INFINITELY MANY POSITIVE SOLUTIONS FOR AN ELLIPTIC
PROBLEM WITH CRITICAL OR SUPER-CRITICAL GROWTH

JUNCHENG WEI AND SHUSEN YAN

ABSTRACT. We prove that for some supercritical exponents p > %—Jj% and for some smooth

domains D in RN there are infinitely many (distinct) positive solutions to the following
Lane-Emden-Fowler equation

—Au=uP, u>0 inD,
u=0, on 9D.

This seems to be the first result for such type of equations.

1. INTRODUCTION

One of the earliest, and perhaps the simplest, nonlinear equations is the following Lane-

Emden-Fowler equation,
(1.1) —Au=vP, u>0 inQ,u=0 ondf,

where p > 1 and Q is a domain with smooth boundary in RY.

N+2
N-2

a solution can be found as an extremal for the

It is well-known that the critical exponent p = plays an important role in the

N+2
N-2’

best constant in the compact embedding of Hj(2) into LP™(£2), namely a minimizer of

solvability question. When 1 < p <

the variational problem ,
Vu
uEH&i?nf)\{O} ( ffTu||p+1|) T
Q

When p > %, this minimization procedure fails, so does existence in general: Pohozaev
[18] discovered that no solution exists in this case if the domain is strictly star-shaped.
On the other hand Kazdan and Warner [12] observed that if Q is an annulus, Q = {z :
a < |z| < b}, compactness holds for any p > 1 within the class of radial functions, and a
solution can again be found variationally without any constraint in p.

N+2
N-2

proved that compactness, and hence solvability, is restored by the addition of a suitable

In the classical paper [3], Brezis and Nirenberg considered the critical case p = and

linear term, that is, replacing u™-2 by u¥-2 4+ Au. In case of pure nonlinearity u~-2, Coron
1
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[4] used a variational approach to prove that (1.1) is solvable if Q exhibits a small hole.
Rey [19] established existence of multiple solutions if {2 exhibits several small holes. Bahri
and Coron [1] established that solvability holds for p = N +2 whenever (2 has a non-trivial
topology. On the other hand, examples in [5, 11] shows that when p = 22 (1.1) can still
have a solution on some domains whose topology is trivial. Thus both the topology and
the shape of the domain can affect the existence of solution for (1.1) in the critical case.
It is pointed out in [2] that Rabinowitz asked whether the non-triviality of the domain
topology can guarantee the existence of at least one positive solution for solvability in the

N +2 This was answered negatively by Passaseo [16, 17] by means

N+1

supercritical case p >
of an example for N > 4 and p> If p is supercritical but close to critical, bubbling

solutions are found, see [7, 8, 14, 15].

In the case of p being purely supercritical, there are very few existence results. Varia-
tional machinery no longer applies, due to lack of Sobolev inequality. In [10], del Pino and
Wei extended Coron’s result to supercritical problems (modulo some sequence of critical
exponents) using perturbation methods. The role of the second critical exponent p = N—J’:l,’,
the Sobolev exponent in one dimension less, is investigated in the paper by del Pino, Musso
and Pacard [9] in which they constructed solutions concentrating on a boundary geodesics
forp = ﬁ —¢ with € — 0+. But the results in [10, 9] are for problems with perturbations
either on the nonlinearities, or on the domain. As far as we know, except the obvious radial
solutions when the domain is an annulus ([12]), there is no existence result for (1.1) if there

is no perturbation on the problem.

In this paper, we explore the role of lower-dimensional Sobolev exponents on the existence
and multiplicity of solutions to (1.1). Namely we consider the following equation with

super-critical growth:

(1.2)

N—m+2
—Au=u¥mn2_ 1y >0 in{,
u =0, on 052,

where m > 1 is a positive integer, € is a bounded domain in R, and N > 3 + m. Note
that £="42 is the critical Sobolev exponent in RN .
By the results in [16, 17], it is not sufficient to just assume that 2 has non-trivial topology

to obtain an existence result for (1.2). The aim of this paper is to investigate the conditions
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on the domain Q which ensure that (1.2) has infinitely many positive solutions. It is easy

to see that (1.2) is equivalent to

(1.3) —Auzu%,u>0 in D,
' u =0, on 0D,

where m > 1 is a positive integer, D is a bounded domain in R¥*™ and N > 3.

To simplify (1.2), we impose a partial symmetry condition on D:

(R): Write y = (y*,y*), y* € RV"! and y* € R™"!. Then y € D if and only if
(v*, ly™],0,---,0) € D.

For any D satisfying (R), we look for a solution of the form u(y) = u(y*, |y**|) for (1.3).
Let

Q= {(y*7yN) ERf : (y*7yN707"' 70) ED},

where RY ={y: y € R, yy > 0}. Then (1.3) is transformed to the following problem:

(1.4) {—div(yﬁDU) =ypu¥ ! u>0, yeq,

u=0, on 0N NRY.

Using the Pohozaev identity, we can easily find that (1.4) has no solution in some domains
such as a half ball centered at the origin. On the other hand, if Q N RY # 0, (1.4) is
degenerate. To avoid the difficulties caused by the possible degeneracy of (1.3), we impose
that following condition on 2:

(Q): Q CC RY.

If Q satisfies (€21), the corresponding domain D is a torus-like domain and thus it has
non-trivial homology. Passaseo’s result suggests that more conditions on the domain be
needed to obtain an existence result for (1.3).

Problem (1.4) is a critical problem in RY. Due to the non-compactness of this problem,
it is not practical to use the variational techniques to obtain multiplicity result for (1.4).
In this paper, we will prove that under some conditions on €, (1.4) has infinitely many
positive solutions by constructing solutions with many bubbles. To achieve this goal, we

impose further the following conditions on 2.

(Qy): For any 0 € (0,27), (rcosf,rsinb,ys,--- ,yn) € Q, if (r,0,ys,--- ,yn) € .
(93): Y€ Q if and Only if (yl,yQaySa"' » " Yis o anylayN) € Qa 7’:35 ,N_ la
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(Q4): there is z* € 9Q with z* = (r*,0,---,0,1*) for some r* > 0 and [* > 0, such that

AN {ys =---=yn-1 =0} N Bs(z")
Z{Z/N =Y(h), o= =Yn-1 = 0} N Bs(z"),
and
Qﬂ{y2="‘:yN—1=0}ﬂB§($*)
Z{Z/N >Yh), Yo=--=Yn-1= 0} N Bs(x™),

for some C? function 1 and small § > 0. Moreover, r* is either a strict local

minimum point, or strict local maximum point of .

