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Abstract

An energy-preserving explicit extension operator is proposed to extend finite element functions defined on the
boundary of a star-shaped polygonal domain into its interior. The pre-assigned finite element triangulation in the
interior of the domain needs not be multilevel-structured. The extension operator has wide applications in the
construction of non-overlapping domain decomposition methods and fictitious domain methods.
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1. Introduction

In the study of non-overlapping domain decomposition methods (DDMs), the so-called energy-
preserving extension operators play important roles. Borrowing such operators, inexact subdomain
solvers can be used to replace exact subdomain solvers in non-overlapping domain decomposition
methods while keeping the same convergence rate achieved with exact solvers (cf. [13,22]). These
extension operators are also essential in the construction of fictitious domain methods (cf. [16—20]). Since
such extension operators are directly involved in the implementation of the domain decomposition and
fictitious domain algorithms, an explicit and easy-to-implement extension operator will be significant in
the reduction of the total computational complexities of the algorithms. The most natural way to construct
such extension operators is to extend finite element functions on the boundary of a domain into the
interior of the domain by the discrete harmonic extension. But this extension requires the exact solver on
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the solution domain and is very expensive in general. The other trivial one is the extension by some given
constant (zero or average of the nodal values on the boundary) at interior nodes of the meshes. Thougt
this construction is very simple, the energy norm of this operator is bounded with a constant heavily
dependent on the mesh size, we refer to [3] and Section 8 of [22] for the details. The early attempt for an
explicit construction of the energy-preserving extension operators on general grids can be found in [18],
see also [19,20,17] for the constructions and applications in fictitious domain methods. For a disk domain,
the construction of an explicit extension operator is simple and can be done in a computational cost of
order QA ~?), i.e., proportional to the number of the nodal points in the domain. Herethe mesh

size of the finite element grid. But, for a general domain with piecewise smooth boundary, the existing
constructions are very technical, e.g., a coordinate system based on normals (or pseudo-normals) wa:
used to deal with the non-smoothness of the boundary, and thus the actual implementations are muct
more complicated than that for the disk domain. For the meshes with hierarchical structures, we refer to
[13,14] and the references therein for the construction of explicit extension operators.

In this paper, we present a new approach for constructing the energy-preserving explicit operators on
quasi-uniform finite element grids (not multilevel-structured) defined in a general polygonal domain. The
main idea of our construction is to make some special radial transformation to convert the study here to
the case related to the disk domain, and then the explicit construction for a disk domain in [18] can be
borrowed. This new explicit construction is nearly as simple as that for the disk domain, still preserving
the optimal computational complexity of orde/?).

The rest of this paper is organized as follows. In Section 2, we will present the explicit construction of
a new energy-preserving extension operator. The rigorous theoretical analysis on the energy-preserving
property of this operator will be carried out in Section 3. In Section 4, we will describe one application
of our explicit extension operator in the construction of non-overlapping DDMs with inexact subdomain
solvers.

2. Construction of the extension oper ator

Let £2 be a polygonal domain with boundafy= 952, which plays the role of a generslibdomairin
the applications for non-overlapping DDMs. The verticesoére numbered in order &%, P, ..., P,
respectively. Assume that there exists an interior pdinsuch thats2 can be partitioned inte: non-
overlapping triangle$A O P, P4} ,, whereP,, 11 = P;.

As we shall see, the generic constants which appear in many subsequent estimates on different norm:
of the discrete extension operator may depend on the above partitnnb {AO P; P;1}" ;, and thus
may depend on the location of the cent@rand the angles/sizes of the trianglaé® P; P;, ;. Because
of this, it would be more desirable if the subdomains in the domain decomposition are generated in a
manner that they do not have large aspect ratios. In most applications for DDMs, we can 6hasse
the barycenter of each subdomain, for example. Clearly, the typical subregions such as triangles and
guadrilaterals, which are frequently used in non-overlapping DDMs, satisfy this condition.

Let2 = UKeTh K be a quasi-uniform triangulation &%, with each elemenk being an open triangle
of size h. By quasi-uniformity we mean that there exist two positive const@gtand C; independent
of h such that each triangl& € T, contains (respectively is contained in) a disk of radCig:
(respectivelyC1h). Here and in what followsC (or ¢) (with or without subscript) always denotes a
generic constant independent of the related parameters, e.g., the meshlsgeould be emphasized
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that the finite element triangulation needs not be multilevel-structured. Based on this triangulation, we
define the following finite element space:

§"(2) = {v e C%2); vlk € Pi(K), VK € T}, (2.1)

whereP1(K) denotes the space of linear polynomialskonMoreover, when restricting the triangulation
T, onto the boundary”, we then obtain an induced subdivision6f which we denote by,. It is easy

to show that7;”" is also quasi-uniform with mesh size For the need of further analysis, the nodes of
T[ on the line segment?;, P;,1] are numbered inorder @ 1= P;, P, 2, ..., Pi,, = Pi+1, respectively,
i=1,2 ...,m.0nthe boundary”, we define the following finite element space:

S" Iy ={ve C%r); vl € Pi(e), YeeT)"}, (2.2)

which is the restriction of the finite element spa&“&s2) on I'.

