressed when the
kinetic energy of the flow is comparable to the magnetic
energy, which has been widely used, for example, by
Choudhuri, Schiissler, & Dikpati (1995) and Kiiker,
Ridiger, & Schultz (2001; for a detailed discussion see
Brandenburg 1994). A major advantage of this formulation
is that it allows simulation of many essential physical
dynamo processes without reference to the difficult
dynamics of strong nonlinear interaction between the flow
and the Lorentz force.

We have assumed an a-effect throughout the whole con-
vection zone. This is physically reasonable if the a-effect is
directly related to turbulent convective motions (Moffatt
1978). In some dynamo models (e.g., Charbonneau &
MacGregor 1997), the a-effect is strongly concentrated near
the base of the convection envelope to avoid excitation of
dynamo modes associated exclusively with the latitudinal
angular velocity gradient in the convection zone. This is not
a concern in the present model. Since the toroidal magnetic
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field in our interface dynamo is generated only in the tacho-
cline, magnetic buoyancy in the bulk of the convection zone
is not an issue (Fan, Fisher, & De Luca 1993; Caligari,
Moreno-Insertis, & Schussler 1995). The resulting dynamo
using equation (46) corresponds to a well-understood con-
ventional o2 dynamo (e.g., Roberts 1972). We have tested
various « distributions and found that the principal results
are not critically affected by the particular choice of a.. Note
that the local a-quenching is the only nonlinearity in this
dynamo model.

Apart from the azimuthal symmetries of a dynamo
solution, there exist two different equatorial parities for the
magnetic field, an equatorially symmetric dynamo with

(By, By, By)(0) = (B, Br, —By)(m — 0)
and an equatorially antisymmetric dynamo obeying
(Bq’n B, 39)(9) = (_B¢7 - B, 39)(7T - 6) )

which is usually referred to as dipolar symmetry. Our
nonlinear simulation does not impose any azimuthal or
equatorial symmetries.

Our calculations show that any initial magnetic field
decays with increasing time if R, < 18 and grows if
R, > 18. Furthermore, the properties of the nonlinear
dynamo are not dependent on initial conditions. The onset
of dynamo action takes place at about R, = 18. Without
the effect of a tachocline, the conventional nonlinear
dynamo is always stationary, axisymmetric, and equatori-
ally dipolar even though numerical simulations are always
fully three-dimensional and time dependent. Four typical
nonlinear stationary solutions are presented in Figure 2,
showing the magnetic energy E,, of the generated magnetic
field as a function of time, where

2
E, :/|B| dv
v
8 :
R =70
o
7, =1
6, -
R =50
o
5 —
e ﬁ
A1) 4 i
3H R =30 |
o
2, N
1T R =20 |
o
o L L L L
0 0.4 0.8 1.2 1.6 2
t

FiG. 2.—Magnetic energy E,, as a function of time for the conventional
a? dynamo without the effect of a tachocline. Four nonlinear dynamo solu-
tions are shown, and the onset of dynamo action occurs at about R, ~ 18.
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Fi6. 3.—Contours of the azimuthal (radial) field B, (B,) in a meridional plane on the left-hand (right-hand) panel for the conventional o dynamo without
the effect of the tachocline for R, = 30 with 3; = 3, = 0.1. Dashed contours indicate azimuthal field lines with B, < 0 (B, < 0), and solid contours correspond
to fields with B, > 0 (B, > 0). The contour levels for both B, and B, are from —0.55t0 0.55.

and ¥ denotes the region r; < r < ry. The planform of the
generated azimuthal field in a meridional plane for R, = 30
with 8, = 5, = 0.1 is depicted in Figure 3. The azimuthal
magnetic field is largely confined to the convection zone. Its
maximum dimensionless strength is about |By| =0.5.
The poloidal magnetic field, which has about the same
strength as that of the toroidal field, penetrates into the deep
interior all the way to the radiative core. Dynamo solutions
calculated with different values of 3; and ([, show
qualitatively similar features.