Our main result in this paper can be stated as follows:

Theorem 1.1. Suppose that N > 5. If Q satisfies (21), (22), (), and (24), then problem

(1.4) has infinitely many distinct positive solutions.

The domain in Figure 1 satisfies (€1)—(£24).

We make a comparison between our result and those in [9]. First we allow m > 2 while
m = 11in [9]. Now let m = 1. We prove the existence of solutions with large number of
bubbles placed on a boundary geodesics for the purely critical exponent, while del Pino-
Musso-Pacard [9] established the existence of a lower-dimensional bubble solution on a
boundary geodesics for the slightly subcritical exponent.

As far as we know, the only other infinite multiplicity result is on Gelfand’s problem in

a unit ball
(1.5) —Au =M1+ u)?,u>0in By,u =0 on 0B;.

Problem (1.5) can be reduced to an ODE problem by Gidas-Ni-Nirenberg theorem. Using
ODE analysis, Joseph and Lundgren ([13]) showed that for some special values of A = A,
and for p € (%, psr) there are infinitely many positive solutions to (1.5). (Here p,z is
the so-called Joseph-Lundgren exponent.) For the purely Lane-Emden-Fowler equation,
theorem 1.1 is the first result of infinite multiplicity.
Before we close this introduction, let us outline the main idea in the proof of Theorem 1.1.
As we remarked earlier, our main idea is to glue bubbles together. Firstly, we construct

an approximate solution, which is a bubble, for (1.4).
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FIGURE 1. Domain Shape

Denote 2* = % It is well-known that the functions

N-2

N-2 o T2
Uru(y) = (N(N = 2)) * (m) , n>0, zeRY

are the only solutions to the following problem
—Au=u¥"' u>0inR".

Since Uy, does not vanish on 052, we define PU, ,, as the solution of the following problem:

(1.6) ~APU,,=UZ"", inQ, PU,,=0on 0.

SNV

We use PU, , as an approximate solution for (1.4). Our main task now is to determine
the location x of the bubbles, as well as the concentration rate p of the bubbles. In the
singular perturbation problems, such as those in [7, 8, 9], the parameter plays a crucial

role in determining the concentration rate of the bubbles. Though (1.4) is not a singular
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perturbation problem, it is well known now that we can use k, the number of bubbles,

as our parameter, if & is large. This idea was first introduced by us [20] in the study of

prescribing scalar curvature problem on S%

N(N —2)
2

Let us fix a positive integer k > ko, where ky is large, which is to be determined later.

(1.7) —Agnu + u:Ku%,u>Oon SN,

The calculations in Appendix A suggest that we should make the scaling parameter
satisfy
IS [Aok%, Alk%],
for some large constant A; > 0 and some small constant Ay > 0.

Using the symmetry conditions (£2) and (£23), we introduce the following space:

H, = {u u € Hy(2),u is even in yp, h =2,--- ,N — 1,
2mg 2mg
u(rcos@,rsinf,y") = u(r cos(d + %]), rsin(0 + %j), y"},
where y = (y/,y"), ¥’ € R%, ¢ € RV 2.
We will look for solutions in the space H,. So, we put k& bubbles in an one-dimensional

circle as follows: let

2(7 —1 2(7—1
T = (Tcosu’rsin¥’0’... ,0,5)’ j=1,---k,
and let
k
WT,l,/.L(y) :ZPU%;N
j=1

In this paper, we will prove that for any large k, (1.4) has a solution uy with

U ~ WTk PN

Now, we discuss the location of the bubbles. Due the weight y} in (1.4), the energy of
the bubble PU,, , will increase as 1y increases. On the other hand, due to the Dirichlet
boundary condition, the energy of the bubble PU,, , will also increase as 1 moves toward
the boundary. So we see that in the vertical direction, the energy achieves its minimum
at a point near the bottom part of the boundary. This property comes directly from
the equation and the boundary condition. In order to obtain a balance in the horizontal

directions, we need to impose (£24) on the domain. From this discussion, we know we
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should put z; close to the boundary point z*. For such zi, there is a unique (A, d), such
that

I = (haoa ,0,¢(h))+di/,

where v is the unit inward normal of 992 at (h,0,---,0,%(h)). In the following, we will

use h and d, instead of r and [, as the coordinates for ;. So we will use the notation:

k
Whau(y) = Y PUs,pe
j=1

Theorem 1.1 is a direct consequence of the following result:

Theorem 1.2. Suppose that N > 5. If Q satisfies (21)—(Q4), then there is an integer
ko > 0, such that for any integer k > ko, (1.4) has a solution uy, of the form

(18) U = th,dk,uk (y) + Wk,

_N-2 _ _
where wy, € Hy, and as k — +00, p1, ? ||wkl/pee = 0, i € [Aok%, Alk%], and dj, — 0,
hk —r*.

Conditions (£22) and (£23) are symmetry conditions, which allow us to find a solution in
the space Hj. It is condition (£24) that makes the construction of the solution of the form
(1.8) possible. We believe that these symmetry assumptions may be replaced by some
kind of conditions on geodesics on the boundary. On the other hand, the weight 3% plays
a crucial role in determining the location of the bubbles in the vertical direction. So the

technique in this paper can not be used to obtain a multiplicity result for

—Auzu%, u>0in€), wu =0, on Jf.

We will use a reduction argument to prove Theorem 1.2. In section 2, we will carry out
the reduction in a weighted space. The main result Theorem 1.2 is proved in section 3,

while all the technical estimates are put in the appendices.

Acknowledgment. The first author is supported a grant from General Research Fund of
Hong Kong. The second author is partially supported by ARC.
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2. FINITE-DIMENSIONAL REDUCTION

In this section, we perform a finite-dimensional reduction. Since this part is similar to
[20], we shall only give a sketch of the proofs.
Let

k
-1 N-2
(2.1) . = sup( ) (),
yeQ JZ:; 1+u|y—$g|)¥”
and
(2.2) I Z ! T )
) **—sup( o ) w2 1),
“(1+ ply — z;])

where 7 = N—:f For this choice of 7, we find that

=2

We will use 0y, 0> and 83 to denote 2 3h @ and - respectlvely Let
Zi,j = —dw(y%(?]PUw“u), ] = 1,2,3.

