1. Determine the definiteness of the following constrained quadratics:

(a) \(Q(x_1, x_2) = 4x_1^2 + 2x_1x_2 - x_2^2 \)
 subject to
 \(x_1 + x_2 = 0. \)

(b) \(Q(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 + 4x_1x_3 - 2x_1x_2 \)
 subject to
 \(x_1 + x_2 + x_3 = 0. \)

(c) (Optional) \(Q(x_1, x_2, x_3, x_4) = x_1^2 - x_2^2 + x_3^2 + x_4^2 + 4x_2x_3 - 2x_1x_4, \)
 subject to
 \(x_1 + x_2 - x_3 + x_4 = 0; \)
 \(x_1 - 9x_2 + x_4 = 0. \)

2. Use the method of Lagrange multipliers to maximize the following problem:

Maximize \(x^{1/5}y^{2/5}z^{1/5} \)
subject to \(px + qy + rz = m \)

where all the constants \(p, q, r \) and \(m \) are positive. Verify that

\(px^* = \frac{1}{4}m, \ qy^* = \frac{1}{2}m, \ rz^* = \frac{1}{4}m \)

or not.

3. Find the distance from the origin to the plane

\(x + 2y + 2z = 10. \)

(a) using a geometric argument (no calculus).
(b) by reducing the problem to an unconstrained problem in two variables, and
(c) using the method of Lagrange multipliers.
4. Answer the following questions:

(a) Solve the problem:

\[
\text{Maximize} \quad x + 4y + z \\
\text{subject to} \\
x + 2y + 3z = 0 \\
x^2 + y^2 + z^2 = 216.
\]

(b) Change the first constraint to \(x + 2y + 3z = 0.1 \) and the second to \(x^2 + y^2 + z^2 = 215 \). What is the approximate change in optimal value of the objective function?

5. Consider the following problem:

\[
\text{Minimize} \quad x_1^2 + x_2^2 + \cdots + x_n^2 \\
\text{subject to} \\
x_1 + x_2 + \cdots + x_n = 1.
\]

Show whether or not the candidate point, obtained via the Lagrangian method, is indeed a constrained minimum.

6. Use the second-order conditions for a local minimum to classify the candidates for optimality in the following problem:

\[
\text{Minimize} \quad x_1^2 + x_2^2 + x_3^2 \\
\text{subject to} \\
x_1 + x_2 + x_3 = 0 \\
x_1 + 2x_2 + 3x_3 = 1.
\]

Hint: It may be useful to use the results of Question 8.

7. (Bonus) Find and classify the three critical points for the Lagrangian function

\[
L(x, y, u, v, \lambda, \nu) = S + \lambda(y - x^2) + \nu(v - 2u^2 - 1)
\]

corresponding to the problem:

\[
\text{Extremize} \quad S = (x - u)^2 + (y - v)^2 \\
\text{subject to} \\
y = x^2 \\
v = 2u^2 + 1.
\]

Which is the minimum distance between the curves \(y = x^2 \) and \(y = 2x^2 + 1 \)? Justify your answers.
8. (Optional) Answer the following questions:

(a) Consider the following model:

Minimize \[J = \frac{1}{2} (z^T P z + u^T Q u) \]
subject to \[A z + B u + C = 0 \]

Here, the dimensions of \(z, u, P, Q, A, B \) and \(C \) are \(p \times 1, m \times 1, p \times p, m \times m, p \times p, p \times m \) and \(p \times 1 \), respectively. Also \(P \) and \(Q \) are positive definite and symmetric, and \(P, Q, A, B, C \) are constants. The variable \(z \) represents the dependent variables, and the variable \(u \) represents the independent variables assuming that \(A \) is invertible. Show that the optimal point is defined by

\[u = -Q^{-1} B^T (AP^{-1} A^T + BQ^{-1} B^T)^{-1} C \]
\[z = -P^{-1} A^T (AP^{-1} A^T + BQ^{-1} B^T)^{-1} C \]
\[\lambda = (AP^{-1} A^T + BQ^{-1} B^T)^{-1} C \]

and that the condition for a minimum is given by

\[B^T A^{-T} P A^{-1} B + Q \geq 0. \]

(Hint: the method of Lagrange multipliers)

(b) Apply the results of Question 8 to the following problem:

Minimize \[J = \frac{1}{2} (x^2 + y^2 + z^2) \]
subject to \[x + 2y - z = 3 \]
\[x - y + 2z = 12 \]

Show that \(x = 5, \ y = 1, \ z = 4, \ \lambda_1 = -2, \ \lambda_2 = -3. \)

9. (Optional) Find the value of the constant \(a \) for which the function \(f(x) = ax^2 \) best approximates the function \(g(x) = x^3 \) on the interval \([0,1]\), in the sense that the integral:

\[I = \int_0^1 (f(x) - g(x))^2 \, dx \]

is minimized. What is the minimum value of \(I \)?