4.2. Interface Dynamos with Two-dimensional Tachocline

We now switch on the interface dynamo by introduc-
ing a nonzero axisymmetric shear flow in the tachocline
while keeping the same « distribution as in equation (46),

u(r, 01 ¢) = (Z/l@, Uy, ue)

- {Q,(O)rsin@sin{w%} 0, 0} :

r<r<r, (47)

where Q,(6) represents the three-term expression approxi-
mating the observed profile of the solar differential
rotation (Schou et al. 1998),

Q,(0) =1 —1.98cos># —3.26co0s* 6 .

It is found that the principal properties of the simulated
dynamo are not particularly sensitive to the choice of
Q,(0). The weaker pole-equator differential rotation in the
convection zone is neglected. We assume that the differ-
ential rotation vanishes at the interface r =r,, which

spatially separates the two magnetic induction sources
(Parker 1993; MacGregor & Charbonneau 1997). This
separation enables us to understand how an interface
dynamo operates in multilayer spherical systems. Without
the «-effect in the convection zone, dynamo action can-
not be sustained by the purely toroidal axisymmetric flow
in the tachocline.

The magnetic energy as a function of time is shown in
Figure 4 for R,, = 100 and 200. The two solutions of the
interface dynamo are obtained using the same parameters
as in Figures 2 and 3 (R, = 30 with §; = 3, = 0.1) except
for the presence of the tachocline. Contours of the azi-
muthal magnetic field at the interface r, plotted against
time (which is usually referred to as the butterfly dia-
gram) and the structure of the generated toroidal field in
a meridional plane are shown in Figures 4 and 5, respec-
tively, for R,, =200 with §; = 3, =0.1. The results are
robust in that many more simulations in various param-
eter regimes, for example, smaller values of (3, always
show qualitatively similar features.

An important insight into the interface dynamo mecha-
nism can be obtained by comparing the interface dynamo
shown in Figures 4 and 5 to the noninterface dynamo in
Figures 2 and 3. The comparison reveals a number of sig-
nificant effects of the tachocline: (1) the action of the
steady tachocline always gives rise to an oscillatory
dynamo with a period of about 2 magnetic diffusion
units, 27,,, or about 20 yr if we adopt A\, = 108 m? s~ !;
(2) the interface dynamo solution with « given by equa-
tion (46) and €2, given by equation (47) is always axisym-
metric, selects dipolar symmetry, and propagates
equatorward although the simulation is fully three-
dimensional (if the sign of « in eq. [46] changes, the
corresponding dynamo wave would propagate poleward);
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Fi1G. 4.—Left: Magnetic energy E,, as a function of time with a steady axisymmetric tachocline for R, = 30 with 3, = §; = 0.1. Right: Butterfly diagram for
the solution R,, = 200 with the azimuthal magnetic field evaluated at the interface between the tachocline and convection zone. The contour levels for B, in

the butterfly diagram are from —6.5 to0 6.5.

(3) the generated magnetic field mainly concentrates in
the vicinity of the interface between the tachocline and
the convection zone; and (4) the strength of the toroidal
magnetic field is dramatically amplified by the effect of
the tachocline, reaching the maximum strength
|By| .= 6, about a factor of 10 larger than that of the
corresponding noninterface dynamo. Such strong toroidal
magnetic fields in the tachocline are susceptible to mag-
netic buoyancy instabilities leading to a quick eruption of
the field onto the surface of the Sun in the form of
sunspots.

It is not surprising that the action of the shear flow in
the tachocline gives rise to a time-dependent dynamo.
Parker (1970) argued that unsteady solutions of the a-w
dynamo should be the norm. The argument was clearly
illustrated by free modes of the a-w dynamo (Moffatt
1978). However, it is somewhat surprising that we cannot
find any solutions of the time-dependent dynamo that
propagate azimuthally in the three-dimensional simula-
tions. Mathematically speaking, there exist two different
types of time-dependent dynamos when both the « and
shear flow are axisymmetric: one propagates equatorward
or poleward and the other propagates eastward or west-
ward. The latter is usually preferred in three-dimensional
kinematic dynamos (e.g., Gubbins et al. 2000) or in con-
vection-driven dynamic dynamos (e.g., Zhang & Busse
1989). The results of our three-dimensional simulations
suggest that the axisymmetric assumption of a spherical
interface dynamo with an axisymmetric tachocline is
robust.

