ASYMPTOTIC BEHAVIOR OF THE LEAST ENERGY
SOLUTION OF A PROBLEM WITH COMPETING POWERS

E. N. DANCER, SANJIBAN SANTRA, AND JUNCHENG WEIL

ABSTRACT. We consider the problem £2Au — u¢ +uP = 0 in Q, 4 > 0 in Q,
u =0 on 9N. Here Q is a smooth bounded domain in RV, 1 < ¢ <p < x*_';
if N > 3 and ¢ is a small positive parameter. We study the asymptotic
behavior of the least energy solution as & goes to zero in the case ¢ < -
We show that the limiting behavior is dominated by the singular solution
AG—G? =01in Q\{P},G = 0 on 992. The reduced energy is of nonlocal type.

1. INTRODUCTION

There has been considerable interest in understanding the asymptotic behavior
of positive solutions of the elliptic problem

{EzAu+f(u) =0 inQ

1.1
(L.1) ©u>0in Q,u=0 ondN

where ¢ > 0 is a parameter, f is a superlinear nonlinearity with f(0) = 0 and
Q) is a smooth bounded domain in RY. The existence and asymptotic behavior
of solutions to (1.1) depend crucially on the behavior of f near 0. It is easy to
check that problem (1.1) admits solutions on € if f/(0) < 0, while there may be
no nontrivial solutions for small & > 0 if f'(0) > 0. The case of f (0) < 0 is called
positive mass case and has been studied by many authors. We refer to the papers
Berestycki-Lions [2], del Pino-Felmer [8], Ni-Wei [23] and the references therein.

In this paper, we consider the problems in the zero mass case i.e. when f(0) =0
and f'(0) = 0. This problem (1.1) can be viewed as borderline problems. Berestycki
and Lions in [2] proved the existence of ground state solutions if f(u) behaves like
|u|P for large u and |u|? for small u where p and ¢ are respectively supercritical and
subcritical. We remark that this type of equations arises in the Yang-Mills theory
and are much harder to handle; see Gidas [13] and Gidas-Ni-Nirenberg [14].

Flucher-Wei [12] considered the case when f(u) = (u — 1)} with p € (1, X%2)
and showed that the least energy solution concentrates at a harmonic center of
the domain. On the other hand, Dancer-Santra [7] considered another prototype
zero-mass problem

EAu—uwi+uP=0 inQ
(1.2) u>0 inQ
u=0 on 901,

1991 Mathematics Subject Classification. 35J10, 35J65.
Key words and phrases. least energy solution, asymptotic behavior, zero mass.

1



2 E. N. DANCER, SANJIBAN SANTRA, AND JUNCHENG WEI

where 1 < ¢ < p < % and N > 3. They have proved that for ¢ € (g, %Jjg),
the least energy solution concentrates at a harmonic center of 2. Here ¢, = %
is called zero mass exponent. Therefore for ¢ > g, problem (1.2) behaves similar
to the case of f(u) = (u—1)§. An open problem is the case of ¢ € (1,¢,].

In this paper, we show that when g is below the zero mass exponent the asymp-
totic behavior of the least energy solution of problem (1.2) is not determined by
harmonic centers, instead it is determined by a nonlinear singular problem. We
state this singular problem first. For any { € © and ¢ < g,, let G4(-,&) be the

unique positive weakly singular solution (see Brezis—Oswald [3]) to the problem
AyGy(7,§) — Gq(2,6)" =0 in Q\{¢},

w

(1.3) Gy(@,8) ~ —

o — g7

Gy(z,6) =0 on 9N.

for z ~ &,

where w, is defined as
HEH-w-2)] fe<a
(1.4) wgfl = N-2
N—2 it g =
( V2 ) I g = gx

Surprisingly, it turns out that the least energy solution u. concentrates at a
global minimum £ of the renormalized energy

(1.5)
T 1 2 1 a+1 . (g=1) N 9 94 q+1
(I)Q(é‘) - }I_I)% Q\Bs (6) {2|VGQ($J§)| +q+ 1Gq (m,ﬁ) 2(q+ 1)6 wq .
Note that a similar kind of renormalized energy
1
1.6 W(€) = li Vow|* —krlog = |.
(16) =i | [ (9ol ~kriog

arises when we study the minimization problem

E= inf/ |Vol®.
vEE Q,
where Q, = By \ UL, B(a;,p) C R? and a; are points in B; such that B(a;, p) N
B(aj,p) = 0 for i # j. Furthermore,
E={ve H(Q,;S");v =g on OB and deg(v,0B(a;,p)) = +1 for i = 1,2,--- ,d}

see Bethuel-Brezis-Hélein [1]. In other words @, is the remaining energy after a
removal of the singular core energy which arises in theoretical physics, see Kleman

[17].
In this paper we study the asymptotic behavior of the least energy solution when
qe€ (17 (I*]-
Let us consider the entire problem
AU -U'4+UP =0 in RV,
U>0 in RV,
(1.7
U—-0 as |z| = oo,

UecC®(RY).
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By Li-Ni [19] and Kwong-Zhang [18], (1.7) has a unique radial solution U such that
Ue D2 (RV) nLe+! (RY).

Let a = max{qf—l, N — 2}. Our first result concerns q < gy.

Theorem 1.1. For N > 2 and q < qx, there exists €9 > 0 such that for every
e € (0,e0), the least energy positive solution of (1.2) u. € HJ(S)) has a unique
point of mazimum x.. Moreover, u. concentrates at the global minimum of @,
where ®, satisfies (1.5).

For ¢ = g4, the statement is more complicated. First we need to derive the decay
estimates of the solution of the entire problem when ¢ = ¢,. This estimate is also
obtained in Veron [27]. We obtain this in Section 5 by a slightly different method.
Lemma 1.1. Let ¢ = q«. Then the solution U of (1.7) satisfies

1

as r — +o0o. Moreover,
N-—-2
(1.9) lim |z|N"? (log |z]) > U(|z]) = w,.

|z|— 00

where w,, satisfies (1.4).

Let T be a positive real number such that 7" > diam €2, then ﬁ > 1 for any
two points z and £ in Q. Without loss of generality, we consider T = 1. Furthermore,
if ¢ = g, and for any & € Q, we let H,, (-,&) be the solution to the problem

A H, (2,6) =0 in €,

(1.10) 1

H, (z,€) on 0.

N-—2

|z — N2 log |z — &[] =

Our second theorem concerns the borderline case ¢ = ¢.

Theorem 1.2. For N > 3 and q¢ = ¢, there exists g > 0 such that for every
e € (0,20), the least energy positive solution of (1.2) u. € H}(Q) has a unique
point of mazimum z.. Furthermore, u. concentrates at the global minima of ¥, ,
where ¥, is defined by

V() = /Q VH,, (2,6 d
1
tW-y /RN\Q [z~ P Dlloglz — V2%
oWy /\ o= s|2<Nl>|}og FEri R
N -1)(N -2 1
» BT )2( )/RN\Q [ — €0 D[ log [ — gV

In the case ¢ = 1, the existence of a single spike solution was first studied by
Ni-Wei [23] and they proved that the least energy solution u. has a unique (local)
maximum, and it is achieved exactly at one point P. . Furthermore, u. tends
to 0 except at its peak P., thereby exhibiting a single spike-layer, and d(P:, ) —
mazpcad(P, ) as e — 0, where d denotes the distance function. A simplified proof
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was given by Del Pino—Felmer in [8], without using the non-degeneracy condition.
But in our case all the terms are non local.

There are two difficulties in the case of ¢ < g,. First since both the inner part
of the spike and the outer part of the spike contribute to the second term of the
expansion of the energy, we have to glue the inner and outer part at some neck
region. We achieve this by introducing a nonlinear projection in Section 3. This
seems to be new. Secondly, it seems quite difficult to exclude the boundary spikes
since the reduced energy is nonlocal.

We summarize the asymptotic behavior of the least energy solution to (1.2) in
the following table.

e<<1 | a=1 |1<¢<a| a=a | e<a<iH}

location of maximum points | maxd(P,d9) | max ®,(¢) | max ¥, () | harmonic center

Locating the concentrating points is an intriguing problem in nonlinear elliptic
equations. As far as we know, there are three functions identified for concentra-
tion. The first one is the distance function for singularly perturbed problems with
nonzero mass (Ni-Wei [23], Del Pino-Felmer [8], Gui-Wei [16]). This is mainly due
to the exponential decaying of the ground states. The second function is the mean
curvature function for singularly perturbed Neumann problems (Ni-Takagi [22]).
This is the effect of boundary condition. The last one, which is commonly found in
most of the concentration phenomena for Dirichlet problems, is the Green function
and its diagonal part. We refer to Bethuel-Brezis-Helen [1], Del Pino-Kowalczyk-
Musso [10] for Ginzburg-Landau equations, Del Pino-Felmer-Musso [9] and Rey [24]
for Brezis-Nirenberg type problems, Del Pino-Kowalczyk-Musso [11] for Liouville
equations. As far as we know, the nonlocal renormalized energy for zero mass is
new, and the nonlinear singular function represents a new type of concentration
locations.

