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On minimal genus problem

Zhongtao Wu

Abstract. We give a brief survey on minimal genus problems in low dimensional

topology and explain the joint work with Ni which we discussed at the 2014 Gökova

Geometry/Topology Conference.

1. Introduction

In low-dimensional topology, minimal genus problems refer to a type of questions that
asks for the least genus needed to represent a given homology class. We list three inter-
esting instances below:

(i) Finding the minimal genus of a connected embedded surface which represents a
given 2-dimensional homology class a ∈ H2(X4,Z) in a 4-manifold X4.

(ii) Finding the minimal genus of an embedded surface which represents a given
2-dimensional homology class a ∈ H2(Y 3,Z) in a 3-manifold Y 3.

(iii) Finding the minimal genus of a knot which represents a given 1-dimensional ho-
mology class a ∈ H1(Y 3,Z) in a 3-manifold Y 3.

1.1. Thom conjecture

The first question on our list, known as the minimal genus problem in 4-manifold, has
a long history which involved the development of many of the important techniques used
in 4-dimensional topology. In the special case of the complex projective plane, there is
the long-standing Thom conjecture on genera of surfaces in CP2.

Conjecture 1.1 (Thom Conjecture). The minimal genus of a surface representing a
fixed homology class in CP2 is always realized by a smooth algebraic curve (with either
orientation).

Remember that H2(CP2) ∼= Z is generated by the hyperplane CP1 ⊂ CP2; a smooth
algebraic curve in the complex projective plane of degree d represents the class d[CP1]
and always has genus (d− 1)(d− 2)/2. We can thus rephrase the conjecture: if Σ is any
smooth connected surface representing d[CP1], then the genus of the surface Σ satisfies

g(Σ) ≥ (d− 1)(d− 2)/2.
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Thom conjecture was first proved by Kronheimer-Mrowka [6] and Morgan-Szabó-
Taubes [8] using the Seiberg-Witten invariants. Later, Ozsváth-Szabó obtained a gen-
eralization of the conjecture [18]. Known as the symplectic Thom conjecture, it states
that: a symplectic surface of a symplectic 4-manifold is genus minimizing within its ho-
mology class.

The general minimal genus problem for 4-manifolds is far from settled. While the
adjunction inequality from Seiberg-Witten theory gives a lower bound of the genus, it is
unclear when it is sharp – are there surfaces that actually realize the equality?

1.2. Thurston norm

We now proceed to the Thurston norm - the second problem on our list. Suppose
S = tni=1Si is a surface with connected components Si. Define

χ−(S) =

n∑
i=1

max{0,−χ(Si)}. (1)

Here, χ is the Euler characteristic, which equals 2− 2g for a closed orientable surface
of genus g. Roughly speaking, χ−(S) measures the sum of the total genus over all com-
ponents Si that are not spheres. This quantity is also called the complexity of S, and it
can be viewed as an extension of the genus to surfaces that are possibly disconnected or
with boundary.

Back to the minimal genus problem, the Thurston norm for every homology class
a ∈ H2(Y 3,Z) is defined as the minimal complexity needed for representing [a]:

‖a‖ := min
[S]=a

χ−(S) (2)

where S is an embedded orientable surface. Unlike in dimension 4, the embedded surface
S representing a given class a ∈ H2(Y 3,Z) often needs to be disconnected1. Indeed, that
is the reason why we minimize complexity instead of genus here.

Thurston norm is also defined for 3-manifolds with boundary, in which case one mini-
mizes complexity over all surfaces with boundary that represent a relative homology class
[a] ∈ H2(Y, ∂Y,Z). Relevant to knot theory is the special case when Y = S3 − N(K)
is the complement of a tubular neighborhood N(K) of a given knot K in S3. Let
a ∈ H2(Y, ∂Y,Z) ∼= Z be a generator, then the surface S that represents a is a Seifert
surface of K. So the Thurston norm ‖a‖ = 2g(K) − 1, where g(K) denotes the Seifert
genus (or knot genus) of the knot K.

