INFINITELY MANY POSITIVE SOLUTIONS FOR THE NONLINEAR
SCHRODINGER EQUATIONS IN RV
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ABSTRACT. We consider the following nonlinear problem in RV

—Au+V(yhu=uP, u>0 inRYN, wuec HI(RN) (0.1)
where V(r) is a positive function, 1 < p < % We show that if V(r) has the following

expansion: There are constants a > 0, m > 1, § > 0, and Vp > 0, such that

V(r):Vo—I—i—I—O( as r — o0,
Tm

1
rm+6 ) ’
then (0.1) has infinitely many non-radial positive solutions, whose energy can be made
arbitrarily large.

1. INTRODUCTION

Standing waves for the following nonlinear Schrédinger equation in RV :

i = Ap = Ty + I, (1.1)

where p > 1, are solutions of the form (¢, y) = exp(iAt)u(y). Assuming that the amplitude u(y)
is positive and vanishes at infinity, we see that 1 satisfies (1.1) if and only if u solves the nonlinear
elliptic problem

-Au+V(y)u=uP, u>0, lim w(y) =0, (1.2)

ly|—+o0

where V(y) = V(y) + A. In the rest of this paper, we will assume that V is bounded, and
V(y) > Vo > 0.
A problem which is similar to (1.2) is the following scalar field equation:

—Au+u=QyuP, u>0, lim wu(y) =0, (1.3)
ly|—+o0
where Q(y) is bounded, and Q(y) > Qo > 0.
It
inf V(y) < lim V(z), (or sup Q(y) > lim Q(z)), (1.4)
yeRN |z|—00 yERN |z|—00

then, using the concentration compactness principle [24, 25], one can show that (1.2) and (1.3)
have a least energy solution. See for example [17, 24, 25, 28]. But if (1.4) does not hold, (1.2) (or
(1.3)) may not have least energy solution. So, one needs to find solution with higher energy level.
For results on this aspect, the readers can refer to [4, 5, 6]. Note that the energy of the solutions
in [4, 6] is less than twice of the first level at which the Palais-Smale condition fails.

Recently, Cerami, Devillanova and Solimini [9] showed that the following problem

—Au+V(y)u = [ulf u, lim wu(y) =0,
[yl =400

has infinitely many sign-changing solutions if V' (y) tends to its limit at infinity from below
with a suitably rate. Except [10], where Q(y) is periodic, there is no result on the multiplicity of
positive solutions for (1.2) (or (1.3)).

On the other hand, if we consider the following singularly perturbed problem:

—?Au+V(y)u=u?, u>0, lim wu(y) =0, (1.5)
ly[—+o0
1
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or
—e?Au+u = Q(y)uP, u >0, lim wu(y) =0, (1.6)

ly|—=+o0
where £ > 0 is a small parameter, then the number of the critical points of V(y) (or Q(y)) (see
for example [1, 7, 8],[13]-[16],[18, 27, 29]), the type of the critical points of V (y) (or Q(y)) (see for
example [12, 21, 26], and the topology of the level set of V(y) (or Q(y)) [2, 3, 11, 19], can affect
the number of the solutions for (1.5) (or (1.6)). But for the singularly perturbed problems (1.5)
and (1.6), the parameter £ will tend to zero as the number of the solutions tends to infinity. So,
all these results do not give any multiplicity result for (1.2) (or (1.3)).

In this paper, we assume that V (y) is radial. That is, V(y) = V(Jy|). Thus, we consider the

following problem
~Au+V(y)u=uP,u>0 in RV, uwe H (RY), (1.7)
where 1 < p < % if N>3,1<p<+ooif N =2. We assume
lim V(ly|) =V >0.
ly| =00
Note that if V(r) is non-decreasing, by [20], any solution of (1.7) is radial.

The aim of this paper is to obtain infinitely many non-radial positive solutions for (1.7)
under an assumption for V(r) near the infinity. We assume that V(r) > 0 satisfies the following
condition:

(V): There is are constants a > 0, m > 1, 8 > 0, and V; > 0, such that

1

a
V(T) =V + ey + O(—rm+0)’
as r = +o0o. (Without loss of generality, we may assume that V5 = 1.)

Our main result in this paper can be stated as follows:

Theorem 1.1. If V(r) satisfies (V), then problem (1.7) has infinitely many non-radial positive
solutions.

Remark 1.2. To obtain the result in Theorem 1.1, (1.8) can not be changed to
a 1

V(T)Zvo_r_m+0(rm+9)a (19)
In fact, it is easy to find a function V (r), satisfying V'(r) > 0 and (1.9). So, for this V, all the
solutions must be radial.