In this paper, we have only studied the concentration behavior for least en-
ergy solutions. It may be possible to construct concentrating solutions at other
critical points of the renormalized energy, by using the nonlinear projection. The
main problem is the topological properties of the renormalized energy. Another
interesting question is the existence of multiple concentrations (for example, on
topologically nontrivial domains).

Finally, we mention two interesting papers by Merle-Peletier [20]-[21] in which
they studied problem (1.2) when ¢ > p > % The asymptotic behavior of the
blow-up solutions is determined by the harmonic centers.

The paper is organized as follows: In Section 2, we prove existence of the least
energy solution and give a preliminary analysis of its asymptotic behavior. Section
3 contains the main part of the proof of Theorem 1.1: following [23], we obtain
the upper and lower bound for the energy. To this end, we need to introduce a
nonlinear projection and study the difference between the least energy solution and
its nonlinear projection. The proofs will be quite involved. In Section 4, we show
that there is no boundary spikes. We show that when the spikes move toward the
boundary its energy increases. Section 5 and Section 6 are devoted to the borderline
Case § = Q-



2. PRELIMINARIES
Let us modify the problem (1.2) to
?Au— (ut) 4+ ()P =0 inQ
(2.1) w>0 in©
u=0 on o
where u™ = max{u, 0}. It is easy to show that any solution of (2.1) is positive and

is in fact a positive solution to (1.2). Note that the associated functional to the
problem (2.1) is

2
B CETENT R SRt Lo fyatt
Js(u)—/Q (2|W| WP )

Moreover, J. satisfies Palais-Smale condition and all the conditions of the moun-
tain pass theorem and hence there exists a mountain pass solution u. > 0 and a
mountain pass critical value

0< ¢ = inf Jo((t
< e = inf max (v(®))

where
I = {y € C([0,1], H5()) : 7(0) = 0,7(1) = e}
Here e € H}(Q) is such that J.(e) < 0.
With a change of variable the problem (1.2) takes the form
Au—uf4+uP =0 1in .
(2.2) u>0 inQ,
u=0 on 99,

where Q, = % is a re-scaled version of €. The functional associated to the problem
(2.2) is
I.(u) = / <1|Vu|2 - L(u+)erl + L(iﬁ)q“)dac

Note that I.(0) = 0, I.(tu) = —oo as t = +oo and I, satisfies the Palais-Smale
condition on Hj (). Hence we obtain a positive solution v, for each ¢ > 0 obtained
by the mountain pass theorem. Then the mountain pass critical value b, is given
by

. = inf I.
be = inf [, (v(t))

where
. = {y € C([0,1], Hy () : 7(0) = 0,7(1) # 0, I.(y(1)) < 0}

Note that as 0 is a strict local minima of I, b. > 0, Ve > 0. Also note that
Jo(u) = eV I, (u) which implies that ¢, = eVb,. Let

N(2) = {u € H} () :/ |Vul? +/ (ut)rtt =/Q (u+)p+1}.

€ €

Lemma 2.1. (a) For alle >0

b = inf IL(v()= inf I(u)= inf I (tu).
TR O 7 o T T el o B
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(b) 0 < b. < C for sufficiently small € for some C > 0 where C is independent
of . Hence along a subsequence b, converges as € — 0.
(¢) Let z. be a point of local mazximum of ve. Then lirr(l)d(zg,aﬂg) = +00.
E—>

(d) Ker(A + f'(U)) N DM2(RY) = { 2L, ... 203,
Proof. This follows from [7]. Since

bE = inf Is = IE e
B (v) = Ic(ve)

we have

1 1 1 1
2 bmri= (A1) [ el (L) [ e
23) (ve) (2 p+1>/95| vel +<q+1 p+1) 0. °

which implies that [, [Vo:|?, [, v2*! and [, v¢*! are uniformly bounded. First
note that from (1.2), maxue > 1. Also note that by Gidas-Spruck [15] we obtain
T
[|ve|| oo (rny < C and from Schauder estimates, it follows that there exists C' > 0
such that ||v5||02,g(RN) < C for some 0 < 8 < 1. Hence by the Ascoli-Arzela’s
loc
theorem there exists an U # 0 such that

lve = Ullcz mny — 0 ase — 0.

Blowing up around z. (where z. is a point of maximum of v.) we easily see by a
limit argument and the strong maximum principle U satisfies (1.7). Note U — 0
as |z| = +oo follows from [7]. The only case we have difficulty if z. is within order
1 of 99).. In this case, we obtain a non-trivial solution of the half space problem

Au—u?+uP =0 ian
(2.4) u=0 onyy =0
u € C*(RY)

Suppose U is a solution of (2.4) which achieves its maximum, then by [6] it follows
that % > 0 in RY and hence U cannot achieve a maximum, a contradiction.
Using the above argument, it is easy to show that d(z.,09Q.) & +oo ase = 0. O

Moreover, if a := max{q%l, N — 2} we have from Dancer—Santra [7]
(2.5) lim |2|*U(z) =wq >0, if ¢ # ¢s.
|z|— 00
It is easy to check that if

(2'6) q < gx
then « > N — 2 and

Wy 1
(27) U(IL') = W + O(W) as |.'L'| — 00,
/ —92)2 2
where a = —¥ + M. Moreover,

lim roetD2(p) = et
r—00 T( ) q

Recall that for any £ € Q, let Gy(-,€) be defined at (1.3). We consider the
singular solution of G which behaves like

GQ(mJé-) ~ |.'13 i)qé"a
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near €. Note that there exist another singular solution which behaves like the fun-
damental solution but it does not match with the inner solution: the inner solution
is like £®|z|~*, while the other singular solution is like eV 2|z~ ™~2) for N > 3
and in the case N = 2, the other singular solution behaves like log ‘;—‘

Then we can obtain a first order asymptotic of G,

Gy(@,6) = —2_ + O(jz — €[")

|z —¢|
where v > a + (2 — N) > 0. Moreover, for ¢ > g, there exists no singular solutions
of (1.3) see Brezis-Veron[4] and the choice of 7 follows from Veron [25].

Lemma 2.2. The function Hy, : Q x Q — R Hg, (z,£) is positive and = —
H, (z,z) is continuous in Q x Q. Furthermore, Hy, (z,z) = +00 as d(z,00) — 0.

Proof. Let (zo,y0) € 2 x Q, let B = B(xg,r) be a ball centered at xo with closures
in Q. Since Hy, (z,y) is a harmonic function, then by the maximum principle we
have
1 1
0< Hg,(z,y) < sup ~—s < Sup sup Nz
ved® |z —y|N=2|loglz —y||7="  seByesn |z —y|N?|logle —y|[ Tz

< +00.

Hence the set {H,, (z,y)|xz € B} is uniformly bounded in € and therefore is uni-
formly equicontinuous on compact sets of Q. As a result, we have

|Hy, (z,y) — Hy, (20, 90)| < |Hy, (2,y) — Hy, (2,90)| + [Hy, (2, 90) — Hq, (20, 90)]

and the first term can be made arbitrarily small by the equicontinuity of the family
{H,, (z,y)|z € B} at yo and the smallness of the last term follows by the continuity
of Hy, (.,y0) at zo.

Let H,, p be a solution of

Aqu*,B(maé-) =0 in B,
. 1
28 Hy, B(z,§) = ~— on 0B.
|z — &§IN=2|log |z — &|| 2
Since
(2.9) H,, g(zx,z0) < Hy, (2,20) on OB

hence by the maximum principle we have
H,, g(z,z0) < Hy, (2,20) in B.
Hence Hy, (z0,20) > H,, B(T0,70) = : — — +ooif d(zg,00) =

N
d(z0,02)N 2| log d(z0,092)| 2
0. O

For any £ € RV and for any € > 0 set
Ueg(z) :==U (xT_g) zeRY.

It is clear that U ¢ solves

(2.10) —e?AU. ¢ =UL, - U!, in RY.
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3. PROFILE OF SPIKES ¢ < ¢4

Choose ¢ > 0 sufficiently small. In course of the proof, we will choose § = £7°
where 09 < 1. Choose a n € C§°(Q) such that 0 <n <1

{1 in |z —¢ <4,

3-1) M) =30 injz—g > 2.

