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On mapping cones of Seifert fibered surgeries

Zhongtao Wu

Abstract

Using the mapping cone of a rational surgery, we give several obstructions for Seifert-fibered
surgeries, including obstructions on the Alexander polynomial, the knot Floer homology, the
surgery coefficient and the Seifert and four-ball genus of the knot. These generalize the
corresponding results in Kronheimer, Mrowka, Ozsváth and Szabó [‘Monopoles and lens space
surgeries’, Ann. Math. (2) 165 (2007) 457–546] and Ozsváth and Szabó [On Heegaard Floer
homology and Seifert fibered surgeries, Geometry and Topology Monographs 7 (Geometry and
Topology Publications, Coventry, 2004)].

1. Introduction

Seifert fibered spaces comprise a special, yet broad class of three-manifolds. A Seifert fibered
space is a three-manifold together with a ‘nice’ decomposition as a disjoint union of circles.
They account for all compact-oriented manifolds in six of the eight Thurston geometries of the
geometrization conjecture. It is a meaningful question to characterize knots K in the three-
sphere so that certain surgery along K can yield a Seifert fibered rational homology sphere.
This question has received considerable attention recently [2, 3, 6].

In [19], certain obstructions were established that come from the Heegaard Floer homology of
Ozsváth and Szabó [14] and the related knot invariant defined in [16, 22]. Ozsváth and Szabó,
among other things, proved that all the non-zero torsion coefficients ti(K) (to be defined
soon) have the same sign if there is an integer q �= 0 for which S3

1/q(K) is Seifert fibered.
In [9], Kronheimer, Mrowka, Ozsváth and Szabó used the monopole Floer homology to give an
obstruction on the degree of the Alexander polynomial. More precisely, they proved that if K is
a knot whose Alexander polynomial ΔK(T ) has degree strictly less than its Seifert genus, then
there is no rational number p/q � 0 such that S3

p/q(K) is a positively oriented Seifert fibered
space. In both references [9, 19], it was also shown that when the Seifert genus g > 1, S3

1/q(K)
is never a negatively Seifert fibered space for any q > 0 if ΔK(T ) has degree strictly less than
g. The aim of the present article is to generalize these results to all rational p/q-surgeries and
Seifert fibered spaces of both orientations.

The Seifert fibered spaces to be considered in this article are all rational homology spheres.
Such a manifold can be realized as the boundary of a four-manifold W (Γ) obtained by plumbing
two-spheres according to a weighted tree Γ. We define the orientation of a Seifert fibered space
from the intersection form.

Definition 1.1. Suppose that Γ is a weighted tree that has either negative-definite or
negative-semi-definite intersection form. Then, we say that the induced orientation −∂W (Γ)
is a positive Seifert orientation.
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Note that if Y is a Seifert fibered space with b1(Y ) = 0, then at least one of +Y or −Y has a
positive Seifert orientation. Moreover, either orientation on any lens spaces is a positive Seifert
orientation. Our first obstruction of Seifert fibered surgeries can be expressed in terms of the
Alexander polynomial.

Theorem 1.2. Let K ⊂ S3 be a knot in the three-sphere. Write its symmetrized Alexander
polynomial as

ΔK(T ) = a0 +
∑
i>0

ai(T i + T−i),

and let

ti(K) =
∞∑

j=1

ja|i|+j (1)

denote the torsion coefficients of the knot. Then, if there is a rational number p/q > 0 for which
S3

p/q(K) is positively Seifert fibered, all the torsion coefficients ti(K) are non-negative; if there

is a rational number 0 < p/q < 3 for which S3
p/q(K) is negatively Seifert fibered, then, for all

i > 0, the torsion coefficients ti(K) are non-positive.

