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Abstract
We introduce an Alexander polynomial for MOY graphs. For a framed trivalent MOY
graph G, we refine the construction and obtain a framed ambient isotopy invariant
�(G,c)(t). The invariant �(G,c)(t) satisfies a series of relations, which we call MOY-
type relations, and conversely these relations determine �(G,c)(t). Using them we
provide a graphical definition of the Alexander polynomial of a link. Finally, we
discuss some properties and applications of our invariants.
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1 Introduction

1.1 Main results

We study a class of spatial graphs, which we call MOY graphs. The terminology
was first used by Wu [14] in his categorification of the MOY calculus introduced by
Murakami-Ohtsuki-Yamada [11]. Roughly speaking, an MOY graph is an oriented
spatial graph in the 3-sphere S3 satisfying the following conditions:

(i) Transverse orientation For every vertex v, there is a straight line Lv that separates
the incoming and outgoing edges.
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Fig. 1 The local picture of a vertex for an MOY graph (left) and an example of MOY graph (right)

(ii) Balanced coloring Each edge is colored by a non-negative integer such that for
every vertex v, the sum of the colors of the edges entering v equals that on the
edges leaving v.

While we will give the precise definition in Sect. 2, we exhibit an example of MOY
graph in Fig. 1. We remark that an oriented spatial graph with a transverse orientation
is called transverse spatial graph in Harvey-O’Donnol [5, Definition 2.2], where an
alternative definition using the formal description of simplicial complex was given.

We then introduce the Kauffman state sum 〈D, c〉 for a given graph diagram D of
G with a coloring c, which generalizes the Kauffman state sum introduced in [6] for
a knot. Based on the state sum we define an Alexander polynomial

�(G,c)(t) := 〈D, c〉
(t−1/2 − t1/2)|V |−1 ,

where |V | is the number of vertices of G. The Alexander polynomial is a rational
function of t1/2 and t−1/2, and is, like its classical counterpart for a link, well-defined
up to tk .

Whenwefix a framing onG and obtain a framed graphG, it is possible to construct a
normalized Alexander polynomial ofG that eliminates the aforementioned ambiguity.
For the reader who is familiar with the definition of Jones polynomial of knots, this
is the same idea as multiplying a writhe factor to Kauffman’s bracket polynomial. We
will focus on the study of the normalized Alexander polynomial of trivalent framed
MOY graph, as it is directly related to the topic of MOY calculus that interests us the
most. Here is our first main result.

Theorem 1.1 For a framed trivalent MOY graph G, we can fix a normalization of the
Alexander polynomial �(G,c)(t) so that it is a well-defined rational function invariant
under framed ambient isotopy.

While our invariant is similar to some existing invariants, which we will discuss
presently, we have the following three contributions: (1) The state sum formula is
new; (2) We prove the topological invariance combinatorially; namely, we prove its
invariance under Reidemeister moves by applying the state sum formula; (3) The
normalization of the Alexander polynomial in the framed case is new.

Our second main result is in Sect. 4. It is inspired by Murakami-Ohtsuki-Yamada’s
relations in [11],where they provided a graphical definition for theUq (sln)-polynomial
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invariants of a link for all n ≥ 2, which is calledMOY calculus. We summarize Sect. 4
as follows.

Theorem 1.2 For a framed trivalent MOY graph G, where each edge is colored by a
positive integer, the invariant �(G,c)(t) satisfies a series of relations, which we call
MOY-type relations; conversely, these relations determine �(G,c)(t). Using them we
provide a graphical definition for the Alexander polynomial of a link.

We remark that when n = 0, the original MOY relations in [11] gives a trivial
invariant that is identically 0 for all graphs, instead of the desired Alexander invariant.
There are various solutions to this issue, for example, by cutting open the graph
diagrams. Nevertheless, the relations in our theorem seem to be the ones that resemble
most closely the original constructions.

1.2 Relation with existing invariants

The Alexander polynomial of a knot was first defined and studied by Alexander in
1920s. Now we know there are many different interpretations coming from different
backgrounds for the same invariant. Unlike the case of a knot, there exist diverse
versions of Alexander polynomials for a spatial graph, which are usually distinct as
invariants.

For clarity, we summarize the relation of 〈D, c〉,�(G,c)(t) and�(G,c)(t)with some
existing invariants of spatial graphs.

• The state sum 〈D, c〉 simplifies the state sum proposed by the first named author
in [1]. We provide an explanation in Sect. 2.

• The state sum 〈D, c〉 is also an elaboration of the Alexander polynomial defined in
[5], as both the state sum in [1] and the present paper and theAlexander polynomial
in [5] are special cases of the torsion invariant defined in Friedl-Juhász-Rasmussen
[3].

• As an application of Theorem 1.2, the first named author showed in a subsequent
paper [2, Theorem 3.2] that the Alexander polynomial �(G,c)(t) is equivalent
to Viro’s gl(1|1)-Alexander polynomial of a framed trivalent graph defined in
[13], in the case that the graph has no sink or source vertices and each edge is
colored by a positive integer. The key observation is that Viro’s gl(1|1)-Alexander
polynomial also satisfies an adapted version of the MOY-type relations, which
totally characterize the invariant.

• For the θn-graph, Litherland defined an invariant similar to 〈D, c〉 in [9].
Remark 1.3 For other versions of Alexander polynomial of spatial graphs, e.g,
Kinoshita [7], as long as the definitions depend solely on the complement of the
graph in S3, they are not equivalent to the one considered in this paper.

1.3 Organization of the paper

In Sect. 2, we introduce the preliminaries of graphs, diagrams and Kauffman states,
based on which we define a state sum 〈D, c〉. We then compare it with a different state
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sum proposed in [1]. The proof of their equivalence is rather lengthy, technical and
isolated from the remainder of the paper , so we postpone it to the Appendix.

In Sect. 3, we prove the invariance of 〈D, c〉 under various Reidemeister moves for
graph diagrams. Then we give the definition of �(G,c)(t) and exhibit its topological
invariance. Furthermore, we prove Theorem 1.1.

In Sect. 4, we elaborate on Theorem 1.2. More precisely, we wrote down a set
of 10 MOY-type relations in Theorem 4.1 and prove that they uniquely characterize
�(G,c)(t) in Theorem 4.4.

In Sect. 5, we discuss some properties and topological applications of our Alexan-
der polynomial. In particular, we give in Theorem 5.3 a necessary condition for the
planarity of a graph in terms of the coefficient of its Alexander polynomial.

2 The Kauffman state sum 〈D, c〉
2.1 MOY graphs

We recall the definition of an MOY graph. Our exposition and terminology is slightly
different from the one used in [14].

Definition 2.1 (i) An abstract MOY graph is an oriented graph that equipped with
a balanced coloring c : E → Z≥0 such that for each vertex v,

∑

e: pointing into v

c(e) =
∑

e: pointing out of v

c(e).

We allow closed loops without vertices as our abstract graphs.
(ii) An MOY graph diagram in R

2 is an immersion of an abstract MOY graph into
R
2, with crossing information and a transverse orientation: through each vertex

v, there is a straight line Lv that separates the edges entering v and the edges
leaving v.

(iii) Two MOY graph diagrams are said to be equivalent if they can be connected by
a finite sequence of Reidemeister moves in Fig. 2 and isotopies in R2.

(iv) An MOY graph (or a knotted MOY graph in Wu’s terminology in [14]) is an
equivalence class of MOY graph diagrams.

Lv

......

......

Remark 2.2 An MOY graph can be regarded as a transverse spatial graph in S3 with
a balanced coloring. For the definition of a transverse spatial graph, see [5].

A vertex of valence 1 in a graph is called an end point; a vertex of valence greater
than 1 is called an internal vertex. A graph is closed if it has no end points. A balanced
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Fig. 2 Reidemeister moves for MOY graph diagrams. Suppressed orientations of the edges can be added
in all compatible ways

Fig. 3 A singular crossing (left) and trivalent vertices (right)

coloring is called non-trivial if it is not identically 0, i.e., c(e) > 0 for some e ∈ E ; a
balanced coloring is called positive if each edge is colored by a positive integer, i.e.,
c(e) > 0 for all e ∈ E . All graphs considered in the present paper are assumed to be
closed and equipped with a non-trivial coloring. a graph is trivalent if all of its internal
vertices have valence 3. Here are two important classes of MOY graphs.

Example 2.3 (i) Each singular knot or link gives rise to an MOY graph with a vertex
corresponding to each singular crossing and a balanced coloring c(e) = 1 for
every edge e (Fig. 3, left).

(ii) An oriented trivalent graph without source or sink has an induced transverse
orientation (Fig. 3, right). With a balanced coloring, this gives an MOY graph.

2.2 Kauffman states

Let D be a graph diagram of a given MOY graph G. To define the state sum 〈D, c〉,
we construct the set of states on D, which we call Kauffman states.
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Fig. 4 Left: an MOY graph diagram D. Right: a decorated diagram (D, δ)

Definition 2.4 Starting from an MOY graph diagram D, we can obtain a decorated
diagram (D, δ) by putting a base point δ on one of the edges in D and drawing a circle
around each vertex of D. See Example 2.5.

(i) Cr(D): denotes the set of crossings, including the types ���� and ���� which are

the double points of the diagram and the type �

�
which are the intersection

points around each vertex between the incoming edges with the circle.
(ii) Re(D): denotes the set of regions, including the regular regions of R2 separated

by D and the circle regions around the vertices. Note that there is exactly one
circle region around each vertex. Marked regions are the regions adjacent to the
base point δ, and the others are called unmarked regions.