Unlike dimension 4, we have a pretty good understanding of Thurston norm in dimen-
sion 3. There are a number of algorithms that determine the Thurston norm.

1As an example of the nonexistence of connected surface representative, take Y 3 = S2 × S1 and
a = 2 · [S2] ∈ H2(Y,Z). In fact, any non-primitive class a ∈ H2(Y 3,Z) cannot be represented by a

connected surface S.

251



WU

1.3. Rational genus and Turaev norm

Having seen Thom conjecture and the Thurston norm, we are motivated to discuss
the third question on our list: Finding the minimal genus of a knot which represents a
given 1-dimensional homology class a ∈ H1(Y,Z) in a 3-manifold Y . Foremost we need to
define the genus of a knot. Remember that for a knot in S3, its knot genus is the minimal
genus of all Seifert surfaces of K; for a knot in a general 3-manifold, the definition does
not directly apply. A necessary and sufficient condition for K to bound an embedded
surface in its complement is that [K] = 1 ∈ H1(Y,Z). However, if [K] has finite order,
one can (only) find an embedded surface in the complement of K whose boundary wraps
some number of times around K.

Following this idea, Calegari-Gordon [2] generalized the notion of genus to a rationally
null-homologous K ⊂ Y , that is, [K] = 0 ∈ H1(Y,Q). Denote N(K) and XK the tubular
neighborhood and the knot exterior of K, respectively. An embedded oriented surface F
is called a rational Seifert surface of K if ∂F = l ⊂ ∂XK and [l] = p[K] ∈ H1(N(K),Z)
for certain positive integer p. Define the rational genus

‖K‖ := inf
∂F=p[K]

χ−(F )

2p
, (3)

where we take infimum over all p-Seifert surface of K and all positive integers p. Similar
to Thurston norm, the reason to use χ− instead of genus in (3) is that it is a good measure
of complexity for surfaces with possible multi-boundary components. The coefficient of
2p in the denominator accounts for the fact that F wraps p time around K and that the
Euler characteristic is about −2 times genus.

With the notion of genus specified, one can make sense of the minimal genus problem.
Given a ∈ TorsH1(Y,Z), define the Turaev norm

Θ(a) = min
K⊂Y, [K]=a

2‖K‖. (4)

Up to the factor 2, Θ(a) is the minimal rational genus of all knots in the torsion class a.
The rest of the paper is devoted to the study of the Turaev norm. In Section 2, we

give a quick introduction to Heegaard Floer theory, explaining some of the most relevant
aspects of the theory. Then, we state our main result (Theorem 3.1) that gives a lower
bound of Θ(a) in terms of invariants from Heegaard Floer homology in Section 3. We also
sketch the main idea and steps in the proof, with the aim of providing an intuitive guide
to the more formally-written proof presented in [11]. Finally, in Section 4, we describe
a few applications of this genus bound in other classical questions of low-dimensional
topology. In particular, two more minimal genus problems will be raised and discussed.

2. Heegaard Floer theory

We start with knot Floer homology, which is an invariant originally defined for
null-homologous knots in 3-manifolds by Ozsváth-Szabó [14] and independently by
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Rasmussen [19]. For the purposes of this article, we need to consider rationally null-homo-
logous knots. Luckily, the theory admits a rather straightforward extension to this case.

Assume that K is a knot in a rational homology sphere Y (so K is automatically a
rationally null-homologous knot). There are several different variants of the knot Floer
homology of K. The simplest is the hat version, which takes the form of a bi-graded,
finitely generated abelian group

ĤFK(Y,K) =
⊕

m,A∈Q
ĤFKm(Y,K,A).

Here, m is called the Maslov (or homological) grading, and A is called the Alexander
grading2. Knot Floer homology satisfies a symmetric relation

ĤFKm(Y,K,A) ∼= ĤFKm−2A(Y,K,−A), (5)

as well as detect the rational genus of a knot, similar to null-homologous knots.