We define a nonlinear projection in the following way: PU. ¢ € H}() is defined
as

(3.2) PU. ¢ =nUc ¢+ (1 —n)e“Gy(z,§).

Note that this kind of projection is new: unlike [23] or Dancer-Santra [7], here
we have to match the inner and outer solutions in a special way. The reason for
this being simple: both inner and outer part of the solutions contribute equally to
the reduced energy.

First note that

w
Gy(z, &) — _ = Oz —&|").
o(28) = 2 = Ol =)
So the difference is regular. First we define
w
z,6) =Gy(x,€) — —L—
f( é-) q( f) |$ _ €|a
Lemma 3.1. Then the following happens
(3.3) V(@ &)= O(z— &)
and
(3.4) |Af(z,€)| = O(lz - €"7?)
near &.

Proof. Without loss of generality, we consider £ = 0. Then
q-1
(3.5) Af = Tl = O,
It is easy to check that there exists a R > 0 such that
|f(z)| < C|z|” in Br(0) C Q.
Let z € B(£) and r = |2i| For any € By define f(y) = f(z + ry). Then from (3.5)
we have

Af=r’Af =i f + O(lz +ry|").

Hence by elliptic estimates

VO] < CUlfllzeBio) + I1AFlL= (B, 0))
< Cllfllzee(Bi(oy
< Clfllzes(By(z))-
As aresult |Vf(z)| < Clz|*~!. Similarly

1AF(0)] < ClIfllze5,(0)
and hence we have
|Af(z)| < Clz™2.



Lemma 3.2. The function

— 1 2 i 1 _ (g=1) ‘N2 24 1
®,5(8) = ~/Q\BJ(§) {2|VGq(m,£)| + q+1Gg+ (z,€) 2(q+1)5 w;H }

is uniformly bounded and non-decreasing as 6 | 0. Hence ®4(€) exists finitely.

Proof. Let §; > 02, then Q\ By, (§) C 2\ Bs,(€) and hence

1 1 1 1
~ VG, (z, &) P+ ——=G (2, }</ {—VG z,6)P+ ——GI (x, }
Lo, o laveior qeeo) < [ {G9Gmor s o e

and —6N 2729 < —§N 72722 As a result, we have

By.6,(§) < @g,6,(6)-

Furthermore, using Lemma 3.1 we have

(q — 1) 1 [/ 1 N—2-2
i < wit ————dx— ¢ *l +0(1).
@s(6) < 2(g+1) 1 O\Bs (¢) [T — &[>T @

Hence we have
|®4,5(8)] < C

where C > 0 independent of §. Thus along a subsequence ®,;(£) converges as
6 —0. O

Lemma 3.3. The following expansion holds

g+1

(36) o (PUe ) = e¥oo + €251 8,(€) + 0 (Eij)

uniformly with respect to & in compact sets of 2, where

(3.7) Io(U) = /R N [ 280 111)UP+1(3;) - 2(qq_+11)Uq+1(m)] dx

and the renormalized energy

1 1
i) : = lim —/ VG(z, &) |Pde + —— Gy(z, &) dx
& = pmls [ V@O g [ (G
_ q— 1 N—-(2a+2), ,q+1
(3.8) T 0 wa .

Proof. Set F(s) := o1y (sT)P*" — 3 (s7)*t!. Here a = _23. Let us compute the
reduced energy.

g2 2 1 q+1 1 pt+1
1(PUe) = 5 [ 1V (PU.c@) Plot— [ (PUa)™ do—= [ (PULe@)™" o
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We estimate

[Py = [ v@eeon [ e
Q Bs(£) Q\Bas (§)

+ / (€9Gy + (Usg — €*Gy)n)™!
i< |z—€|<26

/ U ()"t 4 g2tV G (z,€)
B;(¢) Q\Bs (6)

t [ Gt U= G — (76 o
0<|z—E€|<26

/ U. §(m)q-i-l + goleg+1) [/ G‘H'l(:v,{) _ 5N—2a—2wq+1]
RN N\Bs(6) !

+ [(ean  (Use — e*Go)m)™ — <e“Gq)q+1]dw
0<|z—€|<26

- Ut 4 gelatl) [/ Qo+l (z,€) — 5N—2a—2wq+1]
RN NBs() !

+ O(1)exlatD+1 / GY(x 5){& +lz— £|'7}dx
s<lo—g|<2s |z — g|alp-a+a
— EN/ yatt +Eoz(q+1) [/ GZ+1($=§) _5N2a2wg+1]
RN Q\Bs ()
Ea(p_‘I)

+ 0 Eo‘(‘”l)/ <7 +lz—¢ "_O‘q) dz.
@) o< |z—€| <28 |z — |ater | |

First note that
VU inlz—¢ <4,

. PU. = .
(3:9) VPUe.e(2) {EO‘VGq in |z —&| > 20.

and in the annulus § < |z — §| < 2§ we have
VPU ¢(2) = e*VGq(2,8) +2Vn(e®Gy(x,€) — Ueg) + 0V (e*Gq(@,€) — Ueye)-

Hence we obtain

[vevet= [  wUpe [ NG,@oP
Q lz—€|<d |z—€&|>6

+ 4/ V2 e%G (@, €) — U ¢ 2
i<|z—€|<26

+ 1P1VEGalo,€) ~ Vel + 22 VG, V(G (2,6) — U)
6<|z—€|<26 6<|z—€|<26
+ 4Ea/ VnVG(e*Gy(3,€) — Uee) + 4/ nVnV(e*Gy = Uee)(€%Gq — Ue ).
6<|z—€|<28 0<|z—€|<26

Thus we obtain

[V (PUcanPas = & [ WP st [ 96,0 - o
Q RN Q\Bg(fj)

+ 0(1)6a(q+1)+1(Sfa(q+1)fl+N
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and similarly we have

/(F’Us,s(ﬂf))”+1 dr = EN/ Ut 4 geletd)
Q RN

/ Gg+1 (IIJ, é-) _ 5N2a2w(111+1:|
Q\B;s ()

+ O@1)eeletD) ﬂ + |z — €V )d
€ o gatar T .

0<|z—€|<28

Hence we have

(3.10) Jo (PUcg) = eV I + %2120, (€) + o(1)e22H2.

Let
E.[u] = e?Au — u? + uP.
Now we estimate the error due to PU. ¢(z).
Lemma 3.4. For § > 0, sufficiently small, there exists o' > 0 such that
0 in |z —§l <0,

1 .

erGh in |z — &l > 20.

(3.11) E.[PU.£(z)] = O<52+a+0:

Proof. First it is easy to note that
3.12 E.[PU, 0 n o= £ <o
(3-12) HAPUe(@)] = eGP in |z — €| > 20.

So we need to calculate the error when § < |z — £| < 26. We write
PU () = U g(2) + (1 —n)(eGy(x, &) — Uc g(x))-
Hence we have
APUcg(z) = AU-g() +AQ —n)(e"Gy(x,8) — Uee())
= AUce(z) + (1 —nA(E*Gy(2,8) — U ()
2VnV(e* Gy, §) — Us g(x)) + An(e®Gy(z, ) — U g())-
As a result, we have

calp—a)+a+2
|z — £[er—a)tat2

52APUE,§($) = EQAUE,g(ZU) + O<52+a|w -+

ea(p—a)+o+2
|3; - £|a(p—q)+a+1
g(p—a)+a+2
)

+ etz ¢+

+ etz —¢7 +

(PU.£(2))! = (Ueg(@)? + O(UL (£°Gy = Ueye))

. go(p—)+ot+2 e s
= UE,E+O( |$_£|ap te |.’L'—£| )
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and

(PU-e(2))" = (Usg(@)? + O(UZS (2Gq — U ¢))

» go(p—a)tot2 e s
= UE,€+O( |x_€|ap + € |.Z'_€| )

Summing up all the terms and using the fact (2.10) we obtain

a(p—q)+a+2
_ 24+« —2 €
E.[PU.¢(z)] = (9<e |z — & + |z — g|e-otat?
a(p—q)+a+2

2+ _ ¢yt €

+ € a|37 '€| + |;L' _ é‘la(p—q)-‘ra-i-l
a(p—q)+a+2 a(p—q)+a+2

MHa, e &0 T L et gp2

+ - + |x_£|a(pq)+a) ( EEE +e |z —¢| )

Hence we have

E.[PU.¢(z)] = 0(62+a5(’y—2) +Ea(p—q)+a+25—(a(p—Q)+a+2))

= 5‘10(626—2(61 +€a(P_Q)5—(a(p—q)+a))>-

As a result, we can choose o’ € (0,1) sufficiently small such that

!
8%ﬂ+0 >

(3.13) E[PU.¢(z)] = 0(m

Lemma 3.5. Moreover, if £ € §, then

2(at1) 2(a+1)
e <eNlo+e a1 ®,(8) +o(e =1 ).