(iii) Corners: For a crossing of type ���� or ���� , there are four corners around it, and
we call them the north, south, west, and east corners of the crossing. Around a
crossing of type �

�
there are three corners, and we call the one inside the circle

region the north corner, the one on the left of the crossing the west corner and the
one on the right the east corner. Note also that every corner belongs to a unique
region in Re(D).

i
N

S
EW

W E

N

Example 2.5 In Fig. 4, we exhibit an MOY graph and a decorated diagram of it. We
have |Cr(D)| = 4: one of which is of the type ���� , and three of which are of the

types �

�
; |Re(D)| = 6: four of which are regular regions, and two of which are

circle regions. The base point δ is adjacent to two regions that we mark out by �.

Calculating the Euler characteristic of R2 using D gives the following lemma.

Lemma 2.6 |Re(D)| = |Cr(D)| + 2 if and only if D is a connected graph diagram.

A generic base point δ is adjacent to at most two distinct regions, which will be
denoted by Ru and Rv . It is possible that Ru and Rv are the same regions.
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Fig. 5 A Kauffman state
associated to (D, δ) is marked
out by •’s

Definition 2.7 A Kauffman state, or simply, a state for a decorated diagram (D, δ) is
a bijective map

s : Cr(D) → Re(D)\{Ru, Rv},

which sends a crossing in Cr(D) to one of its corners. Let S(D, δ) denote the set of
all states.

Remark 2.8 It is possible that S(D, δ) is an empty set. This, for example, occurs when
D is not connected or the base point δ is only adjacent to a single region.

Example 2.9 The graph in Fig. 4 has three Kauffman states, one of which is illustrated
in Fig. 5 by putting •’s at the chosen corners.

2.3 Kauffman state sum

Suppose (D, δ) is a connected decorated diagram. Before introducing the state sum,
we define the index of a regular region.

For each regular region of (D, δ), the index of it is defined by the following rules.

(i) The index of the unbounded region is set to be 0.
(ii) The indices of the other regular regions are inductively determined by the rule as

exhibited below: traversing an edgewith color i in its orientation, let the difference
of the index of its left-hand side region and that of its right-hand side region be i .

i

n − in

The definition of a balanced coloring ensures that the above rules give rise to a
well-defined index for each regular region.
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Fig. 6 The local contributionsM�
Cp

(top) and A�
Cp

(bottom). Here i indicates the color of the corresponding

edge

Definition 2.10 Suppose δ is on an edge with non-zero color i , and the indices of the
regions adjacent to δ are n and n − i . Define

|δ| = tn−i − tn .

Definition 2.11 Suppose (D, δ) is a connected decorated diagram with N crossings
C1,C2, . . . ,CN in Cr(D) and N + 2 regions R1, R2, . . . , RN+2 in Re(D). Let c
be a non-trivial coloring on D. Suppose δ is on an edge with non-zero color i . The
Kauffman state sum 〈D, c〉 is defined by the following recipe.

(i) Define the local contributions M�
Cp

and A�
Cp

associated to each corner � around

the crossing Cp as in Fig. 6. Here M�
Cp

does not depends on the coloring, while

A�
Cp

does.
(ii) For each state s ∈ S(D, δ), let

M(s) :=
N∏

p=1

M
s(Cp)

Cp
,

A(s) :=
N∏

p=1

A
s(Cp)

Cp
.

(ii) The Kauffman state sum is defined as

〈D, c〉 := |δ|−1
∑

s∈S(D,δ)

M(s) · A(s). (1)

For all the cases that S(D, δ) = ∅, we let 〈D, c〉 = 0.
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Fig. 7 The three states for the decorated diagram

Remark 2.12 While a singular knot can be regarded as a special MOY graph, the
local contribution defined in Ozsváth-Stipsicz-Szabó [12, Figure 6] for the Alexander
polynomial of a singular knot is different from the aforementioned construction in
Fig. 6. The requirement of invariance under Reidemeister moves for MOY graphs
makes it difficult to adopt a direct generalization from the former.

Example 2.13 Continuing with our previous example, we find a total of three states
s1, s2, s3 and represent them by •’s in Fig. 7. Denote {k} = tk/2 − t−k/2. Table 1
summarizes the computation of each state using Fig. 6.

Since |δ| = 1 − t j , we have

〈D, c〉 = (1 − t j )−1[−{i + j}{i}t i+ j/2 + {i + j}{i}t i− j/2 + {i + j}{ j}t3i/2]
= {i + j}[−{i}{ j}t i + { j}t3i/2]

−{ j}t j/2
= −{i + j}t (i− j)/2.

2.4 Relation with the Alexander matrix

Suppose (D, δ) is a connected decorated diagram with N crossings C1,C2, . . . ,CN

in Cr(D) and N + 2 regions R1, R2, . . . , RN+2 in Re(D). Let c be the coloring on D.
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Table 1 All Kauffman states
and the corresponding M(s) and
A(s)

State M(s) A(s) M(s)A(s)

s1 −1 {i + j}{i}t j/2t i −{i + j}{i}t i+ j/2

s2 1 {i + j}{i}t− j/2t i {i + j}{i}t i− j/2

s3 1 {i + j}{ j}t i/2t i {i + j}{ j}t3i/2

Fig. 8 The local contribution m�
Cp

, where Cp is a crossing and � is a corner around Cp

Fig. 9 Calculating the Alexander
matrix with the given labeling of
the regions and crossings

Definition 2.14 The Alexander matrix is an N × (N + 2) matrix, denoted A(D, c),
whose i-th row corresponds to the crossing Ci and the j-th column corresponds to the
region R j . The (i, j)-entry of A(D, c) is the sum of m�

Ci
A�
Ci

for � belonging to R j ,

where m�
Ci

is a local contribution specified in Fig. 8.

Example 2.15 Continuing with the previous example, we label the 4 crossings and 6
regions as in Fig. 9. We see that R5 and R6 are circle regions, and C1,C2,C3 are
crossings of type �

�
while C4 is a ���� crossing.

Now we calculate the Alexander matrix A. By definition, if Ci and R j are not
adjacent to each other, the (i, j)-entry ai j of A is zero. Therefore a11 = a13 = a16 =
a21 = a24 = a25 = a31 = a32 = a35 = a45 = a46 = 0.

Since the crossing C1 meets R2 only at its west corner, we have a12 = mW
C1

AW
C1

=
−1 · t−(i+ j)/2. Similarly we can calculate the other entries. The matrix is
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A =

⎛

⎜⎜⎝

0 −t−(i+ j)/2 0 t (i+ j)/2 t−(i+ j)/2 − t (i+ j)/2 0
0 −t−i/2 t i/2 0 0 t−i/2 − t i/2

0 0 −t− j/2 t j/2 0 t− j/2 − t j/2

−1 1 −t i t i 0 0

⎞

⎟⎟⎠ .

Suppose the base point δ is adjacent to two regions Ru and Rv . Let A(D, c)\(u, v)

denote the square matrix obtained from the Alexander matrix A(D, c) by removing
the u-th and v-th columns, which correspond to Ru and Rv , respectively. Calculating
the determinant of A(D, c)\(u, v) we see that

det A(D, c)\(u, v) =
∑

s∈S(D,δ)

sign(s) · m(s) · A(s), (2)

where S(D, δ) is the same set of Kauffman states as before, and sign(s) is the sign of
the state s as a permutation with respect to the given orders of the elements in Cr(D)

and Re(D)\{Ru, Rv}. The relation of the old state sum (2) and 〈D, c〉 is as follows.

Proposition 2.16 (Appendix) For any s ∈ S(D, δ), the value

M(s)

sign(s) · m(s)
∈ {1,−1}

does not depend on the choice of the state s. As a result,

〈D, c〉 = ±|δ|−1 · det A(D, c)\(u, v),

where the sign ± only depends on the ordering in Cr(D) and Re(D)\{Ru, Rv}.

Remark 2.17 Besides the above combinatorial definition of A(D, c), the Alexander
matrix also has the following topological description. Let G be the spatial graph in S3

determined by the graph diagram D. Denote X the complement of G in S3. Using the
coloring c we can construct a map

ψc : π1(X) → Z,

where the meridian of each edge is sent to the color of the edge. One can construct an
abelian covering space p : X̃ → X from ψc. Then, A(D, c) is a presentation matrix
for the module H1(X̃ , p−1(∂in(X))), where ∂in(X) ⊂ ∂X is a certain submanifold
associated with the transverse orientation of D and δ. See [1] for more details, where
the state sum (2) was first proposed.

2.5 The choice of the base point

In this section, we prove the independence of 〈D, c〉 on the choice of the base point δ.
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Proposition 2.18 The state sum 〈D, c〉 does not depend on the choice of the location
of δ among the edges with non-zero colors.

Proof The proof is adapted from [6, Theorem 3.3]. Suppose δ and δ′ are two different
choices of base points. Suppose that Ru, Rv are the two regions adjacent to δ and Ru

is on the left-hand side when traversing the edge containing δ in its orientation, and
that Rw, Rz are the two regions adjacent to δ′. Let 〈D, c〉δ be the state sum calculated
by using δ. Our goal is to show that 〈D, c〉δ = 〈D, c〉δ′ . The strategy is as follows. We
first prove that 〈D, c〉δ = ±〈D, c〉δ′ using the Alexander matrix in Definition 2.14.
Then we remove the ambiguity of the sign.