Theorem 2.1 ([9, Theorem 1.1], [14]). Suppose K is a knot in a rational homology sphere
Y and ‖K‖ > 0. Then

1 + 2‖K‖ = 2 · max
ĤFK(Y,K,A)6=0

A.

In particular, the theorem in the case of K ⊂ S3 reduces to the more familiar statement:

g(K) = max{A | ĤFK(K,A) 6= 0}.

2.1. Dual Heegaard diagram and symmetry

We like to sketch the proof of the isomorphism (5) as it contains one of the key ideas
to the establishment of our main result below (Theorem 3.1). Recall that in the holo-
morphic curves definition of knot Floer homology, a doubly-pointed Heegaard diagram
(Σg,α,β, z, w) consisting of the data (see Figure 1):

• A surface Σg of genus g.
• A collection α = {α1, · · · , αg} of g pairwise disjoint, simple closed curves on Σg

and a curve collection β = {β1, · · · , βg} with similar properties.
• Two points z, w disjoint from each other and from the α and β curves.

Given this Heegaard diagram, one can recover Y from the data (Σg,α,β) and recover
the knot K from the two points z, w; conversely, every knot can be represented by such
a Heegaard diagram. In general, one can construct a Heegaard diagram for a knot from
a suitable Morse function on the knot complement.

The next step is to define the knot Floer complex ĈFK(Y,K) from the Heegaard
diagram (Σg,α,β, z, w). Define:

• Generators: correspond to intersection points x = (x1, · · ·xg) with xi ∈ αi∩βσ(i)
for some permutation σ.

2Unlike the case for knots in S3, the gradings m and A here are generally not integers.
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• Differential ∂: counting holomorphic curves

∂x =
∑
y

∑
φ∈π2(x,y)

nz(φ)=nw(φ)=0

#M̂(φ) · y

• Gradings: Each generator x can be endowed with an Alexander grading A and a
Maslov grading m.

α1 α2 α3

β1
β2 β3w

z

Σg

Y

K

Figure 1. A Morse function interpretation of the Heegaard diagram
(Σg,α,β, z, w) associated to K ⊂ Y . The closed curve passing through
c and d represents the knot K.

The idea behind the proof of (5) can be summarized in one line, that is, turn the
Morse function upside-down. Equivalently, this has the effect of modifying the Heegaard
diagram for (Y,K):

(Σg,α,β, z, w) −→ (−Σg,β,α, w, z),

where we simultaneously change the orientation of the surface Σg, switch the collection
of α,β curves, and switch the base points z, w. The resulting diagram is called its dual
Heegaard diagram. Observe that the generators and the differential ∂ remain the same in

the knot Floer complex ĈFK(Y,K) associated to the dual Heegaard diagram; only the
gradings of the generators may change. With more work [11, Section 3], one can show
that the induced isomorphism on homology shifts grading as desired (5).
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2.2. Spinc-structure and correction term

Next, we outline relevant background on Heegaard Floer homology of 3-manifolds,
whose definition is very similar to that of knot Floer homology; in fact, one may think
of knot Floer homology as a relative version of Heegaard Floer homology, associated to
a pair consisting of a 3-manifold and a knot in it. Starting with a Heegaard diagram
(Σg,α,β, w) with the same properties as before except that we do not have the other

base point z, the Heegaard Floer complex ĈF (Y ) is generated by intersection points
x = (x1, · · ·xg) with the differential ∂ counting holomorphic curves

∂x =
∑
y

∑
φ∈π2(x,y)
nw(φ)=0

#M̂(φ) · y

The analogue of the decomposition of ĤFK into Alexander gradings is a decomposition

of ĤF (Y ) according to Spinc structures:

ĤF (Y ) =
⊕

s∈Spinc(Y )

ĤF (Y, s).