As usual, letH(£2) be the standard Sobolev space consisting of square integrable functions with
square integrable first order weak derivatives, equipped with the standard semji-negrand the full
norm|| - [1.o:

2 _ 2 2 _ o2 2
|M|1,Q=/|Vu| dx, lullf,o = llullg o + lulf .
2

where [[ullo,e = ([, u?dx)*?, Vu = (d1u, d,u) and |Vu| is the Euclidean norm irR2. In addition,
Wwi>(£2) denotes the Sobolev space consisting of essentially bounded functions with essentially
bounded first order weak derivatives, equipped with the norm

’

llll1.00.2 = Max([[ull0,00.2 11¢1,00,2) ll]l0,00,2 = €SS SUfu (x)
xXeR

[t|1,00,2 = VU000,

Whens is a non-negative real numbd¥,’(£2) and|| - ||;.; are defined by interpolation theory (cf. [2,
15]). Note that the Sobolev spaces and their norms and semi-norms associated with functions on the
boundaryl” can be defined in the same manner.

In this paper, we seek to construct an explicit extension opem&tos”(I") — S"(£2) such that
(Epv)|r =vand

IEwvlLe S vllyar, YveS'(I). (2.3)

Such an operator is called an energy-preserving extension operator. In what follows, following [22], for
any two non-negative numbexsandy, x < y means thakt < Cy for some constanf independent of
the mesh sizé, andx = y meanst < y andy < x.

To make our description clearer, we divide our construction of the extension opé&yatoto three
steps.

Stepl. Construct a transfer operatéy j, SNy — S"OD).

We first draw a diskD with point O as its center and some positive numReas its radius respectively,
such that the domai® is contained inD. Typically we choosek = 2max ;<. | O P;|. We then draw a
line from O to P; ; and denote the intersection of the line with the boundabyas Q; ;, see Fig. 1: Left.
Let Q; = Q;_1,,_, = Qi1. Thus, an induced subdivision of the cirél® is obtained, which we denote
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Fig. 1. Left: the auxiliary circle with the nodes induced from the nodeg oRight: auxiliary meshes on the circle.

by T,fD, with the nodes{Q; ;}i<i<m, 1<j<n—1- Based on this subdivision, we define a finite element
space on the circular boundaip:

h _ 0 . .0
§"(@D)={v e C°0D); V1575, . € Pi(Qi;0; ;1)) (2.4)
where 1<i<m, 1<j<n;—1, and Q/i’j\Qi,Hl denotes the arc on the circkeD with endpoints

—

Q;; and Q; 1, P1(Qi;0; ;41 denotes the space of linear polynomials (according to the arc length

parameter) on the ar@; ; 0
by

.;+1- Then the transfer operatdf, j : Sy — S"(9D) is simply defined

(ELpv)(Qi ) =v(P), 1<i<m, 1<j<n;, YveSH(I). (2.5)

Step2. Construct an extension operaibs ;, : S"(dD) — COD).

For ease of exposition, we re-label the node® dnsuch thatQ; ; is with index 1 Q;  is with index
2,..., Q1,, iswithindexni, Q27 is with indexni + 1, .... Thus, each functiom € S"(d D) is uniquely
determined by its nodal valuagl), ..., v(T), wherev(k) = v(Q; ;) with k = Y\in, +i — 1+ j
and7 =), n, — m. For convenience we will extend(k) periodically for all integers, i.ey(k) =
vk+T), k=0,+£1,+2,....

Asin[17,18], we then construct an auxiliary radial-annular m@sh in a ring with the outer and inner
radii beingR and®, respectively. This is done by drawing the radius from each nodeoand selecting
N +1=0(h"1) points on it, with step sizé; = %, taking them to be ordered sequentially along the
radius starting from the interior boundary (see Fig. 1: Right). Thus, each nddg,ak characterized by
the index pairk, [), wherek is the number of the boundary node (radius), attte number of the point
on the radius (the ring). I, , we define a discrete functiarn(k, /) by

20hy N—I
k,l)= k+1t), k=1,...,T,1=0,1,...,N. 2.6
v(k, D) R(Z(N_Z)H)t:%j[)v(ﬂ (2.6)

Next divide D, into small quadrilateral cells by connecting the corresponding nodes on each two
neighboring radii, and denote & , the cell with four nodesk, /), (k,1+1), (k+1,1), (k+1,/+1). We
further partition each cell ab, j into two triangles by connecting the left bottom and right upper corners,
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the induced triangulation still denoted 18 ,. Obviously, the triangulatiorD; ;, is quasi-uniform with
mesh sizé:. We then obtain a functiod which is linear on each triangle P, ;, with its nodal values
given by the corresponding valueé, /). Note thatv takes zero values on the interior boundary’af;,
thus it can be viewed as the functiond@?(D) by zero extension. Then the extension operdgy; is
defined byv = E> jv.