Without loss of generality, we assume that R1, R2, . . . , RM are the regular regions
and RM+1, RM+2, . . . , RN+2 are the circle regions in Re(D). Consider the Alexander
matrix A = A(D, c). Let Aq be the q-th column corresponding to the region Rq . We

claim that
∑N+2

q=1 Aq = 0 since for each crossing Cp the sum of m�
Cp

A�
Cp

over all
corners of Cp is zero. From this identity we have

det A\(u, v) = (−1)w−v det A\(u, w) − (−1)w−u det A\(v,w) (∗)

for 1 ≤ u < v < w ≤ M .
On the other hand, we have

∑M
q=1 t

ind(Rq )Aq = 0. Therefore

M∑

q=1

t ind(Rq )−ind(Ru)Aq = 0

for any fixed 1 ≤ u ≤ M .
As a result, for any 1 ≤ u, w ≤ M , we have

−t ind(Rw)−ind(Ru)Aw =
∑

1≤q≤M
q =w

t ind(Rq )−ind(Ru)Aq .

Bringing the scalar −t ind(Rw)−ind(Ru) to the column Aw in A\(u, v), we get

− t ind(Rw)−ind(Ru) det A\(u, v)

= (−1)w−u det A\(v,w) − t ind(Rv)−ind(Ru)(−1)w−v det A\(u, w)

for 1 ≤ u < v < w ≤ M . This together with (∗) implies that

(t ind(Rw) − t ind(Rv)) det A\(u, v) = (−1)w−u(t ind(Rv) − t ind(Ru)) det A\(v,w).
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Applying the above relation twice, we end up with

(t ind(Rz) − t ind(Rw)) det A\(u, v) = (−1)(w+z)−(u+v)(t ind(Rv) − t ind(Ru)) det A\(w, z),

for any 1 ≤ u < v ≤ w < z ≤ M .
By definition we have |δ| = t ind(Rv) − t ind(Ru) and |δ′| = t ind(Rz) − t ind(Rw). Choose

an ordering of crossings in Cr(D) so that det A\(u, v) = |δ|〈D, c〉δ . Then we have
det A\(w, z) = (−1)ε |δ′|〈D, c〉δ′ for ε = 0 or 1. The sign ε depends only on the
ordering of the regions and crossings. In summary, we have proved that

〈D, c〉δ = (−1)(w+z)−(u+v)+ε〈D, c〉δ′ = ±〈D, c〉δ′ . (∗∗)

Next, we remove “±” from (∗∗). Let us first consider the case that D is a plane
diagram. As 〈D, c〉δ is zero if and only if 〈D, c〉δ′ is zero, we assume that 〈D, c〉δ is
non-zero. Note that there are only crossing of type �

�
for a plane diagram. From

Formula (1) of 〈D, c〉, we see that the coefficient of the lowest degree termof |δ|〈D, c〉δ
is positive. Since ind(Ru) > ind(Rv) and ind(Rw) > ind(Rz), the coefficients of the
lowest degree terms of both |δ′||δ|〈D, c〉δ and |δ||δ′|〈D, c〉δ′ are also positive. This
together with (∗∗) implies that

〈D, c〉δ = 〈D, c〉δ′ .

Hence, the location of δ does not affect the value of 〈D, c〉 when D is a plane MOY
diagram.

For an arbitrary MOY graph diagram that possibly has crossings of type ���� or

���� , we connect it with plane graphs by the following skein-type relations.

〈 ij 〉
= −t−

i+ j
2

{i}{ j} ·
〈

i

j

j

i

j − i

〉
− t−

j
2

{i} ·
〈

i j

j i 〉
,

〈 j i 〉
= −t

i+ j
2

{i}{ j} ·
〈

i

j

j

i

j − i

〉
− t

j
2

{i} ·
〈

i j

j i 〉
,
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where j ≥ i ≥ 0 and {i} = t i/2 − t−i/2. For j ≤ i we can also establish similar
relations. Such kinds of relations will be discussed in great details in Sect. 4, so we
omit their proofs here. Note that all the coefficients appearing on the right-hand side of
the equations do not depend on δ, and |δ| is identical for all the graphs showing here.
As we just proved that 〈D, c〉 is independent of the choice of δ in the case of plane
graphs, we conclude that the same is true for general MOY graph diagrams from the
relations above. ��

3 The Alexander polynomial

In this section, we study the invariance of the Kauffman state sum under the Reide-
meister moves. This enables us to define an Alexander polynomial �(G,c)(t) for all
MOY graphs. Then we provide a normalization �(G,c)(t) for a framed trivalent graph
G.

3.1 The invariance of the Kauffman state sum 〈D, c〉

Proposition 3.1 The Kauffman state sum 〈D, c〉 is invariant under the Reidemeister
moves (II) – (V) in Fig. 2, and its variations under Reidemeister move (I) are given as
below.

t i
〈 i 〉

=
〈 i 〉

=
〈 i 〉

= t−i

〈 i 〉
=

〈 i 〉
.

Proof The main trick is to apply Proposition 2.18 and choose the location of the base
point δ that is most convenient for calculations.

For move (I), we assume that it occurs away from the base point. Take the following
figure for example, where the left-hand diagram is D and the right-hand one is D′.
There is a one-to-one correspondence between the states of D and those of D′ since
the additional region of D has only one corner. It then follows from (1) and the local
contributions described in Fig. 6 that 〈D, c〉 = t i 〈D′, c〉. The proofs for the other
cases of move (I) follow from similar arguments.

i

• ←→
i

The proof of the invariance of 〈D, c〉 under moves (II), (III) is similar to the proof of
[6, Theorem4.3]. Formove (II), we place the base point in a position as below. Suppose
the left-hand graph is D and the right-hand one is D′. We split the set S(D, δ) as a
disjoint union of A and B, where B consists of all the states which assign the bottom
crossing of D to its south corner and A is the complement of B. The contribution
of A to 〈D, c〉 is 0 since the states are paired up (white states and black states) and
the contribution from each pair adds up to 0. There is a one-to-one correspondence
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between B and S(D′, δ). Since for each state in B the contribution from the two
crossings involved is 1, we conclude that 〈D, c〉 = 〈D′, c〉.

◦

◦∗
δ

A :
⋃

∗
δ

B : ←→
∗
δ

For move (III), we consider the move in the following figure for illustration, and
the invariance under other cases can be proved similarly. We assume that δ is located
on the edge with color i . Around the triangle where the move occurs, we have three
crossings and five local regions not adjacent to δ (some of them can be adjacent to δ

or belong to the same region globally), so for each state there are exactly two blank
local regions in the sense that there is no crossing assigned to them around the triangle.
Suppose the left-hand diagram is D and the right-hand one is D′. We compare the
states of D and D′ that have the same blank local regions around the triangle and are
identical outside the triangle.

∗
δ

R1

R2 i

j

k

←→

∗δ R1

R2

◦
◦A :

⋃

∗δ R1

R2

B :

For instance, consider the states whose blank regions are R1 and R2. Each of such
states of D has a unique local assignment as in the left-hand figure. One can check
that the contribution from the three crossings is t−(i+ j). On D′ there are three types
of states with the indicated blank regions. The set A comprises the first two types
of states. Their contribution to 〈D′, c〉 vanishes since the states are paired up (white
states and black states) and the contribution from each pair is zero. For each state of
B, the contribution from the three crossings is t−(i+ j). As a result, for the states with
the blank regions R1 and R2, their contributions to the state sum on both sides are the
same. For the states with different blank regions, we can do similar calculations to
verify that the contributions from both sides are identical as well. Consequently, we
have 〈D, c〉 = 〈D′, c〉.

For move (V), the twist creates a crossing on the diagram. If the two edges of the
crossing are outgoing edges, we assume that δ is away from the twist. Since the newly
created crossing must be assigned to its south corner whose contribution is 1, we see
that 〈D, c〉 is invariant. Nowwe consider the case that the two edges of the crossing are
incoming edges. We assume that δ is located as in the figure below. Suppose the left-
hand diagram is D and the right-hand one is D′. The assignment of the two crossings
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of type �

�
on D is unique, and their contribution to 〈D, c〉 is t j/2(t−i/2 − t i/2). On

D′ there are three types of local assignments, and the sum of their contributions to
〈D′, c〉 is

t−i/2+ j (t− j/2 − t j/2) + t j/2+ j (t−i/2 − t i/2) − t i/2+ j (t− j/2 − t j/2)

= t j/2(t−i/2 − t i/2).

Therefore we see that 〈D, c〉 = 〈D′, c〉.

......

...

∗δ i j

←→
......

...

∗δ

⋃

......

...

∗δ

⋃

......

...

∗δ

For the invariance under move (IV), we again argue by comparing the states of two
diagrams before and after the move. The proof is tedious nonetheless straightforward,
so we will only write down the idea but omit the details. Take the following move
for example, where the transverse edge passes over other edges. We assume that δ is
on the transverse edge with color i as indicated. Consider the crossings of the left-
hand diagram D lying on the transverse edge. There are essentially only two different
assignments of them that we need to consider, the first of which assigns the crossing
C1 to its east corner, and the second to its north corner. Other assignments, if any,
always appear in pairs and the contribution of each pair to 〈D, c〉 vanishes.

Consider the states where C1 is assigned to its east corner. Then the states of the
right-hand diagram D′ which have the same blank regions must assign C1 to its east
corner as well, as shown below. We can then check that their contributions to the state
sum on both sides are the same.

Consider the states of D where C1 is assigned to its north corner and C2 is not
assigned to its east corner. In this case, the states of D′ with the same blank regions are
divided into two sets A and B, where the each state in A assigns C1 to its north corner
and each state in B assigns C1 to its west or south corner, as shown below. The states
in B, no matter how many, always appear in pairs and the sum of their contributions
to the state sum is zero. Hence, we also have in this case that the contribution from
the states of D equals that from A.
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Consider the states of D where C1 is assigned to its north corner and C2 is assigned
to its east corner. For each of such states, there must be a blank region under the circle
region. We shadow this region, as the example shown below. The states of D′ which
provide the same blank regions are divided into two sets A and B, where each state in
A sends the crossing in the northwest corner of the shadow region to its south corner,
and each state in B sends the crossing to its west or south corner. The states in B, no
matter how many, can always be paired up and the sum of their contributions to the
state sum is zero. This again shows that the contribution from the states of D in this
case equals that from A. Combining the discussion above, we complete the proof of
the invariance of 〈D, c〉 under move (IV).