Consider

—div(yRDgr) — (2" = VyRWi idk = €+ 3516 Y0 Ziyy i Q,
<Zi,l:¢k>:O izl,"',k,l:1,2,3
for some numbers ¢;, where < u,v >= fQ Uv.

Before we proceed, we need the following lemma. The proof may be known but we can

not find a reference so we give a proof in Appendix C.

Lemma 2.1. Let u be the solution of

—div(yyDu) = y5 f(y), y€Q, u=0, ondQ.

Then, there is a constant C' > 0, such that

()| < c/ﬂ - ‘—f(x|3‘|7—2 dy.



INFINITELY MANY SOLUTIONS 9

Now we have the following a priori estimates.

Lemma 2.2. Assume that ¢y solves (2.3) for & = &. If ||kl goes to zero as k goes to
infinity, so does ||dk|«-

Proof. The proof of this lemma is similar to the proof of Lemma 2.1 in [20]. Thus, we just
sketch it.

We argue by contradiction. Suppose that there are k — 400, £ = &, hy — r*, di, — 0,
je € [Aok™=2, A1k~2], and ¢ solving (2.3) for € = &, p = g, d = dy, h = hy, with
I€k|l+s — 0, and ||@k||« > ¢ > 0. We may assume that ||¢x||« = 1. For simplicity, we drop
the subscript .

Using Lemma 2.1, we obtain

DI<C [ W) d:

(2.4) 3k

+c/| |N2|§ |+|chzz,]

Using Lemma B.3, we have

| T ile) a:
k

N-2 1 x 1
<Cl[o|[p 2 / W2
(2.5) 1l a, |2 —y[V=2 hyd,p ; (

Lo =) T

k

N-2
<Cllgllp = >
7=1 (

It follows from Lemma B.2 that

1
1+ ply — a|) 747+

MT
£(2)| dz < Cllé]l /
/|Z yIN- l |z — |N 2 — (14 plz—z;]) = 17

- 1
<Cllels™= Y —
o L+ ply— o)) =7

(2.6)

and
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k
1
gl Y Zi(2) | dz

1 k M¥+mi
(2.7) §C’/ — dz
ry |2 — py[N 2 ; (1+|z— ,uij)W
P 1
SCNTi+mi Z N-2_ >
it (L+ply— )= 7
where m; =1if7 =1,2, and mg = —1.

Next, we estimate ¢;, [ = 1,2,3. Multiplying (2.3) by Z;; and integrating, we see that

¢; satisfies

3 k

(2.8) DN (Z;0, 0Us, wher = (—div(yy Do) — (2 — V)yn Wy 26, 0Us, ) — (hy OUs, 1)

t=1 j=1
It follows from Lemma B.1 that

N2 m, e

k
—dz
+M‘Z zi| )N ; 1+,u|z—xj|)¥+7

(b, AU, )| < Cl]l.e / .

<Cl[A]|r-

On the other hand, using Lemma B.3, we can prove

(=div(y§ Do) — (2" = YWy o, 6 O, )
=(=div(yy DOUs, ) = (2" = DygWy 3 20U, . 6) = o([|6]l.) ™
Thus we obtain from (2.8) that

(2.9)

1
(2.10) = (018]1) + O(lp]L..))
So,
Z§=1 1M+r+o
(2.11) 6l < (0(1) + 1l + =220,

M

-1 N=2
= Qply—z )T T

Since ||@[|« = 1, we obtain from (2.11) that there is R > 0, such that
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N-2
(2.12) 177" ¢W)llB, 1 4@ = @ >0,

for some i. But @(y) = ,u_¥¢(,u(y — x;)) converges uniformly in any compact set to a

solution u of

(2.13) —Au— (2" = 1)U§ *u=0, inRY,

for some A € [A1, Ay, and u is perpendicular to the kernel of (2.13). So, v = 0. This is a
contradiction to (2.12).
U

From Lemma 2.2, using the same argument as in the proof of Proposition 4.1 in [7], we

can prove the following result :

Proposition 2.3. There exists kg > 0 and a constant C > 0, independent of k, such
that for all k > ko and all h € L*°(RY), problem (2.3) has a unique solution ¢ = Ly (h).

Besides,
(2.14) [ Lk (B) ||+ < Cllhl]ss-

Now, we consider

—div (YRDWhau+ 0)) =y (Wru+ )"+ Sy e oy Zig, in
(215)  {¢eH,
< Ziy, ¢ >=0, i=1,---,k 1=1,2,3.

The main result of this section is the following:

Proposition 2.4. There is an integer kg > 0, such that for each k > ko, (h,d) close to
(r*,0), u € [Aok%,Alk%], (2.15) has a unique solution ¢ = ¢(h,d, p), satisfying

“+0o

),

M

o]l < O

if N > 5, where o > 0 is a small constant.

1
1

To prove Proposition 2.4, we need to prove two lemmas first. Rewrite (2.15) as
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—div(yRDe) — (2 — DypWi 2o = N(®) + Ik + Doy i Doty Zig, in
(216) Qo€ H,
< Ziy, ¢ >=0, 1=1,---,k, =12,

where

N(¢) = yJTG((Wh,d,u + ¢)2*_1 — W;i*d,_ul — (2" - 1)W1$fd,_,t2¢),

and

m 2*—1 : 2% 1 m—1 . aPUzj’N
e =Yy (Wh,d,,u - Z Us; o ) — MYn Z dyn

j=1 j=1

In order to use the contraction mapping theorem to prove that (2.16) is uniquely solvable
in the set that ||¢||. is small, we need to estimate N(¢) and Ij.

Lemma 2.5. If N > 4, then

IN(9)llux < CllglJ=E =12,

Proof. We have

Clol”, N > 6;
IN()| < SN ozt
C(Whand®+16/*1), N=4,5.
Firstly, we consider N > 6.
Using
k LA T |
Zajbj§(2a§)5(263)5, —+—:1, CLj, ijO,
j=1 j=1 j=1 p q

we obtain
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72

IN(¢)| < Cli¢

k
2*—1(
" Z; uw—%
2*—1 zk:
Z

2*—1
)
_4_

k 1
N-—-2
Ay

1+M|y_333|)

(2.17) <C|¢|1?