4.3. Interface Dynamos with Three-dimensional o

The preference for nonaxisymmetric dynamo modes is
found in some conventional dynamo models where
differential rotation is weak (e.g., Roberts & Stix 1972;
Moss, Tuominen, & Brandenburg 1991). All our fully three-
dimensional simulations using an axisymmetric « distribu-
tion have so far produced an axisymmetric magnetic field.
Nonaxisymmetric mean magnetic fields can be produced by

a nonaxisymmetric « distribution as studied in the conven-
tional mean field dynamo framework (Riidiger 1980; Moss
& Brandenburg 1995). Following this idea, we consider a
nonaxisymmetric interface dynamo with a nonaxisymmetric
a distribution in the form

a(r,0,¢) = sin® §cos (1 + € sin ma)
xsin[ﬂ (rr,)] 1 N

(ro = 11) (1 +[Bo]")
r<r<r,, (48)

where € = 0 recovers the axisymmetric case, 7 is an azimu-
thal wavenumber, and u is the same as in equation (47).

Figure 6 shows the results of two dynamo solutions
using the « distribution of equation (48) with m = 1 and
e=0.5 and 0.75. The butterfly diagram in Figure 6 is
shown only for ¢ = 0 since the butterfly diagrams plotted
at different ¢ are quite similar. This is because the gener-
ation mechanism is still predominantly the shear flow in
the axisymmetric tachocline. The nonaxisymmetric non-
linear interface dynamo is periodic and still propagates
toward the equator with an approximate period of about
27,,. This appears to be a general feature of all our
dynamo simulations, most of which are not shown here.
In Figure 7 we show the contours of the radial magnetic
field on the spherical surface r =r, viewed from the
South Pole and the corresponding toroidal field in a
meridional plane at different times. A nonaxisymmetric
time-dependent dynamo wave does not have to propagate
equatorward or polarward. In fact, nonaxisymmetric
dynamo waves usually propagate in the azimuthal direc-
tion without the effect of a tachocline (Zhang & Busse
1989). However, the nonlinear interface dynamo wave
shown in Figure 7 always propagates equatorward. In
addition, there is no azimuthal propagation in this case.
These characteristics reveal the essential importance of
the tachocline in the magnetic field generation process for
a spherical interface dynamo.
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F1G. 5.—Contours of the azimuthal field B, in a meridional plane plotted at six different instants, t = 16.0, 16.2, 16.4, 16.6, 16.8, 17.0 (from top left to right
and then from bottom left to right) for R,, = 200, R, = 30 with 5, = 3; = 0.1. The contour levels for B, are from —12 to 12.

4.4. Interface Dynamos with Three-dimensional Tachocline

Global instabilities in rotating spherical systems with a
toroidal magnetic field or a differential rotation have been
extensively studied. It was shown by Gilman & Fox (1997)
that even very simple differential rotation can become
unstable to azimuthal wavenumber m = 1 disturbances in
the presence of a moderate magnetic field (see also Cally
2001). Using a shallow-water model, Gilman & Dikpati
(2002; see also Dikpati & Gilman 2001a, 2001b) studied
instabilities of the solar tachocline differential rotation,
showing that the azimuthal wavenumber m = 1 again repre-

sents the most unstable mode. In a fully three-dimensional
stability analysis for a toroidal magnetic field in rotating
spherical systems, Zhang, Liao, & Schubert (2003) demon-
strate analytically that the magnetohydrodynamic system is
unstable to the m = 1 perturbation. It is therefore likely that
the shear flow in the tachocline, as a result of hydrodynamic
or magnetic instabilities, is not purely axisymmetric but is
weakly nonaxisymmetric and characterized by the azimu-
thal wavenumber m = 1. The m = 1 instability would lead
to nonaxisymmetric poloidal flows in the tachocline.