We have also a Seifert fibered surgery obstruction, which can be stated in terms of the knot
Floer homology. The knot Floer homology determines the genus of the knot

g(K) = max{i|ĤFK(K, i) �= 0}, (2)

and the Alexander polynomial:

ΔK(T ) =
∑
i∈Z

χ(ĤFK(K, i)) · T i. (3)

Theorem 1.3. Let K ⊂ S3 be a knot with genus g. If there is a rational number p/q > 0
such that S3

p/q(K) is a positively oriented Seifert fibered space, then ĤFK(S3,K, g) is trivial
in odd degrees (and non-trivial in even degrees). If there is a rational number p/q > 0 such
that S3

p/q(K) is a negatively oriented Seifert fibered space, and the genus of the knot g > 1 and

2g − 1 > p/q, then ĤFK(S3,K, g) is trivial in even degrees (and non-trivial in odd degrees).

This has the following corollary (cf. [9, 19]).

Corollary 1.4. If deg ΔK < g(K), then for p/q > 0, S3
p/q(K) is never a positively oriented

Seifert fibered space. If, in addition, g > 1 and 2g − 1 > |p/q|, then no p/q-surgery along K is
Seifert fibered.

Proof. Note that S3
p/q(K) = −S3

−p/q(m(K)), where m(K) denotes the mirror of K. The
corollary follows immediately from the Euler characteristic relation (3) and Theorem 1.3.

In [8], Ichihara showed that, for a hyperbolic knot K, if |p/q| > 3 · 27/4g ≈ 10.1g, then
S3

p/q(K) is a hyperbolic three-manifold (thus, is not a Seifert fibered space). Corollary 1.4
basically supplies a bound on the surgery coefficients from the other end when the condition
on the degree of the Alexander polynomial deg ΔK < g(K) is satisfied. Concerning the surgeries
yielding lens spaces, Goda and Teragaito [5] conjectured that 2g + 8 � |p/q| � 4g − 1 if a Dehn
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surgery with slope p/q on a hyperbolic knot in S3 yields a lens space. This conjecture is now
settled following the works of Kronheimer–Mrowka–Ozsváth–Szabó [9], Rasmussen [23] and
Greene [7]. It is natural to compare Corollary 1.4 with [21, Corollary 1.4], which says that
S3

p/q(K) is not an L-space if 2g − 1 > |p/q|.
Finally, we present two Seifert fibered surgery obstructions in terms of the four-ball genus

of a knot. For relationships between the genus g(K), the four-ball genus g∗(K) and the knot
Floer homology of a knot K, see Ozsvath and Szabo [13, 18].

Theorem 1.5. Let K ⊂ S3 be a knot with genus g > 1. If deg ΔK < g and the four-ball
genus g∗(K) < g, then K does not admit a Seifert fibered surgery.

As an application of the theorem, we consider the family of Kinoshita–Terasaka knots KTr,n

with |r| � 2 and n �= 0 that was also used for illustrations in [19]. These knots all have trivial
Alexander polynomial, have genus equal to |r| (see [4, 17]), and they are slice, that is, g∗(K) =
0. Thus, Theorem 1.5 applies and these knots do not admit Seifert fibered surgeries.

Theorem 1.6. Let K ⊂ S3 be a slice knot. If there are both positive and negative torsion
coefficients ti(K), then K does not admit a Seifert fibered surgery.

Using KnotInfo [1], we checked the list of all slice knots with fewer than 12 crossings.
By applying the above obstructions (Theorems 1.5 and 1.6), we found that among the 76
alternating slice knots, only the knots 61 and 103 could possibly admit a Seifert fibered surgery,
and the knots 61, also known as the Stevedore’s knot, indeed admitted one. Also, among the
81 non-alternating slice knots, there are only 17 that could potentially admit a Seifert fibered
surgery.

2. Rational surgeries and the mapping cones

In this section, we recall the rational surgery formula of Ozsváth and Szabó [21]. For simplicity,
we shall use F2 = Z/2Z coefficients for the Heegaard Floer homology throughout this paper.

Given a knot K in an integer homology sphere Y , let C = CFK∞(Y,K) be the knot Floer
chain complex of (Y,K). There are chain complexes

A+
k = C{i � 0 or j � k}, k ∈ Z,

and B+ = C{i � 0} ∼= CF+(Y ). As in [20], there are chain maps

vk, hk : A+
k −→ B+.

Let

A+
i =

⊕
s∈Z

(s,A+
�(i+ps)/q�(K)), B+

i =
⊕
s∈Z

(s,B+).