Proof. Let £ be a point in 2. From Lemma 3.3, we obtain
]. q q
Jo (PU.¢) =V + 552%1@,,(5) +o (52%1) .
Let t. € (0,4+00) be the unique constant such that

JE(tEPUE,g) = I?Zag{ JE(tPUE,g)

hence
(3.14) (J'(t.PU. ), PU.¢) = 0.
We claim that t. = 1+ O(g%) as € — 0. We have

VAPV, P = [ (FIVPULP - (PR + (PULOY)

(3.15) / E.[PU. ,.|PU. ,, = O(*1+D).
Q

and analyzing the higher order terms, and using the fact that

/ |VU|? :/ Up+1—/ UItt,
RN RN RN
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There exists a ¢ > 0 such that

J!(PU.¢)(PUc¢, PUcg) = / (E2|VPUE,5|2 — p(PU. )5 +Q(PUE,§)1+1>

€

eN/ ( —(p—-1UP™ + (¢— 1)U4+1> + O(1)eatD)
RN

= EN(— (p—q)/ yrtt —(q—l)/ |VU|? +o(1))
RN RN
(3.16) < —del.
Since (J{(t:PUz¢), PUc¢) = 0 and (J{(PUs ), PUc ¢) = O(l)ea(q-i-l), we have
(JL(t-PUs¢) = JU(PUs¢), PUe.¢) = O(1)e*("*V

which implies

(@-1) [ EIVPUP-(-1) [ PO+t -1) [ (PUQY = Oeetet)
Q Q Q

and letting PU. ¢(z) = PU. ¢(ex + £) in Q. we have

(2-1) [ IVPU. -t [
Qs

which implies that ¢ — 1 = O(1)e®. Hence we obtain
Je(us) < max J-(tPU.¢) = J-(t-PU. ¢)

(PNUE,ﬁ)TlﬂL(tgH—l)/ (P~UE,§)1+1 = O(1)e(@+D-N

€ €

1
= JE(PU5,§) + (ts - 1)<JEI(PU57£)’PU57§) + i(ts - 1)2J£'(775PU5,£)(PU5,§,PUs,n)

IN

J-(PU.¢) + o(1)e*(e+D)
< NI+ 62%@(1(5) +o (52%)
where 7). lies in between ¢, and 1. O
Lemma 3.6. For sufficiently small € > 0, u. has a unigue maximum.

Proof. First note by an application of mountain pass theorem, &2 fQ |Vue|? < C
and hence by Moser iteration, u.(x) is uniformly bounded. Thus applying Schauder
estimates we obtain a C' > 0 such that |[eDu.||~ < C. If possible, let & ; and
& 2 are two distinct local maxima of u.. Then it easily follows that u (1) > 1
and wu. (& 2) > 1. Suppose & = % Suppose along a subsequence |£.| = § €
[0,400). Let & = lim._g @ Then if § > 0, then define v:(y) = uc(ey + & 2)
then it follows that, v. — U in C2_(R") and satisfies

loc
~AU=U?-U? inRN
U'0)y=U0'(6)=0
U->0 as |z] = o0
which is a contradiction as U'(r) < 0 for r € (0,+00). Now suppose § = 0. Then
ve = U in C}(RY) and U has a unique critical point at 0 (since U(0) > 1 and
U is a radial). Thus v. has a critical point in a neighborhood of zero which is a

contradiction. Hence |£.| = +00 as e — 0.
We claim that u. has exactly one maximum for sufficiently small € > 0. First note



14 E. N. DANCER, SANJIBAN SANTRA, AND JUNCHENG WEI

that as u. is a mountain pass solution and hence it has Morse index at most one. By
the above result Kl:;g“‘ — 400 ase — 0. Now by [7] the principal eigenvalue A; >
0 such that —Ay — f'(U)y = A9 and is easy to check that ¢, € DV2(RV) hence
S~ V]2 = f'(U)1? < 0. Now using an appropriate cut-off function, we can obtain
the same property for ¢ with compact support. Now define a two dimensional
subspace spanned by ¥ (z) = ¢(%) and 92 (z) = @b(z;ﬁ) where z € ). Note

that the support supp 11 N supp Y2 = 0 as “516;@ — 400. Hence we obtain a two
dimensional space on which &2 [ [V;|? — f'(ue)i = [on [Vil? — f/(U)Y7 <0
fori =1,2. Asu. —» U in C3(RY) and +; has compact support. Hence u. has
Morse index at least two, a contradiction. O

First we prove that
Lemma 3.7. There exists constants C1 > 0 and Cy > 0 such that
(3.17) Cie®Gy(z, ) < ue < Coe®Gy(z, ) in U\ Bep(ze).

Proof. Note that the singularity does not matter on Q\B.g(z.) as u. and e*Gy(., z.)
are bounded. We have e?Au, — uf = —u? < 0 and AG, — G¢ = 0. Note that
||ue]loo > 1. Choose 0 < 1 < 1 such that

(3.18) ue > ne*Gy(z, z.) on OBcr(xe).

Then we have

(3.19) A(nGq) — (nGy)* =nAG, —n'Gy = (n—n")G] > 0.
Hence

e?A(us —me®Gy) —ul + (e®Gy)1 <0
which implies that
uf — (ne*Gy)?

2 a
Au. - -
e“A(u. —ne*Gy) ey

(ue —me*Gy) <0.

Hence by the maximum principle we have u. > ne*Gy in Q\ B.g(z.).
For the upper bound, let 0 < 6 < 1 such that u. < § in Q \ Beg(z:) and m; > 1
such that

(3.20) ue < Mme“Gy(x,zs) on OB g(x.)
then we have

(3.21) A(mGy) — (mGy)? = mAG, —n{Gl = (m —n)GY.

Then u. satisfies
e?Au. —ul > —6P in Q\ B.g(z.).

As a result we obtain

ul — (me*Gy)?

2A _ aG _
£ (us me q) Ue—nlﬁan

(ue —me*Gy) > =07 — (m —n{)GI > 0.

Hence we obtain by the maximum principle in Q \ Beg(z:)

ue < Cre*Gy(x, ze).
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We write
Ue = PUE,ZL'E + Ea(ps-
If we plug this in equation (1.2) then ¢, € H}(Q) satisfies
(3.22) 2Ag. + f'(PU. 2,)p: = — *E-(PU.z,) + Ne[p:].

where

Nelpe] = e {f(PUcpa, +%¢c) — f(PUc,z,) — € f'(PUc .z, )< }-
Lemma 3.8. For sufficiently small € > 0, there exists C > 0 such that
(3'23) ||905||oo <C.

Proof. We claim that ¢, is uniformly bounded. If possible, let there exist a se-
quence gy, such that ||pe k|lcc = 00. Let |¢.| have it maximum at a point k..

Claim @ < R.

Suppose not. Then @ — +4o00. Then we have three cases |z. — k.| < 0,
0 < |ze —ko| <26 or |z — ke| > 26.

When |z — k.| > 20, then —Ag.(k:) > 0 and there exists a ¢ > 0 such that
e (k) > c¢. We have from (3.22)

0 S _52+aA<Ps(ks) = {f(PUE,wE + Easos(ks)) - f(PUs,:cE)} - ES[PUs,mE]
which reduces to
(Gg+ )" <Gl +o(1)
and hence a contradiction.

The cases |z. — k.| < J and § < |z. — k.| < 20 are similar to above.
Then we consider . (z) = @, (ke + €x)

e = P
(e oo

By the Schauder estimates we obtain |[¢|| 1.6 is bounded for some 6 € (0,1] and
loc

hence by the Arzela-Ascoli’s theorem there exists 1)y € C! such that llbe=tbollcz  —

0 as € = 0. Using the fact that M

Ao + f'(U)pp =0  in RN
Yo(ko) =1

where kg is a sequential limit of k.. Let us write

— 400, 1 satisfies

(3.24)

b= ¢i(r)Sk(6)
k=1

where r = |z|, § = ﬁ € S¥—1 and —Agn-1S; = ASk where A\, = k(N —2+k);k €

Z* U {0} and whose multiplicity is given by My — M}_» where M = %
for k > 2. Note that A\g = 0 has algebraic multiplicity one and A\; = (N — 1) has
algebraic multiplicity N. Then ¢y, satisfy an infinite system of ODE given by,
N-1 A
" ) + (pU”_1 —qUuit - r—g)cbk =0, r € (0,00).

