PRESCRIBING Q-CURVATURE PROBLEM ON S*
JUNCHENG WEI AND XINGWANG XU

ABSTRACT. Let P, be the n—th order Paneitz operator on S, n >
3. We consider the following prescribing () —curvature problem on
Sm.

P,u+ (n—1)=Q(z)e™ on S,
where () is a smooth positive function on S™ satisfying the following
non-degeneracy condition:

(AQ)* +|VQI* #0.
Let G* : S — Rt be defined by
G*(z) = (-AQ(2), VQ(z)).
We show that if @Q > 0 is non-degenerate and deg(%, S™ #£ 0,
then the above equation has a solution. When n is even, this has
been established in our earlier work [29]. When n is odd, P, be-
comes a pseudo-differential operator. Here we develop a unified
approach to treat both even and odd cases. The key idea is to

write it as an integral equation and use Liapunov-Schmidt reduc-
tion method.

1. INTRODUCTION

On a general Riemannian manifold M with metric g, a metrically
defined operator A, is said to be conformally invariant if under the con-
formal change in metric g, = e2*g, the pair of corresponding operators
Ay, and Ay are related by

Ag () = €™ Ag(e™p) (1.1)

for all ¢ € C*°(M) and some constants a and b.

One such well known second order conformally covariant operator is
the conformal Laplacian which is closely related to the Yamabe prob-
lem and more generally, to the problem of prescribing scalar curvature:
Given a smooth positive function K defined on a compact Riemannian
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manifold (M, go) of dimension n > 2, does there exist a metric g con-
formal to gy for which K is the scalar curvature of the new metric g¥
If g=e*gyforn=2o0r g= uﬁgo for n > 3, our problem is reduced
to finding solutions to the following nonlinear elliptic equations:

Agu+ Ke* = kg (1.2)

forn =2, or
%Agou + Kuiss = kou, uw>0on M (1.3)

for n > 3. (Here Ay, denotes the Laplace-Beltrami operator of (M, go),
ko is the Gaussian curvature of go when n = 2 and the scalar curvature
of go when n > 3.) The problem of determining which K admits a
solution to (1.2) (or (1.3)) has been studied extensively. See [5], [6],
[9], [12], [13], [14], [21], [22], [28], [32] and the references therein.

In search for a higher order conformally invariant operator, Paneitz
[25] discovered an interesting fourth order operator on a compact 4-
manifold

2
Pip = A%p + 5(§RI — 2Ric)dy

where § denotes the divergence, d the differential and Ric the Ricci
curvature of the metric g. Under the conformal change g, = e*g,
P, undergoes the transformation (Py4), = e Py (i.e., a = 0,b = 4
in (1.1) ). See [1], [4], [7], [10] and [11] for a discussion of general
properties of Paneitz operators.

On a general compact manifold of dimension n, the existence of such
an operator P, with (P,), = e ""P,, for even dimension is established
in [19]. However P,’s explicit form is known only for Euclidean space
R™ with standard metric (P, = (—A)?2) and hence only for the sphere
S™ with standard metric gg. The explicit formula for P, on S™ which
appears in [1] and [2] is

n—2
p L2 (A +k(n—k—1)), for n even ,
n — ;. n=38
(=A+ (25H)H)2I,2, (~A + k(n — k — 1)), fornodd .
In analogy to the second order case there exists some naturally de-

fined curvature invariant (), of order n which, under the conformal
change of metric g, = e?“gy, is related to P,u through the following
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differential equation

Pou+ (Qn)o = (Qn)we™  on M. (1.4)

Motivated by the problem of the prescribing Gaussian curvature on
S2, we pose the following prescribing @,-curvature problem on S™:
Given a smooth function Q on S®, find a conformal metric g, = €*“g
for which (Qn). = Q.

We remark that there is a similar problem for general compact Rie-
mannian manifolds. But since, in this case, the explicit expression for
the operator P, is unknown, we will not address the general prescrib-
ing (), curvature problem. When n = 4, there have been many works
recently. See [3], [7], [15], [16] and the references therein.

Clearly the above question is equivalent to finding a solution of the
differential equation

P,u+ (n—1)=Qe™  on S™ (1.5)

In our previous paper [29], we have treated the case n = 2m, i.e. n
is even. (A different approach, based on curvature flows, was given
recently in [24].) In that case, the operator P, is a point-wise operator
and by stereographic projection to R®, it simply becomes (—A)™. In
this paper, we shall consider both even and odd cases. Note that when
n is odd, the operator P,, involves (—A)% which is a pseudo-differential

operator.
Our basic idea is to transform (1.5) into an integral equation:
uw) =5 [t goweayrco. 09
B Rn ",L‘ - y|

This approach was first taken in [8] and then later in [31]. As in [5]
and [6], there are three main steps in the proofs: first a priori estimates,
then a perturbation result, and finally a continuation argument. For
a priori estimates, we work directly with the integral equation (1.6).
(We note that a similar idea has been used in a recent paper [17].)
For perturbation result, we use a direct Liapunov-Schmidt reduction
method. The continuation argument is the same as before. The nov-
elty of our approach is that we don’t use any type of Moser-Trudinger
inequalities. This also gives a new proof of the results in [5] and [6]. It
is interesting to compare our approach here with the original approach
of Chang-Yang in [5] and [6] and the flow-approach of Struwe [28].
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To state the main results of this paper, we use the function intro-
duced in [22]. For any smooth positive function @ on S™, @ is called
non-degenerate if it satisfies the non-degeneracy condition:

(AQ)* +|VQI* #0 (1.7)

on S™. For a non-degenerate function ) on S™, we can define the
mapping G* : S* — R by

G*(z) = (AQ(z), VQ(z)). (1.8)

This mapping is well defined and it is never zero if the condition

(1.7) is satisfied. Thus |g—| from S™ into S™ will be well defined. If

we assume Q is C? function, then |g—| is C! on S™, hence its degree

deg(%, S") is well defined. Now we can state our main result as the

following.