To examine the effect of a nonaxisymmetric flow
in the tachocline, we assume a kinematically possible



672 ZHANG ET AL.

34

e et

22 I I I I

1.5

(/2 — 0)

—0.5

FiG. 6.—Nonaxisymmetric interface dynamos with R,, = 200, R, = 30. Left: Magnetic energies E,, as a function of time for e = 0.5 (solid line) and 0.75
(dashed line). Right: Butterfly diagram for the dynamo solution at ¢ = 0 with B, evaluated at the interface between the tachocline and convection zone for

€ = 0.75. The contour levels for B in the butterfly diagram are from —6.5 to 6.5.

three-dimensional flow satisfying the conservation of mass
Veu=0,

uy = Q,(0)rsin 9{ sin {WM]

(re—ri)
6¢7T

+ 30— 1) sin [277 ((:[__rrll))} sin(ma) } )

ri<r<r,
o SO cosme) T )]
212 re— 1)
— 1
a:sinzecosﬁsin[w r rt)} 5= e <r<r,,
(ro =r0)] (1+|B,[)
(49)

where the parameter €, provides a measure of the tacho-
cline’s departure from the axisymmetric state and Q,(0) is
still given by the three-term expression below equation (47).

We have performed a number of simulations using vari-
ous parameters of the model, in particular, with different
values of 3;and 3,. The magnetic energy versus time for typ-
ical dynamo solutions is shown in Figure 8 for ¢, = 0.25
and 0.5 for 8; = 5, = 0.1 with m = 1. The fundamental
properties of the axisymmetric interface dynamo, such as
the equatorward-propagating dynamo wave with a period
of about 27,,, are not altered. The time-dependent structure
of the nonaxisymmetric, equatorward-propagating dynamo
wave is shown by the contours of B, at the spherical inter-
face between the convection zone and the tachocline and the
corresponding radial field in a meridional plane in Figure 9.
The strength of the toroidal magnetic field reaches the maxi-
mum strength ‘Bgﬁ‘maxz 10, i.e., about 10° G if we take
B.q = 10* G. There exists a particular longitudinal region in
which the toroidal magnetic field is much stronger than in
other longitudinal regions. A strong toroidal magnetic field
in that particular longitudinal region would be more suscep-
tible to magnetic buoyancy instability, leading to stronger
eruption or more magnetic activity in the region. Although
a nonaxisymmetric dynamo wave is allowed to propagate
azimuthally in fully three-dimensional simulations, the

three-dimensional dynamo wave shown in Figure 9 always
propagates equatorward with « given by equation (46) and
Q, given by equation (47).

5. SUMMARY AND REMARKS

We have investigated a fully three-dimensional, nonlin-
ear, time-dependent, spherical interface dynamo using a
finite-element method based on the three-dimensional tetra-
hedralization of the spherical system. The dynamo model
consists of four regions, an electrically conducting uni-
formly rotating core, a thin differentially rotating tacho-
cline, a uniformly rotating and electrically conducting
convection envelope, and a uniformly rotating and nearly
insulating exterior. The four regions are coupled
magnetically through the matching conditions at the
interfaces.

We have presented a small number of many dynamo sim-
ulations carried out for a broad range of parameter values.
This is because the results of the nonlinear dynamo simula-
tions presented are very robust. Nearly all our calculations
using various values of R,,, R,, (3;, and [, (where [3; and
(3; are moderately small) produce qualitatively similar
dynamos having a predominantly toroidal magnetic field in
the vicinity of the tachocline, an equatorward-propagating
dynamo wave with a period of about 2 diffusion time units,
and dipolar symmetries despite fully three-dimensional
simulations.