For a given rational number p/q �= 0, define maps

v+
�(i+ps)/q� : (s,A+

�(i+ps)/q�(K)) −→ (s,B+),

h+
�(i+ps)/q� : (s,A+

�(i+ps)/q�(K)) −→ (s + 1, B+).

Adding these up, we get a chain map

D+
i,p/q : A+

i −→ B+
i ,
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with

D+
i,p/q{(s, as)}s∈Z = {(s, bs)}s∈Z,

where

bs = v+
�(i+ps)/q�(as) + h+

�(i+p(s−1))/q�(as−1).

Theorem 2.1 (Ozsváth–Szabó). Let X+
i,p/q be the mapping cone of D+

i,p/q; then there is a
relatively graded isomorphism of groups

H∗(X+
i,p/q) ∼= HF+(Yp/q(K), i). (4)

The mapping cone can be as well applied to the zero-surgery of a knot. Specifically, the
integer long exact sequence for surgeries (of [15, Theorem 10.19]) shows that HF+(Y0(K), i) is
identified with the homology of the mapping cone of

v+
i + h+

i : A+
i −→ B+. (5)

Remark 2.2. Let

D+
i,p/q : H∗(A+

i ) −→ H∗(B+
i )

be the map induced by D+
i,p/q on homology. Then the mapping cone of D+

i,p/q is quasi-isomorphic
to X+

i,p/q. By the abuse of notation, we do not distinguish A+
k , A+

i , B+, B+
i from their homology,

and do not distinguish D+
i,p/q from D+

i,p/q.

Remark 2.3. Although not explicitly exhibited in [20, 21], we can assign a Z/2Z-grading
on X+

i,p/q so that the isomorphism (4) respects the Z/2Z-grading, by keeping the original Z/2Z-
grading on A+

i and reversing the original Z/2Z-grading on B+
i when p/q > 0. Similarly, we can

assign a Z/2Z-grading on the mapping cone of (5) so that the isomorphism to HF+(Y0(K), i)
respects the Z/2Z-grading, by reversing the original Z/2Z-grading on A+

i and keeping the
original Z/2Z-grading on B+

i .

For a rational homology three-sphere Y with a Spinc structure s, HF+(Y, s) can be
decomposed as the direct sum of two groups: The first group is the image of HF∞(Y, s) in
HF+(Y, s), whose minimal absolute Q grading is an invariant of (Y, s) and is denoted by
d(Y, s), the correction term [11]; the second group is the quotient modulo the above image and
is denoted by HFred(Y, s). Altogether, we have

HF+(Y, s) = T +
d(Y,s) ⊕ HFred(Y, s).

For a knot K ⊂ S3, let AT
k = UnA+

k for n 	 0; then AT
k
∼= T +. Let DT

i,p/q be the restriction
of D+

i,p/q on

AT
i =

⊕
s∈Z

(s,AT
�(i+ps)/q�(K)). (6)

Since v+
k , h+

k are isomorphisms at sufficiently high gradings and are U -equivariant, v+
k |AT

k

is modeled on multiplication by UVk and h+
k |AT

k is modeled on multiplication by UHk , where
Vk,Hk � 0. We list some of the properties of Vk and Hk here, and refer the reader for their
proofs to [10, 22].



370 ZHONGTAO WU

Lemma 2.4 [22]. The non-negative integers Vk and Hk satisfy the following properties:

(1) Vk = H−k;
(2) for k > 0, we have Vk + 1 � Vk−1 � Vk;
(3) Vk � max{0, g∗(K) − k}, where g∗(K) is the slice genus of K.

It is clear that Vk = 0 when k � g∗ and Hk = 0 when k � −g∗; also Vk → +∞ as k → −∞
and Hk → +∞ as k → +∞.

Lemma 2.5. The U -exponents V0 = H0. Moreover, Vk > Hk if k < 0 and Vk < Hk if k > 0.