Theorem 1.1. Suppose that @ > 0 on S™ (n > 3) is non-degenerate

and deg(|g:‘, S™) # 0, then the equation (1.5) has a solution.

For example, if @) satisfies (1.7) and
AQ(@)AQ(~) — VQ(2) - VQ(~2) > 0, Va € S

then the equation (1.5) has a solution. The proof is similar to that of
Corollary 1.1 of [22]. More examples of @ can also be found in [22].
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2. PRELIMINARY RESULTS

The main aim in this section is to collect some materials we are going
to use in this paper. The first result is the following classification of
the solutions of an integral equation:

Lemma 2.1. Let Q(z) = (n — 1)! be a constant and let Cy be a real
constant. Assume u € C*(R™) is a solution to the integral equation

1 / Y]
u(r) = — lo Q(y)e™Wdy + Cy, 2.1
(@)= | teel 10w SENCEY
for some constant Cy such that e™ € L'(R™). Then u is given by
2\
u(z) = log| , AeR", o€ R™ (2.2)

A2 -+ |31' - $0|2

Proof: See [8] or [31]. We just remark that the constant A is defined
by A = 2e % > 0. O
As a starting step for estimates, we show the following lemma.

Lemma 2.2. Suppose w is a C? function on R™ (n > 3) such that
(a) Qe™ is in L'(R™) with 0 < m < Q < M for some constants

m’ M;
(b) in the sense of weak derivative, w satisfies the following equa-
tion:
nw(y)
Aot (-2 [ LW (2.3)

Rn |5U - Zl/|2

Then there is a constant C(w) > 0 depending on m,n, M and w such
that |[Aw|(z) < C(w) on R™.

Remark: In general, the constant C'(w) depends on the function w it-
self. Later in Theorem 3.3 of Section 3, we shall prove a priori estimates
under some conditions on the function Q(z).

Proof: Set o = |5, Q(y)e™®dy. Then assumption (a) implies that
0 < a < co. This also implies that [, e"”®dy is finite with upper
bound depending only on m and «. Therefore there exists a large
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constant R > 0 such that

[ Qe
R"\Bg(0)

Now notice that (2.3) holds almost everywhere. For any 2y € R™\Bg4s(0)
such that (2.3) holds at zo, we consider the solution h of the equation

. (2.4)

(o

{ (~A)A)(@) = (1= 2) [0y Q222 dy  in By(ao)
h=0 on 834(.’E0) (25)

Let

for all x € By(zp). Since for all z,y € By(xg), we have
lz—y| <|r—xo| + |y — 20| <4+4=28.
Hence we conclude that
vi(z) >0 in By(zo)-

It is a routine calculation that

nw(y)
(Al = (2 -2) [ Qe

Bu(zo) lz —y|?
Combine (2.5) and (2.7) to obtain:

{ (~A)[£h—v] <0 in By(zo); (2.8)

+h—-v; <0 on 0By(zo),

in weak sense. The maximum principle ([20], Theorem 8.16) allows us
to conclude that

|h(z)] < vi(z) x € By(zp). (2.9)
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Now let us denote the measure Q(y)e™®dy/ S Ba(z0) Q(y)e™ ™ dy by
du. Therefore Jensen’s inequality, together with (2.4), implies that

/ exp [4n|h(z)[] dz
Ba(zo)

nvy ()

< exp dx
/34(560) [2 fB4(w0) Q(y)enw(y)dy]

1
B ol
B4(:E0) 2 B4(£IJO) |‘/E - y‘
n/2
1
IS
B4(a:0) B4(J,‘0) |‘r - y‘
n/2
16
YRR
By(zo) Ba(xo) |$ - y‘

< C, (2.10)

IN

where C' is just a dimensional constant.
Now we consider the function ¢(z) = w(z) — h(x) in the smaller ball
Bs(xg). First we observe that, in weak sense,

(Ag)(z) = (Aw)(z) — (Ah)(z)
enw(y) Q enw(y)
= —(n—-2)] %dy—/ LQdy]
Rn “/E - y‘ Bu(zo) |‘/E - y|
nw(y)
R™\ Ba(zo) |‘/’U - y‘
If x € B3(xp) and y € R™\ By(xy), then |z—y| > |y—zo|—|z—120| > 1.
Therefore we have

0 < (-Ag)(z) < (n—2)a, (2.11)

in weak sense.
Hence it follows from weak Harnack principle ([20], Theorem 8.17)
that

sup ¢(2) < Clllg" L2(Bs(w0)) + I|1AG] oo (B3 (20))]-
Ba(0) (2.12)

As we have seen in (2.11) the second term on the right is bounded
independent of 5. To estimate the previous one, we note that ¢*(z) =
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(w—h)T(z) < wt(z) + |h(x)| and also we have for all t > 0, 2¢* > 2.
Thus we have

|l @pds
Bs(zo)
2/ e? @)y,

B3(zo)
9 / (@) (@) g

B3(zo)
2/ {14 ¢v@) @) gy

Bs(xo)

1/n (n—1)/n

2[ / enw(z)dx] [ / enlh(@)|/(n=1) g,
Bs(zo) Bs(zo)

+2/ @) dy;
Bs(zo)

< C (2.13)

IN

IN

IN

VAN

where C' is independent of zy by using (2.10), Holder inequality as well
as assumption (a).

