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On rational sliceness of Miyazaki’s fibered, −amphicheiral knots

Min Hoon Kim and Zhongtao Wu

Abstract

We prove that fibered, −amphicheiral knots with irreducible Alexander polynomials are
rationally slice. This contrasts with the result of Miyazaki that (2n, 1)-cables of these knots
are not ribbon. We also show that the concordance invariants ν+ and Υ from Heegaard Floer
homology vanish for a class of knots that includes rationally slice knots. In particular, the ν+-
and Υ-invariants vanish for these cable knots.

1. Introduction

Recall that a knot K ⊂ S3 is called slice if it bounds an embedded disk D in D4, and it is
called ribbon if it bounds an immersed disk in S3 with only ribbon singularities. (The present
paper considers only the smooth category unless otherwise specified.) One easily sees that every
ribbon knot is a slice knot. An outstanding open problem, posed by Fox and known as the slice-
ribbon conjecture, asks if the converse is true. As an attempt to approach the problem, Casson
and Gordon introduced the notion of homotopy ribbon knots in [6]. A knot K is homotopy
ribbon if it bounds an embedded disk D in a homotopy 4-ball V so that the inclusion induced
map

π1(S3 � K) → π1(V � D)

is surjective. Since every ribbon knot is homotopy ribbon, the slice-ribbon problem can be
divided into two parts, namely whether every slice knot is homotopy ribbon, and whether
every homotopy ribbon knot is ribbon [27, Problem 4.22].

In [6, Theorem 5.1], it is proved that a fibered knot is homotopy ribbon if and only if
the monodromy of its fiber extends over the handlebody bounded by the fiber. Hinging on
this theorem, several non-homotopy ribbon knots have been constructed (for example, see
[1, 2, 4, 14, 33, 34]). Most of these examples are algebraically slice, and detecting their
non-sliceness is an interesting problem.

Specifically, Miyazaki [34] showed that the connected sum of iterated torus knots

T2,3;2,13#T2,15# − T2,3;2,15# − T2,13

is algebraically slice but not homotopy ribbon [34, Example 1]. Its algebraic sliceness is proved
by Livingston and Melvin [31]. Around two decades later, using Casson–Gordon invariants,
Hedden, Kirk and Livingston [17] showed that T2,3;2,13#T2,15# − T2,3;2,15# − T2,13 is not even
topologically slice. Our paper will center around another collection of algebraically slice, non-
homotopy ribbon fibered knots considered by Miyazaki in [34, Example 2]. Their construction
is based on the following specific family of knots that we will refer to as Miyazaki knots for the
rest of the paper.
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Definition 1. A Miyazaki knot K is a fibered, −amphicheiral knot with irreducible
Alexander polynomial ΔK(t).

The precise definition of a −amphicheiral knot is given in Definition 3. We remark that the
figure-eight knot 41 is a Miyazaki knot. We give more examples of satellite Miyazaki knots in
Section 4.

Example 1 [34, Example 2]. For any Miyazaki knot K, its (2n, 1)-cable K2n,1 is
algebraically slice, but not homotopy ribbon for any n �= 0.

Note that if any K2n,1 is slice, then this knot will be a counterexample to the slice-ribbon
conjecture. In view of the slice-ribbon conjecture, one asks the following open question. The
special case of the (2,1)-cable of 41 is asked by Kawauchi in [25].

Question 1 (Kawauchi). Is K2n,1 slice when K is Miyazaki? In particular, is the (2,1)-cable
of 41 a slice knot?

By the slice-ribbon conjecture, for any Miyazaki knot K, it is expected that its (2n, 1)-cables
K2n,1 are not slice. In contrast, our first main result, Theorem 1.1, shows that the (2n, 1) cables
of any Miyazaki knot K are rationally slice.

To state and motivate our results, we first introduce some terminology, and discuss previously
known results.

Definition 2 (Rationally slice knots). We say a knot K ⊂ S3 is rationally slice if there
exists an embedded disk D in a rational homology 4-ball V such that ∂(V,D) = (S3,K). In this
situation, the knot K is called strongly rationally slice if, in addition, the following inclusion
induced map is an isomorphism

H1(S3 � K; Z)/torsion −→ H1(V � D; Z)/torsion.

A standard Thom-Pontrjagin argument of [29] can be easily adapted to show that any
strongly rationally slice knot is algebraically slice.

Example 2. It is known that 41 is rationally slice (for example, see [7, Theorem 4.16]), but
41 is not strongly rationally slice since 41 is not algebraically slice.

We remark that our notion of rational sliceness is different from the one used in [25, 26], but
coincides with the one used in recent literatures including [7, 11, 36]. (In [25, 26], rationally
slice knots and strongly rationally slice knots in our sense are called weakly rationally slice and
rationally slice, respectively.)

In his unpublished manuscript [25], Kawauchi showed that the (2,1)-cable of 41 is strongly
rationally slice. In [26, Corollary 1.2], Kawauchi showed a more general statement that the
(2n, 1)-cables of any strongly −amphicheiral knot are strongly rationally slice. (See the precise
definition of a strongly −amphicheiral knot in Definition 3.) We remark that Hartley [16]
found examples of −amphicheiral knots that are not strongly −amphicheiral, so there is a
subtle difference between the two notions of −amphicheirality and strongly −amphicheirality.

It was implicit in the proof of [26, Corollary 1.2] that strongly −amphicheiral knots are
rationally slice. (For the reader’s convenience, we include in Lemma 3.1 an adaptation of
Kawauchi’s arguments that prove this fact.) It is unknown whether any general −amphicheiral
knot is rationally slice or not. Our first main result is that any Miyazaki knot is rationally
slice, and its (2n, 1) cables are strongly rationally slice.
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Theorem 1.1. Let K be a Miyazaki knot. Then K is rationally slice, and its (2n, 1)-cables
K2n,1 are strongly rationally slice.