Proof. If

(Σ,α,β, w, z)

is a doubly pointed Heegaard diagram for (S3,K), then

(−Σ,β,α, z, w)

is also a Heegaard diagram for (S3,K). Hence, the roles of i, j can be interchanged. It follows
that v+

0 is equivalent to h+
0 , hence V0 = H0. For the second part, note that HF+(S3

0(K), i) =
HF+

red(S3
0(K), i) for a non-torsion Spinc structure i. By the mapping cone formula (5), we

must have Vi �= Hi for all non-zero integers i. The inequalities then follow from V0 = H0 and
Lemma 2.4.

Lemma 2.6. Suppose p/q > 0. Then the map DT
i,p/q is surjective.

The exact same lemma is proved in [10, Lemma 2.9]. Nevertheless, we include the proof here
so that the reader may have an opportunity to get used to our notation.

Proof. Let 0 � i � p − 1. Suppose

η = {(s, ηs)}s∈Z ∈ B+
i .

Let

ξ−1 = U−H�(i+p(−1))/q�η0, ξ0 = 0.

For other s, let

ξs =

{
U−V�(i+ps)/q�(ηs − UH�(i+p(s−1))/q�ξs−1) if s > 0,

U−H�(i+ps)/q�(ηs+1 − UV�(i+p(s+1))/q�ξs+1) if s < −1.

By the definition of direct sum, ηs = 0 when |s| 	 0. Using the facts that

H�(i+p(s−1))/q� − V�(i+ps)/q� −→ +∞, as s −→ +∞

and

V�(i+p(s+1))/q� − H�(i+ps)/q� −→ +∞, as s −→ −∞,

we see that ξs = 0 when |s| 	 0. So ξ = {(s, ξs)}s∈Z ∈ AT
i . Clearly,

DT
i,p/q(ξ) = η.
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3. Seifert fibered surgeries

For a three-manifold Y = −∂W (Γ), where Γ is a negative-definite graph with at most one bad
point, HF+(Y ) can be explicitly calculated in terms of the graph Γ. The part of that calculation
that we will use in the present paper can be summarized as follows.

Theorem 3.1 [12]. Let Γ be a negative-definite graph with at most one bad point. Then
HF+(−∂W (Γ)) is supported in even dimensions. Moreover, if Γ has no bad points, then
HF+

red(−∂W (Γ)) = 0.

3.1. Positively oriented Seifert fibered space

The following statement is a generalization of Ozsváth and Szabó [19, Theorem 3.4] and is
essentially the same as [9, Theorem 8.9]. We present a proof using the mapping cone formulas
discussed in the previous section.

Theorem 3.2. Let K ⊂ S3 be a knot in the three-sphere, and suppose that there is a
rational number p/q > 0 and a negative-definite or semi-definite graph Γ with only one bad
point with the property that

S3
p/q(K) ∼= −∂W (Γ);

then, for any k ∈ Z, all elements of H∗(A+
k ) have an even Z/2Z-grading. Here, A+

k = C{i �
0 or j � k} denotes the chain complex associated to the knot K ⊂ S3.

Corollary 3.3. Under the same conditions, all the elements of HF+
red(S3

0(K)) have an
odd Z/2Z-grading, and all the torsion coefficients ti(K) (cf. equation (1)) are non-negative.

Proof. By (5), HF+(S3
0(K), i) is identified with the homology of the mapping cone of

v+
i + h+

i : A+
i → B+. When i �= 0, we have Vi �= Hi (Lemma 2.5), so the map is surjective.

Thus, the homology of the mapping cone comes entirely from the kernel of the map. It then
follows from Theorem 3.2 and the Z/2Z-grading-shift of the mapping cone that all the elements
of HF+(S3

0(K), i) have an odd Z/2Z-grading. When i = 0, V0 = H0; but the reduced part
of the homology still comes from the kernel of the map, so the same argument applies to
HF+

red(S3
0(K), 0). Finally, the statement of the torsion coefficients follows from the fact that

χ(HF+(S3
0(K), i)) = −ti(K), for i �= 0

and
χ(HF+

red(S3
0(K), 0)) � −t0(K).