��
Definition 3.2 Let (G, c) be an MOY graph. The Alexander polynomial of (G, c),
denoted �(G,c)(t), can be defined from any of its graph diagram (D, c) by

�(G,c)(t) := 〈D, c〉
(t−1/2 − t1/2)|V |−1 , (3)

where |V | is the number of vertices of G.

The term (t−1/2−t1/2)|V |−1 in the denominator of Formula (3) is clearly an invariant
of the graph. The advantage for introducing this factor in the definition of theAlexander
polynomial will become transparent when we discuss the properties of �(D,c)(t) for
plane graphs (Theorem 5.3).

Together with Proposition 2.18 and Proposition 3.1, it implies that �(G,c)(t) is
well-defined up to a power of t , just like the classical Alexander polynomial of links.

3.2 The normalization of the Alexander polynomial

In this part, we present a way of normalizing the Alexander polynomial �(G,c)(t) that
eliminates the tk-ambiguity in its definition when we fix a framing on G. Whereas our
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Fig. 10 A framed graph and its graph diagram

idea is applicable to all framed MOY graphs, we will focus on the class of trivalent
graphs, because it is the natural setting for the topic in Sect. 4 on MOY calculus.

Recall that a framing of G is an embedded compact surface F ⊂ S3 in which
G is sitting as a deformation retract. A framed graph is a graph equipped with a
framing. More precisely, each vertex of G is replaced by a disk in F where the vertex
is the center of the disk, and each edge of G is replaced by a strip [0, 1] × [0, 1]
where [0, 1] × {0, 1} is attached to the boundaries of its adjacent vertex disks and
the edge is { 12 } × [0, 1]. Each graph diagram of G in R

2 has a blackboard framing,
whose projection in R

2 is the tubular neighborhood of the graph diagram in R
2. The

difference between a generic framing and a blackboard framing can be represented on

the diagram by introducing the symbols and , which mean a positive half
twist and a negative half twist respectively at the fragment. Therefore we can use a

graph diagramwith and to represent a framed graph, as indicated in Fig. 10.
Our idea of normalization is simple and natural. Starting from a framed graph

diagram, we hope to construct an appropriate factor that cancels the t±i factor in the
Alexander polynomial coming from Reidemeister move (I) in Proposition 3.1 while
keeping invariant under the other types of Reidemeister moves.

For framed trivalent graphs, the following result is well-known to experts (see for
example [13]).

Lemma 3.3 Any two graph diagrams for a framed trivalent graph can be connected
by a sequence of Reidemeister moves in Fig. 11.

From now on, we use the blackboard-bold letters G and D to denote a framed
trivalent graph and diagram, respectively. We first define a framing factor.

Definition 3.4 For each edge e with color i , let

F(e) = t
i/4[(
 ) − (
 )]

,

where 
 and 
 denote the number of and that of on e, respectively.

The framing factor associated to (D, c) is define as

F(D, c) =
∏

e∈E
F(e),

where E is the edge set of D.
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Fig. 11 The Reidemeister moves for framed trivalent graphs

Fig. 12 The way we obtain the link L(D,c) from a trivalent diagram D

From D we can obtain a diagram of an oriented link L(D,c) by the local trans-
formation depicted in Fig. 12, where we replace each edge of color i by i parallel
strands.

Definition 3.5 We define the curliness of D with respect to c by

C(D, c) = t1/2[(
 ) − (
 )],

where 
 and 
 denote respectively the numbers of counter-clockwise and clock-
wise oriented curves that we obtain after resolving the crossings of L(D,c) in the
oriented way.
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As the notation indicates, C(D, c) does not depend on framing. Roughly speaking,
C(D, c) measures the total “winding number” of the diagram D with the weight c.
Our next lemma is evident from this viewpoint.

Lemma 3.6 The curliness C(D, c) satisfies the following local relation:

C
(

ii

)
= t−i/2C

(
i

i

)
.

The curliness C(D, c) is invariant under moves (II) and (III). Its changes under move
(I) are given as follows.

t−i/2C
⎛

⎝
i
⎞

⎠ = t−i/2C

⎛

⎜⎝
i
⎞

⎟⎠ = t i/2C

⎛

⎜⎝
i

⎞

⎟⎠ = t i/2C

⎛

⎜⎝
i

⎞

⎟⎠

= C

⎛

⎜⎝
i
⎞

⎟⎠ .

Proof One can check the relations by direct computations.

��
Definition 3.7 For a framed trivalent MOY graph diagram (D, c), define the normal-
ized Alexander polynomial by

�(D,c)(t) := 〈D, c〉
(t−1/2 − t1/2)|V |−1 · F(D, c)C(D, c). (4)

Now we prove Theorem 1.1.

Theorem 3.8 (Theorem1.1)The function�(D,c)(t) is invariant under theReidemeister
moves in Fig. 11. Therefore, it is a topological invariant of the corresponding framed
trivalent graph (G, c).

Proof It is straightforward to check that �(D,c)(t) is invariant under move (0).
For move (I), we prove the move in the following figure for illustration, where D

denotes the left-hand side diagramandD′ denotes the right-hand side diagram.One can
check that F(D, c) = t−i/2F(D′, c) and C(D, c) = t−i/2C(D′, c), while Proposition
3.1 implies that the state sums satisfy 〈D, c〉 = t i 〈D′, c〉. Therefore �(D,c)(t) =
�(D′,c)(t). The proof for the other cases of move (I) are similar. However, note that
for the other cases of move (I), F(D, c) and C(D, c) do not necessarily change in the
same way.
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From Lemma 3.6, we see that F(D, c) and C(D, c) are invariant under moves (II)
(III) and (IV). Proposition 3.1 implies the same fact for 〈D, c〉. Therefore, �(D,c)(t)
is also invariant under moves (II) (III) and (IV).

For move (V), we divide the discussion into two cases depending on the orientation
of the edges. The first case is when the two edges where the twist occurs point both
inward or outward. This belongs to move (V) in Fig. 2. Proposition 3.1 implies that
〈D, c〉 is invariant, and we can check from the definition that F(D, c) and C(D, c) are
also invariant. As a result, �(D,c)(t) is invariant.

The second case is when one edge around the twist points inward and the other edge
points outward. As this move can be realized as a composition of the moves discussed
above, the invariance of �(D,c) follows. See the following figure.

��
Thus, we define the normalized Alexander polynomial of framed trivalent graph

(G, c) by

�(G,c)(t) := �(D,c)(t) = 〈D, c〉
(t−1/2 − t1/2)|V |−1 · F(D, c)C(D, c), (5)

where D is an arbitrary diagram that represents G.

Remark 3.9 In summary, for an MOY graph G without framing, we have only an
Alexander polynomial �(G,c)(t) that is well-defined up to tk . When we consider
a framed trivalent graph G, we obtain a normalized Alexander polynomial �(G,c)(t)
without tk-ambiguity.Wewill use both�(G,c)(t) and�(G,c)(t) in subsequent sections
for different purposes.

4 MOY-type relations

In this section, we prove Theorem 1.2. This result originates fromMurakami-Ohtsuki-
Yamada’s graphic calculus [11] for Uq(sln)-polynomial invariants. Here we give a
version of the theory for �(G,c)(t).

4.1 MOY-type relations.

Theorem 4.1 Suppose D is a framed trivalent graph diagram with a positive coloring
c. The normalized Alexander polynomial �(D,c)(t) satisfies the following relations,
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where (D) represents �(D,c)(t), and [k] = tk/2 − t−k/2

t1/2 − t−1/2 for k ∈ Z.

(i)

⎛

⎝ i

⎞

⎠ =
⎛

⎝ i

⎞

⎠ = 1

[i] , for i > 0.

(i i) (D) = 0 if D is a disconnected graph.

(i i i)

⎛

⎜⎜⎜⎜⎝

i
⎞

⎟⎟⎟⎟⎠
= t−i/4 ·

⎛

⎜⎜⎜⎝

i
⎞

⎟⎟⎟⎠ ,

⎛

⎜⎜⎜⎜⎝

i
⎞

⎟⎟⎟⎟⎠
= t i/4 ·

⎛

⎜⎜⎜⎝

i
⎞

⎟⎟⎟⎠ .

(iv) When i ≤ j :

⎛

⎜⎜⎜⎜⎝

ij
⎞

⎟⎟⎟⎟⎠
= −t−

i+ j
2

[i] [ j] ·

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

j

i

i

j

j − i

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ t−
j
2

[i] [i + j] ·

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
i j

j i

i + j

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛

⎜⎜⎜⎜⎝

j i
⎞

⎟⎟⎟⎟⎠
= −t

i+ j
2

[i] [ j] ·

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

j

i

i

j

j − i

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ t
j
2

[i] [i + j] ·

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
i j

j i

i + j

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

When j ≤ i :

⎛

⎜⎜⎜⎜⎝

ij
⎞

⎟⎟⎟⎟⎠
= −t−

i+ j
2

[i] [ j] ·

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

j

i

i

j

i − j

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ t− i
2

[ j] [i + j] ·

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
i j

j i

i + j

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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⎛

⎜⎜⎜⎜⎝

j i
⎞

⎟⎟⎟⎟⎠
= −t

i+ j
2

[i] [ j] ·

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

j

i

i

j

i − j

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ t
i
2

[ j] [i + j] ·

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
i j

j i

i + j

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(v)

⎛

⎜⎜⎜⎜⎝
j

j

i + j i

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎝
j

j

i + ji

⎞

⎟⎟⎟⎟⎠
= [ j] [i + j] ·

⎛

⎜⎜⎜⎜⎝
j

⎞

⎟⎟⎟⎟⎠
.