In fact, we prove a stronger statement that K is Z[12 ]-slice and K2n,1 are strongly Z[12 ]-
slice where Z[12 ] is the subring of Q generated by 1

2 . Since it is straightforward to generalize
Definition 2 to (strong) R-sliceness for any subring R of Q, we do not spell out the precise
definition.

We give some remarks on the proof of Theorem 1.1 to clarify our input. Kawauchi
showed in [24] that hyperbolic −amphicheiral knots are strongly −amphicheiral knots. Hence,
Theorem 1.1 for hyperbolic Miyazaki knots follows from [26, Corollary 1.2]. By Thurston’s
uniformization theorem for Haken manifolds [38], every knot is either hyperbolic, a torus knot,
or a satellite knot. Since torus knots are not −amphicheiral, we only need to consider satellite
knots. In order to prove Theorem 1.1, we give a nice description of satellite Miyazaki knots
in Lemma 3.2; namely, we show that a companion of any satellite Miyazaki knot is also a
Miyazaki knot with smaller genus, and a pattern of any satellite Miyazaki knot is unknotted
and fibered. (We give infinitely many examples of satellite Miyazaki knots in Section 4.)

Recall from Example 1 that the (2n, 1)-cables of any Miyazaki knot are not ribbon. Hinging
on results in [34], we show that any non-trivial linear combination of the (2n, 1)-cables of any
fixed Miyazaki knot are not ribbon.

Theorem 1.2. For any Miyazaki knot K, any non-trivial linear combination of the (2n, 1)-
cables of K is not ribbon.

Remark 1. It is interesting to compare Theorem 1.2 with the result of Abe and Tagami
[1, Lemma 3.1] based on the work of Baker [2] that any non-trivial linear combination of tight,
prime fibered knots is not ribbon.

We can relate Theorem 1.2 with the rational knot concordance group. Let C and CQ be the
knot concordance group and the rational knot concordance group. That is, CQ is the set of
rational concordance classes of knots in rational homology 3-spheres (for an excellent survey of
the structure of CQ, see [7]). There is a natural, inclusion induced map C → CQ from the smooth
concordance group to the rational concordance group. It is natural to study the structures of
the kernel and the cokernel of the map C → CQ which measure the subtle difference between
knot concordance and rational knot concordance. Up to now, it is known that Ker(C → CQ)
contains a Z∞

2 -subgroup and Coker(C → CQ) contains a Z∞ ⊕ Z∞
2 ⊕ Z∞

4 subgroup (see [7,
Theorem 1.4]). Hence, finding a Z∞-subgroup in Ker(C → CQ) is an intriguing open problem.
By Theorem 1.2, an affirmative answer to this problem is a consequence of the slice-ribbon
conjecture.

Corollary 1.3. Assume that the slice-ribbon conjecture is true. If K is a Miyazaki knot,
then the set {K2n,1}∞n=1 generates a Z∞-subgroup of Ker(C → CQ).

Remark 2. Let Ctop and Ctop
Q be the topological knot concordance group and the topological

rational knot concordance group, respectively. The same proof works for the following analogous
statement. For any Miyazaki knot K, if the topologically slice-homotopy ribbon conjecture is
true, then any non-trivial linear combination of knots in {K2n,1}∞n=1 is not slice, and hence
{K2n,1}∞n=1 generates a Z∞-subgroup of Ker(Ctop → Ctop

Q ) for any Miyazaki knot K. For a
survey and the state of the art for the topologically slice-homotopy ribbon conjecture, see [10].

One may attempt to prove the non-sliceness of cables of Miyazaki knots. This leads us to
look at their concordance invariants coming from Heegaard Floer theory. We will be primarily
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working with the ν+-invariant [23], as it gives the strongest obstruction to sliceness among
several closely related invariants, including the invariants τ , ε, and Υ. For a detailed description
and comparison of concordance invariants from Heegaard Floer theory, we refer the reader to
Hom’s survey article [22].

In [39], the second author gave a cabling formula for the ν+-invariants, and the formula
implies that ν+(K) = 0 if and only if ν+(K2n,1) = 0 for all n. Hence, if we can find a Miyazaki
knot K with non-vanishing ν+, then the knots K2n,1 would be non-slice since they also have
non-vanishing ν+, giving a negative answer to the aforementioned question due to Kawauchi.
This observation motivated the study of the ν+-invariant of Miyazaki knots. Combined with
Theorem 1.1, our second main result, Theorem 1.4, establishes that the ν+-invariant vanishes
for any Miyazaki knot.

Theorem 1.4. Let K be a rationally slice knot. Then

(i) ν+(K) = ν+(−K) = 0;
(ii) ν+(P (K)# − P (U)) = ν+(−P (K)#P (U)) = 0 for all patterns P ;
(iii) ν+(P (K)) = ν+(P (U)) for all patterns P .

In particular, the ν+-invariant vanishes for any Miyazaki knot and any strongly −amphicheiral
knot.

As far as the authors know, it is unknown whether the ν+-invariant vanishes for
−amphicheiral knots, or more generally, knots of finite concordance order. (In contrast, τ , ε,
and Υ of these knots vanish for elementary reasons.) Theorem 1.4 indicates that such examples
with non-vanishing ν+ must be rare because of the vanishing results for strongly −amphicheiral
knots. We remark that this is related to the botany problem of knot Floer homology [18] since
there is a bifiltered chain complex C such that ν+(C) �= 0, but ν+(C ⊗ C) = 0, (for example,
see [21, Figure 3]).