This robustness is perhaps attributable to the global
magnetic field boundary condition used at the inner core-
tachocline interface. In contrast to the velocity boundary
condition (which is local), the magnetic field boundary con-
dition at the interface is global and plays a major role in con-
trolling how the magnetic field is generated (Hollerbach &
Jones 1993; Markiel & Thomas 1999; Schubert & Zhang
2000). The magnetic field B for an axisymmetric interface
dynamo is usually expressed as

B=B,p+V X (4), (50)

where g;ﬁ is a unit vector in the azimuthal direction. To obtain
the mathematically convenient local boundary condition
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FiG. 7.—Contours of B, at the spherical surface r = ro viewed from the South Pole (from top left to right) and contours of B, in a meridional plane ¢ = 7
(from bottom left to right) plotted at three different instants for ¢ = 3.6, 3.8, 4.0. The parameters are R,, = 200 and 3, = 3; = 0.1. Dashed contours indicate
fields with B, < 0 (B, < 0) and solid contours correspond to B, > 0 (B4 > 0). The contour levels for B, (B,) are from —12to 12(—0.45 to 0.45).

that decouples the radiative core completely from the
dynamo operating system, some dynamo models assume
that the electromagnetic boundary condition at the interface
between the radiative core and tachocline is simply given by

B¢:A:0 atr=r;, (51)

which is inappropriate. The solar dynamo is perhaps char-
acterized by ;< 1, 5, < 1 together with 3;/3, < 1. Our expe-
rience indicates that a direct numerical simulation for this
parameter regime is rather difficult and an analytical
approach is more inappropriate.

As the first step toward the construction of a realistic fully
three-dimensional finite-element solar dynamo model, we
have followed the idea of Parker’s interface dynamo (see also
Charbonneau & MacGregor 1997; Tobias 1997) by separat-
ing the a- and w-processes spatially. There are several impor-
tant ingredients in the real solar dynamo that are not present
in our model. One of them is the differential rotation and
meridional circulation in the convection zone. A large-scale

45

g = 0.25

20 . . . .
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t

Fi6. 8.—Two interface dynamo solutions obtained with the nonaxisym-
metric tachocline with m = 1 for R,, = 200, R, = 30, showing the magnetic
energy £, as a function of time for e = 0.25and 0.5 with 3, = 3; = 0.1.
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FiG. 9.—Contours of B, at the interface between the tachocline and convection zone, viewed from the South Pole (from top left to right), and contours of B,
in a meridional plane ¢ = 7/2 (from bottom left to right) for ¢, = 0.25, m = 1, and R,, = 200 plotted at three different instants, = 4.2, 4.4, 4.6. The contour

levels for B, (B,) are from —12 to 12 (—0.4 to 0.4).

meridional circulation may be critically important in the
interface dynamo process since the site where the poloidal
fields are produced remains a debated question. Our model
follows the classical picture of Parker (1955) in that the a-
effect is assumed to operate throughout the convection zone.
Alternatively, an interface spherical dynamo may restrict the
a-effect near the surface of the Sun (Babcock 1961), while the
w-effects still take place mainly in the tachocline. In this case,
the two spatially separated magnetic field generation regions
can be coupled by a single-cell meridional circulation having
a poleward surface flow (Choudhuri et al. 1995; Dikpati &
Charbonneau 1999; Kiiker et al. 2001). A large-scale circula-
tion acts like a conveyer belt transporting magnetic fields
between the tachocline and the solar surface. Dikpati &
Gilman (2001b) also explored a different meridional flux
transport dynamo in which the a-effects come from the
global hydromagnetic or hydrodynamic instabilities taking
place in the tachocline (Miesch 2001). It follows that the
a-effects are independent of the flow turbulence in the con-

vection zone but rely directly on instabilities, whether hydro-
dynamic or hydromagnetic or both, in the tachocline or on
the decay of the active regions in the solar surface. To include
those important effects in our fully three-dimensional model,
extra terms are needed in equation (26) and several surface
integrals are required in equation (36). The construction of a
fully three-dimensional interface dynamo model that
attempts to simulate the Sun and that includes the effects of
the meridional circulation and the differential rotation, as
well as the dynamical feedback of the Lorentz force, is
currently underway.
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APPENDIX A
THE TOROIDAL FLOW THEOREM IN MULTISPHERICAL LAYERS

It was recognized by Bullard & Gellman (1954) that magnetic fields cannot be maintained by a purely differential rotation in
a sphere. A comprehensive summary of the antidynamo theorems was given by Moffatt (1978). Here we extend the previous
proof for a sphere to the spherical system of multiple layers with discontinuous magnetic diffusivities for the solar application.