Remark 1.3. The radial symmetry can be replaced by the following weaker symmetry assump-
tion: after suitably rotating the coordinate system,
(V1) V() =V(y,y ) =V(y |lysl, -, lyn]), wherey = (y ,y ) € R? x RV2,
(V2) V(y) = Vo + ﬁ +O(|y|++9) as |y| = +oo, wherea > 0, m > 1,6 > 0, and V5 > 0 are
some constants.
We believe that Theorem 1.1 is still true for non-radial potential V(y). So, we make the

following conjecture:
Conjecture: Problem (1.2) has infinitely many solutions, if

a 1
V) =Vo+ —— 40 :
W) =Vo+ i + Oes)

as |y| = 400, where Vo > 0,a >0, m >0 and 6 > 0 are some constants.

Remark 1.4. Using the same argument, we can prove that if

1
Q) = Qo — = +0(p5)

where Qg > 0, a > 0, m > 1 and 6 > 0 are some constants, then
~Autu=Q(y)ur, u>0, ueH'(RY),

has infinitely many positive non-radial solutions.
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Before we close this introduction, let us outline the main idea in the proof of Theorem 1.1.
We will construct solutions with large number of bumps near the infinity. Since we assume
lim V(ly|) =1,

ly|—+o0

we will use the solution of

(1.10)

—Au+u=uP, u>0, inRV,
u(y) = 0, as |y| — oo,

to build up the approximate solutions for (1.7). It is well-known that (1.10) has a unique solution
U, satisfying U(y) = U(|y|), U’ < 0.
Let

2(j — D 2(j — V)
k k

where 0 is the zero vector in RV 2, r € [rokInk,r 1 kIn k] for some 71 > rg > 0.
Set y = (y',y"), y' € R, y" € RV ">, Define

Hy={uwe H(RY),uis evenin y,,h=2,--- , N,

z; = (rcos , 7 sin ,0), j=1,--,k,

u(rcosf,rsiné,y") = u(rcos(d + 2
Let
W, (y) = Z Uzj (y)a

Jj=1
where Uy, (y) = U(y — ;).
Theorem 1.1 is a direct consequence of the following result:

Theorem 1.5. Suppose that V(r) satisfies (V). Then there is an integer ko > 0, such that for
any integer k > ko, (1.7) has a solution uy, of the form

U = WT}c (y) + Wk,
where wy, € Hy, v, € [rokInk,rikInk] and as k — +o0,

/RN(|Dwk|2 + w,%) — 0.

We will use the techniques in the singularly perturbed elliptic problems to prove Theorem 1.5.
We know that there is always a small parameter in a singularly perturbed elliptic problem. Al-
though there is no parameter in (1.7), we use k, the number of the bumps of the solutions, as
the parameter in the construction of spike solutions for (1.7). This is the new idea of this paper.
This is partly motivated by recent paper of Lin-Ni-Wei [23] where they constructed multiple spikes
to a singularly perturbed problem. There they allowed the number of spikes to depend on the
small parameter.

This paper is organized as follows. In section 2, we will carry out the reduction. Then, we
will study the reduced finite dimensional problem and prove Theorem 1.5. We will leave all the
technical calculations in the appendix.

2. PROOF THE THE MAIN RESULT

Let ou.
7z, = "% i=1.--- .k
J 8’[‘ ’ J ’ s vy

where z; = (r cos 2(’;1)”,rsin 2(’;1)”,0). In this paper, we always assume

r € Sy =: [(% — B)kInk, (% +B)kInk], (2.1)

where m is the constant in the expansion for V', and 8 > 0 is a small constant.
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Define

E:{UZUEHS7/ Ug]_lzj’l):(),]:l,,k}
RN

The norm of H'(RY) is defined as follows:

l[oll = \/{v,v), veH"(RY),

<v1,v2> = /RN (Dle’Ug + V(|y|)v1v2).

where

It is easy to check that

/ (Dlevg + V(ly|)vivs —pW,f’_lvlvg), vy,v9 € B,
RN

is a bounded bilinear functional in E. Thus, there is a bounded linear operator L from E to E,
such that

(Lvy,v) = /N(Dlevg + V(ly)vive — pWP tvrvs), wi,v2 € E.
R
The next lemma shows that L is invertible in E.

Lemma 2.1. There is a constant p > 0, independent of k, such that for any r € Sy,

L[| > pllvfl, v e E.