Actually, in the proof of Theorem 1.4, we show that the same conclusions hold under a
weaker assumption that K is rationally 0-bipolar. For the definition of a rationally 0-bipolar
knot, see Definition 4. Since there is a non-slice knot (for example, 41) which is rationally
0-bipolar, Theorem 1.4 establishes that the collection of the ν+-invariants of all the satellites
of a knot cannot detect its sliceness. This result is inspired by recent work of Cha and the first
named author [8] where an analogous statement for the Rasmussen s-invariant is proved.

We finish the introduction by posing two questions for future research, whose answers are
now known to be true for strongly −amphicheiral knots by the work of this paper.

Question 2. Are −amphicheiral knots rationally slice? More generally, are knots of finite
concordance order rationally slice?

Question 3. Does the ν+-invariant vanish for −amphicheiral knots? More generally, does
the ν+-invariant vanish for knots of finite concordance order?

The remainder of this paper is organized as follows. In Section 2, we discuss the amphicheiral-
ity, or more generally, the symmetry of knots and links by recalling several results of Hartley
[15, 16]. We will relate the symmetry of a satellite knot with the symmetry of its companion
and pattern, and also relate the symmetry of a knot in a solid torus with the symmetry of
an associated 2-component link. These relationships will be crucial to the understanding of
satellite Miyazaki knots. In Section 3, we show that every Miyazaki knot is either hyperbolic
or a satellite knot with a Miyazaki companion with smaller genus. Subsequently, we apply an
inductive argument to prove the main result, Theorem 1.1, on rational sliceness of Miyazaki
knots. We also prove Theorem 1.2 in Section 3. We then exhibit an infinite family of satellite
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Miyazaki knots in Section 4, and make a digression to observe that all known examples are
strongly −amphicheiral. Finally, in Section 5, we take a different point of view and use Heegaard
Floer homology to study Miyazaki knots, proving Theorem 1.4. The discussion in this section
constitutes a rather independent unit of the paper.

2. Preliminaries on −amphicheiral knots

In this section, we survey results on −amphicheiral knots that will be a key ingredient for
proving Theorem 1.1. First, we define −amphicheiral knots and strongly −amphicheiral knots.

Definition 3. A knot K in S3 is −amphicheiral if there exists an orientation reversing
homeomorphism f : (S3,K) → (S3,K) such that f(K) is K with the reversed orientation. A
knot K in S3 is strongly −amphicheiral if we can choose f to be an involution.

Let L = L1 � · · · � Ln be a link in S3. More generally, we say that (S3, L) has symmetry
(α, ε1, . . . , εn) if there exists a self-homeomorphism f of S3 of class α that restricts to a self-
homeomorphism of each component Li of class εi for each i. Here, α takes the value ±1 or
ι±, which stands for orientation preserving/reversing homeomorphisms or involutions of S3,
respectively; and εi = ±1 depending on whether f |Li

preserves or reverses orientation of Li. In
particular, a knot is (S3,K) is −amphicheiral if it has symmetry (−1,−1), and it is strongly
−amphicheiral if it has symmetry (ι−,−1).

For the purpose of this article, we will primarily focus on −amphicheiral satellite knots.
Recall that a pattern P is a knot in S1 ×D2. For any knot J , let P (J) denote a satellite knot
K with pattern (S1 ×D2, P ) and companion J . For a pattern P ⊂ S1 ×D2, let the associated
link of P be a link (S3, μP � P (U)) where μP denotes a meridian of the ambient solid torus
S1 ×D2. In particular, the winding number of P is the linking number lk(μP , P (U)).

It turns out that the symmetry of a satellite knot P (J) is almost completely determined
by the symmetries of P and J , as follows. Following the notation of Hartley [16], we say
a pattern P ⊂ S1 ×D2 has symmetry ([α, ε1], ε2) if there exists a self-homeomorphism of
the solid torus of class α that maps the longitude class [λ] to ε1[λ] and restricts to a self-
homeomorphism of K of the class ε2. As before, α takes the value ±1 or ι± that stands for
orientation preserving/reversing homeomorphisms or involutions of the solid torus S1 ×D2,
respectively; and ε1, ε2 take the value ±1.

We are now in a position to state [16, Theorem 4.1(1)], which relates the symmetry of a
satellite knot P (J) with the symmetry of the companion J and the pattern P .

Theorem 2.1 [16, Theorem 4.1(1)]. Suppose P is a pattern and J is a non-trivial prime
knot such that neither J nor its mirror image is a companion of P (U). Let α = ±1 or ι± and
ε = ±1. Then (S3, P (J)) has symmetry (α, ε) if and only if (S3, J) has symmetry (α, ε1) and
(S1 ×D2, P ) has symmetry ([α, ε1], ε) for some ε1 = ±1.

A pattern P ⊂ S1 ×D2 is called an unknotted pattern if P (U) is an unknot. The mild
technical condition of Theorem 2.1 is satisfied for all unknotted patterns. We sketch the proof
of Theorem 2.1 for the reader’s convenience. We deform a given homeomorphism f of (S3, P (J))
of symmetry (α, ε) to an isotopic homeomorphism f ′ which fixes J and a tubular neighborhood
V of it. Suppose f ′ maps [λ] to ε1[λ], then the induced self-homeomorphism f ′|V has the
symmetry ([α, ε1], ε) on (V,K) ∼= (S1 ×D2, P ). Since f ′ also fixes J which is in the same class
of the longitude λ, the self-homeomorphism f ′ realizes the symmetry (α, ε1) for (S3, J). The
converse of Theorem 2.1 can be proved in a similar manner, and we refer to Hartley’s original
manuscript [16].
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Figure 1. The associated link of a pattern P where P is the closure of a braid of the form
σ4σ

−1
3 σ2σ

−1
1 . It is an unknotted pattern and has symmetry ([ι−,−1],−1).