Denote the magnetic field in the radiative core, the tachocline, the convection zone, and the exterior as B;, B, B,, and B,,
respectively. The simplest solar dynamo problem neglects both the meridional circulation Up and turbulent convection (the
a-effect) in the convection zone. The dynamo equation in each region within the Sun is then

%Bi(r,9,¢,l‘):VX(QL.Xl’)XB,'+)\,'VZBI', il’lVi20<}’<}’,j, (Al)
0 .
T B/(r,0,0,) =V X {[f(r)Q7] X r} X B, + \V*B, , inV,:ri<r<r,, (A2)
0 2 .
EBo(r,H,qb,t):VX(QSXr)XBo—i—/\oVBo, nV,:r,<r<r,, (A3)

0=V’B,, inV,:r,<r<oo, (A4)

where Q. is the angular velocity of the whole radiative zone, Qg(6) and Q7 (0) represent the differential rotation in the
convection zone and the tachocline, respectively, and f(r) is a function of the radius. We assume that Q¢, Q7, and Qg are
continuous at the interfaces r; and r,. Different regimes are coupled by the magnetic matching conditions.

It is mathematically convenient to expand a general three-dimensional magnetic field, for example, B; in the tachocline, in
terms of the vector potentials g, and 4,

B, =V X [rg,(r,0,6,1)] + VXV X [rh(r,0,,1)] , (A5)
where
1 0 . 0 1 0
r'B’_gh’__(M%SIHH%+MW)ht' (A6)

The addition of any function Y(r) to the scalar functions g, and &, has no effect on B,. Consequently, we can assume that g, and

h, satisfy
27 T 27 T
/ (/ g,sin@d@)dgbzo, / (/ h,sin@d@)dgbzo. (A7)
0 0 0 0

The magnetic fields in other regions of the Sun can also be expanded in a similar way,
B, =V X (rg;)+VXVX(rh),
B. =V X (rg,) +VXVX(rh,),
B, =V XV X(rh,) .

Here we have assumed that the exterior is vacuum and that g, = 0in V.
The equations for the poloidal field component can be obtained by forming the scalar product of the dynamo equation in
each zone,

0

oy L+ (Qe X ¥) VLhi = (B;+V)[r+(Qc X r)] + \V>Lh; , (A8)
giﬂz, H{[/(NQr] X1} VLR = (B V) (r+ {[f (1) Qr] X r}) + N V> Lh, (A9)
%yho 4+ (Qs X ¥)+ VLhy = (By - V)[r+ (Qs X 1) + A\, V> ZLh, , (A10)

0=V>ZLh, . (A11)
The first term on the right-hand side of equations (A8)—(A10) vanishes. Multiplying, for example, the /; equation by #h; gives

0 1 1
T3 (ffhi)z+2—)\iV (L0} Qe X 1)] = V- [(Lh)V(Lh)] = VLDl (A12)
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Integration of equation (A12) over the radiative core V; gives

%/V 2;(%1-)2: —/V\Vzh,-EdVJr/aV [(,%h,-) f;f’} ds, (A13)

i

where 0V; denotes the interface between the core and the tachocline. By the same procedure, we can derive similar equations
for other zones. The summation of all the equations obtained from different zones gives

) (Lh)? (Lh,)* (ZLh,)*
[ /V dv + /V | dv + /V | dv

ot 2\ 2\, 2,

= </ |V$h,~|2dV+/ |V$h,|2dV+/ \V$h0|2dV+/ |Vyhe2dr/> . (Al4)
Vi Vi Ve Ve

All the boundary integrals are cancelled out by using the following boundary or matching conditions:

0ZLh; 0L, B
ghi—ght, 7— or s atr—r,,
oLh, 0%Lh,
@ — ¢ — —
Lh, = <Lh, , o atr=r;,
@ @
Lh, = %Lh, 0L, = 0L , atr=r,,
or or
Lhe =0(r?) =0, as r — oo . (A15)

It follows that the poloidal fields in all the zones starting with any initial condition must decay ultimately to zero with time.
Consider now the toroidal component of the magnetic field. In the radiative core, we have

%V X (rgi)) =V X [(Qc X r) X (VX rg))] + AV3[V X (rg;)] (A16)
which can be written as
rXV[%+(QCXr)ngi—)\Vzgi—&—F(r)] =0, (A17)

where F(r) is an arbitrary function of r. In the following derivation, we use the identity

Qv2Q=V-[%

1 2

V(VQ)] - {;r-V(rQﬂ Vi,
where Vy is the gradient on a unit spherical surface

_bo, ¢4 0

r 00 rsinf ¢’

Vi

where #, 0, ¢ are the unit vectors. We first uncurl equation (A17) and then multiply the resulting equation with g;,

2 A 2
343V @) - Af{v' [%’WW] - B?-V(rm)] —|VHg,-|2+gl-F<r>} | (A18)

Integration of equation (A 18) over the radiative core in V; gives

2
l9/ g%dvz/ Ml L V(rgy dS—)\i/ L Vg | +1Vuail bav (A19)
28t 174 V; r Vi r

Summing all the similar equations obtained from different zones gives

2 2
10 / G dv + / qdv+ / Gdv) = [ 412V | 1Vaa Lav A, / L N Gg) |+l $av
20t Vi , V, Vi r Vi r
1 2
- [ {Lf-wgo)} +ng0|2}dV. (A20)
Ve

Here we have made use of the matching or boundary conditions that the magnetic field and tangential electric field must be
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continuous:
gi=9gr,  Ai=V(rgi)) = M- V(rg,) atr=r;,
gi = Go » Mo V(rg,) = Noit+ V(rg,) atr=r,,
go =0, atr=r, . (A21)

The last condition is related to the vacuum boundary condition. As a result, the integrals of ¢?, g7, and g2 vanish as  — oo, so
that

gi=¢:=6go=0.

The conclusion is that any profile of purely differential rotation in the Sun with a radially discontinuous profile of the magnetic
diffusivities cannot sustain the solar magnetic field.

APPENDIX B
COWLING’S THEOREM IN MULTISPHERICAL LAYERS

After the solar dynamo proposal first put forward by Larmor (1919), it was Cowling (1934) who proved that a steady
axisymmetric poloidal field cannot be maintained by dynamo processes. Cowling’s theorem was later extended to the more
general case that any axisymmetric magnetic field in a sphere cannot be self-sustained (Braginsky 1964; see also Moffatt 1978).
In this appendix we prove that the combination of differential rotation Q(r,#) and meridional circulation U,(r,6) with a
radially discontinuous profile of the magnetic diffusivity cannot produce a self-exciting axisymmetric dynamo in the Sun.

An axisymmetric magnetic field in the different zones is governed by

%Bi(r,ﬁ,t):VX[(QCXV)XB,-]+/\iV2B,~, nV,:0<r<r, (B1)

% B,(r,0,1) =V X {[f(r)Qr X ¥] X B;} + \,V*B, , inV,:r<r<r, (B2)
gBo(r,é),t):VX {l(Qs Xr)+ U, X B,} + \,V°B, , mV,:rn<r<r,, (B3)
0= V’B,, mbV,:r,<r<oo. (B4)

For the purpose of mathematical proof, we can express the axisymmetric field using the poloidal and toroidal flux functions
O(r,6,t) and U(r, 0, 1), respectively, for example,

B,=V X [( il >¢] + (rsin0W,)¢

rsin @

which satisfies the solenoidal condition automatically.
First, we look at the poloidal component of the dynamo equation, for example, in the convection zone,