Proof. We argue by contradiction. Suppose that there are n — +00, r; € Sk, and v € E, with

I L[| = o(1)[|v|l-
Then
(Lok, ) = oW)lwellllell, Vo € E. (2.2)
We may assume that |jvg|? = .
Let

R S R 2 N-2 . y_’m_, T
Q]_{y_(yiy)eR x R <|y,|7|x]>zcosk}

By symmetry, we see from (2.2),

(Loeg) =o(Rlell, YoeB. (23

| =

/ (Duk D + V(Jyl)org — pWP ‘o) =
Q1

In particular,

/Q (1Dl + V(ly))o? — pW2142) = o(1),
and

[ (Dl + Vi) =1 (2.4

Q1
Let v (y) = vx(y — 21). Then for any R > 0, since |2 — 21| = rsinf > 7 Ink, we see that
Bg(z1) C Q1. As a result, from (2.4), we find that for any R > 0,

[ (pu Vi) <.
Br(0)
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So, we may assume that there is a v € H*(RY), such that as k — +oo0,

Oy = v, weakly in H. (RVY)
and

vp = v, strongly in L7 (RY).
Since vy is even in yp, h = 2 N, it is easy to see that v is even in y,, h = 2,
the other hand, from

-,N. On
/ UP-1Zywy, =0,
RN
we obtain
ou
UP~'—g, = 0.

RN 6.’[}1

So, v satisfies

oUu
=127 = 0.
/RN U P v=20

Now, we claim that v satisfies

—Av+v—pUP~tlv=0, inRV.
Define

BE={pipem@®), [ v Tlp—0}.
RN Oz
For any R > 0, let ¢

€ CO (Br(0)) N E be any function, satisfying that ¢ is even in yy,
h:27"'7N' Then@k(y) (y xl)e
we find

5 (Br(z1)). Insertlng @k into (2.3), using Lemma A.1,

/ (DvDy + vp — pUP~1vp) = 0. (2.7)
RN

On the other hand, since v isevenin y,, h = 2 (2.7) holds for any function ¢ € C§° (RV)
which is odd in yp, h = 2 N. Therefore, (2.7) holds for any ¢ € C§°(Bg(0)) N E. By the
density of C§°(RY) in HY(RY), it is easy to show that

/ (DvDyp +vp — pUP~top) =0, Ve E (2.8)
RN

But (2.8) holds for ¢ = §Z. Thus (2.8) is true for any ¢ € H'(RV). So, we have proved (2.6)

Since U is non- degenerate we see that v = cg = 9U hecause v is even in yp, h = 2
(2.5), we find

-,N. From

v =0.
As a result,

/ vi =o(1), VYR>O0.
Br(z1)

On the other hand, it follows from Lemma A.1 that for any small > 0, there is a constant
C > 0, such that

W, (y) < Cem(mmlvmail -y e .
Thus,

(2.9)
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[l
b\\

|ka|2 +V(lyDvi — pWEvR)

(1D + V(y)ed) +of1) + 00700 [ 47
1951

1
5/ |ka|2 + V( |y|)vk) + o(1).
This is a contradiction to (2.4
O
Define
1) =5 [ DuP + Vbt = = [ et
2 Jrw~ p+1 Jp~
Let
J(@)=IW,+¢), ¢€kE.
We have

Proposition 2.2. There is an integer ko > 0, such that for each k > kg, there is a C* map from
Sk to Hs: ¢ = ¢(r), r = |z1]|, satisfying ¢ € E, and

J(0) \_
<6—¢,(,0>—0, VC,OGE

Moreover, there is a small o > 0, such that

ol < —<

ka—l_H,'

(2.10)

Proof. Expand J(¢) as follows:

T@) = J0) +1(9) + 5(Lb,6) + (@), d€FE,

where

k
Z/ V) =0t + [ wr-3 oz

L is the bounded linear map from E to E in Lemma 2.1, and

1
R@) = 15

Since [(¢) is a bounded linear functional in E, we know that there is an I, € E, such that

1(¢) = (lk, 8)-

Thus, finding a critical point for J(¢) is equivalent to solving

[ W 0P =W DW= S+ W),

l + L+ R'(¢) = 0. (2.11)
By Lemma, 2.1, L is invertible. Thus, (2.11) can be rewritten as

¢=A(¢) = =L 'lx — L' R'(¢).
Let

S={¢:9€ B |4l <
If p < 2, then it is easy to check that
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IR (@)l < Cligll”-

So, from Lemma, 2.3 below,
c c 1

A <Okl + CllBIIP < ——— + < 2.12
14 < Cllill + ClIP < 5y e < (2.12)