Example 3. As an application of Theorem 2.1, we prove that the satellite knot
K = P (J) is strongly −amphicheiral, where J is the figure-eight knot and P is the pattern
whose associated link μP � P (U) is depicted in Figure 1. In [30, p. 371], Livingston showed
that the link has symmetry ([ι−,−1],−1). Since (S3, J) has symmetry (ι−,−1), K = P (J) is
strongly −amphicheiral by Theorem 2.1. We can generalize this construction by considering an
infinite family of the 3-braids of the form

∏2n
i=0 σ

(−1)i

2n−i since the same argument works (compare
[30, Figure 13]).

In [16, Theorem 4.1(3)], Hartley relates the symmetry of a pattern (S1 ×D2, P ) with the
symmetry of the associated link (S3, μP � P (U)) of P . The most relevant to our purpose is the
following special case.

Lemma 2.2 [16, Theorem 4.1(3)]. Suppose P is a pattern and εi = ±1 for i = 0, 1, 2.
Then (S1 ×D2, P ) has symmetry ([ε0, ε1], ε2) if and only if its associated link (S3, μP � P (U))
has symmetry (ε0, ε0ε1, ε2). Similarly, (S1 ×D2, P ) has symmetry ([ι−, ε1], ε2) if and only if
(S3, μP � P (U)) has symmetry (ι−,−ε1, ε2)

The following lemma gives a simple criterion on symmetries of a pattern (S1 ×D2, P ) with
non-trivial winding number.

Lemma 2.3. Suppose P is a pattern with non-zero winding number. If (S1 ×D2, P ) has
symmetry ([−1, ε1], ε2), then ε1ε2 = 1.

Proof. By Lemma 2.2, (S1 ×D2, P ) has symmetry ([−1, ε1], ε2) if and only if its associated
link (S3, μP � P (U)) has symmetry (−1,−ε1, ε2). To obtain a contradiction, assume that
ε1ε2 = −1. Since (S3, μP � P (U)) has symmetry (−1,−ε1, ε2),

lk(μP , P (U)) = − lk(−ε1μP , ε2P (U)) = − lk(μP , P (U)),
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and hence lk(μP , P (U)) = 0. This is a contradiction to our assumption that the winding number
of P is non-zero since the winding number of P is equal to lk(μP , P (U)) = 0. �

3. Miyazaki knots are rationally slice

The goal of this section is to prove Theorem 1.1. We begin with a lemma that is built on work
of Kawauchi [24, 26]. Recall that Z[12 ] is the subring of Q generated by 1

2 .

Lemma 3.1. Suppose that K is a knot in S3.

(i) If K is −amphicheiral and hyperbolic, then K is strongly −amphicheiral.
(ii) If K is strongly −amphicheiral, then K is Z[12 ]-slice, and hence K is rationally slice.
(iii) If K is strongly − amphicheiral, then Q(K) is strongly Z[12 ]-slice, and hence strongly

rationally slice for any pattern Q such that Q(U) is slice and the winding number of Q is
even.

Proof. (i) and (iii) are special cases of [24, Lemma 1; 24, Theorem 1.1], respectively. We
sketch below a proof of (ii), which is adapted from [26, Lemma 2.3].

Suppose K is strongly −amphicheiral. That is, there is an orientation reversing involution
τ : S3 → S3 such that τ(K) = K and Fix(τ) = S0 ⊂ K. Let M be the 0-surgery manifold of S3

along K. We first observe that τ naturally extends to an orientation reversing, free involution
τM : M → M . Choose an oriented longitude λ of K and an oriented meridian μ of K. Choose
a τ -invariant neighborhood ν(K) of K. Since τ(K) = K and Fix(τ) = S0 ⊂ K, τ |∂ν(K) is an
orientation reversing free involution such that τ |∂ν(K) sends the homology classes [λ] and [μ]
to −[λ] and [μ]. Therefore, τ |∂ν(K)(λ) and τ |∂ν(K)(μ) are isotopic to −λ and μ, respectively.
Note that M = S3 � ν(K) ∪i S

1 ×D2 where the gluing map i : ∂ν(K) → S1 ×D2 is given by
i(λ) = ∂D2 and i(μ) = S1. Since τ |∂ν(K)(λ) = −λ and τ |∂ν(K)(μ) = μ, τ |S3�ν(K) extends to
an orientation reversing, free involution τM : M → M .

Let Mτ be the quotient space M/∼ where x ∼ τM (x) for all x ∈ M . Since τ is orientation
reversing, Mτ is a non-orientable 3-manifold. Since τM is an orientation reversing involution,
the quotient map π : M → Mτ is the orientation double cover. Let W be the twisted
I-bundle over Mτ . That is, W is the mapping cylinder of π : M → Mτ and ∂W = M . Note
that Mτ is a deformation retract of W and hence H∗(Mτ ; Z) ∼= H∗(W ; Z). In the proof of
[26, Lemma 2.3], it is proved that H∗(W ; Q) = H∗(S1; Q) but we will prove a stronger
statement that H∗(W ; Z[12 ]) ∼= H∗(S1; Z[12 ]). Since Mτ is a connected and non-orientable
3-manifold,

Hi(W ; Z) ∼= Hi(Mτ ; Z) =
{

Z if i = 0
0 if i = 3, 4.

In [26, Lemma 2.3], it is proved that H1(W,M ; Z) = Z2 and H1(W ; Q) = Q. As M is the
0-surgery manifold of S3 along K, H1(M ; Z) = Z. From the homology long exact sequence of
a pair (W,M), we have an exact sequence

Z −→ H1(W ; Z) −→ Z2 −→ 0.