Proof of Theorem 3.2. By abusing notation, we do not distinguish A+
k from its homology

and write
A+

k = AT
k ⊕ Aeven

k,red ⊕ Aodd
k,red,

where AT
k
∼= T + has an even Z/2Z-grading, and the reduced group is divided into even and odd

parts according to their Z/2Z-gradings. We claim that Aodd
k,red = 0. Otherwise, take θ ∈ Aodd

k,red

and extend it to θ ∈ Aodd
i,red for some appropriate i by adjoining zero in other relevant A+

components. Since the map DT
i,p/q : AT

i → B+
i is surjective (Lemma 2.6), we can find ξ ∈ AT

i

such that DT
i,p/q(ξ) = −D+

i,p/q(θ). Thus, ξ + θ is in the kernel of the mapping cone

D+
i,p/q : A+

i −→ B+
i ,
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which, by Theorem 2.1, is isomorphic to HF+(S3
p/q(K), i). On the other hand, we see that

ξ + θ has a mixing Z/2Z-grading. But according to Theorem 3.1, the group HF+(S3
p/q(K), i)

is supported in even dimensions. This is a contradiction! Hence, all elements of A+
k have or,

more precisely, the homology H∗(A+
k ) has an even Z/2Z-grading.

3.2. Negatively oriented Seifert fibered space

The case of negatively oriented Seifert fibered space is more interesting and subtle. First, we
adapt the argument in the previous section to prove an analogous result for negatively Seifert
fibered spaces.

Proposition 3.4. Let p/q > 0, and suppose that S3
p/q(K) is a negatively oriented Seifert

fibered space. Then, for any k ∈ Z,

H∗(A+
k ) ∼= T +

even ⊕ Aodd
k,red.

Here, A+
k = C{i � 0 or j � k} denotes the chain complex associated to the knot K ⊂ S3.

Proof. Again, by abusing notation, we do not distinguish A+
k from its homology and write

A+
k = AT

k ⊕ Aeven
k,red ⊕ Aodd

k,red,

where AT
k
∼= T + has an even Z/2Z-grading, and the reduced group is divided into even and

odd parts according to their Z/2Z-gradings. This time we need to prove that Aeven
k,red = 0. If

this were not true, then take θ ∈ Aeven
k,red and extend it to θ ∈ Aeven

i,red for some appropriate i by
adjoining zero in other relevant A+ components. Since the map DT

i,p/q : AT
i → B+

i is surjective
(Lemma 2.6), we can find ξ ∈ AT

i such that DT
i,p/q(ξ) = −D+

i,p/q(θ). Thus, ξ + θ is in the kernel
of the mapping cone

D+
i,p/q : A+

i −→ B+
i ,

which, by Theorem 2.1, is isomorphic to HF+(S3
p/q(K), i). Note that ξ + θ ∈ HF+

red(S3
p/q(K), i)

and it has an even Z/2Z-grading. On the other hand, according to [15, Proposition 2.5], if
Y is any rational homology three-sphere, then HF+

red(Y ) ∼= HF+
red(−Y ), under a map which

reverses the Z/2Z-grading. Hence, there should not be any elements of HF+
red(S3

p/q(K), i) that
are supported in even dimension. This is a contradiction!

We now apply (5) using the mapping cone

v+
i + h+

i : A+
i −→ B+

to compute HF+(S3
0(K), i). Note that Vi < Hi when i > 0, and the image of Aodd

i,red under vi

and hi must be zero due to the Z/2Z-grading consideration. Hence, we have the following.

Proposition 3.5. Suppose p/q > 0 and that S3
p/q(K) is a negatively oriented Seifert

fibered space. Then, for i �= 0,

HF+(S3
0(K), i) ∼= (Aodd

i,red)even ⊕ (F2)Vi

odd

and

HF+(S3
0(K), 0) ∼= (Aodd

0,red)even ⊕ T + ⊕ T +.

Note the Z/2Z-grading shift in the statement of the above proposition. This is due to
Remark 2.3. Applying Lemma 2.4, we can obtain a bound for the torsion coefficients ti(K).
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Corollary 3.6. Suppose p/q > 0 and that S3
p/q(K) is a negatively oriented Seifert fibered

space. Then, for i > 0,

ti(K) � max{g∗(K) − i, 0}.

Moreover, if g∗(K) < g, then all the elements of HF+
red(S3

0(K), g − 1) have even Z/2Z-grading.