) 3

1+my—%

2*—1

<Cll¢ll

)y

1+ /1'|y -y
Thus, the result follows.
Suppose that N =4,5. Noting that N — 2 > ¥-2 4+ 7 we find

k u on kK 1 9
IN(9)] <Cllgl2u"%( ) ( —)
Sar— B
k
+Olg| .
2; L+my—$m¥#“
<cligl Z
<Cligllu™* ( )
o uw—%D2+T

1
+C|lg)|> ! ”“Z
— (1+|y—=) 2 17

k

N+2 1
=C|lgl2u3 Y

o L+ ply —a5)) 2
So, we have proved that for N > 4,

Ni2y e

IN(D)|]er < C”¢||inin(2,2*_1).
Next, we estimate /.

Lemma 2.6. If N > 5, then

1,144
l *3% S C —)? )
Il < C()

where o > 0 is a small constant.
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Proof. Define

= {y: v % Ty oy =
QJ_{y yEQ’<\y’\’\x3\>zcosk}’ y_(ylayQHOa 70)

We have
k 2 1 b 2 1 k
Ik :y]r\r]z (Wlf,dj;} - Z(PU“”J’N ) (Z zi’“ Z 121’;1)
j=1 j=1 =1
oPU,
- m T T
2 ]Zl oyn
:IJ() + Jl + JQ.

From the symmetry, we can assume that y € {2;. Then,

|y_$]|2|y—$1|, VyEQl.

Firstly, we claim

1 < C
L+ |y — ;] = |oj — 24

(2.18) . YyeQ, j#£1.

In fact, if |y — 21| < 3|z — ], then |y — ;| > S|z — 2], If |y — 21| > 3|2y —
ly — x| > |y — 1] > 3|21 — z;], since y € Q.
For the estimate of Jy, we have

2 k N—2 N-2

k 2* 1
2.19) |Jo| < '
@19) 14l < e Y ey O m )

Jj=

Using (2.18), taking 1 < a < N — 2, we obtain for any y € €,

1 1

(14 ply = z1[)* (1 + ply — z;])N -2
1 1

(I + ply — 22 [)N27 |pm; — pwg|

(2.20)

j>1.

Take o > max(®21, 1) satisfying N + 2 — o > 222 + 7 Then

2
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k
(1 +u|y—x1 4; 1+u|y—$]|)N

(221) < C ]f)a _ C a

ST ay—a =) = G ay = eyt
C 1.1

()H

A+ ply —z]) 24 b

IN

Using the Holder inequality, we obtain

(Z 1+u|y—w]\) ) _
Z

Noting that 2F2(2-2 — 78=2) > 1 if N > 4, we obtain

+u|y—x )" = (L+ply —ay]) 7 ¢

(Z 1+u|y—w\) ) 7

j=2
k 4 k
1 3 1
C(Z RS N_2 ) Z Ni2
=2 Ty — pxg] SN i L+ ply =)=
k M(N;_TN—2) 4 k 1
(2.22) SC(_) 1 p) N2/ N—2 Z o
H j=1 (T+ply =) 2 *"
k
_ (1) %f?(%—NTm)Z 1
2
z P (1+M|y—%\) z

k
Oy

N+2 4 o
j=1 1+/1"y_x3|) >

M\»—t

Y

1
u

since 142 (5 — 55) > 3. Thus, we have proved that if N > 4,

1,144
J %k S C —)?
I oll-. < ()

(> : )"
N+2, N—2 N—2 .
F2HT 2 TTNT2

15
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Now, we estimate J;. Let H(y,z) be the regular part of the Green function for —A in
Q2 with the zero boundary condition. Let z7 be the reflection point of z; with respect to
0f). Then

H(y, x)) C C
J — <
pN=2 o N2y — w3 N2 T (1 ply — @)V

(2.23)

since ply — 23| > pd — +oo. Using (A.1), we find

k 12
|J1] < 7
z:: 1 +u|y—fcg|) e
k
i Hiy,2,)0
<Cu =2 J
le (1 + ply — z;[ )+ HE-2) ( V2 )
N 2 b
(2'24) Z 1 + \y — 4+t(N—2)
]:1
C N+2 1 tN fi 1
<Cu—=> (—
G LTy = e
N+2 1 l+g
<C/,1, —)2 Z N+2 ’
M j=1 1+M|y_373|) 2 7

if we take tX=2 = 1 + 5 for some smallo > 0. For such ¢, we can check that 4+ (1 —¢)(N —
2) > M2 4 7. Here, we have used d > %2

Finally, we estimate J;. Similar to (2.23), we have

OPUg; A 8U$J, H(y,x;)
Oy dyn +O(N1}22‘ 8y . ‘)
- ﬁ <,u]} — x|V 1)

7 Ni2 1
= )= ol )
(14 ply — 2 )™ 2t (L4 ply — ;)N

where z7 is the reflection point of z; with respect to OS2

If N > 5 and o > 0 is small, then we have N — 1 — o > 2 4 7. As a result
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N+42

/_j, 2
i, Ni2 o °
p2 i A+ ply — )=

Q
M?r

(2.25) | 2| <

Now, we are ready to prove Proposition 2.4.

Proof of Proposition 2.4. Let

N[

E={u:ueC(Q)nH,|ul. < (%) ,/in,lqs:o, i=1,---,k 1=1,23}.

Then, (2.16) is equivalent to

¢ = A(¢) =: Ly(N(9)) + Li(lk),
where L; is defined in Proposition 2.3. We will prove that A is a contraction map from E
to E.