(vi)

⎛

⎜⎜⎜⎜⎜⎜⎝
i

i

i − j j

⎞

⎟⎟⎟⎟⎟⎟⎠
= [i]2 ·

⎛

⎜⎜⎝ i

⎞

⎟⎟⎠ , where i ≥ j .

(vi i)

⎛

⎜⎜⎜⎜⎜⎝
j i

i

j i

j

i + j

i + j
⎞

⎟⎟⎟⎟⎟⎠
= [i + j]3

[i] ·

⎛

⎜⎜⎜⎜⎜⎝
j i

i − j

j i
⎞

⎟⎟⎟⎟⎟⎠

+ [ j]2 [i + j]2 ·

⎛

⎜⎜⎜⎜⎜⎝
j i

⎞

⎟⎟⎟⎟⎟⎠
, where i ≥ j .

(vi i i)

⎛

⎜⎜⎜⎜⎜⎜⎜⎝
i + j + k

k

i + j

i j
⎞

⎟⎟⎟⎟⎟⎟⎟⎠

= [i + j]
[ j + k] ·

⎛

⎜⎜⎜⎜⎜⎜⎜⎝
i + j + k

k

j + k

i j
⎞

⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

i + j + k

k

i + j

i j

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

= [i + j]
[ j + k] ·

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

i + j + k

k

j + k

i j

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.
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(i x)

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
i j

i + k

i + k − l

k

j − k

l

j + l − k
⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= [ j] [l] [i + k]
[i + j] ·

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
i j

i + k − l j + l − k

i + j

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ [i + k] [ j − k] ·

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

i + k − l

i

j + l − k

j

k − l

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, where j ≥ k ≥ l.

(x)

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

i

i

j

j

0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= [i] [ j] ·

⎛

⎜⎜⎜⎜⎜⎝

i j
⎞

⎟⎟⎟⎟⎟⎠
.

Proof Like other literature on MOY calculus, it is customary to treat a loop as a
special vertex-less trivalent MOY graph. We can then evaluate the Kauffman state
sum formula in relation (i) as follows. Note that both the set of crossings and the set
of unmarked regions (after we place a base point on the circle) are empty. Hence, the
set of Kauffman states S(D) is a singleton set whose unique element is the unique
map s : ∅ = Cr(D) → Re(D)\{Ru, Rv} = ∅. Then, according to Definition 2.11,
M(s) and A(s) are both the trivial product, i.e., 1. With |V | = 0, F(D, c) = 1,
C(D, c) = t−i/2 and |δ| = t−i −1 for the clockwise diagram and similar computation
for the counter-clockwise diagram, Definition 3.7 gives the desired relation (i).

Relation (ii) follows from the definition in Section 2.2, and (iii) follows from the
definition of F(D, c).

To prove the other relations, the basic strategy is similar to Proposition 3.1 - we
establish abijectionbetween the terms in the state sum 〈D, c〉 = |δ|−1 ∑

s∈S(D,δ) M(s)·
A(s) of the left-hand and right-hand side of each relation.

As an illustration, let us prove the first relation in (iv). Note that we used similar
relations in the proof of Proposition 2.18 without giving a proof. Suppose the left-hand
diagram in the first relation of (iv) is D and the right-hand two diagrams are D1 and
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D2. Clearly, the factor F(D, c)C(D, c) is the same for D, D1 and D2, so we are left
to compare (t−1/2 − t1/2)1−|V |〈D, c〉 of both sides.

In the following calculations, we again adopt the notation {i} := t i/2 − t−i/2 =
[i](t1/2 − t−1/2).Note that a state s of the left-hand diagram D assigns one of the four
corners N, E, S, W at the crossings:

ij

•

N

ij

•

E

ij

•

W

ij

•

S

The corresponding local contributions to the state sum 〈D, c〉 are −t−i , 1, t−i and 1,
respectively.

For the right-hand side, we can similarly divide all states into N-, E-, W- or S-states
according to the local assignments in D1 and D2. For example, there is no E-state
for D1 or N-state for D2; the N-states for D1 and the E-states for D2 have the local
assignments as depicted below,

i

j

j

i

j − i •
• •

N

i j

ij

i + j

• •

•

E

and their contributions to the state sum are {i}{ j}t ( j−i)/2 and {i}{i + j}t j/2, respec-
tively. Note that the number of vertices in D1 and D2 is 2 greater than that of D.
After multiplying the coefficients in the first relation of (iv), we see that the local
contributions of all N-states and E-states to both sides coincide.

N-states:
−t−

i+ j
2

[i] [ j] · (t−1/2 − t1/2)−2{i}{ j}t ( j−i)/2 = −t−i

E-states:
t−

j
2

[i] [i + j] · (t−1/2 − t1/2)−2{i}{i + j}t j/2 = 1.
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Similarly, for the local assignment (W), there are the corresponding W-states for
D1 and D2:

W:

i

j

j

i

j − i •
•

•
and

i j

ij

i + j

••

•
.

Their contributions to the state sums are { j − i}{ j}t−i/2 and {i + j}{ j}t−i/2, respec-
tively. We can check that

W-states:
−t−

i+ j
2

[i] [ j] · (t−1/2 − t1/2)−2{ j − i}{ j}t−i/2

+ t−
j
2

[i] [i + j] · (t−1/2 − t1/2)−2 · {i + j}{ j}t−i/2 = t−i .

For the local assignment (S), there are the corresponding S-states for D1 and D2:

S:

i

j

j

i

j − i •
•
•◦ ◦

and

i j

ij

i + j

••

•

◦ ◦

.

Their contributions to the state sums sum up to { j}2 and {i + j}2, respectively. We
can check that

S-states:
−t−

i+ j
2

[i] [ j] · (t−1/2 − t1/2)−2{ j}2

+ t−
j
2

[i] [i + j] · (t−1/2 − t1/2)−2 · {i + j}2 = 1.

Thus, we have exhausted all states of both sides and verified the first relation in (iv).
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The rest of the relations can be shown in a similar way. We remark that in the
proof of relations (v) and (vii), we need to consider the change of curliness C(D, c)
by applying Lemma 3.6. We omit the details here. ��

4.2 Graphical definition of the Alexander polynomial of a link

The MOY-type relations in the previous section provides us a graphical definition of
the Alexander polynomial of a link.

Definition 4.2 Suppose D is a diagram of a link L . Let w(D) be the writhe of D, i.e.,
the number of positive crossings ���� minus the number of negative crossings ���� .
Define

�(D) := tw(D)/2(D), (6)

whereD is the diagram D equipped with a blackboard framing and a constant coloring
c(e) = 1 for each edge e (which corresponds to the link component in this case).

The next lemma implies that �(D) is an invariant of the link L .

Lemma 4.3 �(D) is invariant under Reidemeister moves (I), (II) and (III).

Proof For move (I), we apply the relations (ii) (iv) and (v) and obtain

( )
= −t−1

⎛

⎝ 1 1
⎞

⎠ + t−1/2

[1] [2]

⎛

⎜⎜⎜⎝

1 1

2

1

⎞

⎟⎟⎟⎠

= t−1/2[1] [2]
[1] [2]

⎛

⎜⎝
1

⎞

⎟⎠ = t−1/2

⎛

⎝

⎞

⎠ .

The remaining cases of move (I) can be proved in a similar way.
The proof of the invariance under Reidemeister moves (II) and (III) follows the

same argument of [11, Theorem 3.1]. We leave the detail to the reader. ��
Note that Theorem 4.1 (iv) implies:

⎛

⎜⎝

⎞

⎟⎠ = −t−1

⎛

⎜⎜⎝

1 1
⎞

⎟⎟⎠ + t−1/2

[1] [2] ·

⎛

⎜⎜⎜⎝
2

1 1

1 1
⎞

⎟⎟⎟⎠ , and

⎛

⎜⎝

⎞

⎟⎠ = −t

⎛

⎜⎜⎝

1 1
⎞

⎟⎟⎠ + t1/2
[1] [2] ·

⎛

⎜⎜⎜⎝
2

1 1

1 1
⎞

⎟⎟⎟⎠ .
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Thus, the link invariant �(D) satisfies the skein relation:

�

( )
− �

( )
= (t1/2 − t−1/2)�

( )
.

In addition, Theorem 4.1 (i) implies that �(D) = 1 when D is a trivial knot diagram.
Altogether, it follows that �(D) is the same as the classical one-variable Alexander
polynomial of a link.

4.3 MOY-type relations characterize1(G,c)

Grant showed in [4] that the classical MOY relations in [11] uniquely determine the
MOYpolynomials for colored trivalent graphs. Our next theorem gives a parallel result
for the Alexander polynomial �(G,c)(t).

Theorem 4.4 The relations (i)-(x) determine �(G,c)(t) for a framed trivalent graphG
with a positive coloring c.

Wefirst assert that�(G,c)(t) is computablewhenwe restrict to trivalent plane graphs
colored with {1, 2}. This is analogous to a result of Grant [4, Proposition 5.2] and can
be proved verbatim.

Lemma 4.5 The relations (i)-(x) determine�(G,c)(t)when (G, c) is a trivalent framed
plane graph colored with {1, 2}.

Proof of Theorem 4.4 Given a framed trivalent graph diagram D, we first apply (iii)
and (iv) to eliminate all framing symbols and resolve all crossings to get plane graphs.
Therefore, it suffices to show that �(D,c)(t) is computable when D is a diagram of a
plane graph.