(3.25) w+
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Also note that (3.25) has two linearly independent solutions z; ; and 2; . Let
N-1 A
Ar($) = ¢" + ——¢'+ (pU]”1 —qU! - r—f)qﬁ

Also recall that if one solution z1 x to (3.25) is known, a second linearly independent
solution can be found in any interval where 21 ; does not vanish as

22,k(r) = 21,1(7) /Zl_,,zcrlder

where [ denotes antiderivatives. One can obtain the asymptotic behavior of any so-
lution z as r — oo by examining the indicial roots of the associated Euler equation.
The limiting equation becomes

(3.26) r?¢" + (N — 1)r¢' — (qwl ' + \)p =0

whose indicial roots are given by

N-2 VIV =22 + 4(qwf ™" + A)
+ _ 2 2
My = -
N2—2 N \/(N—2)2+4qw3

In this way we see that the asymptotic behavior is ruled by z(r) ~ r=# asr — +o0;
where p satisfies the problem

if k #0

ifk=0

(3.27) u?>— (N =2)u— (qwg_1 +X)=0ifa= 612—1
This implies that any bounded solution of (3.24) decays and hence |t < C|z|~V—2)
and hence 14y € LV~ (RV). Thus ¢op € D2(RY ) and by lemma 2.1, 1o = >y, a; 5%
where a; € R where not all a;’s are zero. Since U is radial, U'(0) and AU(0) are
non-zero, it follows that Vo (0) # 0.

We obtain a contradiction by proving Vi (0) = 0. Note that Vu.(z.) = 0 and
this implies
Vap. (0) = Vue(z:) — VPU: 5 ()

e[ peloo
which implies that V). (0) — 0 as e — 0. This implies that V) (0) = 0 by pointwise
convergence and hence V(Efil aig—;{)(o) = 0 and this implies that a; = 0 for all 4.
O

Lemma 3.9. We have,

(3.28) e =N Iy + 2128 (2.) + o(e2@Y),
Proof. We want to write u, = PU, ;, +€%¢,. So we have
Je(ue) = Jo(PUcg,)

+ e / (€2VPU. ..V, — [(PU.,.)p:)dz
Q

E204

+ 7(/ 52|V905|2dx_fl(PU5,$s)"pg)
Q

2
/ [F(PUE,% +e%pe) — F(PUE,ws) - Eaf(PUayws)Sos - %fI(PUE,we)Wg .
Q
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which can be expressed as
Je(ue) = J(PUcp,)

+ 60‘/ E.(PU. ;. )p-dz

Q
E204
+ 7 (52/ |V<,05|2dx - fI(PUs,ws)‘pg)
Q

2a

/ [F(PUE,% +e%pe) — F(PUE,%) - 5af(PUE,xe)‘Ps - %f’(PUE,xa)sﬁ .
Q

Now we estimate the following terms

/ B.(PU.,.)pedz = / E.(PU.,.)p: + / E.(PU..,.)p:
Q 0<|z—z | <28 [z—zc|>26
/ 1
S CEZ—{—a—i—a/ 7_*_5041)/ Gp‘P
0<|z—z|<26 |x_m5|2+a |z—z|>28 arE
< o(1)e* 2,

Note that o +2 — N > 0.
From (3.22)

‘/gl{52|vcps|2d$ - fI(PUs,zs)Soz} = E_a/QEs(PUs,ze)‘ps - ‘/;ZNE[(pE]SOE'

As a result, we only estimate

/NE[SDE]QOE = / NE[‘PE]@E"’/ NE[()OE](pE
Q |z—zc|<eR eR<|z—z:|<é

+ / NE[SOE]‘PE"'/ NE[SOE]‘PE
0<|z—ze|<26 |z—z|>26

L+ +/ Ne[p:]pe +/ Ne[pelepe-
6<|z—z| <28 |z—zc|>26

We compute I. If ¢ > 2, then we obtain

L = 6“(’)(/ U;{;f@) = O(etN).
Ber(ze)

We calculate I.

L = e“@( / Uﬁ,szﬁ)
Bs(ze)\Ber(ze)

a(g—2)
= an(/ 67(_2)> = 0(625N_a(q_2)).
Bs(ze)\Ber(ze) 1T — Te|*

When ¢ < 2 we obtain

— q—1 Eai 2) — N
Il B O(/BER(-’/EE) UE7w€ <PU55$5)LPE) O(E )



18 E. N. DANCER, SANJIBAN SANTRA, AND JUNCHENG WEI

and noting the fact that < Ce® whenever eR < |z — z.| < § we obtain,

% pe
PU. ..

_ €%, 9
=
Bs(ze)\Ber(e) e PUE,J)g €

Bs(ze)\Ber(ze) |5U - $5|a(q— )

— 0(626(151\1—04((1—1)) — 0(625N—2+a)‘

Estimating in the neck region

/ Nedo: = (= [ PULZE).
i<|z—ze| <28 0<|z—ze| <28

In the neck region we have
PU. ;. =Ucp, + (1 =) (e*Gy — Ue s, ).

In order to estimate

1
[e% q—2 .3 — 2 3
€ / PUsywsgos = E/ |z — |a(q—2)(‘05
i<|z—z[<26 s<|z—ze|<28 | — Le

052/ ;
— —2
0<|z—zs | <28 |.TL' - x5|a(q )

= 0N,

A

Whenever |z — z.| > 2§, we have

/ NE[SOE]SDE = O(an)'
|z—z|>28

Similarly, we show that

2a

L [FPU #2200 = PPUL) = 1PV 2o~ 1 (PU.2 )6
= o(e?t??).

The estimate follows exactly as the previous estimate. This completes the proof. [

4. EXCLUSION OF BOUNDARY SPIKES

Now we are required to show that the blow-up does not occur near the boundary.
That is we claim that ®,(&) — +oo if £ — 9. Let z. € Q be a sequence such that
de = d(x:,00Q) = 0 as € = 0. Now we define a scaling of the form

PR
ds
then the original equation reduces to
BE2Au—ul4+u? =0 in Qg
(4.1) u>0 in Qg
u=0 ondQq_,

where € = £ Let & = fi—z and note that Q4 +— IRf (any compact subset of C' of

RY can be embedded in Q, for e sufficiently small) as & — 0.
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Let us consider the problem
Aqu($,§5) - Gq(xags)q =0 in st \ {gs};
(4.2) Gy(z,&) >0 in Qq,
Gy(z,&) =0 on 9Qq, .

ArGyry(@,§) —Gury(2,6)? =0 in RY \ {¢},
(4.3) Gory(2,€) 20 in RY
Gq,Rf(:c,@ =0 on ORY.

Note that & — £ where £ does not lie on ORY .

Lemma 4.1. The solution to (4.2) converges uniformly on compact subsets to the
solution of (4.3). Moreover, there exists a C > 0 such that

Gy (@, &) < Cla— €| ©

and
VG zy(@,6)] < Cla — g~
hold. Note that the second estimate holds away from the singularity.
Proof. Let Gg0(z,€) = ——=%=. Consider the solution to the problem (4.2). Note

=€
that Gg0(z, &) — Gy(z,&) > 0 on 894, . Furthermore, (G4 0(z,£) — Gy(z,£)) — 0 as
z— & Let S =Gyo(z,8) — Gy(z,8)). Then S satisfies

AS —a(x)S=0

where a(z) > 0. Hence by maximum principle we have S > 0 in Q4,. This implies
Ggo(z,8) > Gy(z,€). Let r > 0 such that B-(§) C Q and consider

A;Ge,B(2,§) —Gg5(2,)" =0 in B,(£) \ {¢},
(4.4) Gy,B(2,6) 20 in B, (£)
G,B(z,8) =0 on 0B, (§).