Step3. Construct a pull-back operatdis , : C°(D) — S"(£2).

We first make a polar coordinate system withas the center. For any poift(r, #) in D, draw a line
from O to P and denote by’ its intersection with the boundary (possibly after extending the line
O P). We then defing (8) = |0 P’|, and introduce an one-to-one map2 — D by

Rr
Z(r,0)=|——,0), 2.7
0 (p(e> ) @7)

which has the important property that it mapsontod D. Based on this mapping, we define a pull-back
operator® : C°(D) — C°(2) by

(@V)(r,0) =v(Z(r,0)) = v(%, 9), Vv e C°(D) and(r,0) € 2. (2.8)

With this, the required pull-back operatfg , : CO(D) — S"(£2) is defined by
Ezpv=1,(®v), YveC’(D), (2.9)

wherel), is the standard piecewise linear finite element interpolation ##82) onto $”(£2) [9].
Now, the explicit extension operatds, : S (I') — S"(£2) is obtained simply by composing three
operators given above:

Eyw=Es,o0Ey,0E v, YveSHI). (2.10)

From the above construction process, it is easy to see that the extension ofgristavrell-defined.
For the sake of our later analysis, its construction was presented above in a relatively comprehensive
but hopefully better understandable manner. In fact, the implementation of the construction can be done
easily and it is no need to really construct the radial-annual nigshand the auxiliary triangulation
on D, as described in step 2, they are introduced just for the convenience of exposition and the later
analysis of the algorithm. Let us see how this can be done. Fop an§”(I"), we can first obtain the
nodal values of the grid functiof ,v on d D directly, then compute the discrete functiotk, /) using
the formula (2.6). Now it suffices to evaluate the nodal valuegaf on §2 in order to determine the
extension functiorE, v. To do this, for any nodal poin® (r, 6) in §2, by (2.8) and (2.9), we need only to

determine which triangle @b, , the point( p’fg) , 0) belongs to. For this, we first locate a quadrilatepal

with %, 0) € D;x. k can be easily determined usifig To determind, let m; be the largest of those
integers which are less than or equa T Thenmqh, — § = (mq1— N)hy, sowe knowl =mq1 — N.
implemented as follows:

In summary, the construction can Be

Algorithm 1 (Construction algorithm forZ,). Given anyv € §"(I").

StepA. Compute the nodal values on the cirde: for 1 <i <m, 1< j<n; —1, set k:=
Sin+ G — 1) + j, computevy (k) := v(P, ).
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StepB. Fork=1,2,...,T7,1=0,1,..., N, compute

N-I

_ 20hy
vk, 1) = RGN —DTD t:_%:_l) vi(k +1).

StepC. For any noder, 0) € T, setE,v(r,0) =0 if r < 22 If r > 282, compute the index!, k) with

2 !
Rr
2@ 9) € Di i, then compute

1 1
Ep(r,0):=Y Y vlk+i.l+ jayk.D). (2.11)

i=0 j=0

Remark 1. At least one of the four coefficients; (k, /) in (2.11) vanishes, the other three are the
barycentric coordinates of the poihé’%, 0), which belongs to one of two triangles froby ;.

Remark 2. The above construction of the extension operdpican be easily generalized to the three-
dimensional domais2. And the subsequent results are still true with some technical modifications of the
proofs in this paper.

Next we give the construction of the transpose of the extension opeEatosince it is needed
when applied to non-overlapping DDMs and fictitious domain methods (cf. [13,17,22]):,Lgt, and
(, -Yo.» be the standard discrefe?-inner products irs" ($2) andS” (I"), respectively (cf. [22]). Then the
transposer! : S"(£2) — S"(I") of E;, is defined as follows:

(v, Ejw)y ), = (Eqv, w)on, YveS"(I), weS"(£). (2.12)

Forv e §"(£2) (respectivelyS"(I")), we denote by the column vector with the components being
the nodal values af. Then the formula (2.12) can be written as

W2(Epv)'ib = hi' (Efw). (2.13)
Moreover, let

Ez,h X {Ul(k)}lgkgT — {U(k, l)}%)gg]é]Tv

and

Esp:{vk,1 Epu(r,0
an: ol Dscesr, = (B0, 0} ey,

be the matrix (tensor) representations of those linear operators realized by step B and step C of
Algorithm 1, respectively. Then we easily have

(m) = E3,E2 0,
which together with (2.13) yields
(éz\;‘)) = hgé,hgé,h’
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whereE} , and Ej , denote the conventional transposes of the tenBggsand Es ;,, respectively. By a
straightforward computation we then have the following construction algorithri;for

Algorithm 2 (Construction algorithm foiz} ). Givenw € S (£2).