Proof. For i �= 0,

ti(K) = −χ(HF+(S3
0(K), i))

= Vi − rank(Aodd
i,red)

� Vi

� max{g∗(K) − i, 0}.

The second part of the statement follows from Proposition 3.5.

When 0 < p/q < 3, we can actually prove something stronger, which is a natural generaliza-
tion of Ozsváth and Szabó [19, Proposition 3.5].

Theorem 3.7. Suppose 0 < p/q < 3 and that S3
p/q(K) is a negatively oriented Seifert

fibered space. Then all the elements of HF+
red(S3

0(K), i) have even Z/2Z-grading. Hence, for all
i > 0, ti(K) � 0.

Proof. In light of Proposition 3.5, it is enough to show that Vi = 0 for all i > 0; and since Vi

is a decreasing sequence, this is equivalent to V1 = 0. We prove by contradiction by assuming
V1 > 0. Let us carefully elaborate on the cases p/q = 1 or 2, for all the other cases can be
argued similarly. Let θ ∈ AT

1 be the generator of AT
1
∼= T +. Under the assumption that V1 > 0,

we have h1(θ) = v1(θ) = 0. Thus, by adjoining 0 in other A+, we can extend θ to θ ∈ A+
1 , and

it is clear from the construction that θ ∈ H∗(X+
i=1,p/q=1 or 2) ∼= HF+(S3

p/q(K), i = 1) has an
even Z/2Z-grading.

We claim that θ is not in the free part T + of HF+(S3
p/q(K), i = 1). Otherwise, take

n > V1 and we have U−nθ := ξ = {(s, ξs)}s∈Z ∈ AT
1 . Note that ξ0 = U−nθ. For p/q = 2, since

h−1(ξ−1) = v1(ξ0) and H−1 = V1, we must have ξ−1 = U−nθ−1, where θ−1 is the generator of
AT

−1. For p/q = 1, since h0(ξ−1) = v1(ξ0) and H0 = V0 � V1, we must have ξ−1 = U−n−V0+V1θ0,
where θ0 is the generator of AT

0 . In either case, this implies that θ = Unξ has a non-zero
component in AT

−1 or AT
0 , contradicting the original assumption of θ. Note that the same

argument works for an arbitrary positive rational number p/q < 3, since what we really used
in our argument is the fact that there is an A+

i such that the left adjacent complex of A+
1

is either A+
0 or A+

−1. Hence, what we have achieved so far is finding an element θ with an
even Z/2Z-grading that is not in the free part of HF+(S3

p/q(K), i) for some i. This contradicts
the fact that S3

p/q(K) is a negatively oriented Seifert fibered space, whose reduced part of the
Heegaard Floer homology should support on odd dimension.

In fact, for an arbitrary positive rational number p/q, we can likewise obtain a bound for
the torsion coefficients ti(K) in terms of the size of the surgery.

Proposition 3.8. Suppose 0 < p/q < 2m + 1, m � 1, and that S3
p/q(K) is a negatively

oriented Seifert fibered space. Then, for i > 0,

ti(K) � max{m − i, 0}.
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Moreover, for i � m, all the elements of HF+
red(S3

0(K), i) have an even Z/2Z-grading.

Proof. Following the same argument of the proof for Theorem 3.7, we are actually able to
show that Vm = 0 if S3

p/q(K) is a negatively oriented Seifert fibered space with p/q < 2m + 1.
Next, we apply Lemma 2.4 and see that Vi � m − i for 0 < i < m. Thus,

ti(K) = −χ(HF+(S3
0(K), i))

= Vi − rank(Aodd
i,red)

� Vi

� max{m − i, 0}.

The second part of the statement follows from Proposition 3.5.

3.3. Proofs of the various obstructions

Proof of Theorem 1.2. This follows readily from Theorems 3.2 and 3.7.

Proof of Theorem 1.3. According to [16, Corollary 4.5],

ĤFK(S3,K, g) ∼= HF+(S3
0(K), g − 1)

under an isomorphism that reverses parity when g > 1. Suppose that S3
p/q(K) is a positively

oriented Seifert fibered space. It readily follows from Corollary 3.3 that ĤFK(S3,K, g) is
supported in even degrees and is non-trivial by equation (2).