By similar method it can be prove that G g(z,€) < G4(z,&) in B,.(€). Thus we have

Gy.8(x,8) < Gy(z,8) < Gyo(z,€), hence by the Schauder estimate we conclude
that Gy (., &) — qukf(.,g) uniformly in compact subsets. Note that & is not on

the boundary and it is of distance O(1) from the boundary and hence ¢ ¢ ORY .
Moreover far away from the £ we can use the boundary estimates (note that there
is no singularity) to obtain

C

(4.5) |VGq,Rf(93a§)| < W-

Note that using the local estimates in Brezis—Oswald [3], we have near & the fol-
lowing estimate holds

(4.6) Gyry(2,€) = Goo(2,8) + O(|z — &)

and moreover, (4.6) implies that the solution of (4.3) is unique. O
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Corollary 4.1. Then we have for all § >0, ase — 0

VoGy(@, &) + —=GiH (z,&
/QdE\Ba(Ez) 2| ol L Q+1 (&)

N /IRN\B 63} 2|v G (.73 €)|2 q+ ng+1($,f) +Os(1)-

Proof. This follows from the dominated convergence theorem. d

Lemma 4.2. Then the least energy solution of (4.1) satisfies
(4.7) Jo(ue) <ENI, + 229129, (€) + o(82*?)

and

Jo(us) = &N +E%"2lim [/ |V Gy(z,&))?
§—0 Qa, \Bs (£:) 2

1 -1
+ — Q+1 _
Proof. Follows exactly as the upper and lower estimate. Moreover, note that

Jo(ue) < EVIo +E°T28,(8) + 0(F 2““)

N(2a+2)w;1+1:| + 0(E2a+2)‘

< V1o +2°M2 lim [/ |V Gq(z,8)?
§—0 Qd \Bs(g) 2
1 -1
q+1 _ N—(2a+2), ,qg+1 =2a+2
+ —+1G (z,8) 2(q+1)6 wy ]-l—o(e )
< ENIoo +52a+20(d2+2a—N) +O(—2a+2)
< BV +22P20(dN) 4 o822 2)

and we have

Jo(ue) = NI, +2°+?lim [/ |V Gy, &)
Qa4 \Bs(&.) 2

6—0

1 g—1 (2@
- q+1Gq+1( &) = (q+1)5N ¢ +2)w3+1+0(1)]
= et | [ 0,6,
§—0 RN\B (€) 2
1 qg—1 _
4. q+1 _ N—(2a+2), ,q+1 1 —2a+2
@8 4 OO - 5l Wttt o1)| + o).

O

Lemma 4.3. In order to show that there is no boundary spikes it is enough to show
that there exists a cog > 0 such that
(4.9)

1 g—1 N
li V.G 24— Gz, &) - SN —(2042) ,a+1
50 [/RN\Bs(E) 2 VeGaln O g+1 o(:8) 2(g+1) “a

Proof. We consider equation for G4(z, {). From the Green identity we deduce that

2 q+1 — _ 0G,(z,§)
@ [ NG@OP e @O == [ o=,

Z Co-
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Again by the Pohozaev identity we have

1
[ - e+ Y 2am) = [<a: 696 % e e va,p
o\Bs(e) L 1+1 B(2\Bs () ov 2
N -2 _ 0G,
_ _ - (atl - "G4
T P ]
1
- 3/ <w—§,u>|VGq|2
2 Joa
oG 1
- [<x—s,vaq>6—" (= &1 5 VG,
8B5(£) v
N — 0G,
— — g+l 4 = =
q+1<x 67 )G + Gq 61/:|
But we also have from the equation (1.3)
N-2
[ vers 2hem| = -(1+52) [ 650
SIVNES ¢+1 oBse) OV
oG 1
= B [z—&,VG — (=&)< |VG,|?
e 22 @ el
1
- q+1<x_§’”)Gg+1]'
where
,3( N _N—2)_q—1
g+1 2 g+ 1
Let @ = RY. Then we have
2 an RN
VG, gr|? + —Gq+1N] = <1 + —ﬂ) G, pnN -
/M\Bg(a [l oY g+1 o%s oBs(e) "+ v
2
an RN 1
_ N RY 1 2
/8 e [ V)t — (r— £1)3VG
— — q+1
-G @)
Then up to a rotation we can assume that RY = {(z/,—1) : 2’ € RV~1}. Note
that on RY we have (z — &, v) = 1. As a result we have
2 N-2 G gy B
VG 2+ Gq+1N] = <+—>/ G N7’+—|——/ VG, pn|?
w/R_Iz\Bg(f) |:| kG RN| + 1 q’R+ 2 /3 8Bs(£) q’R+ 81/ 2 R_'A_’ | q’R+|
oG,
-3 [ e 2= &) VG, gn]?
o =656 G — = 603196,
1 g+1
@11) - e-ener)
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Moreover, note that G|, is a unique solution of

0= g
AG,(2,8) — Gy(2,6)? =0in RN
and so we have

@) [ VG OF + G w6 = g e
RN\Bj (¢) 2 1

q+ C 2(g+1)
and
2 N -2 3G g0
VGl + G”l] = (1+— )/ Geo——72
/RN\Bm [| sol g+1 ? omsie) OV
oG 1 A
- [ - €60 % - - 60 5IVGaP
8Bs(€) v
1 +1
(4.13) - q+1<x—§,u)G3’0 .

Hence using the estimates for Gq,Rﬁ in (4.6) we obtain as § — 0

0G , g
/ Gq RN q’R+ - / Gq,O 6GQa0 = 06(1)
aBs(c) ~t Ov 8Bs(€) v

0G0 1
T — & VGy0)—== —(z — & v)=|VG,, 2
Lol e X L

and

+1
-Gy

quRN

9 1
— - N ——* _(p— Z N2 =
~/635(E) |:<5U §aqu,R+> v <IL‘ §5V>2|VGQ,R+|
Subtracting (4.11) from (4.13) we obtain

1 qg—1 o /6
VG 24 Gq+1 _ 972 atlgN-2a 2] _P e 25 0.
/RN\Bm [ VGamyl+ q+1 2(q+ 1) 2 aRﬁl aR?Y|

- enary| = o,

This proves the claim. a

Remark 4.1. Lemma 4.2 implies dN—272% < C where C > 0 independent of € and
N —2a — 2 < 0. Hence we will obtain a contradiction.

Remark 4.2. Hence from the upper bound and the lower bound of c. we infer that
lim ®,(z.) = 2,(6)

and & minimizes the renormalized energy which is characterized by

i [ ., 1
5O =lm[5 [ VGO

q+1 _ q_]- q+1 sN—2a—2

Remark 4.3. Note that we can easily choose domains such that the points of
mazimal distance to the boundary are unchanged by smooth small perturbations
of Q on an open set of the boundary. On the other hand, the perturbations almost
certainly move the locations of where ®4 have their minimum. Thus it seems almost
certain the location of peak of the mountain pass solution is different from the case
when q = 1.
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5. DECAY ESTIMATE q = ¢,

Proof of Lemma 1.1. Since U is radial (1.7) satisfies

N -1)U,
(5.1) Unr + % _ e _pe.
Define V (r) = rN=2U(r). Then U(r) = r~N=2V (r). Then (5.1) reduces to
(N-3)V, Ve e
(5.2) Vi — =y T .o

Hence at infinity (5.2) reduces to
(N=3)V, V&

(5.3) Vir — Y T (1 +0(1)).
Let us define V(r) = W(t) where r = €. Then (5.3) reduces to
(5.4) W"(#t) = (N =2)W'(t) = W (t)(1 + o(1)) = 0.

Note from (5.4), we obtain
(W' (t)e N1 = e (N=DUa- ()(1 + o(1)).

Integrating between (¢, +00) we obtain

—W'(t)e~ NV = / e~ N=DEW I (5)(1 + o(1))ds
t
and this implies that

(5.5) W' (t) = —eV-21 / " -y, (5)(1 4 o(1))ds.

t
Hence W' < 0 for sufficiently large ¢. Hence from (5.5) and using the fact W is
decreasing we have

S (1) < ety ) / e=(N=2)3(1 4 o(1))ds.
t
As a result, we have
—W'(t) < W% (t)(1 + o(1)).
This implies that
(w-eD@)y <c.
Integrating between (1,t) we obtain

WD) <we=D(1) + Ot - 1)

w1 < Ot
for t > 1 which implies that
___1 N-—2
(5.6) W(t) > Ct @10 =Ct™ "2
for some C > 0 independent of t. Hence we obtain the lower bound.
For the upper bound we let 0 < # < 1 such that U < 6 in RN \ BR(0) and 1, > 1
such that

(5.7) U <mS on 0Bg(0).
where S = w,, 12N (logr)*%" satisfies

N(N -2 ax
(5.8) AS = g0~ NN =2)_S

4 r2(logr)’
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then we have
(5.9)

AmS) — (mS)* =mAS —n{* 8" = (m —n{")S* —muw,, N(]\;_ 2 7«25;7«)'
Then U satisfies
AU —U% > —6” in RN \ Bg.
As a result, we obtain
AU -mS) - W(U -mS) > =07 —(m —n{)S” +muw,, N(]\;_ s 7«25;7‘) >
Hence we obtain by the maximum principle in RV \ Bg
U<mS.