StepA. Setwy(k,l) =0,k=1,...,T,1=0,1,...,N. For each nodal pointr,6) with r > 23,
compute the indexk, 1) with (%, 0) € Dy, and then compute
wolk +i, 1+ j):=wak +i,l+ j)+a;;k,Dw(r,0).
Setw;(k, 1) := ﬁwz(h D,k=1,...,T,1=0,1,...,N. Finally wy(k, {) is defined for
all integersk by periodic extensionwy(k, 1) = wa(k+ T,1), k=0,£1,£2,....
StepB. Computew,(k), k=1,2,..., T by

N—1N-I N
wi(k) ==Y Y {walk +1, j)+walk =1, )} + > walk, j).
=0 j=0 j=0

StepC. Compute the nodal values Bf w:for 1<i <m, 1< j<nm —1,setk=3""Tn,+ (i —1)+
and compute

(Ejw)(P, ;) = hwi(k).

Remark 3. The arithmetic operations of Algorithm 1 is proportional to the number of node, ire.,

O(1/ h?), or O(H?/h?) if the diameter ofs2 is of order QH). To see this, we need only to check the

cost of step B of the algorithm, the other two steps are just the realization of some one-to-one mappings
or the local average of nodal values, thus require at mo$t &%) arithmetic operations. It is presented

in [18,17] that, by writing (2.6) in recursive form, only(@/ #?) arithmetic operations are needed to
implement step B of Algorithm 1. Therefore, we need onl{L0:?) arithmetic operations to compute the
extensionE,v for anyv € §"(I"). Similarly, only O(1/ h?) arithmetic operations are needed to compute

E!v for v € $"(£2) by noting that only @1/ #2) arithmetic operations are needed to implement step B of
Algorithm 2 (cf. [17]). Thus, from the viewpoint of arithmetic operations, the explicit extension operator
E,, constructed here is “optimal” like that for the disk case given in [17,18,20].

3. Energy-preserving properties of the extension operator

In this section, we will show that the explicit extension operdigrconstructed in Section 2 satisfies
the estimate (2.3). Let us first give some useful lemmas.

Lemma 1. The induced subdivisiofi’” given in stepl of Section? is quasi-uniform with mesh size
that is,

— — AN D
|Qi,le~,j+1|Nh, forany arcQ; ;Q; ., € T,".
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— —

Proof_. Le_t |Qi,jQi1j+1| = R0, ;, i.e., the circ_ular ach,‘,J-_Qi,J.+1 is subtended by the central anglg .
Considering the triangl& O P; ; P; ;11 and using the cosine-theorem, we have

|PijPij1l?=10P ;> +|0P; 41> —2|OP; ;||OP; j 41| cOSb; ;,
or equivalently,

cost; :}< 0P |0P"*”l|> Py Pal?
" |OP; j1l  |OP] 210P,;||OP; 1|

5 (3.1)

It follows from the quasi-uniformity of the triangulatiofi” that there exist two positive constants
andC,, such that

c2h < |P;j P jy1] < Coh. (3.2)
It is also very clear that there exist two positive constanhtnd B independent ok such that
O<A§|0Pi,j|<B<+OO, i=1,...,m,j=1,...,ni. (33)
Therefore, by the Cauchy—Schwartz inequality, (3.2) and (3.3), we see
(C2h)?
COS@i,j >1- Y (34)

Furthermore, we know that cés; =1—2 Sirf 97’ <1- 2(%)2, which together with (3.4) immediately
gives

7TC2

0, < ﬂh' (3.5
On the other hand, from the sine-theorem, we have
sing; ; _sinAOPi,jP,»,Hl
|PijPijsal  |OPjyal

which, with (3.2) and (3.3), yields
SinZOP,‘,J'Pi,j_Q_l
|OP; i1l

. Czh .
sing; ; = |P; i Pyl = 7S|MOPL/'PL/+1

Cngh

B
where C3 = mini¢;<,, SINZO P; P11, Which is a constant independent bf The desired result then
follows directly from the fact sif; ; <6, ;, and (3.5), (3.6). O

> % min(sinZO P; P;y1,SINLO P; 1 P;) > (3.6)

Lemma 2. For the transfer operato; ;, defined in stefd of Sectior2, the following estimates hold for
anyv e S"(I):

lEvrvlloap = lvllo,r, lErnvlivep S vllar, lE1nvllyj2ep < lvlly2r- (3.7)