Therefore, it follows that w(y) = ¢(y) + h(y) < C + |h(y)| in the
even smaller ball By(xg). Therefore we reach the estimate:

/ e4nw(y)dy < e4nC/ e4n\h(y)\dy < CI,
Ba(a) B2(ao) (2.14)

where we have used (2.10).
Next by the equation (2.3), we have, for any |z| sufficiently large,

Q(y)e
Awl(zg) = (n—2 ——dy
Awlw) = (n-2) [ T
() e (y)
< M(n-2){ Sy [ Sy
R™\Bs(zo) |0 — Y| Bs(xo) |T0 — Y|

< (n _42)M / enw(y)dy

1

+(n — 2)M( S
Ba(zo) |T0 — Y[*P

dy)l/p ) (/ eqnu)(y)dy)l/q’
Ba(zo)

where p and ¢ are such that 1/p+ 1/¢ = 1. Since n > 3, choosing

p =221 then p > 1 and ¢ = $2=; < 4. Clearly with those choices of

p and ¢, the first integral of the second term in the right side of above
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equation is bounded. Other two integrals are also bounded by (2.14)
and the assumption (a).

Therefore |Aw| is bounded almost everywhere on R"\ Br,5(0). But
if w € C*R™), then Aw is continuous and hence is bounded on
Brs(0).

This finishes the proof of Lemma 2.2. U

With help of this lemma, we also have the following.

Lemma 2.3. Suppose w is a C? function on R™ such that 0 < (—=A)w(z) <
A almost everywhere on R™ for some constant A and fRn Q(y)e"Wdy =

a < oo wth0<m< Q< M. Then there exists a constant B, de-
pending on A, n,m, M and «, such that w(z) < B almost everywhere

on R™.

Remark: Note that A depends on w. Hence the constant B also
depends on w.

Proof: For any point x5 in R", let w; be the solution of the Poisson’s
problem

—A)w; = (—Aw) := f in Bi(x),

It follows from the elliptic estimate of Poisson’s equation ( for exam-
ple, [20] on page 189, Theorem 8.16) that

lwi(z)| < sup |wi(x)] < C(n) sup |f| < CA,
B (o) B (o) (2.16)

since wy(x) = 0 on 0By ().

Now we set wo(z) = w(x) —wi(x) in B;(xg). Then it is obvious that
(—A)wy = 0 in the unit ball By(zy) in weak sense. By mean value
property for harmonic functions, we reach at the estimate

3 oy ataayy < Cal)( /B i) (2.17)
1(T0o

where wy is the positive part of w,. However, by the definition of ws,
we have

wy < wh + |w.
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Notice that we have the obvious inequality

/ nwtdr < / e™dr < a.
Bi(zo) Bi(zo)

Thus, combining those estimates, we get
a A
/ wydr < — 4+ —uw, = C3(n, 4, @),
Bi (z0) 2n 2n

where w,, is the volume of solid unit ball in R®. Thus it follows from
estimate (2.17) that

w3 [|Lo0 (B, 5(20)) < Ca(n)Cs(n, A, ).
Finally by definition again, we have
W = Wi + W,
thus,
w < wy + |wy| < Cy(n)Cs(n, A, o) + %,

which is independent of zy. This holds for almost every x € Bj(zo).
Observe that the measure of countable union of measure zero sets is
still zero, Lemma 2.3 follows by a simple covering argument. (]

The next lemma is the so-called Pohozev’s identity which implies
some necessary conditions for the integral equation (2.1) to have a
solution.

Lemma 2.4. Suppose a C? function u satisfies the integral equation
(2.1). Assume there exist constants 0 < m < M such that m < @ <
M. Assume that e* € L™"(R"™).
(1) If | < z,VQ(z) > | < C for some constant C > 0 and |z|
sufficiently large, then % Jan < 2, VQ(z) > e™@dy = (v —
2);
(2) I} there ezists a constant C > 0 such that |VQ|(z) < C for |z|
sufficiently large, then [g. VQ(z)e" @ dx = 0,
where 7y is given by
1
"~ Bn Jre
Proof: Part (1) has been shown in [31]. Notice that the fixed sign
condition on ) plus the assumption on the integrability of the function
e implies that the constant +y is finite and Q(x)e™® is absolutely

0 (z)e™ @ dy. (2.18)
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integrable over R™. Therefore Theorem 1 in [31] can be applied. We
should point out that the proof provided there is not complete. It only
provided the formal calculation. Notice that the proof of Lemma 2.1
in [31] depends on this part. But when @) is constant, the conditions in
this lemma is clearly fulfilled. Here, for completeness of our argument,
we fulfil the detail with those extra assumption as we have stated. The
method for both cases is the same. We only deal with the second case.
Since Qe™ € L2 (R™) is absolutely integrable and u is of class C?,

both sides of equation (2.1) are C? functions and we can take twice
weak derivative. This is to say that we can get:

n-2 [ Qe

Au(z) = 5 Jon o —aP

dy, (2.19)

in the sense of weak derivative. Therefore Lemmas 2.2 and 2.3 can be
applied to conclude that Qe™ is in LP(R™) for any p > 1. Now through
routine argument, we can see that we have the following:

_ 1 (- y)Qy)em W
Vu(z) = 3 /n PP dy, (2.20)

in the sense of weak derivative. By property of weak derivative, we
also have

Q(z)Ven @) =  nQ(z)e™ ) Q(y)enu;y) dy.
o el (2.21)

Now choose a smooth compact supported function 7(¢) such that
n(t) =1fort <1and n(t) =0 fort>2and also —2 < 7/(t) < 0 for all
t. Multiplying both sides of (2.21) by n(%) for all real number R > 0
and integrate over the ball R®, we obtain:

. Q(x)n(%)e”“(m)Vu(x)dx (2.22)

1 —
= - L] e v awei
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But the left hand side of the same equation will imply, by integration
by parts,
|z]
Q)n(4
- -1 ve@me e
n Jrn R

)ﬁ

|

)" Oy (x)dx (2.23)

(2l

- nu(z)
+7’LR Rnn ( R Q(I)e dl‘.