We have
[A(@)[l« < ClIN()|lx + Clllk][ s
(2.26) - C 1
<C inln(? L2) +C|| w < 1 < T1-
= il < - <

Thus, A maps F to E.
On the other hand,

[A(¢1) = A(@2)llx = [[Le(N(¢1)) — Lr(N(2))|lx < ClIN(61) = N(h2) |-
If N > 6, then

IN'(t)| < C|t|* 2.
As a result,
IN(¢1) = N(2)| < C(|¢1]7 7 + || %) |1 — ¢
k N=2 2% _1
<C(IlpllZ =2 + 1 g2ll> =) b1 — el L
(ol o= =l (3 = )

As before, we have
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k 1

( ! )2*_1 C
<
N-2_ _ > Nt2
j=1 (T+ply—z) = F j=1 I+ply—z;) ="

So,
|A(d1) — A(d2) ||+« < C||N(¢1) — N(¢2)||
<C(llgullZ 7> + N2l 7)1 — @2l < 2||<151 P2+
Thus, A is a contraction map.
For N =5,
IN'(8)] < CW, 2 |t] + Ol 2.
So,
IN(¢1) — N(¢2)|
<C(Ionf 2 + 62 2) |61 — ¢2|+0(|¢1|+|¢2) W2 g — ¢l
2 2* -1
<C(I6:ll 2 + 162 72) I — & ( )
—~ (1 e
(2.27) Hi i %ND 2
u J/)
C(lléul. + el WN
(I611l- + l1all)1s — dall W, (Z T —)

k N+2
M 2
<CO([lalls + lid2ll) llpr — @2l NI
; (1+ply — i)

Thus, A is a contraction map.

It follows from the contraction mapping theorem that there is a unique ¢ € FE, such that

¢ = A(9).

Moreover, it follows from Proposition 2.3 that

16]ls < Cllikller + CUN @) [les < Cllllles + C| |20 =12,

which gives

wl’-‘

loll. < C(=)*"

1
1
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it N > 5.

3. PROOF OF THEOREM 1.2

In this section, we will choose h,d and u, such that the corresponding c¢; is zero. For

this purpose, we only need to solve the following problem:

(I'Whyap + ), 0,PUsy, ) =0, i=1,2,3,

where we use 0;, d» and 03 to denote aah’ and respectively.

ad
We first prove the following result:

Proposition 3.1. We have

oPU,, B Bk~ !
(3.1) <I'(Wh,d,u + ¢), o u> = _MNAC;NQ + ;N—l + O(W)’
$1,M 1
(3_2) <I (th“ + ¢ > Bﬂb ) (E)’
and
Jfl, B 1
(3.3) (I'(Wh, d,u+¢ u> = WlNl +O(E>'

The proof of Proposition 3.1 is similar to that of Lemma 2.6 and is quite technical. We

leave it to the end of this section.
Proof of Theorem 1.2. Define
d=L2 A

k
Then, (3.1), (3.2) and (3.3) are equivalent to

(3.4) - AN—1B£)N—2 + Aflil = o(1),
(3.5) ¥'(h) = o(1),

and
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B,
(3.6) By — sxmpn=t = o),
respectively.
Let
By B,
fi(D,A) = T AN-1DN—2 + AN-1
and
B,
fo(D,A) = By — i35 -

Then, f; =0 and f; = 0 have a unique solution

1

B\ 7= B 3z
n= (3w ()™
0 B3 0 B3D(])V_1

On the other hand, it is easy to see that

0fi1(Do, No) 0f2(Do, Ao)
an ap Y
and
afl(DOaAO) _ an(D(),A()) >0
oD N oA
Thus

deg(f*’ 0’ B*) # 0’
where f*(D,A) = (fi1(D,A), f2(D,A)), and B* = {(D,A) : [D — Do| +|A — Ag| < 6}. On
the other hand, since r* is either a strict local minimum point, or strict local maximum

point of v, we know that for § > 0 small,

deg(¢',0, (r* — 6.r* + 6)) # 0.
Let f((h, D,A) = (¢(h), f*(D,A)), and let B = (r* — 6.r* + ) x B*. Then

deg(f,0, B) #0,
from which, we know that (3.4), (3.5) and (3.6) have a solution near (r*, Dy, Ag). O
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Proof of Proposition 3.1. We have

<I’(Wh,d,u + (15), aiPwa>

=<I'(Wh,d,u)7 8,'PU$1’N> + / YN ((Wh,d,u 4 ¢)2*71 _ W}f;jul _ (2* — 1)Uz2:’;2 )&PUml,“
Q
A PU,, )
—m m—1 i Vi) 4

In view of Proposition A.1, we need to prove

/ yln\}((Wh,d,u +o) T =W - (2 = )UE? )aiPUm,u
Q

0(0; PUy, 1)
(3.7) _m/ym—171,u¢
Q N oyn
:/_j, O(u1+0')’
where m; = 1if 1 = 1,2, and mg = —1.

The proof of (3.7) is similar to that of Lemma 2.6. Write

/Q y%((Wh,d,u + o) - WELL - (2 = 1)UE 2 )@PUIW
39 = [ ( W o =W = = DWE20) 0PV

+(@2 -1 / v (W2 = UB2) 60:PUsy
Q

If N> 6, then 2* —1 < 2. In this case, we have the formula

1+t 11— (2" =1t =0).
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As a result,

[ (Wit 0071 = W) = @ = )W 26) 0P

T1,M4

<c / W2 R0 Ul < Cum [ U2,2168  (since 2 —3 <0)
Q

cu ol | Z

—Cum || / Z

where Q = {y cuTly € Q}
Recall

R
1+u\y—%l) At (L ply — @)

)
(1+y— wg\) Tt (L4 |y — pa )

{y yEQ <|/| >>COSk} ylz(yby%aoa'”ao)'

ForannyQn—{y.,u yEQn},

>

= A+ ly - uﬁrg\)

1 1 C
5, T N-2 \uTn — piz; |7
T+ ly - pa))T (L4 |y — pxn|) "= 57, [HTn — HT;
C

-2

< N
1+ |y — paal) =
So,

k

. 5 (L4 |y — payl) 7 77 (L [y — pa )t

<C/ 1 1 <C 1
~ Ja, Ty —pxa )N 2 A+ |y — pra)* T | pm, — pan]?
So, for N > 6,

‘/Q yz’?((Wh,d,u SR N A PR V1 | )8iPUm1,N

, Cum
<Cp™|lg||? < e
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If N =5, then

| / Ui ((Whaw + )7 7 = WELE = (2 = DW26) 0iPUsy

<C [ (Witiok + 167 ) 0PUs,,

k
*_ ]_ 2*—1 ]_
2*—1 E
* )/ﬁjzl((1+|y_/1'$j‘)lv2_2+‘r) (1+ |y = pa )N 2

2*71) _ C,umi
* — ,u1+<7 :