The subsequent argument is adapted from [4, Theorem 5.1]. Our goal is to use a
sequence of the MOY-type relations to replace all edges colored withm by edges with
colors smaller than m, where m > 2 is the maximal color of the graph (following
the idea of Wu [14]). If this can be achieved, then for any colored diagram D, there
is a diagram D

′ that is colored only with {1, 2} such that (D) = p(t) · (D′) for some
function p(t). It then follows from Lemma 4.5 that (D) is computable.

To this end, suppose that D contains an edge colored with m > 2. Since all the
edges have positive colorings, it locally looks like

j m − j

l m − l

m
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with 0 < j, l < m. If j ≥ 2 or l ≥ 2 we apply (vi) and (viii) to obtain the following
identity:

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝
j m − j

l m − l

m

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 1

[ j]2 [l]2

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
j m − j

l m − l

m

j − 1
1

j

1 l − 1

l

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 1

[ j] [l] [m − 1]2

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
j m − j

l m − l

m

l − 1

j − 1

1

1

m − 1

m − 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (7)

Now we may assume that locally the diagram that contains the edge colored with
m looks like

1 m − 1

1 m − 1

m
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We then apply (ix) with i = k = l = 1 and j = m − 1 and (x) to get

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 m − 1

1 m − 1

m

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= [m]
[1] [2] [m − 1] ·

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 m − 1

2

1

1

m − 2

1

m − 1
⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−[m − 2] [m] ·

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 m − 1
⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Observe that the right-hand side diagrams of the equation has no local colors larger
than m − 1 now. This is exactly what we aimed for and thus concludes the proof. ��

5 Properties and applications

In this section, we apply the state sum formula and theMOY-type relations established
in the previous sections to prove some basic properties of the Alexander polynomials
�(G,c)(t) and �(G,c)(t). As an application, we show that the Alexander polynomial
can be used to detect the non-planarity and chirality of a spatial graph.

5.1 Symmetries

Suppose D is a diagram of a graph G. Recall that the mirror image of D, denoted
D∗, is obtained from D by changing all positive (resp. negative) crossings of D into
negative (resp. positive) ones. The orientation reversal of D, denoted−D, is obtained
from reversing all the edge orientations of D. We define G∗ and −G as the graphs
represented by D∗ and −D, respectively. It is standard that G∗ and −G only depends
on G and not on D. When we have a framed graph G, we can define G∗ and −G in a

similar way by also changing the framing symbols and in the corresponding
diagrams accordingly.

Proposition 5.1 The normalized Alexander polynomial�(G,c)(t) of a framed trivalent
graph with positive coloring satisfies the following symmetric properties.

(i) �(G,c)(t)=�(G∗,c)(t−1).
(ii) �(G,c)(t)=�(−G,c)(t).

In particular, a plane graph G with the blackboard framing satisfies the symmetric
relation

�(G,c)(t) = �(G,c)(t
−1).

Proof (i) Given a framed diagram D of G, define

�̃(D,c)(t) := �(D,c)(t) + �(D∗,c)(t−1)

2
.
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One can check that �̃ satisfy all the MOY-type relations in Theorem 4.1. On the
other hand, we know from Theorem 4.4 that those relations completely charac-
terize the Alexander polynomial. In other words, �̃(D,c)(t) = �(D,c)(t). Hence,
�(D,c)(t)=�(D∗,c)(t−1).

(ii) We can argue in a similar way. This time let

�̃(D,c)(t) := �(D,c)(t) + �(−D,c)(t)

2
,

and we are going to check that �̃ satisfy all the MOY-type relations in Theorem 4.1.
Note that all relations except (vii) and (ix) are obviously true with the oppositely
oriented edges, so it suffices for us to show that (vii) and (ix) also hold after the
reverse of orientations. More precisely, we need to verify the relations

⎛

⎜⎜⎜⎜⎜⎝
j i

i

j i

j

i + j

i + j
⎞

⎟⎟⎟⎟⎟⎠
= [i + j]3

[i] ·

⎛

⎜⎜⎜⎜⎜⎝
j i

i − j

j i
⎞

⎟⎟⎟⎟⎟⎠

+ [ j]2 [i + j]2 ·

⎛

⎜⎜⎜⎜⎜⎝
j i

⎞

⎟⎟⎟⎟⎟⎠
,

and

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
i j

i + k

i + k − l

k

j − k

l

j + l − k
⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= [ j] [l] [i + k]
[i + j] ·

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
i j

i + k − l j + l − k

i + j

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ [i + k] [ j − k] ·

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

i + k − l

i

j + l − k

j

k − l

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.



   32 Page 32 of 44 Y. Bao, Z. Wu

As both identities can be proved in the same way as the relations in Theorem 4.1, we
omit the details here.

On the other hand, we know from Theorem 4.4 that those relations completely
characterize the Alexander polynomial. In other words, �̃(D,c)(t) = �(D,c)(t). Hence,
�(D,c)(t) = �(−D,c)(t).

5.2 Integrality

Recall fromDefinition3.2 that theAlexander polynomial�(G,c)(t) equals
〈D,c〉

(t−1/2−t1/2)|V |−1

for any diagram D of G. A priori, �(G,c)(t) is only a rational function of the variable

t± 1
2 . Our next proposition shows that �(G,c)(t) is a genuine polynomial of t± 1

2 when
G has at least one vertex.

Proposition 5.2 Let G be an MOY graph with at least one vertex. Then the Alexander

polynomial �(G,c)(t) ∈ Z[t± 1
2 ].

Proof Recall that 〈D, c〉 = |δ|−1 ∑
s∈S(D,δ) M(s) · A(s), where A(s) = ∏N

p=1 A
s(Cp)

Cp

is defined by the local contribution as exhibited in Fig. 6 (bottom). Our key observation

is that the contribution A
s(Cp)

Cp
for a state s at the crossing Cp of type �

�
assigning

s(Cp) the north corner inside the circular region is equal to t−i/2 − t i/2 for some i ,
which is a factor divisible by t−1/2 − t1/2.

To compute 〈D, c〉 for the graph with |V | ≥ 1 vertices, we place the base point δ on
an edge e1 of color i1 just before it goes into a vertex v1. Then, all states in this decorated
diagram must assign the north corner inside the circular region corresponding to v1,
which contributes a factor A�

C1
= t−i1/2 − t i1/2. As

|δ| = tn−i1 − tn = tn−i1/2 · (t−i1/2 − t i1/2)

for some n, the factor |δ| is cancelled by A�
C1
. In addition, note that A(s) of each state

s consists of a total of |V | − 1 additional factors of the form t−i/2 − t i/2, each of

which corresponds to the contribution of A
s(Cp)

Cp
coming from the remaining |V | − 1

circular regions. Consequently, A(s)
|δ|(t−1/2−t1/2)|V |−1 ∈ Z[t± 1

2 ] for all states s, and so is
the Alexander polynomial �(G,c)(t). ��

5.3 Positivity

One of the fundamental problems in classical knot theory is to determine whether a
given diagram is a projection of the unknot. The Alexander polynomial of knots gives
a simple primary test for the triviality of knots. Analogously, an interesting problem
in spatial graph theory is to determine whether a given diagram is isotopic to a plane
graph diagram.We give in this section a necessary condition in terms of the Alexander
polynomial of graphs.
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Fig. 13 The local contributions P�
Cp

for crossings that correspond to generic edges (left) and the marked

edge (right), respectively

When D is a plane graph diagram, we first reformulate the state sum formula of
�(D,c)(t). To this end, we have only the crossings of type �

�
and we define a new

local contribution P�
Cp

as in Fig. 13.

For each state s, let P(s) = ∏N
p=1 P

s(Cp)

Cp
. Note that for the crossing C1 corre-

sponding to the edge e1 where δ lies,

Ps(C1)
C1

= t−n+i1/2 = t−i1/2 − t i1/2

tn−i1 − tn
= Ms(C1)

C1
· As(C1)

C1

|δ| ;

and for the north corner s(Cp) of a generic crossing Cp,

P
s(Cp)

Cp
= [i] = t−i/2 − t i/2

t−1/2 − t1/2
= 1

t−1/2 − t1/2
· Ms(Cp)

Cp
· As(Cp)

Cp
.

The proof of Proposition 5.2 shows that

∑

s∈S(D,δ)

P(s) = |δ|−1

∑
s∈S(D,δ) M(s) · A(s)

(t−1/2 − t1/2)|V |−1

Hence,
�(D,c)(t) =

∑

s∈S(D,δ)

P(s). (8)

Using this new version of the state sum formula for the Alexander polynomial, it is

straightforward to see �(G,c)(t) ∈ Z[t± 1
2 ], but we can actually prove more. Note that

[i] = t i/2 − t−i/2

t1/2 − t−1/2 = t
i−1
2 + · · · + t

1−i
2

is a polynomial of positive coefficientwhen i > 0; so are all the other local contribution
P�
Cp

. Thus, every term P(s) is a polynomial of positive coefficient. Summing up, we
obtain the following positivity condition on theAlexander polynomial of a plane graph.
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Fig. 14 The 51 in Litherland’s
table of θ -curve diagrams.
Observe that any two of three
curves of the graph form an
unknot. With the given position
of δ, the local assignment of all
states at the circular regions is
unique and is marked out by big
black dots

Theorem 5.3 Suppose G is isotopic to a plane MOY graph with at least one vertex.

Then �(G,c)(t) ∈ Z≥0[t± 1
2 ].

Remark 5.4 Note that the ambiguity of a power of t in the definition of �(G,c)(t) does
not matter, since the sign of the coefficients is unchanged.

Example 5.5 Weconclude this sectionwith a detailed calculation of the graphG exhibit
in Fig. 14, whose undirected version is denoted 51 in Litherland’s table of θ -curve
diagrams [10, Fig. 1]. In this example, we show the non-planarity and chirality of this
graph.