Without going to the detailed definition of Spinc structures, let us note that the set of
all Spinc structures is an affine space that can be identified with the second cohomology
Spinc(Y ) ∼= H2(Y,Z).

There is the same Maslov grading on ĈF (Y ) when Y is a rational homology sphere,

which induces an absolute Q-grading on the Heegaard Floer homology group ĤF (Y ). The
correction term d(Y, s) ∈ Q is an invariant of Y that associates to each Spinc structure a

distinguished grading on the group ĤF (Y, s) [13].

3. Main results

Call a rational homology sphere Y an L-space if rank ĤF (Y ) = |H1(Y ;Z)|. Including
all lens spaces, they are the simplest 3-manifolds from the perspective of Heegaard Floer
homology. A rationally null-homologous knot K in a 3-manifold is called Floer simple if

rank ĤFK(Y,K) = rank ĤF (Y ). Examples of Floer simple knots include simple knots
in lens spaces, which we will define presently.

This section is devoted to explaining the following main result from [11].

Theorem 3.1 ([11, Theorem 1.1, Proposition 5.1]). (a) Let K be a Floer simple knot in
an L-space Y . If the rational genus ‖K‖ > 0, then

1 + 2||K|| = max
s∈Spinc(Y )

{
d(Y, s)− d(Y, Js + PD[K])

}
. (6)

More generally,

(b) Let K be a knot in a rational homology sphere Y . Then

1 + 2||K|| ≥ max
s∈Spinc(Y )

{
d(Y, s)− d(Y, Js + PD[K])

}
. (7)

255



WU

Note that the right hand side of (7) depends only on the manifold Y and the homology
class of K. Using the identification Spinc(Y ) ∼= H2(Y,Z), we obtain a lower bound of
1 + Θ(a) for the homology class a = [K] (recall the definition (4)). Part (a) of the
theorem says basically that this bound is sharp for a Floer simple knot in an L-space.
The technical assumption ‖K‖ > 0 comes from Theorem 2.1.

3.1. Simple knots in lens spaces

As a special example, consider simple knots in lens spaces. Remember that a lens space
L(p, q) is an L-space. The notion of simple knots in lens space is describe as follows. In
Figure 2, we draw the standard Heegaard diagram of a lens space L(p, q). Here the
opposite side of the rectangle is identified to give a torus, and there are one α and one
β curve on the torus, intersecting at p points and dividing the torus into p regions. We
then put two base points z, w and connect them in a proper way on the torus. Such a
simple closed curve colored in green is called a simple knot. There is an alternative way
of describing simple knots without referring to the Heegaard diagram: Take a genus 1
Heegaard splitting U0 ∪U1 of the lens space L(p, q). Let D0, D1 be meridian disks in U0,
U1 such that ∂D0 ∩ ∂D1 consists of exactly p points. A simple knot in L(p, q) is either
the unknot or the union of two arcs a0 ⊂ D0 and a1 ⊂ D1.

wz z w
α

β β

α

Figure 2. Heegaard diagrams of simple knots in L(5, 1). The red α
curve and the blue β curve intersect at 5 points. The simple closed green
curves are simple knots representing two different homology classes in
H1(L(5, 1);Z) ∼= Z/5Z.

We claim that simple knots are Floer simple. This follows from the observation that

the knot Floer complex ĈFK(L(p, q),K) is generated by exactly the p intersection points
of α and β curves. Moreover, there is exactly one simple knot in each homology class in
H1(L(p, q)) - this corresponds to the different relative positions of z and w in Figure 2.
As a consequence of Theorem 3.1, we conclude that simple knots are indeed “simple”,
according to the measure of complexity in genus.
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Corollary 3.2. Simple knots in lens spaces are genus minimizers in their homology
classes.