<Cp™ (llgll + Nl

<Cp™(||o]? + ||¢

So, we have proved

* % * . ]_
(3.9) /Q Vi (Wi + 0~ = WEL = (2 = )WEG26)0,PUsy, = WO (o):

Now, we estimate the second term in the right hand side of (3.8):
Write

[ (Wi -2 s0ru,
Q

(3.10)
= [ (W = PUZG) 0PVt [ 4 (PUns— UEL32) 80PV,

If N > 6, then using (2.21),

[ (Wi - PUz?) 0P U
Q

< oum /Q Z U,, WU 226
j:

- i 1 1
<Gl /Z 1+ly- uﬂ«“gl) DBy =

(3.11)

§ 1
<Cu ||¢|| /Z (1+y— /MCZD

(1 + |y — pa|) 5

m;
SC’“’ /j/1+<7

If N =5, then 2* —2 =% and 7 = 2. We have

1+ |y — pag]) T 7 1+ [y — pan [)*

23
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3 12
‘/ YN i?d_;f PU§1;2>¢81'PU$1,M

k

<Cp™ /Q(Z Uz, WUz u2 (Z UIJ"“)Q*JU“’“) 9]
j=2

7j=2
1 b 2 2
<O ez + O™ [ (Vi) Virald
j=2

mil

k

2*_9 1 1
+ u™|| P / 247
Ioll | O Ty = G = w2 Ty

But

k

z/ Ly : 3 -
— 1+ [y — pai )V L+ ly = pea DN 72 =1 4 [y — p[) 7

=1

S / 1 4T 1
S Jon 1+ |y — paa|) v (L ly — pan )YV

k
C C
Sln,uz FUANTS B < lig?
ne2 |WTn — pz |21 w2

and

k k

L mrmmr= mrm e S ey
a, i 1+ ly — pai) (L + |y — pa]) 1+ |y — p|) T

<Ck4/ 1 Z’“: 1
ot Ja, Uty —pm VTS y — )T

C

ato’

<

1
So, we also prove that for N = 5,

cumi
'ul—i—a

(3.13)

[ (Wi - PUz)ooPU,, <
Q
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Using (2.23), similar to (2.24), we can prove

‘/ yN ﬂnﬂ Ug::ﬁ) ¢aiPU$1,N‘

m H(y’xl) *_
<Cp™ Uz, i 19]
Q Uy 2
(3.14) vie 1 1
<Cuml/'l' 2 l_|_g / +2+T|¢)|
pet? Ja (14 ply — @) 2

_

Sc’uml f—l—a

Combining (3.10), (3.11), (3.13) and (3.14), we obtain that for N > 5,

(3.15) [ (Wi~ xUZ,?) 0P Vs = O (M 3).
9) 1%
Finally,
10(0; PU,
‘/ Y gqﬁ‘
Q

(3.16) el [ 3 Z SR
1+ ]y — /ij\) w7 (1+ [y — pa )N

<CpHmlg]., < e

prte

So, (3.7) follows from (3.9), (3.15) and (3.16).

APPENDIX A. ENERGY EXPANSION

In the appendixes, we always assume that

20 = Dr .20 =D

x]-:(rcos ? , 7 sin ,O,Z), j=1,--- k.

k

where 0 is the zero vector in R¥N=3, and (r,1) is close to (r*,[*). Recall that we write

Ty = (haoa' e ao,w(h’)) + dv,
where v is the inward unit normal of 0Q at (h,0,---,0,%(h)).

25
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Let G(y, z) be the Green function of —A in Q with the Dirichlet boundary condition.
Let H(y, z) be the regular part of the Green function.
Let recall that

€ [Ak 2, A kN3],

where Ay > 0 is a small constant, and A; > 0 is a large constant.

Define
1 m 2 m 2*
I(u) = 9 Q?JN‘DU| T o ynlul®,
Ne2 IL(IN;2
Ug, u(y) = (N(N —2)) ¢ 7
= e P
and
K
Wh,d,u(y) = ZPij,u(y)a
j=1

where PU,,, is the solution of (1.6). It is well known that

BH(y,z 1
(A1) Uial) = PUeyult) = 25 1+ 0( )

where B > 0 is a constant.

The main result of this section is the following estimates.

Proposition A.1. We have

dPU,,. B By kN2 1
(A.2) <II(Wh,d,u)a TH> = _NN—lcliN—Q + ;N—l + O(,u2+‘7>’
dOPU,, 1
(A.3) (T'(Whap), —725) = Bot'(h) + O(E)’
and
OPU,,., B 1
(A4) <]I(Wh,d,u)’ od N> = B; - /j,NTcliN_l * O<E),

where B1, By, By and By are some positive constants, o > 0 is a small constant.



INFINITELY MANY SOLUTIONS 27

Proof. We use 0;, 0, and 03 to denote a%’ 8‘9 7 and respectlvely Then

(A.5)
<II(Whvd7N)a azPUan u>
k
= [ROC U = WEL)OP e, - mz [ O it U,
j=1
k k
=I" /Q uR (Q_Un ! = Wikiyh) 0iPUs, o + /Q (R — ™S UL = W2 PU,,,
j=1 j=1
k
PU,
S [ P,
j=1"8

On the other hand,

k

SUR (0 STERER TS o) M) SUERE G Lo

j=1 n g=1

Q={y:yeQ <il N >cosT Yy, Y = (g ye, 0,000 ,0).
] I ‘yl"‘ﬁj‘ - k' Y I A I
Let m; =1if7=1,2 and let m3 = —1. Then

0,PU,, | < Cp™U,, .