In the following calculation, we assign the balanced colors i , j and i + j and
place the base point δ as in Fig. 14. We want to compute �(G,c)(t) using the state
sum formula, so we begin by enumerating all Kauffman states in the given decorate
diagram. Note that the assignment at the 3 crossings of type �

�
is unique; thus,

in order to specify the states, it is enough to describe the local assignment at the 5
crossings of types ���� and ���� . By carefully exhausting all possibilities, we find 7

states in total. We then compute the value of M(s)·A(s)
|δ|(t−1/2−t1/2)|V |−1 for each state s and

summarize the result in Table 2.
Therefore,

�(G,c)(t) =
∑

s∈S(D,δ)

M(s) · A(s)

|δ|(t−1/2 − t1/2)|V |−1

=
(
t

−3i−3 j
2 − t

−3i− j
2 − t

−i−3 j
2 + t

−i− j
2 + t

i− j
2 + t

j−i
2 − t

i+ j
2

)
· [i + j]

Suppose i, j > 0. Since [i + j] = t
i+ j−1

2 + · · · + t
1−i− j

2 , the term of the highest

degree in�(G,c)(t) is−t− 1
2+i+ j , which has a negative coefficient−1.ByTheorem5.3,

the given graph 51 in Fig. 14 is not isotopic to any plane graph.
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Table 2 All states and their

values of M(s)·A(s)
|δ|(t−1/2−t1/2)|V |−1

State s Value of
M(s) · A(s)

|δ|(t−1/2 − t1/2)|V |−1

a1b1c1d2e1 t
−3i−3 j

2 · [i + j]
a1b1c1d3e2 −t

−i−3 j
2 · [i + j]

a1b1c2d4e2 t
i− j
2 · [i + j]

a2b2c1d2e1 −t
−3i− j

2 · [i + j]
a2b2c1d3e2 t

−i− j
2 · [i + j]

a2b2c2d4e2 −t
+i+ j
2 · [i + j]

a2b3c2d1e2 t
j−i
2 · [i + j]

Furthermore, if we set the color i = j = 1, the Alexander polynomial

�(G,c)(t) = (t−3 − 2t−2 + t−1 + 2 − t) · (t
1
2 + t−

1
2 ).

As �(G,c)(t) = �(G,c)(t−1) · tk for any k, Proposition 5.1 in fact implies the stronger
result that 51 is chiral, i.e., the graph is not isotopic to its mirror.

5.4 Non-vanishing properties

In this section, our main goal is to establish the non-vanishing property for the Alexan-
der polynomial of a connected trivalent plane graph with a positive coloring. One
should compare it with Kronheimer-Mrowka [8, Theorem 1.1], although it is at present
unclear to the authors about the connection of the Alexander polynomial to Tait col-
orings.

Theorem 5.6 Suppose G is a connected trivalent plane graph with a positive coloring
c. Then �(G,c)(t) = 0.

Recall that a bridge is an edge of a graph whose removal increases its number
of connected components. Note that the color of a bridge has to be 0 for a balanced
coloring. Hence, the graphG that has a positive coloring in Theorem 5.6must not have
a bridge. In contrast, we claim that �(G,c)(t) vanishes when G is either not connected
or contains a bridge.

Proposition 5.7 Suppose G is a plane graph that is either not connected or contains
a bridge. Then �(G,c)(t) = 0.

Proof Suppose D is a diagram of G. Remember that the state sum 〈D, c〉 is defined to
be 0when D is not connected. On the other hand, if D has a bridge, then the color of the
edge must be 0. We can apply the relation (x) in Theorem 4.1 to obtain a disconnected
diagram whose Alexander polynomial is 0. ��
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Fig. 15 Resolve the vertices of a local configuration

Fig. 16 Splitting the set of states S(D, δ) to S1 and S2. Note that there are natural correspondences S1
1:1←→

S(D′
1, δ) × S(D′

2, δ) when D′ = D′
1 � D′

2, and S2
1:1←→ S(D′, δ) when D′ is connected

The rest of the section is devoted to the proof of Theorem 5.6. When the vertex set
V ofG is empty, the graphG is simply a trivial knot. In that case,�(G,c)(t) is non-zero
by Theorem 4.1(i). From now on, let us assume that D is a plane graph diagram of G
with at least one vertex with a positive coloring c, unless otherwise specified.

Lemma 5.8 Suppose D is a trivalent plane graph diagram with a positive coloring c.
Then �(D,c)(t) = 0 if and only if the set of states S(D, δ) = ∅.
Proof This follows from Equation (8) and the observation that each term P(s) is a
polynomial of positive coefficients. ��

Our plan is to prove S(D, δ) = ∅ by induction. Note that from Lemma 5.8, the set
S(D, δ) = ∅ if and only if S(D, δ′) = ∅ for any two points δ and δ′. Thus we have
the freedom of placing the base point anywhere on D. The next step is to relate the
set S(D, δ) to the set S(D′, δ) of a simpler graph diagram D′. To this end, we start
with a graph diagram D that contains a local configuration as Fig. 15 and resolve the
vertices to get a new graph diagram D′. Clearly, D′ is also a trivalent plane graph
with a positive coloring. In some cases, D′ may be disconnected. Then decompose
D′ = D′

1 � D′
2 so that the graphs D

′
1 and D′

2 are connected.

Lemma 5.9 For D, D′ as above, if D′ is connected, then S(D′, δ) = ∅ implies that
S(D, δ) = ∅; if D′ is disconnected, then S(D′

i , δ) = ∅ for both i = 1, 2 implies that
S(D, δ) = ∅.

Proof We split the set of states (if there are any) S(D, δ) = S1 � S2 according to the
local assignment shown in Fig. 16.
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Suppose the resulted graph D′ from the above resolution is connected. We claim
that |S2| = |S(D′, δ)|, because every state in S(D′, δ) naturally extends to a state in
S2. In particular, S(D′, δ) = ∅ implies that S(D, δ) = ∅.

Otherwise, D′ is disconnected and assume that D′ = D′
1�D′

2.We claim that |S1| =
|S(D′

1, δ)|× |S(D′
2, δ)|, because a pair of states in S(D′

i , δ) can be naturally extended
to a state in S1. In particular, S(D′

i , δ) = ∅ for i = 1, 2 implies that S(D, δ) = ∅. ��
Lemma 5.10 Suppose D is a connected trivalent plane graph diagram with at least
one vertex, and there is a balanced color c so that each edge is colored with {1, 2}.
Then S(D, δ) = ∅.
Proof We prove by induction on the number of vertices |V | of D. Since D is trivalent,
|V | is an even number. The base case is |V | = 2. The trivial θ -curve is the unique
planar trivalent graph of 2 vertices. In that case, |S(D, δ)| = 1.

Suppose that the statement is true for all |V | ≤ 2n. We now consider a graph
diagram D with 2n + 2 vertices. Note that D must contain a local configuration of
Fig. 15 with i = j = 1, so we resolve the vertices and obtain D′. Since D′ (or D′

1
and D′

2 in the case when D′ is disconnected) is a connected trivalent plane graph
diagram with a strictly fewer number of vertices, we have the inductive hypothesis
that S(D′, δ) = ∅ (resp. S(D′

i , δ) = ∅ for i = 1, 2 when D′ is disconnected). Hence,
Lemma 5.9 implies that S(D, δ) = ∅. ��
Proof of Theorem 5.6 We prove by induction on the maximal color m on the graph G,
which is the same type of argument we used in proving Theorem 4.4. When m = 1,
the vertex set V is empty and we have already discussed the case. When m = 2,
the statement follows from Lemma 5.8 and Lemma 5.10. Thus it suffices to consider
m ≥ 3.

Suppose now that�(D,c)(t) = 0, or equivalently, S(D, δ) = ∅ for all graph diagram
D with maximal color m − 1. We want to prove the same thing for a graph diagram
D with maximal color m.

First consider the case when there is a unique edge on D with the maximal color
m. From Equation (7), we see that

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝
j m − j

l m − l

m

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 1

[ j] [l] [m − 1]2

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
j m − j

l m − l

m

l − 1

j − 1

1

1

m − 1

m − 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Since the Alexander polynomial of the two diagrams are either simultaneously zero or
simultaneously non-zero, it suffices to prove the non-vanishing property of a diagram
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D on the right-hand side of the equation that contains the local configuration:

1 m − 1

1 m − 1

m

Now, we can smooth the crossing and obtain D′ as in Fig. 15. Since the maximal
color of D′ (or D′

1 and D′
2 in the case when D′ is disconnected) is at most m − 1,

we have S(D′, δ) = ∅ (resp. S(D′
i , δ) = ∅ for i = 1, 2 when D′ is disconnected) by

induction. Hence, Lemma 5.9 implies that S(D, δ) = ∅, and Lemma 5.8 implies that
�(D,c)(t) = 0.

In general, suppose D has k edges of the maximal color m. We can apply another
induction on k and repeat the above argument to reduce k. This concludes the
proof. ��

5.5 An intrinsic invariant

So far, we have implicitly assumed embedded graphs in this paper, i.e., they are the
graphs that exist in a specific position. In contrast, an abstract graph is a graph that
is considered to be independent of any particular embedding. Whereas an embedded
graph G has a unique underlying abstract graph g, a given abstract graph g can be
typically embedded inmany different ways and gives rise to distinct embedded graphs.
A property or invariant of a graph is called intrinsic if it only depends on the underlying
abstract graph (and is independent of the embedding).