Since H1(W ; Q) = Q, the exact sequence gives H1(W ; Z) = Z or Z ⊕ Z2. Since Z[ 12 ] is a torsion
free, abelian group, Z[12 ] is a flat Z-module. Hence, H∗(−; Z[12 ]) ∼= H∗(−; Z) ⊗ Z[12 ] by the
universal coefficient theorem. It follows that

Hi(W ; Z[12 ]) ∼= H∗(W ; Z) ⊗ Z[12 ] =
{

Z[ 12 ] if i = 0, 1
0 if i = 3, 4.
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Now, we prove that H2(W ; Z[12 ]) = 0. Let p be an odd prime. From the universal coefficient
theorem,

Hi(W ; Zp) =
{

Zp if i = 0, 1
0 if i = 3, 4.

As mentioned above, H∗(W ; Q) ∼= H∗(S1; Q), so the Euler characteristic χ(W ) is zero.
Therefore,

0 = χ(W ) =
4∑

i=0

(−1)i dimZp
Hi(W ; Zp) = dimZp

H2(W ; Zp)

which implies that H2(W ; Zp) = 0 for any odd prime p. Recall that H2(W ; Q) ∼= H2(S1; Q) = 0.
This implies that H2(W ; Z) is a torsion abelian group. For an odd prime p, by the universal
coefficient theorem, 0 = H2(W ; Zp) ∼= H2(W ; Z) ⊗ Zp. From this, we see that the order of
H2(W ; Z) is a power of 2 and H2(W ; Z[12 ]) = H2(W ; Z) ⊗ Z[12 ] = 0.

In summary, we have observed that if K is a strongly −amphicheiral knot in S3, then the
0-surgery manifold M bounds a 4-manifold W such that H∗(W ; Z[12 ]) ∼= H∗(S1; Z[12 ]). It is well
known that the existence of such a W is equivalent to the condition that K is Z[12 ]-slice (see
[12, Proposition 1.5]). From the universal coefficient theorem, it is easy to see that K is also
rationally slice. This completes the proof of (ii). �

Our next lemma concerns satellite Miyazaki knots.

Lemma 3.2. If a satellite knot K = P (J) is Miyazaki, then P is an unknotted, fibered
pattern, J is Miyazaki, and g(J) < g(K).

Assuming Lemma 3.2, we prove Theorem 1.1.

Proof of Theorem 1.1. Suppose that K is a non-trivial Miyazaki knot. In other words, K is
fibered, −amphicheiral with ΔK(t) irreducible. We show a slightly general statement that K is
rationally slice, and Q(K) is strongly rationally slice for any pattern Q such that Q(U) is slice
and the winding number of Q is even. (The original conclusion follows as a special case that Q
is the (2n, 1)-cable pattern.) Throughout the proof, Q denotes an arbitrary pattern such that
Q(U) is slice and the winding number of Q is even.

We first observe that Theorem 1.1 holds for any hyperbolic Miyazaki knot. Suppose that the
Miyazaki knot K is hyperbolic. In this case, by Lemma 3.1(i), K is strongly −amphicheiral.
It follows from (ii) and (iii) of Lemma 3.1 that K is rationally slice, and Q(K) is strongly
rationally slice.

Recall the following facts mentioned in the introduction.

(1) Every knot is either a hyperbolic knot, a torus knot, or a satellite knot.
(2) Non-trivial torus knots are not −amphicheiral.

Hence, it remains to prove Theorem 1.1 for satellite Miyazaki knots.
We now use an induction on g(K). Suppose that g(K) = 1. By the classification of genus

1 fibered knots (for example, [5, Proposition 5.14]), K is either the trefoil knot or the figure-
eight knot. Since K is −amphicheiral, K is the figure-eight knot. Since the figure-eight knot is
hyperbolic, we already have shown that Theorem 1.1 holds for this case.

Suppose that K is a satellite knot such that g(K) > 1. As an induction hypothesis, we
have that if K ′ is Miyazaki and g(K ′) < g(K), then K ′ is Z[12 ]-slice, and Q′(K ′) is strongly
rationally slice for any pattern Q′ such that Q′(U) is slice, and the winding number of Q′
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is even. If K = P (J), then P is an unknotted pattern, and J is Miyazaki knot such that
g(J) < g(K) by Lemma 3.2.

By the induction hypothesis, we have that the knot J is Z[12 ]-slice, that is, J bounds a slice
disk Δ in a Z[12 ]-homology 4-ball V . The subsequent construction of a slice disk for K in V is
standard: Since P ⊂ S1 ×D2 is an unknotted pattern, regarding P ⊂ ∂(D2 ×D2), P bounds
a disk D ⊂ D2 ×D2. As the tubular neighborhood ν(Δ) ∼= Δ ×D2 of Δ in V is diffeomorphic
to D2 ×D2, the image of the disk D ⊂ D2 ×D2 ∼= ν(Δ) ⊂ V under the above diffeomorphism
is then the desired slice disk for K = P (J) ⊂ V . This shows that K is Z[12 ]-slice.

It remains to show that Q(K) is strongly rationally slice for any pattern Q such that Q(U)
is slice, and the winding number of Q is even. Fix such a pattern Q. Now we can regard
Q(K) = Q(P (J)) as a satellite knot with companion J and pattern Q ◦ P . Here, the pattern
Q ◦ P is characterized by the property that Q ◦ P (L) is isotopic to Q(P (L)) for any knot L.

Since P is an unknotted pattern, Q ◦ P (U) is isotopic to Q(U), and hence slice. Note that
the winding number of Q ◦ P is even since it is a multiple of the winding number of Q which
is also even. Therefore, by the induction hypothesis, Q(K) = Q ◦ P (J) is strongly Z[12 ]-slice.
This completes the proof. �

The proof of Lemma 3.2 is the most technical part of the paper. In the course of the proof, we
will make use of results on −amphicheiral, satellite knots that we discussed earlier in Section 2,
and the following criterion for fibered, satellite knots (see, for example, [19, Theorem 1]).