The above statement can be viewed as a 1-lower-dimensional analog of the symplectic
Thom conjecture described in Section 1.1. In view of the fact that the unknot is the only
genus 0 knot in S3, one may wonder whether simple knots are the unique genus minimizers
in their homology classes. This question is answered negatively by Greene-Ni [3].

3.2. Floer simple knots in L-spaces

We give below a complete proof of Theorem 3.1(a).

ĤFKM (Y,K,Amax) ∼= Z

ĤFKm(Y,K,A) ∼= Z ∼= ĤFm(Y, s)

ĤFKm−2A(Y,K,−A)) ∼= Z ∼= ĤFm−2A(Y, Js + PD[K])

ĤFKM−2Amax
(Y,K,−Amax) ∼= Z

A

∼= ∼=

Figure 3. ĤFK(Y,K) of a Floer simple knot in an L-space. Following

(5), there are isomorphisms ĤFKm(Y,K,A) ∼= ĤFKm−2A(Y,K,−A)

Proof of Theorem 3.1(a). Since K ⊂ Y is a Floer simple knot in an L-space, the non-

vanishing knot Floer homology ĤFK(Y,K,A) for each Alexander grading A is isomorphic

to the Heegaard Floer homology ĤF (Y, s) for a corresponding Spinc structure s, both of

which are isomorphic to Z. Furthermore, there is a symmetry between ĤFKm(Y,K,A)

and ĤFKm−2A(Y,K,−A). Remember that such an isometry is induced from the pair of a
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Heegaard diagram and its dual (Σg,α,β, z, w) −→ (−Σg,β,α, w, z). If we restrict to the
single-pointed Heegaard diagram (Σg,α,β, w) −→ (−Σg,β,α, z), the intersection points
of Spinc structure s in one diagram will correspond to the Spinc structure Js+ PD[K] in
the other [12, Section 2.6]. See Figure 3.

On the other hand, the correction term d(Y, s) of an L-space is the same as the grading

of the unique element in ĤF (Y, s). Hence

d(Y, s)− d(Y, Js + PD[K]) = m− (m− 2A) = 2A.

Taking maximum of the left hand side over all Spinc structures s, we have

max
s∈Spinc(Y )

{
d(Y, s)− d(Y, Js + PD[K])

}
= 2Amax.

By Theorem 2.1, 1 + 2‖K‖ = 2Amax. This proves the identity (6). �

3.3. General case

For general knots in rational homology spheres, the knot Floer homology ĤFK(Y,K)

can no longer be identified with the group ĤF (Y ); neither can the correction term d(Y, s)

be directly read off from ĤF (Y, s). A complete proof of Theorem 3.1(b) is indeed quite
technical and it involves intensive diagram chasing of the knot Floer chain complex.
Instead of presenting it in full detail here, we highlight the three main steps below.

(a) Express the correction term d(Y, s) as a min-max function of the Maslov grading
of the generators of the chain complex CFK∞(Y,K, s) [11, Proposition 4.2].

(b) Use the associated dual diagram to express d(Y, Js+ PD[K]) as a min-max func-
tion of the Maslov grading of the generators of the chain complex CFK∞(Y,K, s)
[11, Equation (11)].

(c) Relate Maslov and Alexander gradings using the isomorphism

ĤFKm(Y,K,A) ∼= ĤFKm−2A(Y,K,−A).

Then apply Theorem 2.1 and a min-max inequality [11, Lemma 4.4] to obtain the
desired genus bound.

3.4. An Example

In order to obtain interesting rational genus bounds from Theorem 3.1, we need ef-
fective algorithms to compute the Heegaard Floer correction terms. We consider below
an example of surgeries on knots. Another example concerning double branched cover of
knots will be presented in Section 4.1.

