Assignment 1 for MAT3220 (0.1-0.4)
(no need to hand in)

Problem 1 Consider the following transportation problem

<table>
<thead>
<tr>
<th>Origin</th>
<th>Destination</th>
<th>Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>c_{11} = 2</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>c_{21} = 1</td>
<td></td>
</tr>
<tr>
<td>Demand</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>c_{12} = 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c_{22} = 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c_{13} = 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c_{23} = 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c_{14} = 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c_{24} = 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

(a) Write down the transportation problem.

(b) Write down the matrix A. What is the rank $(A) =$?

(c) Find a square matrix B inside A such that B is non-singular and the size of B is the rank (A).

(d) Use loop method to write all the other a_{ij} in terms of the columns in B.

Problem 2 In Problem 1, suppose that the transportation tableau is

<table>
<thead>
<tr>
<th></th>
<th>x_{11}</th>
<th>x_{12}</th>
<th></th>
<th>x_{21}</th>
<th>x_{22}</th>
<th>x_{23}</th>
<th>x_{24}</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_{11}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_{12}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_{21}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_{22}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_{23}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_{24}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Find out the basic solution and the basic matrix B. Write all other columns of A in terms of columns of B. Compute $z_{ij} - c_{ij}$. Find out the entering variable and leaving variable.
Problem 3 Consider the following transportation model

\[
\begin{array}{cccc}
10 & 2 & 20 & 11 \\
12 & 7 & 9 & 20 \\
4 & 14 & 16 & 18 \\
\end{array}
\]

Supply

\[
\begin{array}{c}
15 \\
25 \\
10 \\
\end{array}
\]

\[
\begin{array}{cccc}
5 & 15 & 15 & 15 \\
\end{array}
\]

demand

(a) What is the rank (A)?
(b) Use least-cost method to obtain a starting BFS.
(c) Compute the starting objective value.
(d) Obtain the transportation tableau. Find out the basic matrix B, write all other columns of A in terms of columns of B. Compute \(z_{ij} - c_{ij} \).
(e) Determine the entering and leaving variables and obtain the next transportation tableau.

Problem 4. Do the same as in Problem 3 for the following transportation problem

\[
\begin{array}{ccc}
5 & 1 & 8 \\
2 & 4 & 0 \\
3 & 6 & 7 \\
\end{array}
\]

Supply

\[
\begin{array}{c}
12 \\
14 \\
4 \\
\end{array}
\]

demand

9 10 11