Lemma 3.3 (Criterion for fibered, satellite knots). A satellite knot K = P (J) is fibered if
and only if both the companion knot J and the pattern P are fibered.

We will also need the following lemma.

Lemma 3.4. If K is a fibered knot with irreducible Alexander polynomial, then K is a prime
knot. In particular, Miyazaki knots are prime.

Proof. Assume to the contrary that K = K1#K2, the connected sum of two non-trivial
knots K1 and K2. Since K is fibered, K1 and K2 are also fibered by Lemma 3.3. (Connected
sum is a satellite operation.) As the genus of a fibered knot is half the degree of its
Alexander polynomial, we have deg ΔKi

(t) = 2g(Ki) > 0 for i = 1, 2. This implies that the
Alexander polynomial ΔK(t) = ΔK1(t)ΔK2(t) is the product of two non-constant polynomials,
thus contradicting the irreducibility of the Alexander polynomial ΔK(t). Hence K must be
prime. �

Now we prove Lemma 3.2.

Proof of Lemma 3.2. Let K be a satellite, Miyazaki knot. That is, K is satellite, fibered,
and −amphicheiral with ΔK(t) irreducible. By Lemma 3.4, K is prime. Since K is a satellite
knot, we can write K = P (J) such that J is a non-trivial knot and the pattern P is not isotopic
to the core of the solid torus. Since K is fibered, Lemma 3.3 implies that (S1 ×D2, P ) and J
are fibered.

The winding number w of P must be non-zero, according to the proof of [19, Theorem 1].
It follows that ΔJ(tw) �= 1. We have a cabling formula ΔK(t) = ΔP (U)(t)ΔJ (tw) where w is
the winding number. Since P and J are fibered, deg ΔP (U)(t) = 2g(P ) and deg ΔJ(t) = 2g(J).
From the irreducibility of ΔK(t) and ΔJ(tw) �= 1, we conclude that ΔP (U)(t) = 1 and hence
P (U) is the unknot.

After a possible simultaneous change of the orientations of P and K, we can assume that
the winding number w is positive. By [19, Corollary 1], if P is a winding number 1 unknotted
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pattern such that (S1 ×D2, P ) is fibered, then P is isotopic to the core of S1 ×D2. Therefore,
|w| � 2. From the cabling formula and fiberedness, g(K) = |w|g(J) > g(J). Since ΔK(t) is
irreducible, ΔJ(tw) = ΔK(t) implies that ΔJ (t) is also irreducible.

It remains to prove that J is −amphicheiral. For this purpose, we apply Theorem 2.1. We
first check that J and P satisfies the hypothesis of Theorem 2.1. In the beginning of the proof,
we proved that a fibered knot with irreducible Alexander polynomial is prime. Therefore, J is
also prime. Recall that we are assuming J is non-trivial. We proved that P (U) is the unknot.
Therefore, neither J nor its mirror image is a companion of P (U).

Since K is −amphicheiral, it has symmetry (−1,−1). Theorem 2.1 then implies that (S3, J)
has symmetry (−1, ε1) and (S1 ×D2, P ) has symmetry ([−1, ε1],−1) for some ε1 = ±1. Since
P is a pattern with non-zero winding number, Lemma 2.3 gives that ε1 = −1. This shows that
(S3, J) has symmetry (−1,−1) and hence J is −amphicheiral. This completes the proof. �

We finish this section by proving Theorem 1.2.

Proof of Theorem 1.2. Let K be a Miyazaki knot. We show that any non-trivial combination
of its (2n, 1)-cables K2n,1 is not ribbon as a consequence of [34, Theorems 8.5.1 and 8.6].

Suppose that #m
n=1anK2n,1 is homotopy ribbon and ak �= 0 for some k. Define K to be the

class of all iterated cables of prime fibered knots J such that there is no non-trivial Laurent
polynomial f(t)f(t−1) that divides ΔJ (t). By Lemma 3.4 and the definition of Miyazaki knots,
K is prime and fibered. It follows that K2n,1 is in K for any n.

Miyazaki proved in [34, Theorem 8.6] that if J1, . . . , Jm are knots in K such that J1# · · ·#Jm
is homotopy ribbon, then m = 2l and J2i−1 is isotopic to −J2i for all i = 1, . . . , l after a possible
relabeling of indices. Note that g(K2n,1) = 2ng(K) for any n. Hence, K2i,1 is not isotopic to
±K2j,1 if i �= j. Therefore, the aforementioned result of Miyazaki [34, Theorem 8.6] implies
that ak is even and K2k,1 is −amphicheiral. Thus, K2n,1#K2n,1 is ribbon since it is isotopic to
K2n,1# −K2n,1.

In [34, Theorem 8.5.1] it is shown that if J is a non-trivial fibered knot and #m
i=1Jp,q

is homotopy ribbon, then so is J . Therefore, K is homotopy ribbon. On the other hand,
the Alexander polynomial of K is irreducible since K is Miyazaki. It follows that K is not
algebraically slice, and hence is not homotopy ribbon. This is a contradiction and completes
the proof. �

4. Examples of Miyazaki knots

Our next proposition exhibits an infinite family of satellite Miyazaki knots. In particular, we
will see that the knot given in Example 3 is Miyazaki. To the best of the authors’ knowledge,
there has been no construction of a satellite Miyazaki knot before.

Proposition 4.1. Suppose J is the figure-eight knot, and Pn is the closure of a (2n + 1)-
braid of the form

∏2n
i=0 σ

(−1)i

2n−i . Then the satellite knot Pn(J) is Miyazaki for any positive
integer n.