Proof. By Lemma 1, the induced subdivisidfi’? is quasi-uniform with mesh size. Then the first
two inequalities follow from the conventional scaling arguments (cf. [4,9,22]) and the definitibn,of



J. Huang, J. Zou / Applied Numerical Mathematics 43 (2002) 211-227 219
directly. We now verify the last inequality using the interpolation theory in discrete form (cf. [10]). To do
so, let us first construct A%-orthogonal projection operat@! from L2(I") onto S (I") as follows:

(OFv.w), = (. whor, YweS"(I'), ve L), (3.8)

where(-, -)o - means the conventional?(I")-inner product, i.e.{v, w)o r = fr vw ds. For this projec-
tion operator, the following estimates hold (cf. [21]):

|oivl, » < llvller, YveH'(I), s=0,1. (3.9)
On the other hand, by the interpolation theory of Sobolev spaces (cf. [2,15]),
+00
I3 = 0I5 - + / 12K (1, v)%dr, (3.10)
0
where
Kr@tvy= inf (vl + vl r) 7

with vg € L2(I'") andvy € HY(I"). It is well known (cf. [12,15]) that the definition (3.10) is equivalent to
the following intrinsic definition of| - |1/, r:

oIS r = IIUIIS’F+/‘/‘(I—S)2|v(t)—v(s)|2dtds. (3.11)
r r

The norm|| - |l12.9p and Ksp(z, v) are defined in the same manner. Given any S"(I"), let v =
vo + v1 be an arbitrary function decomposition such that L2(I") andv, € HY(I"). Hence,E1 v =
E1, 01 vo + E1;,Q; v1 which is just a function decomposition for defining the noltfiy ,vl1/2,5p-
Therefore, from the first two inequalities of (3.7) and (3.9) we have

Kap(t, E1pv) < (| Ena @5 vollg ,p + 12| Ea @b va])% )" < (Ilvoll3 r + rPllval2 )2,

which directly leads to
Kyp(t, E1pv) < Kr(t,v).

This inequality together with (3.10) proves the last inequality of (3.7).

For simplicity, we will denote byA; below the triangleAO P; P11 and byZi the circular sector
formed by two radiiO Q;, O Q;41 and the ara; O, ;.

Lemma 3. The one-to-one mag in (2.7)is a smooth diffeomorphism frorg; on to Zi. Moreover, for
anyv e WP (4A;), 0<t < 400,1< p < 400, the pull-back®v € W7 (4A;), and the following estimate
holds

1DVl pa; SVl pz. YoeWP(A,), i=1,....m, (3.12)

whereW+*?(A;) denotes the conventional Sobolev space Wit (A;) = H*(4;) (cf.[12,15)).
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Proof. Sincep(9) is a smooth function when restricted Eim and bounded positively away from below
by the constant = dist(O, I'), it is easy to derive the first conclusion. The estimate (3.12) follows from
the first conclusion directly (cf. [12]). O

Remark 4. It should be noted that the mappiagis not a globally smooth (even not) diffeomorphism
from £2 onto D, and thus more efforts have to be made in order to obtain the main result of this paper.

The next result can be found in [17,18]:

Lemma 4. For the extension operatak, , defined in stef of Sectior2, the following estimate holds
IE2vl1.0 < I0ll1200,  Yv € S"(@D).
After the above preparations, we are ready to present the main results of this paper. For clarity, we
divide our consideration into two cases. The first case assumes the finite element triangtilaton

aligned with the line segment8P;, i =1, ..., m, that is, each edge of a trianglé € T, either lies on
someO P; completely or has only one vertex @hP; or does not intersect ang P;.

Theorem 1. Assume that the finite element triangulati@j is aligned with the line segment3 P;,
i=1,...,m. Then, for the explicit extension operathy, constructed in Sectio®, we have

IEpvlse S lvllyar, YveS'(I). (3.13)

Proof. Using the estimates for the interpolation operalpfcf. [4,9]) and Lemma 3, we immediately
have for any e S"(I"),

2 2
IERIT 5, = [ 11(PE2n ELiv)| ] 4,
2 2

SNPE2pEvpvllf s, + | @E2nEvpv — Ih(CDEz,hEl,hU)HL&
2 2 2

< NEznErnvllyz +h NP E2nEvnvlliie
2 2 2

< N E2nEvnvllyz +h% | EanEvnvlyy, x -

wheree € (0, 0.5) is any fixed number. Summing up the inequalities aver1,...,m and using the
definition of the normj - |1, (cf. [11, p. 17]) we obtain

m

m
2 2 2 2 2
IEwIT e = D NEwIE 5 <D (1E2nEvavll 5 +h* I E2nEvavli,, 5)
i=1 i=1

< N E2iEvpvllf p +h* | EapEvivlliy, p,
which, with the inverse inequality (cf. [1]) and Lemmata 2 and 4, leads to