So we have
k
[ o v - WPt < oum [ 13U - W U
Q=1 Q=1
mg * 2*—1
<C/J/ / <U$2nau2 Z Uw]ali + (Z ij 7“) ) leyu
(A7) o - 1
<Cu™ /
a, (14 |y — pwn))* ; (L4 [y = pag )2 (L4 [y — pa[)V2

1 21 1
—i—C’um"/
O Al e

where Q, = {y: p~'y € Q,.}.
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It is easy to check that for any y € Q,, n # j, ly — pz;| > 3 \uxj pxy,|. As a result,

e Y <=
= (Lt |y — pajl) NQ_ = |y — pag| V72T pN2

So, we obtain

/ 1 Z 1 1
f, (14 |y — pan|)* o= (14 |y — pa )72 (14 [y — paa )2

N—-2
(A.8) sC]fH/ L 1
N2 Ja, (1+ |y — pon|)* (1 + [y — pa )N~
CkN—2 1 / 1 < CkN-2 In i
TN e w2 o, (L |y — paa )Y T pN T pRz, — 3|2

On the other hand, let ¢ > max(1, (1<7V+22)) Then, for y € Q,,

1
; (14 [y — pa; )V -2
1 1 < Ck' 1
12 — pan]f (L+ [y — gz )N 20 = it (L+ |y — pan) N2

As a result,

1 2% —1 1
R e e

" j#n

<0kt 2"-1) / 1 1
Tt Je (14 Iy — pn [JV20@D (1 + [y — puay [)N 2

Ot 1) 1
(A9) < T T —/mh\N 1 /n 1+ 1y — ,u:r ) (N=2-0)(2 )+ N-2—(N-t(2* -1))
Okt —1)
Tz, —uxl\N H2=1) / (1+ly— uxn\)
Okt =1) In

= U@ g, — | VU2
Combining (A.7), (A.8) and (A.9), we find
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\z [ vz - o,

n =1
_ *_ k
N 2, — an? P =D et iy, — gy [V D)
CkN1np
SNmZT.

So, (A.6) and (A.10) yield

k
[z -war.,
jZl

(A.11)

_ . o kN I
:/ (Z Uzg,ul Wlid,ul)aiPUmhu —I—O(,u R— )
™ o u

It is standard to show that

k
/Q (Z U%*I_il Wf?,*d,_ul)aiPle,u
1 ]_1
/Q (U2 = (PUg,p)* ™) 0iPUs,
(A.12) '

. i kNln,u
/ Ple,M 2 2 ZPU%;N aPU$1M+O( )
1951

N
2 H

=
:az.(‘ 9517951 ifh x1,xz )+O(MmikNlnM>,

N
=2 K

where B; > 0 is a constant.

We now estimate the second term in (A.5). Similar to the above discussion, we have
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k

/Q(yf’G =" QU = Wikin)0:PUs,

i=1

k
) . . kN In
:/Q (yn — lm)(z Uzjal_il - Wfid,ul)aiPle’“ + O(N l u “)
1 =1

(13 = [ ORI (PULY 0P

ikNln,u)

k
- / (y% B lm) (PleaN)Q*_Q (Z Pij,N) aiPle,u +0 ('um MN
(971 ]:

2
—O(l|8- xl,xl |+1i|aG(x],x1 kNln,u> m;
\w = uNo )t

Finally, we estimate the last terms in (A.5).

If : = 3, then
k
oPU,.
m-1__ %5, PU
> [ G o
< z i 1
v (1+ ]y — M%D LA+ |y — pa [)N2

1 1 1 kN3]

<C— Z N—3 O(_Q N—§M>'
W2 <= |y — pa| proop

and

‘/ m— 1 m’uaSPle,u‘

<c/ i e —0(1)
T Jo (Ut ply — 2 )N 1 (1 + ply — 2 [)N2 prte /)

So, we obtain

Z/ aPUIJ’“ 03 PUs, u = O(lew).

Thus, we have proved
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(A.14)

k
<II(th,“ $1 [L> — _ _Q)HIBl xl;xl +Z xl;ml) +
=2

for some By > 0.
Let T be the unit tangent vector of 02 at (h,0,---,0,1(h)). Note that

_ <170:"' aoawl(h» U= <_wl(h)’0"" 707 1)
L+ [/ (m)P2 L+ [/ (h)P

As a result,

OPU,, , 1 OPUs, . Y'(h)

0, PU,, , = .
! o 0z, 1+ |y'(h)|? 01 N 1+ |[¢'(h)|?

Noting that

Oryy |y —af|vv

where z7 is the reflection point of x; with respect to 02, we can prove

Z/ m— laPUIJ,MaPUw 1
01,1 1+ ¢ (h)|?

:/ y”“l 8PU$1,M 8PU$1,M 1 (kN_2 In ,u)
Q N oyn 0z, 1+ [¢'(h)]2 N2
anl,u ou, T1,4 1
= | U ()2
Q Oyn 0r11 /1 + [ (h)|

o[ e ) o)
o (L+ply =z )V 7552 Jy — 2V pN 2
_ / o OUppOUs 1

Q"N Oyn Oz 1+ |¢'(h)|?

EN=2Inp
+O(MN2dN20/Q ly — z(|N-0 + N2 )

=0(magrr) = O )

where 6 > 0 is any small constant and ¢ > 0 is a small constant. As a result,



32 JUNCHENG WEI AND SHUSEN YAN

Z/ % ualpUzl,u
—Z/ i 18PUJCJ,M 0PUy,, , Y (h) —i—O(i)

yv - Omn 1+ [P/(R)? pe
10Uz, OUg, Y'(h) 1
/QyN dyn Omin \/1+ [ (R)] (u)
1
Y, .
— _ B'y(h) +O<u“)'
So we obtain
OPUy,,
<II(Wh,d,H) oh N>
(A.15) k
, By 0H(zy,x1) B, 0G (x4, 1) 1
—-B _
2t (h)+uN—2 oh ,uN_QzZ_; oh +O(,u‘7)’
where By > 0 is a constant.
From
0PU,. "(h OPU,,. 1
0,PU, , = — o i v(h) i

_|_
iy JTHWWP Doy T+ [P0

we can prove

—Z/ 8PUwJ uOPUy, 1 ( 1 )

+0(—
yn  Ozin /1 + [ (h)]2 I
10Uy, ,, OUy, 1 1
_ +0(—
/QyN Oyn Oz1,n \/1+ |'(h)]2 (u”)
1
=B +O(,u”)’

where B"” > 0 is a constant. As a result,
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<I,(Wh,d,p), %
- 1 (.’L'l,.’L'l) Bl 8G(x,,:1:1) 1
=Bt Nm T d Z:; ad +O(E>’

where B3 > 0 is a constant.
To finish the proof of Proposition A.1, we need estimate the Green function.
Recall that

di'(h) d
W o 0,0(h) F ).
P vih) e

z1 = (h,0,---,0,9(h)) +dv = (h - 1+ [¢'(h)