Proof. Let K = Pn(J) for some fixed n. Recall from Definition 1, we need to prove that K
is fibered, −amphicheiral, and ΔK(t) is irreducible.

A braid β is called homogeneous if each standard braid generator σi appears at least once
in β and the exponent on σi has the same sign in each appearance in the braid word β (that
is, if σi appears, then σ−1

i does not appear). A theorem of Stallings [37, Theorem 2] says that
(S1 ×D2, β̂) is fibered for any homogeneous braid β. Since Pn is the closure of a homogeneous
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braid
∏2n

i=0 σ
(−1)i

2n−i , (S1 ×D2, Pn) is fibered. As J = 41 is fibered, we see that K is also fibered
from Lemma 3.3.

As we remarked in Example 3, (S1 ×D2, Pn) has symmetry ([ι−,−1].− 1). Hence K has
symmetry (ι−,−1) by Theorem 2.1, that is, it is strongly −amphicheiral. It is straightforward
to see that Pn is an unknotted pattern by explicitly drawing a diagram of Pn(U). Next, we
apply the cabling formula of the Alexander polynomial ΔPn(J)(t) = ΔPn

(t)ΔJ (t2n+1) (the
winding number is 2n + 1), so ΔPn(J)(t) = t2(2n+1) − 3t2n+1 + 1. By Lemma 4.2, ΔPn(J)(t) is
irreducible. This completes the proof. �

Lemma 4.2. For any positive integer n, fn(t) = t2(2n+1) − 3t2n+1 + 1 is irreducible.

The proof of this lemma is purely algebraic in nature and was imparted to the authors by
Jiu Kang Yu. The following standard fact about irreducible polynomial is needed, which can
be found in [28, Theorem 9.1, p. 297].

Lemma 4.3. Let F be a field and m an odd integer. Let a ∈ F, a �= 0. Assume that for all
prime numbers p such that p | m we have a /∈ Fp. Then xm − a is irreducible in F[x].

Proof of Lemma 4.2. Recall that fn(t) is irreducible over Q if and only if Q[t]/〈fn(t)〉
is a degree 4n + 2 field extension of Q. Let u = (3 +

√
5)/2 which is a root of the equation

x2 − 3x + 1 = 0. Then there is an isomorphism Q[t]/〈fn(t)〉 ∼= Q(
√

5)[x]/〈x2n+1 − u〉. Since
Q(

√
5) is a degree 2 field extension of Q, Q(

√
5)[x]/〈x2n+1 − u〉 is a degree 4n + 2 field extension

of Q if and only if it is a degree 2n + 1 field extension of Q(
√

5). The latter is equivalent to
x2n+1 − u is irreducible over Q(

√
5). In short, fn(t) is irreducible over Q if and only if x2n+1 − u

is irreducible over Q(
√

5).
We show that x2n+1 − u is irreducible over Q(

√
5). Since [(3 +

√
5)/2] · [(3 −√

5)/2] = 1,
u is a unit of the ring of integers Z[(1 +

√
5)/2]. It is well known that the unit group of

Z[(1 +
√

5)/2] is isomorphic to Z × Z2, and consists of the elements of the form ±vk, where
v = (1 +

√
5)/2. In particular, u = v2. The irreducibility of x2n+1 − u over Q(

√
5) then follows

from Lemma 4.3. �

Note that the Miyazaki knots constructed in Proposition 4.1 are strongly −amphicheiral.
In general, remember that Miyazaki knots are −amphicheiral, and hyperbolic −amphicheiral
knots are strongly −amphicheiral. We ask the following question.

Question 4. Are Miyazaki knots always strongly −amphicheiral?

From the discussion in the previous section, we see that all Miyazaki knots can be obtained
from hyperbolic ones via iterated satellite operations. This inspires us to look for an inductive
approach, and we establish the following result along this direction.

Proposition 4.4. Suppose K = P (J) is a Miyazaki knot with a hyperbolic companion J
and a pattern of winding number 3. Then K is strongly −amphicheiral.

Proof. From Lemma 3.2, we see that J is also Miyazaki and P is a fibered unknotted
pattern. Lemma 3.1 then implies that J is strongly −amphicheiral. In light of Theorem 2.1, it
suffices to prove that (S1 ×D2, P ) has symmetry ([ι−,−1],−1).

Note that P is a fibered pattern of winding number 3, and there are only three such patterns
up to isotopy in S1 ×D2, corresponding to closures of the conjugacy classes of the 3-braids
σ1σ2, σ−1

1 σ−1
2 and σ−1

1 σ2 [32]. The first two possibilities for P give cable knots J3,1 and J3,−1,
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respectively. We will prove that these knots are not Miyazaki, and thus these two cases do
not occur. This leaves the third pattern as the only possibility. For this case, we observe that
the closure of the braid σ−1

1 σ2 has indeed the symmetry ([ι−,−1],−1) (see the explanation in
Example 3), and this finishes the proof.

We prove a more general statement that any (p, q)-cable of a knot is not Miyazaki. Suppose
that K = Jp,q is a Miyazaki knot. That is, K is a −amphicheiral, fibered knot whose Alexander
polynomial is irreducible. We can assume that p > 1 by considering −K otherwise. Then K#K
is ribbon since K is −amphicheiral. As in the proof of Theorem 1.2, K is homotopy ribbon
by [34, Theorem 8.5.1]. Since the Alexander polynomial of K is not irreducible, K is not
algebraically slice, and hence not homotopy ribbon. This is a contradiction and completes the
proof. �

5. ν+-Invariants of satellites do not detect slice knots

The notion of rationally 0-bipolar knots is defined in [9, Definition 2.3] as a rational version of
0-bipolar knots introduced in [13]. For the reader’s convenience, we recall the definition here.