2 2
IEnvlly e S NE2nEvnvllyp S Wlljzr. O

Now we proceed to consider the more general case, i.e., the finite element triangifijatgonot
necessarily aligned with the line segmet®;, i =1, ..., m. Hence, there exist some triangl&se T,
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each of which is separated Wy P;’s into two or more parts belonging to different coarse triangles

i =1,...,m. In reality, such cases are often encountered in the study of the domain decompaosition
methods for unstructured meshes (cf. [6-8]), where one needs to construct a proper transfer operatol
from a unstructured coarse space into a finer finite element space such that the operator kdéps the
stability andL2-norm optimal error estimates. Thus, some additional assumptions on the finite elements
(fine triangles) intersecting with coarse triangles are needed. In our current situation, we need only the
h-independent norm estimate for the explicit extension operajofrom S*(I'") into $"(£2). To our
surprise, no additional assumptions are needed on the triangulation. To show this, we first introduce
some notations. Define

TY =(K eTy; K CAY, 17°" =(K eTy; KNOP, 0},
7O =K eT,’"; 3j #i such thatk € 7,7}

Geometrically,thP ' consists of those triangles which are “close” to the cettend are divided by the
edges of coarse triangles; into at least three parts. These elements are most difficult to deal with for
deriving our required estimates. But, fortunately, the number of such kind of “bad” triangles is bounded
above by a natural numbe¥, independent of:, as indicated in the next lemma.

Lemma 5. There exists some positive constafy independent of the mesh siie such that each
K € ThOP" belongs to the disiB, (Csh), where By (C4h) denotes the disk centered & and with a
radius C4h.

Proof. Let K € Thop". Clearly K must be be in a small neighborhood of the paintLet r denote the
distance from0O to K. According to the definition ofhop", there exist two pointgl; andA, on K, such
that A, € OP;, A, € OP;;1 (Or OP;_;). Without loss of generality, we assume thigt € O P; 1 (see
Fig. 2: Left). Then from the cosine-theorem and the quasi-uniformityj,ofve see

Py

Fig. 2. Left: the figure used to show the proof of Lemma 5. Right: the figure used to show the third case in the proof of
Theorem 2.
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(C1h)? > |A1A2|° = |0 A1]* + |0 A2|* — 2C0SLP; O P 41| O Aq]|O Ag| > 2(1— | COSLP; O Piya|)r?,
which leads to
Ci1h
r < s
V2(1—[Cos.P; 0P 1])
and thus by the triangle inequalitlg; is contained in the disk with centér and radius

1
Cth+r<|1+ C1h.
e ( ¢2(1—|coszPi0Pi+1|>> '

The desired result then follows.O

Theorem 2. For any quasi-uniform triangulatiorT},, the estimatg2.3) holds.

Proof. First by the Poincaré inequality and the fact th&tv)| = v for anyv € $"(I") we have

2
IEwlIg o < (|Ehv|1 o+ '/ Ejvds ) SIEwE o + 10152 1 (3.14)
r

Using (3.14) it suffices to showWE,v|1 » < |vl1/2 r for the required estimate (2.3). The proof is divided

into three cases.
We first consider those elements]}f". Repeating the same process as used in proving Theorem 1,
we immediately have far=1, ..., m,

2 2
Y MEwIE k¢ SUE2nErnvll 5 + ¥ N E2nEvivlls,, 5 |

KeT,"
which gives
Z Z IEwIT x £ D {IE2sEvavl s + N E2nErivlls,, z } S loldo e (3.15)
i=1
KeT

Secondly, we consider the elementsTii”. For anyk e T,°", we denote byA; A,, As its three
vertices. From the standard scaling argument we have

IEpvi2 ¢ < [w(Ar) — w(As)|* + |w(Ar) — w(Ag)|* + |w(A) —

wherew = @ (E,; E1,v). Assume that the line segmeAt A; (1 < k,[ < 3) is cut intog pieces by the
coarse triangles\; , s =1,...,¢. Then, by the mean value theorem and Lemma 3 we have

|w(Ap) —w(A)| <h 1'2@; [Wltc0.0;, S hIE21E10V]1.00,D- (3.16)

Lemma 5 implies the number d@f < 7,°” is bounded above by a natural numbérindependent of.
Then by Lemmata 2 and 4, (3.16) and the inverse inequality we have

Z > EwL ¢ SR EanEravl oo p S I E2nEvnvl p < 10l - (3.17)
=1 g1t
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It remains to consider those elements7if” but not in 7,°". Consider such an elemedt =
AA1A>Az (see Fig. 2: Right). From the standard scaling argument and the triangle inequality we see

IEpvl3 ¢ < |w(Az) — w(Ag)|?+ |w(As) — w(Ay)[*
< |w(A2) — w(An[* + |w(Ag) — w(Ag) |

+ [w(As) — w(As)|” + [w(As) — w(Ap [, (3.18)

where A, is the intersecting point of the line segmeit®; and A, A3 while As is the intersecting point
of the line segment® P, and A, As.