Notice that \n'(%ﬂ < 2 for R < |z| < 2R and otherwise it vanishes.
Then integrability of |@Q|e™ implies that the second integral approaches
to zero as R — oo. Clearly the first integral goes to the integral of
(VQ)e™ with the help of the integrability of (|[VQ|)e™ over R™.

Now we consider the right hand side. For each fixed R, by Hardy-
Littlewood-Sobolev inequality, the functlon Q( )Q(y)en @) +u)
is absolutely integrable over R™ x R™ since we have Q(z)e™(®) ¢
L27/(2n=1)(R™). Hence we can take the limit under the integral sign
as R — oo by dominated convergence theorem. This implies that

1 VQ( )em @) dg (2.24)

/ / |x — )e""(y)dy}Q(x)e"“(w)dx.

Again the right hand side is absolutely integrable as a function over
R"xR", thus we can conclude that the integral vanishes by interchange

variables x and y. Hence the second part of Lemma 2.4 follows. O

Remark 2.5. In Lemma 2.1, we may multiply the function Q by a
suitable constant to make v = 2. Then the standard Pohozev’s identity
holds.

Finally, we discuss the non-degeneracy for the linearized integral
equation of (2.1) at standard solutions. For simplicity, we set:

28 (2.25)

Unal®) = logl gy b

for A > 0 and a € R". By changing variables, we only need to prove
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Theorem 2.6. Suppose that the bounded function ¢(x) satisfies the
integral equation

_ E 1 |Z/| nU1,0(y) d C.
00 = 5, Jllodg L s e

Then there are constants C; for j = 0,1,2,---,n such that the function

o(z) is given as
z) =Y Ci(z), (2.27)
=0

where
z]* =1
lz|2+ 1’

2.’L‘j

Yo(z) = 15 zp

djj(x): :1’2’...’71'

(2.28)

Proof: First of all, we want to show that if ¢(x) satisfies the equation
(2.26), then

h = ﬁ/ V0@ (1) dx = 0. (2.29)
B Jrn

In fact, it follows from the equation (2.26) and the definition of h
that the following is true:

as(‘ﬁQ) hlog|e|

_ Y nU10(y)
= ] L E— 0y d
o =y ety
= 2 [ flogl ]} 0g(y)dy
B Jren ||y‘ 7]
= 5 J Do e s e @)

where we have used the special form for the function U . Since ¢ is
bounded, the term hlog|z| has to be bounded for x near zero which
forces h = 0.

Next since the function e"V10(*)¢(z) is absolutely integrable over R®
and its decay behavior at oo, we take the derivative under the integral
sign. By doing so, we conclude that

L= [Py
2 AR Bn /n[lfc—Z\?] ) (2.31)
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Hence —A¢ is uniformly bounded for |z| > 1 which implies that
¢ has a limit at oo. Then it follows from the equation (2.26) that
the function g(z) = ¢(7~1(z)) — log2 + log(1 + |z|?) is a well defined
function on S™ where 7! : S® — R" is the standard stereographic
projection of the sphere S™ into R™. And also it is well known that P,
is a conformal invariant operator, so

| ®usa@ng@iao. = | |
= al [ e g)dy

= nl /n g(z)*doy, (2.32)

where the second equality follows from (2.26). Notice that any function

(=A)"2¢(y)]p(y)dy

satisfying (2.26) also satisfies the following differential equation.
[(—A)”/2¢(y)] - n!enUl,O(y)(ﬁ(y)‘ (2.33)

We should point out that the normalization for the constant in cal-
culating (—A)Z/2 log[%] has been absorbed in Ui o(0). Notice that
this convention will be used throughout the whole article.

Now just observe that, by definition of the operator P, it follows
from Equation (2.33) that P,g = nlg. Thus g is a first eigenfunction
with eigenvalue n!. It is well known that the first eigen-space of P,
on S™ is spanned by {to, 1, -1, } under stero-graphic projection.

Theorem 2.6 follows. 0.

Remark 2.7. We would like to point out that several facts, specially
the properties of the operator Py, we have used in the proof of above
theorem can be traced back to Chang and Yang’s earlier paper [6]. The
bound for A¢ can also be seen by direct calculation from the integral
representation (2.26) and potential estimate.

3. SOME A PRIORI ESTIMATES

In this section, we want to prove the a priori estimates for the solu-
tions of the equation (2.1) with given bounded positive smooth function
Q satisfying the following non-degeneracy condition

(AQ)* + [VQ[* # 0. (3.1)
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Since P, is a pseudo-differential operator, standard elliptic regularity
estimates do not apply. We have to work with the integral equation
(1.6).

With help of those lemmas in previous section, we simply conclude
that those solutions of the integral equation (1.6) are C*° functions on
R" and the following estimates hold:

Lemma 3.1. Let w satisfy (2.3). For each positive integer 0 < k <
n — 1, there exists a constant C(w) (depending on w) such that

\VEw|(z) < C(w).