Then, we have

o dY'(h) 20 -Om . dy'(h) 20— D
Y 7 e Y e A
d
0,---,0,9(h) + ———).
AV T
We have
(A.17)
2 (b dy'(h) 206 2(j = m (1 dy'(h) PO Rl VL
|zj—x1]" = (h NiERr O |1/)’(h)|2) (2—2cos — )= (h = |1/J’(h)|2) sin :
For the Green function G(y, z;),
G(yaxl) = w_;% - H(yaxl)a

where ¢o > 0 is a constant, and H(y,x;) is the regular part.
Let z7 be the reflection of z; with respect to 0€). Then

and

So, we obtain
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H(w1,11) = 33053 (1+0(d)).
On the other hand,
() 2D 2d
o= e T ) e
dy' (h) 2 —Dr 2d
h — 0.oer 0 — "
( 1+ |¢'(h)|2) St k T 1+ |¢I(h)|2)
So
o v (h) 2 — 1)
xj_331|2 —(hf—myﬂ—?cosi]C )
dy'(h) 2(j — Dm 2d
+2(h — ————)(1—
( 1+ Iw’(h)IQ)( P 1+ [¢/(h)[2
8d?
A. =
. ROk
e — |2 . dy'(h) .o (=17 d
=lz; — x| +2(h = |¢’(h)|2) sin p ) 0
8d?
TR
Since dk — ¢ > 0 and
i U=bm k
0<d< Sn(]j?)’jrgc”, i=2- 05
we can deduce
a 1 o (b)) (=D d 842 o
7 S ar O e ™ &y i) < 7

for some constant a; > ag > 0. From

_ $1|N72

_ Co C()|.Tj
Glernn) = fp pa (™ Ty g

(1+0(d))),

we obtain
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kN_2

k

/ G('/E]Jxl) = (h— dy’ (h) )N

=2 L[/ ()2

where B) and B, are some positive constants.
So, (A.14) can be rewritten to (A.2).

From (A.17), we find

— (Bj1 + O(d)) = BykN2 + O(kN~2d),

Olas — il _ o(2ky Ol —
oh 7 ad J
while from (A.18), we find

Olzj — 7| k Olzj — z7

_ L | ()&
o =0+ D), T O(d+ [¢/(h)| %)
So, we can prove
zk: 1 3G(;L-j,x1) zk: 1 8G(acj,x1) . O( 1 )
pss 'uN—Q oh ) pms ,UN_Z od - MN—2dN—2 )

Thus, (A.15) and (A.16) are equivalent to (A.3) and (A.4) respectively.

APPENDIX B. BASIC ESTIMATES

In this section, we list some lemmas, whose proof can be found in [20].

For each fixed 7 and j, ¢ # j, consider the following function

1 1
Lty —zi))* (U + |y — z:)P

where o > 1 and > 1 are two constants.

(B.19) 9ii(y) = (

Lemma B.1. For any constant 0 < o < min(a, 3), there is a constant C' > 0, such that

C 1 1
9i;(y) < ( — + - )
aW) < o \ T g e T A+ g =)

Lemma B.2. For any constant 0 < 0 < N — 2, there is a constant C' > 0, such that

/ 1 1 dy < C
z -
Ry [y = 2[V2 (L4 [2)2 7 (L + yl)
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Let recall that

k
Wh,d,u(y) = ZPU%W

Lemma B.3. Suppose that N > 4. Then there is a small 6 > 0, such that
1
_ ——dz
/RN |y — 2|2 Wi ; 1+|z—:c]|)¥+f
=55

Proof. The proof can be found in [20]. We just need to use

(14 ply — =; I)¥+T+”'

N72

Mw

Whru(

1+u|y—wl)N 27

and

1 k
— dz
/]RN L Z +|z—$a\) R

J=1

1 . 1 ¥
B =) .
/]RN |ny — 2N 2 2221( + |2 — pa;) Z 1+\z—px]\) R

Jj=1

APPENDIX C. PROOF OF LEMMA 2.1

In this appendix, we prove Lemma 2.1.

First, for any = € €2, we need to find a solution u, satisfying

(C.20) —div(yyDu) = d,, y € Q.

For this purpose, we take a domain €y, satisfying 2 CC €; CC Rf.

Let uy = u — wm‘yf%’ where ¢y > 0 is chosen in such a way that
N

AL,

y—a=
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Then
_Auy — m Ouy _ m (N —2)(yy —zn)
ynOyn  yn |y — =N
So, we consider the following problem:
- —_m Ou _ a yn—z i .
(C.21) Au YN Byqjv B y(jv I;/V—w\‘]"v’ in {4
U(y) = Wa on ana

where a > 0 and @ < N are some constants.

Note that for any = € Q2

S S
? ly—z|*=?

< C for any y € 09).
By the L? estimate, it is easy to see that if o < 3, then |u(y)| < C.

37

Suppose now that o > 3. Then the solution u of (C.21) satisfies |u| < @, where @ is the

solution of

— a

~ m Ou 1
(C.22) {‘A“ T yn Oy~ uw el

a(y) = Wa

— a 1
Let uy = u @=2)(N=a) g=a=3" Then

YN OYn

(C.23)

YN

a

{_Aul _ mdu _ m(a=3) yn-an

ly—z[=1"

in €y

on 691,

in €y;

on 891,

— 1 _
() = p=r= ~ e(v=a) e

By the L? estimate, it is easy to see that if o < 4, then |u;(y)| < C. So, we have proved

that if o < 4, the solution of (C.21) satisfies |u(y)| <
procedure to prove that for any o < N, the solution of (C.21) satisfies |u(y)| < P

From the above discussion, we know that (C.20) has a solution S(y, x), satisfying

a

S(y,fﬂ):W

+0(

1

ly — V=2

c

), asy — T.

w3 Now we can continue this

By adding a constant to S, we can always assume that S(y,z) > 0. So, the Green function

G(y, z) for (C.20) satisfies

< -
0<G(y,z) < S(y,x) < g — z|v -2’

and the result follows.
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