Now we define
N-—-2

Z(t)=t"z W(t)
and is positive everywhere. Then we have

W) =t""7 Z(t).

Moreover, from (5.4) we have
_ Z%(t)(1 +0(1))

Z"(#t) — (N —-2)Z'(t) ;
(N-2)Z'(t) N(N-2)Z(t) (N-222(t) _
* t L 7 2 ;O

Now we suppose that Z(t) > 1 and Z'(t) > 0. Then Z"(t) > 0 and we obtain a
contradiction.
Suppose that Z(t) < 1 and Z'(t) < 0, then Z"(t) < 0 and this implies that Z’
decreases faster as Z does. Hence Z crosses the axes which is impossible. Suppose
that Z(t) > 1 and Z'(t) < 0 for large t, then Z(¢) has a limit; if Z(¢) < 1 and
Z'(t) > 0 for all ¢t > to; then also Z has a limit. Hence the most awkward case is
to consider Z'(t) < 0 when Z(t) > 1 and Z'(t) > 0 when Z(t) < 1. Suppose that
there exists a point ¢o such that Z(to) < 1 and Z'(to) > 0, then we have Z'(t) > 0
for al t > to and hence Z(t) hits 1. Hence Z(t) — [ as t — +oo.

In order to estimate wy,,, we basically solve (1.7) at infinity; that is we are
required to solve an equation of the form

(5.10) AU =U?
in an exterior domain. Also we have

U(jz)) = we.r V-2 (logr) "3,

Then
AU = w,, L(J\;_ 2)r—N(log r)_¥ + wq, 7(N ; 2)zr_N(log r)_%
(5.11) AU = w,, MT’N(Iog r) "2 (14 o(1))
and
(5.12) Ut = wg:r*N(log r) .
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Equating (5.11) and (5.12) we obtain

and using the fact g, — 1 = 32, we obtain
N _ 9\ N2
5.13 Wy, = | ——=— .
(5.13) = (550)
O
6. PROFILE OF SPIKES ¢ = ¢x.
Let PU. ¢ € Hj(Q) be the solution to the problem
APU,. ¢ = AU, in Q,
(6.1) E’E E7§
PU.:=0 on 0.
Lemma 6.1.
glV—2 eV —2 . N
PUE,E(Z') = UE,ﬁ(m) — We, ~—z . (-'L':f) +o N—2 ifq=
|loge| ™= |loge| ™= N -2
uniformly with respect to x € Q and & in compact sets of Q.
Proof. Let q = g, := . The function w(z) := PU, ¢(2)—U. ¢ (z)+w,, % 0 (2, 6)
loge| 2
solves the problem
Aw =0 in Q,
N-2 _ ¢IN-2)] P = N
w(e) = o oo (wa - LB 5 (2260 ) onon,
lz — §IN—2[loge| = | log |z — &|| = eN=2|loge|~"=" €
By the maximum principle it follows that
eN-2
< SR S
max |w(z)| < max [w(z)| g o(1),
because of (1.8). O

Lemma 6.2. The following expansion holds

R
| 2 Tloge " 2 Toge¥ 2

uniformly with respect to & in compact sets of 2, where

(6.3) Io(U) = /R . [28) 111) UPH(g) — Q(q%_pll)(]qﬂ(w)] dz

and ¥, (€) satisfies (1.11).
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Proof. As usual we set F(s) := plﬁ(s"“)erl - q*lﬁ(sﬂq*“. Let us compute the
reduced energy.

J. (PU..¢)
_ %EQ/QW(PUE,E(@) |2da:—/QF(PU5,§(m))dm

= %Lf(UE,E(m))PUE,g(w)dHT—/QF(PUE,g(x))dx

Jol:

_f (UE
- / (F (PU.¢(2)) = F (Usg(2) — f (Use(2)) [PU. ¢(2) — Us ¢(2)]} de

2
(6.4)
= I]_ + 12 + Ig.

(@) Uuile) = F (Use(o))| do = 5 [ £ (Uee(o) [PUL (o) ~ U] da

Let us estimate I;. Using the fact that ¢, + 1 = % we have
/ [lf (Usg(.’lf)) - F(Usg(w))] dr :/ [ p—1 p+1(x) _ & q*+1($) da
ol2 ’ ’ o [20+1) = 2(ge +1) =*
N [ p—1 p+1 gx—1 1 ]

=¢ - — U1 z)| dx

L s v @ - s v @)

p— 1 / p+1 qx — 1 / gx+1
— U r)dr + ——— U z)dx
2(p+1) Jgma °* (=) 2(gx +1) Jamg F (=)

_ N [ p—1 p+1 g —1 NEVEN
=¢ - —U1 )| dx

L Gornv @ - s vt e

-1 2(N-1) 1 2(N-1)
4o wie S / dz +o | ——

2(g +1) " [loge[N7t Jgmg |z — €PNV D]log |z — &IV 1 |loge|N—1
_ 2(N-1) 1

_ N 4x 41 ¢ /
=g [+ —wP T — — dx

T 20+ 1) [logelN L Jgmg o — PN log |z — &[N
(6.5)

£2(N-1)
e (uogewl)



Let us estimate I.

1 eN—2
——/f elo ngm—vgunm=§%;——WF

= . AU, ¢( =z, &
2 q |10g6| 2 / 5 q )

ca [U. ¢ (), Hy, (2,€) — 8,U.¢(x) Hy, (x,£)] da
to:9]

IR

1
= gwq*

1, gXWv-1) / 1 OuH, (5.6) — 0
= —W — v - :L.; - Up
2 " [loge|N2 \ Joq |:1c—§|N*2|log|3v—f||¥ !

(6.6)
g2(N-1)
1)————.
+of )|10gs|N—2

Here v is the outward unit normal at the boundary 99.
We deduce that

27

(Ue(2)) Hy, (z,§)dz

1

|z — ¢V 2| log |« —

1 1
_/ N-2 2 0 N-2
o9 [z — N 2loglz —&|| 7= o — €[N ?[log|z -

__l/ 8 1
2 Jpa |z = PN log |z — €[V

1
=(N-2 2/ dx
N =2 Jema I7 = €5 ogJo — €82
(N -2)2 / 1
+ dz
2 rv\@ |7 — €PN 2|log |z — &[N !
(N-1)(N-2) / 1
6.7 + — dx
67 2 e Io— €PN 2 [log |z — &7
Moreover, from (1.10), Green’s formula yields
1 2
CON wx O, 0.6) = [ [VH,.(@,6)" do
o ja— € 21ogle g7 O )
From I3 we have by
I, = —/ {F (PU.g(2)) — F (Ueg(2)) — f (Ueg(2)) [PUc () — Ue g(2)]} dz
= [ O WU.e@) [PUc(o) = U]’
g2N-1) H (z,8)
Nfl/ o dz.
|logel o |z —&*[log|z — €|
Hence the result follows. O

Lemma 6.3. There exists £, € Q) such that
Uy, (§,) = min ¥, (§).

£€Q

o)
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Proof. By (1.11) we deduce that

T, (&) > (N-2)%w? / ! dx = +o0 as & approaches 99).

0 Jema o — EPN2[log [z — €]V
Therefore, the claim follows. O

Lemma 6.4. Then

1 £2(N-1) 2(N-1)
Jo(u) <N L) + 22 L, <z)+o(s—).

9% |loge|N—2 |loge|N—2
Proof. Follows exactly as Lemma 3.5. O
Lemma 6.5. We have
H, (z,x.)
6.9 S (x) = D\ 7E/
( ) 5( ) Hq*(ajs;xs)

is uniformly bounded.

Proof. Note that if d(z.,0Q) > ¢ for some ¢ > 0, then by Lemma 2.2, we have S is
uniformly bounded. Suppose that d(z.,00Q) - 0ase — 0. Then Hy, (2, z.) = +00
as € — 0. Suppose z is close to z.. We consider two points £ and y and compute
the difference H, (z,z.) and H,, (y, z.) on the boundary. So it is enough to prove
the uniform bound when z is a point close to y. Then on the boundary, we have

1 1

o — 2|V -2|log |z — 2|72 |y — x|V logly — .|| 72

H,, (z, xs)_Hq* (y,z.) =

Let y = x — h where h = O(e) is small; then we have
e —z. +h* N =z -2 N+ O0) |z — x|

and
1

2—-N 2—N
|log |z — e +hl[ 2" = [log|z —z[| = + O(h) ¥
|z — zc[|log |z — x|| =

and hence multiplying the above two expression we have

@ — e + B Nlogla —a. + b3 = |z —z"N|loglz — .| "F

1
; 0<h)( N_z)
& — o ¥ 1| log |z — .| 2
1
+ Oh( N)
APy P

1
+ Oh2( N).
) |z — 2|V |log |z — z:|[ =

As a result, we have

S

1
HQ* (xﬂxff) - th (y7$6) - d $E’aﬂ ) ( (.’L‘E 6Q)N 2|10g|d($5,69) )

1

+
Q

1

+
S

)

= o(1)H qx (T, ).