Definition 4 [9, Definition 2.3]. A knot K in S3 is rationally 0-bipolar if there exist
compact smooth 4-manifolds V+ and V− and smoothly embedded disks D± in V± such that

(i) ∂(V±, D±) = (S3,K);
(ii) H1(V±; Q) = 0;
(iii) V± is ±-definite. That is, b±2 (V±) = b2(V±);
(iv) [D±, ∂D±] = 0 ∈ H2(V±, S3; Q).

We will use the following facts about rationally 0-bipolar knots.

(B1) Any rationally slice knot is rationally 0-bipolar. (Compare Definitions 2 and 4.)
(B2) A pattern Q ⊂ S1 ×D2 is called a slice pattern if Q(U) is slice. If K is a ratio-

nally 0-bipolar knot, then Q(K) is rationally 0-bipolar for any slice pattern Q (compare
[9, Theorem 2.6(6)]).

(B3) V0(K) = V0(−K) = 0 if K is rationally 0-bipolar [9, Theorem 2.7].

We remark that (B2) and (B3) are mild generalizations of [13, Propositions 3.3 and 1.2].
The slice disk for Q(K) in (B2) is constructed in the same way as in the proof of Theorem 1.1.
(B3) was originally stated in terms of the correction terms d(S3

1(K)) = d(S3
1(−K)) = 0, and

we refer the reader to [23] for the equivalence of these two identities. The invariant V0(K), and
more generally, the sequence {Vk(K)} of a knot K will be defined shortly.

Next, we sketch the construction of the ν+-invariant and give some relevant background of
Heegaard Floer homology. For a knot K ⊂ S3, the Heegaard Floer knot complex CFK∞(K)
is a doubly filtered complex with a U -action that lowers each filtration index by one. Define
the quotient complexes A+

k = C{max{i, j − k} � 0} and B+ = C{i � 0}, where i and j refer
to the two filtrations. Associated to each k, there is a graded, module map

v+
k : A+

k → B+.

Define Vk(K) be the U -exponent of v+
k at sufficiently high gradings. This sequence of {Vk(K)}

is non-increasing, that is, Vk(K) � Vk+1(K), and stabilizes at 0 for large k. We define ν+(K) to
be the minimum k for which Vk(K) = 0. We list some properties of the ν+-invariant below.

(N1) It is a concordance invariant, taking non-negative integer values

ν+(K) = min{k ∈ Z | Vk = 0} � 0.
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(N2) It is bounded above by the 4-ball genus

ν+(K) � g4(K).

(N3) It bounds Ozsváth–Stipsicz–Szabó’s one-parameter family of concordance invariants
[35].

|ΥK(t)| � tmax(ν+(K), ν+(−K)).

Following the same argument of [8, Theorem B], we give a proof of Theorem 1.4. Note that
ν+ is not a concordance homomorphism, so part (2) of the theorem does not follow from part
(1) immediately.

Proof of Theorem 1.4. As we mentioned in the introduction, we prove Theorem 1.4 under
a weaker assumption that K is rationally 0-bipolar.

(i) This follows from (B3) by the definition of the ν+-invariant.
(ii) Fix a pattern P and consider a pattern Q = P# − P (U). That is, (S1 ×D2, Q) is the

connected sum of pairs (S1 ×D2, P ) and (S3,−P (U)). Note that Q is a slice pattern since
Q(U) = P (U)# − P (U). Hence by (B2), Q(K) = P (K)# − P (U) is rationally 0-bipolar since
K is rationally 0-bipolar. From (B3) and (N1), we conclude that

ν+(P (K)# − P (U)) = ν+(−P (K)#P (U)) = 0.

(iii) It is known that ν+ is sub-additive under connected sum [3, Theorem 1.4]. From (ii)
and the concordance invariance of ν+, we have an inequality which holds for any P :

ν+(P (U)) = ν+(P (K)# − P (K)#P (U)) � ν+(P (K)) + ν+(−P (K)#P (U)) = ν+(P (K)).

The proof of ν+(P (K)) � ν+(P (U)) is similar. �

Using (N3), we show that the Ozsváth-Stipsicz-Szabó Υ invariant of satellites does not detect
slice knots either.

Corollary 5.1. If K is a rationally 0-bipolar knot, then

ΥP (K) = ΥP (U)

for all patterns P .

Proof. Since Υ is a concordance homomorphism [35, Corollary 1.12], we have

ΥP (K) − ΥP (U) = ΥP (K)#−P (U) = 0,

where the second equality follows from (N3) and Theorem 1.4(1). �

We finish our discussion with a question that is motivated by [8] and this paper. From
[8, Theorem 3.1; 20, Proposition 5.1], we know that the following conditions are equivalent.

(1) Two knots K and K ′ are ε-equivalent. That is, ε(K# −K ′) = 0.
(2) τ(P (K)) = τ(P (K ′)) for any pattern P .
(3) ε(P (K)# − P (K ′)) = 0 for any pattern P .
(4) ε(P (K)) = ε(P (K ′)) for any pattern P .

In particular, any two rationally 0-bipolar knots K and K ′ are ε-equivalent [8]. These two
knots satisfy, in addition, ΥP (K) = ΥP (K′) from Corollary 5.1. In general, we ask:

Question 5. Is ΥP (K)#−P (K′) = 0 for all ε-equivalent knots K and K ′ and patterns P?
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Suppose that there are ε-equivalent knots K, K ′, and a pattern P such that ΥP (K)#−P (K′) �=
0. Then the knot J = P (K)# − P (K ′) will give the first example of a knot with ε(J) = 0
and ΥJ �= 0. Previously, only a doubly-filtered complex C was known to satisfy ε(C) = 0 and
ΥC �= 0 [35, Figure 6], but it is unclear whether such a complex can be realized as the knot
Floer complex of a knot.
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