Thus, A maps S into S if p < 2.
On the other hand, if p < 2, then

IR" (9]l < CllglP~".
Thus,

14(¢1) — A(@2)ll = IL7 R (¢1) — L R (o)
<C(llgnlP=" + llp2llP~") g1 — 2|l < Llir = gl

So, we have proved that if p < 2, A is a contraction map. Therefore, we have proved that if p < 2,
A is a contraction map from S to S. So, the result follows from the contraction mapping theorem.
It remains to deal with the case p > 2.
Suppose that p > 2. Since

R'¢ C we 2¢2 C wer 2¢2 Mp—l P .
we ﬁnd

p

IR@l<o(f o)),

On the other hand, it follows from Lemma A.1 that W, is bounded. Since 2 < 2(’%1) <p+1,
we obtain

2(p+1) \ 54T
IR @< o[ 16%52) <o
RN
For the estimate of ||R"(#)||, we have

R@En|<c [ wrild<c [ elel
RN RN

C 3\ 5 3\3 3)3 « ¢

<o([ e[ e[ et < sl

since 2< 3 <p+1. So
IR"(#)II < Cligll-
Thus,

, c c
IR @ < s <

As a result,

1Al < Clilll + CIR' ()] < T (2.13)

Thus, A maps S to S.
On the other hand,

1 C
IR" (&)l < Cllgll < ey
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which implies that A is a contraction map. So, we have proved that if p > 2, then A is a contraction
map from S to S. And the result follows from the contraction mapping theorem.
Finally, (2.10) follows from (2.12) and (2.13).

O
Lemma 2.3. There is a small o > 0, such that
C
]l < =
Proof. By the symmetry of the problem,
Z/ V) = 0ad =k [ (V1) = DU
= [ Vlly =) = DU — 1) < O () ol (214)
C
Ska—il_,’_a,”¢||ﬂ
because m > 1.
On the other hand, for any y € 4,
Ur <UP~'U,,.
Thus,
k k
[ wr=>ouzye| =k [ (wr-Svz)g
RY i=1 il i=1
k k %
— _p—7 .
<ck [ Uty U lel < ok Y- e e ([ jepn) (2.15)
& i=2 i=2 &
k -
<kws1 Yy e "Rl ml|g,
=2
where 7 > 0 is any small fixed constant.
From the definition of Sy in (2.1), we see that for any r € Sg
k
Ze*%“”f‘“‘ < Ce "z %r < 71,_70 .
= Lt (m—p)
Since
pm D m-—1
L N 1
3 pr1> 2z 'm>L
we obtain from (2.15) that
LS SCATET== ) (216)
RN i= 1
The result follows from (2.14) and (2.16).
O

We are ready to prove Theorem 1.5. Let ¢ = ¢(r) be the map obtained in Proposition 2.2.
Define

Fir)y=IW,+¢), VresS.
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It is well known that if 7 is a critical point of F(r), then W, + ¢ is a solution of (1.7). (See [21]
or [23].)

Proof of Theorem 1.5. Tt follows from Propositions 2.2 and A.3 that

F(r) = I(W) + 1) + 5(L6,6) + R(9)
=1(W) + O(Lelll8] + l6P)
:k(A + % — B + O(L))

km+o
Consider
max{F(r) : r € Si}. (2.17)
For the definition of S, see (2.1). Since the function
& — B2€_2"TT
rm

has a maximum point

7 = (5= +o(1)kInk,

which is an interior point of Sy, it is easy to check that (2.17) is achieved by some 7}, which is in
the interior of Si. Thus, r}, is a critical point of F(r). As a result

WT‘k + ¢('rk)

is a solution of (1.7).

APPENDIX A. ENERGY EXPANSION

In this section, we will give the energy expansion for the approximate solutions. Recall

2(j—1 2(7—1
z; = (r cos (]k )W,rsin (Jk )W,O), j=1,--k,
_ y’ X ™ i
Q={y=0"y" eR2 x RV-2 . =, ——)>cos;, j=1,---,k,
= W Tay1? = &)
and
1w =5 [ (Duf+0) = — [ Jup.
2 RN p+1 RN

Firstly, we have the following basic estimate:

Lemma A.1. For anyy € Q1, and n € (0,1], there is a constant C > 0, such that

Uy, (y) < Ce™ Mol g=(=mly=21]
i=2
Proof. For any y € 4, we have |y — z;| > |y — z1]-
If |y — 21| > 2|z; — 21|, then for any y € Q,

Us,(y) < Ce vl < gyl

=Ce M 2le=(-mly—21] < ge=2nzi—z1]g—(—m)ly—z1]

If |y — 21| < 2|z; — 21|, then
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1
y = 2j| > e — 21| = ly = 21| 2 5z — 21

So for any y € Qy,

U, (y) < CeMv—=ile=(-mly—e1l < Cg=snles—a1lo—(1—mly—a1]
Thus,

k k
S Usy () < Cemmlv=ml §7 =l

=2 i=2
k .