Proof: It follows from the integral representation of the function w,

we obtain:
k Q(y)em W)
Viwl(n) < By [ =X —dy
k
R» |37_l/|
nw(y)
S BkMe"B/ dy k+Bk;/ Q(y)e - d
Bi(x) z —y R"\By (x) z —y
< G (3.2)

In this estimate, By is just a constant depending only on n and £,
and B = B(w) is the constant giving in Lemma 2.3. O
In fact, we have more:

Lemma 3.2. Let w satisfy (2.3). Thenw € C"™ 5% for any 0 < a < 1.
Furthermore, there is a constant C(w) (depending on w) such that
el < C(w).

Proof: When n is even, it is clear since (—A)"2w = Q(x)e™®) is
bounded, standard elliptic estimate implies the result.

When n is odd, we write it as n = 2k 4+ 1. Then from the integral
representation of w, we have

(_A)kw(x) = & Mdy

 BuJre |z -yl

By the inequality,

[l =y = |1 = y[7%] < 2klz — 21|*{|z — y[ 77 + oy —y[ 770,
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for any real number 0 < a < 1, (Equation (3) on page 225, [23]), we

have
[(=A)fw(z) — (—A)*w (xl)l
2ka W(y Q(y)em )
< _ YN
< mf* {/ o=y Pk+a /R 2, — g}
< C|x—x1| , (3.3)

where the last estimate is just same as the estimate (3.2). The last
statement is just the summary of Lemmas 2.2, 2.3, 3.1 and the first
part of Lemma 3.2. This completes the proof of Lemma 3.2. U

Now we are ready to state and prove the main result of this section.

Theorem 3.3. Suppose @ s a positive smooth function defined on
S™ (n > 3), satisfying the non-degeneracy condition (3.1). Then
there are constants Cy and Cy such that any solution u of the equation:

P,u+ (n—1)! = Qe™ on S, (3.4)
satisfies the bounds
-1 <u<Cy. (3.5)
Here the constants C; and Cy are independent of the functions u.

Proof: First let us show that there exists a constant C5 such that
u < (5. Suppose this is not the case, there would exist a sequence
{ux} such that maxgn ug(z) = ug(zr) — 0o and xx — zo as k — oc.
Choose stereographic projection 7 : S® — R™ with north pole at —x
and set wy(z) = ug(r7'(x)) + log ﬁ Then it is well known that w
satisfies the integral representation

1 ]
wi(x) = — lo Q(y)e™* W dy + C,, 3.6
where Cj, = wi(0) and Q(y) = Q(7w(y)). Translating wy by a constant,
and still denoting it by wy, we get

wg(x) = =— lo Q xW)g , 3.7

where pp — 0 as k — co. An important fact is that

e [ Qe Vdy =25, (3.8)
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Since w (7~ (zx)) = u(zk)+log m, when k — oo, 77! (x1,) —
0, we conclude that wg(yy) — oo where y, = 7 !(z). Now set
vi(2) = we(yx + €x2) — wi(yr) with € to be determined later.

It follows from the integral representation of wy that

v(z) = L/ log[M]Q(y)en[wk(y)_wk(yk)]dy
Rn

_ eﬁpkfg"”“(y’“) / gl i e + ept)entunnerad—un ] gy
= ’“ka/ log[| 2 |] (yr, + ext)e™ Dt

(3.9)

Now we choose €, > 0 such that ez,oke"’”k(yk) = 1. The advantage for
this choice of ¢ is that, by the equation (3.8), we have

Q(yx + ext)e™*Vdt = 23,,. (3.10)
Rn

Therefore the equation (3.9) implies that

1 2]
B Jn 6T

Apply Lemma 3.2 to conclude that there is a constant C, indepen-
dent of k but depending on « such that [|e"*(*)||n-1. < C. Thus for
some 0 < ag < 1, v — g in C*- " (R™) as k — oo. By Lemma 2.1,

loc

vg(z) = (yk + ext)e™ D, (3.11)

log[m] By the definition of vg, we have vy = Uy .
We need the following lemma on the decay of vi(z):

Lemma 3.4. For all § € (0,2), there erists R, Cs > 0 such that

1
v(z) <(2=9)In 7 + Cs, V|z| > Ry. (3.12)
z
Proof: The proof is standard. For the reader’s convenience, we include
it here.
Let 6 € (0,2) be fixed. Since vy — Ui locally in R®, by (3.10), we
may choose k large and Rs such that

)

/ Qlye + )™ Ot > (2 — 2)3,.
jt]< s 2
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We then compute

ﬂn \t|<R5 It >52 |t <2|z— t| 1> 58|t >2(z—1]

|2 —t|
1 1 nu(t)
(280 — —ﬂ ) log +— (log [t))Qe™* " dt
B 2| ﬂn 1> 58 Jt|>2]z 1]

1 1
+ —/ log Qe™kdt
B Jjy=Es jy>2la—y) 12—

J
3)

1Q(yx + ext)e™* Ot

[log

IN

1 )
< (2- log—+0—5+§10g\z\

2|

1
< (2—5)10gm+05

which proves the lemma. ]

Let us continue the proof of Theorem 3.3. Observe that in the def-
inition of v in equation (2.18), we have v = 2 in our situation. Since
@ is a smooth function on S, [VQ)| is clearly bounded, by second case
of Lemma 2.4, we have

0 = / VQ(y + ext)e™ Ot
= /n[VQ(yk—i-ekt) VQ(yx)|e™ Dt

+ [ VQ(yp)e™Wdt. (3.13)
Rn

The first term, as k — +o00, approaches zero by the Lebesgue’s
dominated convergence theorem since V() is bounded and v, has decay
(3.12). Thus we obtain:

VQ(yx) — 0, that is, VQ(0) = 0. (3.14)