Now, suppose g > 1 and that S3
p/q(K) is a negatively oriented Seifert fibered space. If, in addi-

tion, 2g − 1 � p/q; by plugging m = g − 1 in Proposition 3.8, we see that HF+(S3
0(K), g − 1)

is supported in even degrees. Thus, ĤFK(S3,K, g) is supported in odd degrees and is again
non-trivial according to equation (2).

Proof of Theorem 1.5. Suppose that there is a p/q-surgery on K that yields a Seifert
fibered space. By taking the mirror if necessary, we can assume that p/q > 0. According to
Corollary 1.4, S3

p/q(K) can never be a positively oriented Seifert fibered space. On the other
hand, we see from Corollary 3.6 that all elements of HF+

red(S3
0(K), g − 1) have an even Z/2Z-

grading. Thus, ĤFK(S3,K, g) is supported in odd degrees and has to be non-trivial according
to equation (2). It then follows from (3) that the Alexander polynomial must have a non-zero
leading term, which contradicts the assumption that deg ΔK < g.

In order to prove Theorem 1.6, we need to find a relationship between χ(HF+
red(S3

0(K), 0))
and t0(K). This has to do with two numerical invariants analogous to the correction term,
d±1/2(Y0), on a three-manifold Y0 with the first homology isomorphic to Z. More precisely,
d±1/2(Y0) is the maximal Q-grading of any element in HF+(Y0) contained in the image of
HF∞(Y0) whose parity is given by ± 1

2 + 2Z. We have the following identity:

χ(HF+
red(S3

0(K), 0)) −
(

d−1/2(S3
0(K)) − d1/2(S3

0(K)) + 1
2

)
= −t0(K).

It also follows from the algebraic structure of HF∞ that

d1/2(Y0) − 1 � d−1/2(Y0). (7)

Lemma 3.9. Suppose that K is a slice knot; then d(S3
1(K)) = 0.
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Proof. By Lemma 2.4, V0 = 0. Now we can apply straightforwardly the formula from
[10, Proposition 2.11] for a general p/q surgery:

d(S3
p/q(K), i) = d(L(p, q), i) − 2max{V�i/q�,H�(i−p)/q�},

and the result follows.

Proof of Theorem 1.6. First, we show that if K is a slice knot, then

d1/2(S3
0(K)) = 1

2 and d−1/2(S3
0(K)) = − 1

2 .

Indeed, the argument follows exactly the same line as that of Ozsváth and Szabó [19,
Proposition 3.5]. We start with the long exact sequence that connects the HF+ of S3, S3

0(K) and
S3

1(K), and it is easy to see that d−1/2(S3
0(K)) = − 1

2 . This implies that d1/2(S3
0(K)) � 1

2 by (7).
On the other hand, since the map from HF+(S3

0(K), 0) to HF+(S3
1(K)) drops degree by 1

2 , we
see that d(S3

1(K)) � d1/2(S3
0(K)) − 1

2 . We apply Lemma 3.9 to conclude that d1/2(S3
0(K)) � 1

2 .
Hence, d1/2(S3

0(K)) = 1
2 .

Next, by taking the mirror of K if necessary, we need only to worry about positive surgery
coefficients p/q > 0. It is then clear from Theorem 1.2 that no surgery on a knot with both
positive and negative torsion coefficients can yield a positively oriented Seifert fibered space.
So S3

p/q can only be a negatively oriented Seifert fibered space. But, for i > 0, it follows from
Corollary 3.6 that ti(K) � 0; for i = 0,

t0(K) = −χ(HF+
red(S3

0(K), 0)) +
(

d−1/2(S3
0(K)) − d1/2(S3

0(K)) + 1
2

)
= −χ(HF+

red(S3
0(K), 0))

� 0,

where the inequality follows from Proposition 3.5. This contradicts the original assumption on
torsion coefficients and concludes the proof.
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15. P. Ozsváth and Z. Szabó, ‘Holomorphic disks and three-manifold invariants: properties and applications’,

Ann. of Math. (2) 159 (2004) 1159–1245.
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