Suppose G is an MOY graph. Recall that (3) defines �(G,c)(t) up to a power of t ;
hence, �(G,c)(1) is a well-defined invariant that is independent of the graph diagrams.
Our next result shows that �(G,c)(1) is furthermore an intrinsic invariant of graphs.
This may be viewed as a generalization of the classical result that the Alexander
polynomial of a knot satisfies �K (1) = 1.

Proposition 5.11 The value of theAlexander polynomial evaluatedat t = 1,�(G,c)(1),
is an integer-valued invariant of the underlying abstract MOY graph g.

Proof Note that the local contributions M�
Cp

and A�
Cp

evaluated at t = 1 is invariant
under crossing changes (Compare the first and second column of Fig. 6). Since any
other embedded graphs G ′ with the same underlying abstract graph g can be obtained
from G via the Reidemeister moves in Fig. 2 and crossing changes, it follows that
�(G,c)(1) = �(G ′,c)(1); in otherwords, it is indeed an intrinsic invariant of the abstract
MOY graph g. ��
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Fig. 17 The local contribution of sign�
Cp

In light of Proposition 5.11, we propose to define an Alexander invariant for an
abstract MOY graph g by letting

�(g,c) := �(G,c)(1), (9)

where G is an arbitrary MOY embedding of g.
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Appendix A: Replacing sign(s) · m(s)withM(s)

The goal of this appendix is to show Proposition 2.16. To this end, it suffices to prove
the following Proposition. Let (D, δ) be a decorated MOY graph diagram. For any
given total orders on Cr(D) and Re(D), recall that sign(s) is defined to be the sign of
the state s ∈ S(D, δ) as a permutation with respect to the given orders.

Proposition A.1 Let (D, δ) be a decorated MOY graph diagram, we have

sign(s1)

sign(s2)
= M(s1)m(s1)

M(s2)m(s2)
, (10)

for any two states s1, s2 ∈ S(D, δ). Namely we have sign(s) = ∏N
p=1 sign

s(Cp)

Cp
up to

an overall sign change, where sign
s(Cp)

Cp
is the local contribution defined in Fig. 17.

Proof It is easy to see that any diagram D can be transformed into a trivalent graph
diagram by surgery (�I ) or (I�) and surgery (I), which are defined in Figs. 22 and
21. Therefore the proof is a combination of Lemmas A.3, A.4 and A.5. ��

Lemma A.2 Let D be a diagram of a singular link. Namely at each vertex, there are
two edges pointing inwards and two outwards. Then the statement of Theorem A.1
holds.

The Heegaard Floer homology and the Alexander polynomial of a singular link are
studied in [12]. Using statements there we can get Lemma A.2. However to keep the
combinatorial flavor of the paper, we give a proof by recalling some facts in [6].
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A universe U is a connected diagram of a link inR2 where the data of which strand
is over and which is under at each crossing is suppressed. Choose a base point δ on
U and consider the set of states S(U , δ). The Clock Theorem in [6] says that any
two states in S(U , δ) are connected by a sequence of clockwise or counterclockwise
transpositions, which are defined in Fig. 18.

Two states that are connected by a transposition satisfy (10). By the Clock Theorem,
any two states in S(U , δ) satisfy (10). Therefore the sign of a state for a universe is
given by the local contribution in Fig. 17.

Proof of LemmaA.2 Since D is a connected diagram of a singular link, we call the
underlying universe UD . The difference of Cr(D) and Cr(UD) occurs around the
singular crossings, and the same is true for Re(D) and Re(UD).

Suppose Ci is a crossing of UD which corresponds to a singular crossing of D.
There are two crossings in Cr(D) and one circle region in Re(D) around Ci , which
we callCi ,Ci .5 and Ri .5, as in Fig. 19. We choose orders on Cr(D) and Re(D) so that

Ci < Ci .5 < Ci+1 and Ri < Ri .5 < Ri+1.

Then by forgetting Ci .5 and Ri .5 we get orders on Cr(UD) and Re(UD).
We see that any state s in S(D, δ) corresponds to a state s̃ in S(UD, δ) by ignoring

the circle regions:

s̃(Ci ) =

⎧
⎪⎨

⎪⎩

souther corner, s(Ci ) = east corner ∨ s(Ci .5) = west corner

west corner, s(Ci ) = west corner

east corner, s(Ci ) = east corner

Considering the orders above, we have

sign(s) =
{
sign(s̃), if s(Ci .5) = Ri .5

−sign(s̃), if s(Ci ) = Ri .5.

Up to an overall sign change, it is easy to check that the signs defined from the local
contributions in Fig. 19 satisfies the relation above. ��

Lemma A.3 When D is a diagram of an oriented trivalent graph without sinks or
sources, the statement of Theorem A.1 holds.

To prove Lemma A.3, we separate the vertices of a trivalent graph into two groups.
We call a vertex with indegree two and outdegree one an even vertex, and a vertex

Fig. 18 Transpositions in the Clock Theorem
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Fig. 19 The local contribution of sign for a universe UD (left) and a graph D (right)

Fig. 20 The surgery (X) transforms a trivalent graph into a singular link

with indegree one and outdegree two an odd vertex. It is easy to see that the number
of even vertices equals that of odd vertices. We use an oriented simple arc to connect
an even vertex to an odd vertex, and call it surgery (X), which transforms two trivalent
vertices into singular crossings.

Proof of LemmaA.3 Let D1 and D2 be the graph diagrams before and after applying a
surgery (X). We show that if the statement of Theorem A.1 holds for D2, it also holds
for D1.

As shown in Fig. 20, the interior of the newly added arc intersects D1 at sev-
eral points. We assume that the regions that the arc goes across, which we call
R1, R2, . . . , Rk , are distinct regions, otherwise we can replace the arc by an arc with
less intersection points with D1.

The arc separates each region Rq for 1 ≤ q ≤ k into two regions since
D1 is a connected diagram. We label the regions in D2 around the arc by
R1, R1.5, R2, R2.5, . . . , Rk, Rk.5 as shown in Fig. 20, and label the newly created
crossings by C1,C2, . . . ,Ck . Note that Cr(D2) = Cr(D1) ∪ {C1,C2, . . . ,Ck}. Con-
sider an order on Cr(D1) and extend it to an order on Cr(D2) by requiring that

C1 < C2 < · · · < Ck < any other crossing in Cr(D1).
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Consider an order on Re(D2) so that

R1 < R1.5 < R2 < R2.5 < · · · < Rk < Rk.5.

Then we get an order on Re(D1) by forgetting Ri .5’s.
Surgery (X) naturally induces an injective map φ : S(D1, δ) → S(D2, δ) described

as below. Given s ∈ S(D1, δ), φ(s) sends the crossingCp to the region Rp (resp. Rp.5)
if s does not occupy any corner in Rp (resp. Rp.5), for 1 ≤ p ≤ k.

By considering the orders above, we can check that

sign(s1)

sign(s2)
=

sign(φ(s1))
∏k

p=1 sign
φ(s1)(Cp)

Cp

sign(φ(s2))
∏k

p=1 sign
φ(s2)(Cp)

Cp

=
∏

Cp>Ck
sign

φ(s1)(Cp)

Cp
∏

Cp>Ck
sign

φ(s1)(Cp)

Cp

for any two states s1, s2 ∈ S(D1, δ). The first equality comes from a direct calculation
of the sign using the orders defined above, and the second equality follows from the
assumption that the statement of Theorem A.1 holds for D2. Note that the crossings
of D2 that are greater than Ck are exactly the crossings of D1. Therefore

sign(s1)

sign(s2)
=

∏
Cp∈Cr(D1)

sign
s1(Cp)

Cp
∏

Cp∈Cr(D1)
sign

s1(Cp)

Cp

.

This completes the proof of the lemma. ��
Lemma A.4 If the statement of Theorem A.1 holds for the diagram after a surgery (I),
then it also holds for the one before the surgery (I) (see Fig. 21).

Proof Suppose the diagrams before and after a surgery (I) are D1 and D2. It is easy
to see that the surgery (I) induces a one-one map φ : s(D1, δ) → s(D2, δ) since C1
must be mapped to R1. Therefore

sign(s1)

sign(s2)
= sign(φ(s1))

sign(φ(s2))
,

the right-hand side of which, by assumption, is defined by the local contribution of
sign. This completes the proof. ��

Lemma A.5 If the statement of Theorem A.1 holds for the diagram after a surgery
(�I ) or (I�), then it also holds for the one before the surgery (�I ) or (I�) (see Fig.
22).

Proof We prove the lemma for surgery (�I), and the case of surgery (I�) can be
proved similarly. Suppose the diagrams before and after surgery (�I)) are D1 and D2.
Consider an order on Cr(D2), which induces an ordering in Cr(D1) by forgetting C1.
Since Re(D2) = Re(D1)∪{R1}, an order on Re(D2) also induces an order on Re(D1)

by forgetting R1.
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Fig. 21 Surgery (I)

Fig. 22 Surgery (I�) and (�I)

The surgery (�I)) induces an injective map φ : s(D1, δ) → s(D2, δ) as below.
Given s ∈ s(D1, δ), if s(Ck) = R2, let φ(s)(C1) = R1 and φ(s) maps the other
crossings the same way as s. If s(Ck) = R2 and s(Ck−1) is the east corner of Ck−1,
let φ(s)(Ck) = R1, φ(s)(Ck−1) = R2 and φ(s)(C1) be the east corner. If s(Ck) = R2
and s(Ck−1) is the west corner, then s(C2) must be its west corner. In this case, let
φ(s)(Ck) = R1, φ(s)(C2) = R2 and φ(s)(C1) the west corner.

In each case, we can check that sign(s) = sign(φ(s)) for any s ∈ s(D1, δ). The
right-hand side of the equality, by assumption, is defined by the local contribution of
sign. Since φ is an injective map, the local definition of sign works as well for D1. ��
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