In fact, more can be concluded from Equation (3.13). Namely, we
have

VQ(yr) = O(ex)- (3.15)
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Next since @ is a smooth function on S™, we have | < z, VQ(z) > |
is bounded. Hence, by Lemma 2.2(1), we also have

0 = / <t,VQ(yr + €t) > e gy
= / <t,VQ(yr + ext) — VQ(yx) > k() gt

+<vm%%/twwm>

n

= / Z Qij (yk)éktitjenvk(t)dt -+ O(Ek). (316)
Rn

To check the last equality above, we observe that vy, the limit of the
sequence {uv} is radially symmetric with respect to the point 0. It is
because vy does satisfy the integral equation (2.1) with Q(y) = Q(0).
Hence we easily conclude that

/ 2e"™ )z = 0. (3.17)
Thus we obtain:

<VQ@%/ te" O dt >

n

= < VQ(yk),/ t{emor® — eno®Mygy >

n

= < VQ(yk),/ t{e’ﬂ(’l}k(t)_’vo(t)) _ 1}em}0(t)dt >

n

= o(e), (3.18)
where in the last step, we have used the estimate (3.15) and the decay
(3.12).

Now, by similar reasons, the equation (3.16) implies that

0 = s AQ(ys) / e |42t + ofey). (3.19)

n

Thus we have AQ(0) = 0 which contradicts the non-degeneracy as-
sumption on @ (see Equation (3.1)).

Once the upper bound on the solution w is available, the lower bound
is easy. Notice that every solution u can be written as w(z) — log ﬁ
with w satisfying the integral equation (2.1). It will not be hard to see
that w(z) — log 7% has a lower bound independent of w.

This finishes the proof of Theorem 3.3. U
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4. PERTURBATION RESULT

In this section, we use Liapunov-Schmidt reduction method to solve
the equation (2.1) with [|@Q — (n — 1)!||c2m=) < € and e sufficiently
small. ( Similar approach was used by Rey and Wei ([26], [27]).) This
approach is different from the usual one adopted by Chang and Yang
([5], [6]). Here we don’t use any type of Moser-Trudinger inequalities.

Let us rewrite the function Q as Q = (n — 1)!(1 + Q). Of course
if @) is non-degenerate in the sense of (1.7), so is Q. We consider the
integral equation (2.1).To be more precise, we write the equation in a
non-local operator form:

n—1)! z)enu()
Slu] := (_A)n/zu o ol 2 % fRnQQ((x))enu(w)daj' (4.1)

In this section, we should construct a function u such that Sfu| =0
and it can be lift to S™ so that this is a solution we are looking for.

The solution will have the form
u(z) = Upo(z) + (), (4.2)

where (A, a) € (0,1] x S™ will be chosen later and ¢(z) is relatively
small and Uy 4(z) is given by

2A
Upo(z) = log 1 (4.3)

+ |z —al?

Observe that if u(x) takes the form (4.2) with ¢ uniformly bounded
on R" and lim ;. ¢(x) exists , clearly we can lift it to S™ by stereo-
graphic projection.

Now we substitute (4.2) into the equation (4.1) to obtain

S[UA,a + (b] = S[UA,a] + L[¢] + N[¢]’ (4'4)

where

Bo(n—1) Q(z)e"Ura®
2 Jre @(z)enVre@dz’ (4.5)

S[Upd] = (—A)"2Up 4 —

57&77" enUA,a fRﬂ enUA,a(m)QS(x)dx
2 (Jpere@dr)? 46

|
L[¢] — (_A)n/2¢ _ %e”[]"’“qﬁ +
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and
N[g] = O(e <y > |g] + |6 <y >*), (4.7)
where < y >2= (1 + |y[?).
Note that
[ (SlUsa)+ Nigl)ds = 0. (48)

Now we begin with

Lemma 4.1. Suppose the bounded function ¢ satisfies [, "V e¢pdr =
0 and [ga €M)y ¢ =0 for j =0,1,2,--- ,n with 1, ; given by

lz —al* — A?

Yao(z) = AAZ T [z —aP)’ (4.9)
and
s — as
bnsle) = g (410)

If ¢ —log ﬁ can be lifted to be a smooth function on S™, then there
18 a constant cg > 0 such that

(—A)n/2¢]¢d$ — n‘%(l + CO) / en(UA,a(w)¢2(m))dx > 0.

[
R - (4.11)

Proof: When we consider it as the eigenvalue problem on S™ for gen-
eralized Paneitz operator P, the inequality we stated above is clear
since it is well know that the first non-zero eigenvalue of P, on S™ is

always equal to n!. ]
Now we should adopt the following notation in the future argument:
18] = sup [8(y)], (4.12)
yeR®?
and
[ fllee = sup <y >*" [f(y)]. (4.13)
yeR®

Lemma 4.2. Let f be a function on R™ such that ||f||.« is finite and
fRn fdy = 0. Assume the bounded function ¢ is a solution of the
equation

n

Ligl+ [+ ) CjerV™qpy ; =0, (4.14)

j=0
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for some constants C; such that [, €'V ¢dz =0 and [, €"V2e1y jodz =
0 for 7 =0,1,2,---,n. Then we have

18]l < Cll s, (4.15)

for some positive constant C' > 0 which depends on the upper bound of
n+ A+ |a| only.