In order to estimate the four terms in (3.18), draw a line which padse@espectivelyAs) and
is parallel to the lineA;As (respectively A,A3), this line intersects the line segmenAtA, at Ag
(respectivelyAg); in the same manner, draw a line which passes the pbjnfrespectivelyAs) and
is parallel to the lineA;A,, this line intersects the line segmeniA; (respectivelyA,A3) at A,
(respectivelyAg). Since the triangulatiorT), is quasi-uniform, it is also shape-regular (cf. [9,23]), that
means, there exists somg > 0, such that each interior angle & € T, is not less tharty (which
is also the equivalent definition of the shape-regular triangulation). It is easy to see that the triangles
AARALAs, AA1AgAs, ANA3AsAg are all the shape-regular triangles with the same paramigees that
of T,. Moreover, if /A3A4As > 69/2, AA3A4As IS a shape-regular triangle with the parameigi2;
otherwise,AA4AsA7 is a shape-regular triangle with the parameigt2. Furthermore, we construct
an interpolation operatofh on the trianglesAA,A4As, AA3As5A4 and AA1AgAs for the case that
LA3A4A5 > 90/2, or the one on the triangIeSA2A4A6, AA3As5Ag, ANA1AsAg and AA,As5A; for the
case that A3A4As < 6p/2, using the values of an interpolated function at the vertices of these triangles.
Without loss of generality, we consider only the second case. Then it follows from the standard scaling
argument and the standard technique for deriving the finite element error estimates (cf. [4,9]) that

2 ~ 2 2 2e 2
|U)(A2) - U)(A4)| 5 |Ihw‘l,AA2A4A6 i |w|l,AA2A4A6 + h* |w|1+£,AA2A4A6’ (319)

whereh, = diam(AA,A4Ag) < h. Similar results hold fotw(Az) — w(As)| and|w(As) — w(A41)| with
trianglesA A3AsAg and A A1 AgAs, respectively, and more,

lw(As) — w(An)|* < |w(As) — w(As)|” + |w(As) — w(Ag)|

%\ 26
< |w|iAA3A5Ag + |w|iAA4A5A7 + (h7) (lwli—s,AAg,AsAg + |w|%+s,AA4A5A7)’
(3.20)
whereh* = max{diam(AAzAsAg), diam(AA4A5A7)} < h.
Note that all the triangles appearing in (3.19) and (3.20) lie within the coarse triafiglasA;_1, thus
it follows from (3.18)—(3.20) and Lemmata 2, 3 and 4 that

S > Ewlig 2

i=1 OP; =OP;
= ker) T

2 2, 112
{lwlf o, +h* Iwlitye o)

NeEIRANGE

< D NIEnEvvlliz + W I E2nErpvlli,, 5 ) S0ITpr  (3.22)

=

Now Theorem 2 follows directly from (3.15), (3.14), (3.17) and (3.21)
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4. An application

Energy-preserving explicit extension operators have wide applications in the construction of non-
overlapping DDMs and fictitious domain methods, see for example [3,17,20,22]. In this section we
present only one application of the operator in the construction of non-overlapping DDMs with inexact
subdomain solvers. Consider the model problem:

—V - (p(x)VU(x)) = F(x) ing,

Ux)=20 onos2, (4.1)

wheref2 C R?is a polygon angb (x) is piecewise constant if?2 or p(x) = 1. Without loss of generality,
we assume tha® is of unit diameter (cf. [22]).
First, we decomposg into some mutually disjoint open subdomaif?s such that

J
z=@. (4.2)
i=1

When the coefficienp (x) is piecewise constant, each subdom&inis chosen in such a way thatx)
equals to the constapt in £2;. Then we refine eacl?; into smaller triangular elemenss of sizeh such
that the union of all element& in £2;,,i =1, 2, ..., J, forms a quasi-uniform triangulatiofj, of §2. Let
V" be the piecewise linear finite element space define,on

V' ={ve Hy(R2); vix € Pu(K), VK € T;}.
Then the finite element approximation for (4.1) is to find V" such that
A(u,v) = (F,v), VYveV" (4.3)

where(-, -) is the L?-inner product inL.?(£2), and

A(u,v) = / 0(x)Vu - Vudx.
2

Furthermore, we assume that for each subdorizithere exists an interior poir@®; in £2; such that
£2; can be divided inton; quasi-uniform non-overlapping trianglési,j}’;.’;l of size H, namely, there
exist positive constants andC independent of, j, i, H, such that each; ; contains (respectively is
contained in) a disk of radiusH (respectivelyC H). In most applications for non-overlapping DDMs,
we havem; < 5 or 6. It is important to note that this partition &f; into {r,»,j}’;?;l is independent of the
triangulation7;, of £2.