<Ce A—mly—=1] E :e*nlwllsin% < Cre MelE = (=mly—a1],

=2

In this appendix, we denote r = |z;|, and we always assume that

re Sk,
where Sy, is defined in (2.1).
Proposition A.2. We have
B 1
I(Us,) = A+ 2 + O (5759)
where
1 1 a
A= (- — Urt, B:—/ U
(2 p + 1) RN ! 2 RN
Proof. We have
I(U,,) = 1/ (IDUP + U?) — UP+1+1/ (Vlyl) = 1)U
o 2 RN p+1 RN 2 RN *1

1
=A+ 5/ (V(ly —21|) - 1)U
RN
On the other hand, for any small 7 > 0, using (V),

/ (V(ly —z:)) -1)U* = / (V(ly = 1)) = U2 + O (==
RN

B1,(0)
a 1
= +0 U 4 Oe=(1—r).
/B%T(o)(|y—$1|m (|y—x1|m+9)) (e )

But for any a > 0,

1 1 ly|
= 1+ 0(+—— B 0).
ly — z1]® |£L'1|a< + (|x1|))’ ye %Izﬂ( )
Thus,
/ LI, B U2+O(71 + e~ (=mlealy,
B1,(0) ly —z1|* lz1|* Jov |q | >+

Inserting (A.3) into (A.2), we obtain

B: 1
[ Vs =aa) =102 = 2+ 0.
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Thus, the result follows from (A.1) and (A.4).

Proposition A.3. There is a small constant o > 0, such that

IW,) = k(A+ D e 4 O(km+g))

11

where A and By are the constants in Proposition A.2, and Bs > 0 is a positive constant.

Proof. Using the symmetry,

k k
[ owpewn =33 [ vnu,
RN ) RN

j=1i=1

=k U”+1+k2/ UL U,,.

Recall

! .
Qj:{yz(yl,y”)ERzleN_2:<y_7$—J>ZCOS%}J J:l7

ly'l” |1

It follows from Lemma A.1 that
/ V() — )W = k/ (o)) - HW?
2
— [ (Vo) = D)(V, + Ofe HelEe B e
(971
= [ () -2, + k0(

Ql Ql

:k( B +0(kml+9)).

|z |™

V(lyl) - 1|e—%\w1\%e—\y—zl|)

Suppose that p < 3. Then, for any y € Qy,

k Lk -
Wrt = UzH + (p+ 1)UL S U, + O(U;T (> U.,) T)
j=2 j=2
Using Lemma A.1, we have
o K it pp1 K k -
v (YU, T =B Y, ()
Jj=2 j=2 j=2

k
—1 |zq|m
<Ce "= HULTIPN U,
j=2

But for any r € Sk,

k
Ze—|z]-—z1| < Ce= % <

=2

c
ol

So, we obtain that for p € (1, 3], if # > 0 is small enough,

(A.5)

k.

(A.6)
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WIJ+1 =k Wp+1
Q1
k

k
—k/ UL 4+ (p+1) Y UR U, ) + O( e 5 e leimanl)) (A7)
=2

=2

k
1
—k/ UrH 4 +1)Z;/R Ur U, +0(km+g))

Suppose that p > 3. Then for any y € Q,

k
WrH = U + (0 + 1)U, ZUwﬁO(Ugfl(zUwff)‘
=2

Since p — 1 > 2, similar to the proof of (A.7), we can obtain the following estimate for p > 3:

wrtt =k [ wrt
RN (971

k 1 (A.8)
— p+1 14
_k(/RN Uzt 4 (p+ I)Z;/RNU“U“ +0(r5))-
Combining (A.5), (A.6), (A.7) and (A.8), we are led to
(w,) = k(A+ 2L Z/ UL U,, + o(km+0))
But there are constants o > 0, B, > 0 and B}, > 0, such that
k ok k
Z/ UP Uz, =By ) el £ O emHHollzimanl)
i=2 /RN i=2 i=2
Bl 4 o( )
So the result follows.
O
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