Suppose K ⊂ S3 is a knot with genus g. Let S3
p(K) be the manifold obtained by

p-surgery on K, and K ′ ⊂ S3
p(K) be the dual knot of the surgery. Then a Seifert surface

of K in S3, say F , is also a rational Seifert surface of K ′ in S3
p(K); indeed, the rational

genus ‖K ′‖ = 2g−1
2p . On the other hand, one can show that

d(S3
p(K), g)− d(S3

p(K), g − 1) = 1 +
2g − 1

p
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when p ≥ 2g and K ′ was not genus minimizing3. It then follows from (7) that ‖L‖ ≥ 2g−1
2p

for any knots [L] = [K ′]. Hence, K ′ has to be a genus minimizer in its homology class
with

Θ([K ′]) = 2‖K ′‖ =
2g − 1

p

for large p-surgery.

4. Further applications

The rational genus bound is related to yet another minimal genus problem in low-
dimensional topology, resembling the non-orientable version of the Thurston norm:

(ii’) Finding the minimal genus of an embedded surface which represents a given
2-dimensional homology class A ∈ H2(Y 3,Z2) in a 3-manifold Y 3.

4.1. Z2-Thurston norm

Inspired by the definition of the Thurston norm (2), we denote

‖A‖Z2
:= min

[S]=A
χ−(S)

for the Z2-Thurston norm of a homology class A ∈ H2(Y,Z2), where S is an embed-
ded, possibly non-orientable, surface. Assume Y to be a rational homology 3-sphere and
β : H2(Y,Z2)→ H1(Y,Z) the Bockstein homomorphism. We claim that the Z2-Thurston
norm of A is the same as the Turaev norm of a = β(A) ∈ H1(Y,Z), up to a factor of 2:

‖A‖Z2 = 2Θ(a) (8)

Equation (8) is proved by explicit constructions; refer to Figure 4. Suppose F is a
minimal genus rational Seifert surface of the knot K representing a ∈ H1(Y,Z). Since a is
in the image of the Bockstein homomorphism, it has order 2 in H1(Y,Z). Consequently,
the boundary of F is either a connected closed curve or a pair of coherently oriented closed
curves. We can thus close off F by gluing on a Möbius band or an annulus, respectively.
The resulting closed surface F̂ represents the homology class A. Conversely, suppose F̂
is a minimal complexity surface representing A ∈ H2(Y,Z2). Since F̂ is a non-orientable
surface, it contains a torsion curve with the property that the complement of this curve is
an open orientable surface. Let this torsion curve be our knot K; then [K] = a ∈ H1(Y,Z).
A rational Seifert surface F can be obtained by deleting the tubular neighborhood of K
from F̂ . Finally, note that

‖A‖Z2 = χ−(F̂ ) = χ−(F ) = 4‖K‖ = 2Θ(a).

This completes the proof.

3This follows from the surgery formula for correction terms d(L(p, 1), i) =
(2i−p)2−p

4p
and d(S3

p(K), i)

is given by d(L(p, 1), i)− 2 max{Vi, Hi−p}. See [11] for details.
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𝐹!	  

N(K)	  

K	  

Delete	  N(K)	  

Glue	  on	  an	  annulus	  

F	  

𝐹!	  
N(K)	  

K	  

Delete	  N(K)	  

Glue	  on	  a	  Möbius	  
band	  

F	  

F	  

Figure 4. These are explicit constructions for the Klein bottle and the
real projective plane, respectively. Removing a tubular neighborhood of
a torsion curve K results in an open orientable surface, homeomorphic
to a cylinder and a disk respectively. Conversely, gluing on an annulus or
a Möbius band recovers the original non-orientable surface F̂ . All other
higher-genus non-orientable surfaces are connected sums of orientable
surfaces with Klein bottle or real projective plane.

As an application of (8), one can use the correction terms from Theorem 3.1 to bound
Z2-Thurston norm. In particular, this reproves Bredon-Wood’s [1] sharp minimal genus
bound of non-orientable surfaces embedded in arbitrary lens spaces L(2k, q).
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e 1

e 2

Figure 5. The closure of the pure braid σ = σ1σ
2a
2 σ1σ

2b
2 (a = −1,

b = −2 here)

As another example, consider the double branched cover of a closed 3-braids. Let σ1,
σ2 be the two standard generators of B3.