Proof: Since [g, e"Vs<®)dz = 24, which is independent of A, a, by
taking the derivative with respect to A and a, we find that

/ e"UA’“(w)sz,j (x)dz =0, (4.16)

for j =0,1,2,---,n. Therefore, together with the fact that L[t ;] =0
for every j, we have

| idlingda =0, (4.17)

for all 5 by integration by parts and the assumption. Thus if we multi-
ply the equation (4.14) by v, ; and integrate it over the space R", we
obtain the estimate

By the integral representation of the equation (4.14) we have

o@) = 4 [ oy | yernsrga)ay

ﬂn ‘.’13 - y|

n o v
5 [ o Lx_yd}f(y)dy
+> Cithaj + B (4.19)

§=0

Since ¢ is bounded, it will not be hard to see that ¢(z) has limit as
|z| tends to infinity. Therefore it can be lifted to be a smooth function
on S".

Next multiplying the equation (4.14) by ¢ and integrating the re-
sulting equation, we obtain

n!G,
2

(=A)"2¢|pdx — / e"Una@p2(p)dx + [ fodz = 0.

R“[ R" (4.20)
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It follows from the estimate of Lemma 4.1 and (4.20) that there is a
constant By such that

| e < By [ \flola (421)

This implies that

[ e @)do < BlolL | . (4.2)
Now by taking the derivative of the equation (4.19), we have the
estimate:
Vol < CLf e {jo(u) + e )}y + 3 (6]
=0
< Ol (4.23)

by using the Holder inequality together with (4.21) in the first term
and definition for || - ||« in the second term. The last term follows from
(4.18).

Then we have estimate on the function ¢ at 0 as follows:

20a[0(0)] = | Rn@"UA'“(y)[qﬁ(O)—</>(y)]dy|

IN

1Vl / eUra®)y|dy
Rn
Nl (4.24)

IA

Here we have used the estimate (4.23).
Now it also follows from (4.19) that the following estimate holds true.

60) =000 = |5 [ fiog | L eneoigy)a

|ﬂn/n{1 |y swpay

+ Z Cjllva,i (@) — ¥a,;(0)]
=0

< Cflflless (4.25)

where the ﬁrst line was achieved by observation that fR“ e"Une¥) (1) dy =
0 and fR“ )dy = 0, while the second inequality follows the standard
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potential estimates and (4.18). Now clearly the required estimate fol-
lows from triangle inequality. g

Lemma 4.3. For every function f with the property that || f||« < oo
and [g. fdz =0 and every point (A, a), there exist constants C;(A, a, f)
for 5 =0,1,2,--- n such that the equation (4.14) has a unique solu-
tion.

Proof: The uniqueness of ¢ has been shown in Lemma 4.2. Notice
that for every fixed f, there is only one set of constants C; for j =
0,1,2,---,n such that the equation (4.14) has a solution. This follows
from the estimate (4.18).

Now for a fixed function f with the required property and for a given
point (A, a), we choose constant C; according to the equation

Unifde+C; [ eVre@y2 (z)dz = 0. 4.26
n »J J Rn A,]

Now we define the pre-Hilbert space H by

i = ol [ o aate= [ oo, @ =

<o.0>= [ [ o %}e"ww(w””ma(y”¢(x>¢<y>dxdy < oo} |
n Rn l‘ - y
(4.27)

Notice that it is simple consequence of potential theory that H is a
pre-Hilbert space. In fact, with the definition of the inner product by

< ) >= / {log M}en(UA,a(z)+UA,a(y))¢(x)¢(y)dxdy
n JRn €Tr — y

for any ¢, in H, bi-linear and symmetric properties are easy to see.
For non-negativity, we note that

<6.0> = [ [ flog T yrtnennt b(a)o(y)dody

\x— |

A ali%i - y|5 e Une®) 0 () ) drdy

} n(UA,a(w)-FUA,a(y))¢($)¢(y)d$dy

= lim
=0t n Rn { 5

> (4.28)



EXISTENCE 25

Now the equation (4.14) can be written as

n z||y|
¢—— [ {log emaa¥)g(y)dy
5 Rn{ ‘x_y|} ()

[ o 'x”yy' } )y + 3 Cpony(a) + 6. (4.29)
=0

n JR® |:C— ‘

where the constants C; are given by the equation (4.26). If we denote
the second term on the left of the equation (4.29) by T'[¢] and the
right hand side of the same equation as f, then the equation can be
simplified to be

¢—Tlgl=f. (4.30)

Clearly T is linear operator which maps bounded functions into
bounded functions, hence it is a compact operator on H. By Fred-
holm’s alternative, (4.30) has a solution if and only if

¢—T[g] =0

has only trivial solution. However, the latter has trivial solution is just

the consequence of previous Lemma with f = 0. Thus Lemma 4.3

follows. O
Let us denote the map f — ¢ in Lemma 4.3 by A(®).

Lemma 4.4. There exists a unique ¢ = ¢ o such that
L[@] + S[Unal + N[g] + Y Cye"m@yy ; = 0.
=0 (4.31)

Moreover, there is a constant C' > 0 such that ||¢||. < Ce with € =
|Q — (n — 1)!||c2(mny. Also, the map (A, a) — ¢, is continuous.

Proof: The tool we are going to use is the contraction mapping prin-
ciple. In order to do so, first of all, let us rewrite the equation (4.31)
in its equivalent form:

¢ = A(S[Up,a] + N[9]) := Bl¢]. (4.32)
For a positive constant C', define a convex set in H by

Z = {9lll¢ll« < Cue}. (4.33)
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By definition of S[U, 4| and N|[¢], we obtain

/L@KkA+NMWM:O, (4.34)

which makes the definition of operator B meaningful.
Next we have

|1Bl¢1] = Blga]ll« < Cle+ llgall)lldr — 2l (4.35)

Finally there exists a constant C' > 0 such that the following in-
equality holds true.