(d (2c,00) Ilogld(we,aﬂ)l) (d(mE,BQ)N—2|10g|d(acs,89) o

d(z.,00)* Ilogld(wsaaﬂ)ll)( d(z.,00)N2|log |d(z., 8Q)|| "=

)
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using the estimates from Lemma 2.2 and @ — 0. Also note that

A(Hy, (z,2:) — Hy, (y,2:)) =0
Hence by the maximum principle we have for all z,y € Q
|Hq. (z,3c) — Hq, (y,2:)| < o(1)Hg, (2, ).
Choosing x = z. and y = = we have
|Hq, (72, 2c) — Hq, (7, 7)| < o(1)Hg, (e, ).

This implies that S, is uniformly bounded. |
Lemma 6.6. For R>> 1, the error satisfies
(6.10)
V-2 )
O Ut Hlo2) ) inla = o] <R
|loge|™="
E.[PU.s.] =

o =~ L H, (z,2.)) inl|z—2.|>eR
r,T n|\xr—x .
|10g6|% |z — ze|?|log & — a|| 77" o

Proof. Follows from the estimate (6.1) and using the fact that M —o00. O

By Lemma 3.6 we write

ue = PU. 5, + — 5=z wq, Hy, (%, ) pc.

Then ¢, satisfies

|loge| 7"

11 A (P T eN2H, (2e, )
(611) A+ [(PUe)ee = = i oy

EE[PUE,%] + Nelope]-

where
E.[PU.,,] =¢’APU,,, — PU¢, +PU?,.
and
|loge| "= eN—2
N, = ——=-_ | f(PU — —w, H — f(PU,
Ll eN72Hy, (2, 2c) f(PUes. + |10g5|¥wq* 0. (e, 7)) = [(PUes.)
eN-2
- ﬁHq*(msaxs)wq*wsfl(PUE,ze)
[loge| 2

where f(u) = (ut)? — (u™)?. Also note that ¢ >2if N <4 and ¢ <2if N > 5.
Moreover, note that (6.11) can also be written as

6.12) A(i. — PU.) + f'(W.)(tie — PU.) = = f'(We)(PU. —U) in Q.
' (4. — PU.) =0 on 99,

where (). is a inflated domain around z., 4. = u.(z: + €x); PU. = PU. (z: +ex)
and W, is a point lying between @, and U. Then

~ 1R\ xR Hg, (ze + ez, 2.)
(6.13) A + f'(We)pe = —f (Ws)—Hq* @z

@ =0 on 01)..

n Q.

Lemma 6.7. For sufficiently small € > 0, @, is uniformly bounded.
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Proof. Tt is enough to prove that ¢, is bounded. We have M — +o0 and
Hq* (zetez,ze)

hence we obtain (el

is uniformly bounded by Lemma 6.5. Note that by

the decay property of @ and U, W. | o CI ||N_2 for |z| sufficiently large.
log
Hence f'(W.) < 0 for |z| > R and f'(W.) < TTioaTa- We can choose Clz|—"

as a super-solution of (6.13) for |z| > Ry; if we choose C' > 0 is large and 7 > 0
sufficiently small. Hence we can bound C' > 0, if we have a uniform bound @, on
|z| = Rg. Thus we have a uniform decay for ¢. if we can bound @, on |z| = Rg

If possible let Pe be unbounded. Then ||F:|lcc = oo (up to a subsequence).
Define 9. = W 7= Then [[#e|lcc = 1. Note that the right hand term in (6.13)
is uniformly small and thus by the argument in the previous paragraph . has
a uniform decay for large |z|. Thus the maximum of ¢ must occur at k. where
|ke| < R for sufficiently small €. Let k be a subsequential limit of k.. By Schauder
estimates we obtain ||¢5||Cllo,z is bounded for some § € (0,1] and hence by the
Arzela-Ascoli’s theorem there exists ¢ € C' such that [|1). — Yllcr = 0ase—0
where 1) satisfies

A+ f (U =0 inRY
(6.14) (k) =
YP(y) =0 as|y| = .

Using the fact that M — 400, we conclude that Q. — RV i.e. given any

compact subset C' of RYV; C' C . for ¢ sufficiently small. Also note that 1(y) — 0

as |y| = +oo by the super-solution technique, discussed in the first paragraph.
Then by a simple comparison argument, we can show that |o)| < Cr~ (=2, This

implies that ¢ € L% (RY). On the other hand, there exists a C' > 0 such that,

1 1
V1/12=/ f'U¢2§C+/ 7¢2§C+/ N < too.
fwer= [ o w\s, P08 2] e\ PPV (loB 2]
As aresult, ¢ € DV2(RY) Nker(A + f'(U)). Since ¢ # 0 and since by Lemma 2.1,

ker(A + f'(U)) = {ﬂ ou ... 0U },we have

dx1’ Oz’ PE3N

¥= Za] 6:3,

where not all a;’s are zero. Since U is radlal U'(0) = 0 and AU(0) # 0, it follows
that Vi(0) # 0. Note that Vu,(z.) = 0 and this implies

V(0
Vi (0) = ——x=s v:(0) =0
N2 wq, Hy, (2, zc)|| el Lo
|log €|
and by pointwise convergence V1 (0) = 0 and hence V(ZZ 185 gU )(0) = 0 and this
implies that a; = 0 for all . This gives a contradiction. O

Lemma 6.8. We have,

s N 1, eN-1 v, £2(N-1)
(6.15) e = oo F G0 g (””E)+°<|logs|N—2>'



Proof. From u. = PU, ,_ + L}\qu*Hq* (e, T )pe, We obtain

|loge| ™2

Je(ue) = JE(PUE,ZE)

eN-2
qu*Hq*(xaaxa)/QEE(PUe,zE)‘PEdm
1 g2N-D 2 2 ' 2
Ewwq*Hq*(%,me)/Q{E |Ve|“dz — f'(PUe s, )¢z }
oN-2
- F|\ PU.;, + jwq*Hq* (Te,2e)pe | — F(PU z,)
Q |loge| =2
eN-2 1 2W-2 |
- qu*Hq* (Te» )P [ (PUe z.) — 5@“@—7{@ (e
We estimate
eN-2
ﬁwq*Hq*(xaaxa)/ E.(PUe,z,)pedz
|loge| ™= Q

_ o g2N-2  N-2
B [loge[N=1 |loge|

+ O( E2N72 H2 (.Z' T )/ |Q05| )
[log e[ N =147 Jo\Bun(a,) |2 — 2 [?|log |2 — 2|

— 0(521\[7_2}[2 (z., )/ ﬂdx)
[Toge¥ 4" Jo\ Bon(e.) [T — zc|?

E2N—2 ) 1
= £ H -
O(IlogslN q*(””““”ﬁ)/g |x—x5|2d“'”>

£2(N-1)
= ol —~—5 ).
(1ozer=)
using (6.6). From (6.11), we obtain by integrating

|loge| ™7
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o)’ 02 f'(PUs.)|-

2 52 _IPsw 2 Z—/Espsw 5_/N555
@ wets - Uyt = BN [ EAPU - [ Nloddo

62
= O(|1oge|)'

Using Taylor’s expansion, as in Lemma 3.9 we obtain

EN72
/ |:F<PUE,$5 + ﬁwq*Hq* (1'5,335)(,05) _F(PUs,zs)
Q

|loge| ™=
EN_2
- W Hy, (xe;xs)SOEf(PUE,zs)

|log5|¥ !

82N_2
= O(|loge|N1>'

This proves the theorem.

1 EZ(N—Z)

~ 2]loge|N-2 “a

2. Ho (@e,2)* 02 f'(PUc ) |-

|

Remark 6.1. Note that Hy(x,z.) is bounded by Lemma (6.4) and by Lemma
(6.3). Hence we have from Lemma (6.4) and Lemma (6.8) we obtain ¥, (z.) —

W, (§). Hence Theorem 1.2 is proved.
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