Example 4.1. Y = Σ(L), where L is the closure of the braid σ1σ
2a
2 σ1σ

2b
2 , ab > 0.

Case 1: When both a, b are negative (Figure 5). This case is carefully studied in [10]. As
L is a pure braid, we have H2(Σ(L),Z2) ∼= Z2

2 and there are three nonzero Z2-homology
classes. Moreover, its correction terms can be determined from a general algorithm for
double branched cover of an alternating link [17, Theorem 3.4]. In particular, there are
four distinguished Spinc structures s0, s1, s2, s3 whose correction terms are equal to 1

2 ,
a
2 , b

2 , a+b+1
2 , respectively, so that s1 − s0, s2 − s0, s3 − s0 represent the three different

homology classes of order 2 in H1(Y,Z). From (8) we get the Z2-Thurston norm bound
−a−1, −b−1 and −a−b−2. These bounds are in fact sharp: the lift of the disk bounded
by each component of the link in Σ(L) has the desired complexity4.

Case 2 : When both a, b are positive. Although not alternating, we observe that L
is a pretzel link P (−2, 2a, 2b) whose double branched cover is known to be the Seifert
fibered space Y = {0; (−2, 1), (2a, 1), (2b, 1)}. Its orientation reversing −Y has a negative-
definite plumbing graph (Figure 6) when a, b > 2. There is a general algorithm for
computing correction terms of negative-definite plumbed 3-manifolds by maximizing a
certain associated quadratic form to the plumbed graph [16, Corollary 1.5]. The resulting
Z2-Thurston norm bounds are a − 3, b − 3, a + b − 4, respectively. They are also sharp
bounds each of which can be realized by the lift of the disk bounded by a component of
the link in Σ(L).

4For example, the disk bounded by the green curve in Figure 5 intersects with the red and blue curves
at −a− b points. By Riemann-Hurwitz formula, the Euler characteristic of its double branched cover is

2χ(D2) + (a+ b) = 2 + a+ b.
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−2

−1 −2b−2a

Figure 6. plumbing diagram for −Y

At this point, some readers may wonder why one would care about those strange
non-orientable surfaces. It turns out that they have an unexpected connection to the
complexity of a closed three-manifold, denoted by C(Y ). Defined as the minimal size
of a triangulation, complexity is a very difficult invariant to determine. In [4], Jaco,
Rubinstein and Tillmann give a lower bound of the complexity for a closed, orientable,
irreducible, atoroidal, connected 3-manifold in terms of its Z2-Thurston norm:

C(Y ) ≥ 2 +
∑
A∈H

‖A‖Z2 ,

where H ⊂ H2(Y ;Z2) is a rank 2 subgroup. In joint work with Yi Ni, we used this
relation to estimate the complexity of two families of 3-manifolds [10].

4.2. Four-ball rational genus

We conclude this brief article by posting yet another related question on minimal genus.

(iii’) Finding the minimal four-ball genus of a knot which represents a given 1-dimensional
homology class a ∈ H1(Y 3,Z) in a 3-manifold Y 3.

If K is a rationally null-homologous knot K ⊂ Y × {1} ⊂ Y × [0, 1], the rational
four-ball genus ‖K‖4 is defined as the infimum of χ−(F )/2p over all embedded surfaces
F ⊂ Y × [0, 1] whose boundary wraps multiple times around K. Clearly, ‖K‖4 ≤ ‖K‖.
The question is whether Theorem 3.1 remain true when we replace genus by four-ball
genus. Certain special cases are affirmatively proved by Levine-Ruberman-Strle [7].
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[13] P. Ozsváth, Z. Szabó, Absolutely graded Floer homologies and intersection forms for four-manifolds

with boundary, Adv. Math. 173 (2003), no. 2, 179–261.
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