0 (I)o ~ 1 g 2 q)o
VX {E Krsin9>¢] N (rsin&UP.V(I)(')(ﬁ_ Ao (rsin@

g2 (&) _ | [qu)o —,LV(rsinﬁ) -V@o] .
rsin 6

rsinf/  rsiné

)t}H—VF(r, 9)} =0, (B5)

where

We first uncurl equation (B5) and form the scalar product of the ¢-component of the equation with qAS We then multiply the
resulting equation by ®,,,

1
2,

d
&q>5+v- (P2U»p)

B (sin §)# + (cos 6)0
= V. (®,VD,) — |VD,[*—V - { [ e ]é%} : (B6)

Integration of equation (B6) over the convection zone ¥V, and use of the velocity boundary condition #+ Up = 0 give

) 1, ) / / ob, @2
_ = — V 0 — 0 - 9
o (/Vnz)\oq)odV) /V D, dV+< " o o P ds (B7)

where 0V, and 0V, denote spherical surfaces at r = r, and r = r,. By the same procedure we can derive similar equations for
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other zones in the Sun. The summation of these equations gives

B P2 P2 P2
= —Lqv —Laqv Cqv ) = — Vo, > dV /V<I> 2qv /V@ode /Vq)ede . BS
s+ f[onar s [ avar) == ([ worars [voravs [ vears [ wesar). m

All the boundary integrals at the various interfaces either are cancelled out or vanish by using the matching or boundary
conditions,

B 0d; 09, B
P, =9, o o atr=r;,
o o
(b[:q)o, a—rl: aro’ at}’:r[,
oo, 09, B
(b[)7¢€7 ariar ) atr*r())
o, =0(r")—0, as r — oo . (B9)

Equation (BS8) implies that the poloidal fields in all the zones starting with any initial condition must decay ultimately to zero
with time.

The equation for the toroidal component of magnetic field can be obtained by the ¢-component of the dynamo equation,
for example, in the convection zone,

3\110 - @() ~ >\U “ 2 . %
o T Up-V¥, = {V X Krsin@)gﬁ} } - V|Qg| +m¢-v (rsin6V,¢) . (B10)

It is crucial that the poloidal magnetic field ®, — 0, as suggested by equation (B8). In consequence, there is no source term for
the toroidal flux W,. Multiplication of equation (B10) with ¥, and use of the identity

Q .V (rsin00p) = V- [%V(”Q)] VoRiv. KQz jot 9> 9}

rsin @
give
1092 1 ) \g > UZcoth .
L L ) <o [T - ey (B0 ) -
Integration of the equation over the convection zone in V,, gives
10 1
= —/ V2dV = -\, |V\Il(,|2dV+ (/ —/ ) =[N Wb+ V(r¥,)]dS . (B12)
20t )y, v, ov, Jov,) T

The summation of the integral equations obtained from different zones cancels out all the surface integrals, giving rise to

18(/ \p%dv+/ \p%dV+/ \I/ﬁdV) :—[/\i/ \V\I/,»|2dV+/\,/ \V\IJ,|2dV+>\(,/ |vqfo|2dv] . (BI13)
2 Ot Vi g v, Vi Vi Vo

In the derivation, we have used the following matching or boundary conditions:

\I/l':\:[f,, )\ii"V(V\I/j):)\[i”V(V\I/t), atr:r,-,
\Ij[ - \Ijo 5 )\Ii"V(V\I’[) - AO?‘V(V\IJO) 5 at r = rl 5
v, =0, atr=r,. (B14)

It follows that the integrals of U2, U2, and W3 vanish as 7 — oo, so that
U, =V, =v,=0.

In the Sun’s interior characterized by a radially discontinuous variation of the magnetic diffusivity, any combination of
differential rotation Q(r, §) and meridional circulation Up cannot sustain an axisymmetric solar magnetic field. These anti-
dynamo theories make the a-effect in equation (15) a critically important ingredient in an interface dynamo, although the
nature of the dynamo is largely determined by the strong shear flow in the tachocline.
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