Let the operator,, on V" be defined by

(Apu, VYo = A, v), Yu,ve V"

where(-, -)o.4. denotes the standaicf-discrete inner product (cf. [22]). For the matrix representation
A, of A, (cf. Section 3) and the stiffness matrik, = (A(¢:, ¢;)), where{¢;} are the nodal basis
functions of V", by the direct calculation we hav, = hizAh.

Corresponding to each subdoma, define

Ai(u,v):/p[Vu-Vvdx, Yu,v e Sp(2),

2;
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where
Se(82)) ={v € Hy(2)); vlx € Pu(K), VK € 2, N T, }.
As for A;, the subdomain operatey; ;, in Sg(.Qi) is defined by
(Aiptt, Vopg = Ai(u,v), Yu,veSHR).

Also, we haveA;, = 5 A; ;, whereA; , denotes the matrix representation/f, and.4; , the stiffness
matrix associated with the bilinear forgy (-, -).

Let I” be the interface among all the subdoméiss}/_,, i.e., I" = (Ji_, I} with I; = 92; \ 952, and
the restriction of” on I" be denoted by " (I"). Foru, v e V*(I"), letuy, vy be the discrete harmonic
extensions ofi, v (cf. [22]). Define the discrete interface operasgron V/(I") by

(Spu, vYour = Aug,vy), Yu,ve V().

We haveS), = %Sh, wheresS,, is the usual Schur complement matrix (cf. [22]).
Based on the explicit extension operator of Section 2, we define a global extension operator

E,: V() — v
as follows. For any e V" (I"),
(Env)(x) = (Eipv)(x), Vx € £;, (4.4)

whereE; ;, : S"(0§2;) — S"(2;) is the explicit extension operatds, of Section 2 with the domaiw
there replaced by the subdomaih. Here S"(3£2;) and S"(£2;) are the restrictions of” on 3£, and
£2;, respectively.
Using the assumptions d®;} and the standard scaling argument, we can easily obtain from the proof
of Theorem 2 that

|Envlve < H Y2vllose + Ivlyzae < Ivly2ee. YveV, (4.5)
where we have used the basic fact (cf. [4,22]):

- 12
inf [[v+clloag, < HY?v]1200 -
ceR?

For anyv € V", we have (cf. [22])

14
= 2
(Shv,v)onr = § Pi|U|1/2,3Qi,
i=1

this with (4.5) yields
A(Epv, Epv) < (Spv, v)onr, Yve VD).

This energy-preserving property Bf, implies by the fictitious space lemma (cf. Section 8, [22]; or [5,
20]) that if B; , is a good preconditioner of; , and W), is a good preconditioner o, then

P
B, = Z I;B; 1! + E,W,E} (4.6)
i=1
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is a good preconditioner for the original operatoy. Herel; denotes the natural extension fraig2;)
into V" by zero. In fact, the condition number 8§ A;, has the following bound:

CondB,Ap) < max{lrga<x Cond B, ,A; ), CondW, Sh)}. (4.7)

IIRP
We refer to [22] for the construction of many interface preconditioners which do not involve any
subproblem solvers on subdomains, all these interface preconditioners can be lifted to the preconditioners
for the stiffness matrix4, defined in the global domaif, using (4.6). The implementation &,v
for v € V" can be obtained by (4.4) and Algorithm 1 of Section 2. We now derive the transpose of
E/ : V" — v(I'). Foranyv € V" andw € V"(I"), we have

(Elvs why, = (0, Exw)on o (4.8)

Let u € V" be a finite element function such thatx;) = 1 if x; is a node lying in the interior of some
subdomain, angk(x;) = 1 if x; is a common boundary node bfdifferent subdomains frons2;} ;.
Then we can write using (4.8)

<E§lv,w>0’h’r = h? Z v(x,»)Ehw(xi)=hZZ Z w(xjvx)Epw(x;)

xiEMl i=1 xje_(_Qiﬂ_/\[h
m m
= Z(MU, Erw)one = Z(EZ (uv), w>0,h,r,-' (4.9)
i=1 i1

Takingw € V(I") in (4.9) to be a function which vanishes at all the nodes except at thexppdeere
w(xy) = 1, we derive for any node, € N,

(Ejv) () = Y (Ef, (u)) (x0),
where the summation is taken over all the indi¢esuch thatx, € I';. Then the action oE] can be
implemented according to this formula.

Remark 5. In many existing methods (cf. [22]), the discrete harmonic extension operators are used as
the extension operatoEs, in (4.6). Thus the action of the preconditiongy needs to solve a subproblem

on each subdomain exactly, and so is expensive in general. With the explicit extension dpgréter

action of the preconditioneB;, is much less expensive.
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