IS[Una] + NI#lll. < Ce(1+ I8l )41 (4.36)

The equations (4.34), (4.35) and (4.36) together imply that the op-
erator B is a contraction mapping from Z into Z, maybe with different
constant C' if we choose € sufficiently small. Hence B has a fixed point.

The continuity of ¢, , on parameters A, a follows from the integral
representation formula. Hence Lemma 4.4 holds true. O

Lemma 4.5. The solution given in previous Lemma 4.4 can always be
lifted to be a smooth function on S™.

Proof: It is not hard to see that ¢, , as well as its derivatives has a
limit at infinity by dominant convergence theorem. Keep in mind that
®A,q 1s bounded by its nature. O

Let us now compute the asymptotic expansions of C;(A,a). Multi-
plying the equation (4.31) by 1, ;, we obtain,

Z/ enUA’a(ZWA,j(x)i/)A,l(x)dx
j=0 /R?

= [ (~Liénal = SlUnal = NénaDnads
- —/.whmmm+o@) (4.37)
We should point out that in this calculation we have used the equa-

tion (4.17) as well as the fact that || N[@4 o]|[« < Ce?. With this calcu-
lation, we have left just to compute the term fRn SUAa|ta,dz. To do
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this, let us recall the definition of S[U, ,] to have

nUA,a (SE)
- Capry, e Qo
S[UA,a] ( ) U 2 fRn enUA,a(w) dx

b 1+ eQ(x)
2 [on(l+ €Q(x))enUse@)dy

)enUaal® - (4.38)

Thus it follows from this equation that

— _ & 1+ 6@(%) nUA,a() d
/ SHhalinde = / S fRn(l+6Q($))enU"’“(w)d$)e Yaids

Pre
2 fn (L €Q(z) )nVne @)

= —¢ Q(z)e"V2a@qpy ((z)dz + O(€?). (4.39)
Rn

Qa)e" @y () dx
Rr

Notice that the functions 1, ; satisfy the relations:
/ e”UA’“(“”)d)A,Z- (z)aj(z)dx = q/j_ldij. (4.40)
Now equations (4.37) - (4.40) imply that

Ci(A, a) = —ey; Q(x)e”U"’“(z)wA,l(x)dx +0(é).
Rn

(4.41)
Now we define a mapping G from B®! into R**! by
G(2) = (Go(2),Gi(2), -+ , Gn(2)) € R*™
where
o nU_ 1 ( )(w)
Gi(z) = | Q(z)e TFEITET qp_ : l,l(x)dx, (4.42)
Rr —z

fori=0,1,2,---n

Next by the equation (4.41), we know that if the degree deg(é, B"*1 0) #
0, then there exists a point zg € B™™ such that C;(A,a) = 0 for all
j=0,1,2,--- ,n where A = (1 — |2]) and a = 7 (20 /| 20|)-
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To see the fact that deg(@, B"10) # 0, we need to do several
calculations. First of all, we note that for 7 > 1, we have

~

Gj(A,a,) = - Q(x)e"UA’“(‘”)wA,j(x)dx
1 A

= RnQ(Avaa)yj[
2Q
Ca$j

as A — 0 for some constant ¢ > 0 depending only on the dimension n.

pp

(@) +o(A), (4.43)

Similarly for j = 0, we have

Go(Aa) = Q(z)eVs @y o(z)dz
Rn
_ i A 2 2 n+1
= RnQ(Aera)(lyl Dliye |y|2] Ty
= —¢;AAQ(a) + o(A), (4.44)

as A — 0 and some constant ¢; > 0 depending only on n which might
be different from ¢ in above.
Set 0 = ¢;A/c to obtain:

G(2) = c(6(=AQ)(a), VQ(a)) + (1), (4.45)

where a = 77!(2/|z|) with |z| < 1. Now we define other mapping as
follows:

Gs(2) = (~AQ(a), 6V Q(a)). (4.46)
Then it is clear that

G(2) - Gs(2) = {[IIVQ(a)|* + (AQ(a)]*]6 + 0(6)}-

By non-degeneracy assumption on the function ), hence on Q, that
if § is sufficiently small, G(2) - G5(z) > 0 on dB;_;(0). Now we fix &
small, then G‘(a) -Gs(a) > 0 on S™. By simple property of the degree
theory (see Proposition 1.27 of [18]), we have

deg(G, B1%3(0),0) = deg(G/|G, S1_).
Then we set H(t, z) = tG(z) + (1 — t)Gs(z), we have shown that the

degree of G//|G| on ST_; is same as that of G5/|G;| on S™*}. However,
by natural definition of G5, we can see that it is also well defined on the
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sphere S™. Finally for any real numbers, A\ > 0 and s > 0, we define
the map:

Gis(2) = (=58Q(a), AVQ(a)),
since this map never vanishes for all @ € S™ | the degree of the maps is
well defined and that they all have same degree which implies that

deg(G/|G|, 87 ;)
= deg(Gs/|Gsl, ST_s)
deg(Gi—ro,1/|G1-r0,1
deg(G1,1/G1,1l, 81 _)
= deg(G"/|G*|,S") #0

Keep in mind that here we have identified the domains S™ and ST _;

) S?—(S)

for our map G* which is clearly true since they give the same values
for G*.

Thus we have finished the proof of the main theorem for the case
Q@ — (n — 1)! is small in C? topology.

5. PROOF OF MAIN THEOREM 1.1

The proof of our main theorem is exact same as in our previous paper
[29], since all the eigenvalues and eigenfunctions of P,, are known [1],
[2]. We will not reproduce it here again. For interested readers, we
refer them to section 5 of [29]. O
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