INFINITELY MANY SOLUTIONS FOR THE PRESCRIBED SCALAR
CURVATURE PROBLEM ON §¥

JUNCHENG WEI AND SHUSEN YAN

ABSTRACT. We consider the following prescribed scalar curvature problem on S

(%) { —Ag u+N(N 2y = Ku~=3 on SV,
u>0

where K is positive and rotationally symmetric. We show that if K has alocal maximum
point between the poles then equation (*) has infinitely many non-radial positive
solutions, whose energy can be made arbitrarily large.

1. INTRODUCTION

Consider the standard N-sphere (S¥, go), N > 3. Let K be a fixed smooth function.
The prescribed curvature problem asks if one can find a conformally invariant metric g
such that the scalar curvature becomes K. The problem consists in solving the following
equation on S¥:

(1.1) { —Agnu + N(N NN=2)y, 4 Ky~2 =0 on SV,
u > 0.

Problem (1.1) does not always admit a solution. A first necessary condition for the
existence is that maxgy K > 0, but there are also some obstructions, which are said
of topological type. For example, a necessary condition is the following Kazdan-Warner

condition:

(1.2) / VK - Vau™= = (.
SN

The problem of determining which K admits a solution to (1.1) has been studied
extensively. See [1], [4]-[12], [14]-][22], [24, 25, 31] and the references therein. Some
existence results have been obtained under some assumptions involving the Laplacian at
the critical point of K, see Chang-Yang [9], Bahri-Coron [4] and Schoen-Zhang [30] for
the case N = 3, and Y. Li [20] for the case N > 4. For example, in Bahri and Coron [4],
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it is assumed that K is a positive Morse function with AK (z) # 0 if VK (z) = 0, then if
m(z) denotes the Morse index of the critical point z of K, (1.1) has a solution provided
that
(1.3) Yoo ()@ £ -

VRK=0,AK (2)<0
The result has been extended to any S¥, N > 3 by Y.Li in [19]-[20]. Roughly, it is assumed
that there exists 3, N — 2 < 3 < N such that

N
(1.4) K() =K(&)+ > a;l&§ — &I’ + hot.
j=1
where a; # 0, Z;\;l aj # 0. Let & = {¢ : VK(§) = 0, Z;\;l a; < 0} and i(&) be the
number of a; such that K(¢) =0,a; < 0. Then (1.1) has a solution provided
(1.5) D (1)@ # ().
¢ex

By using the stereo-graphic projection, the prescribed scalar curvature problem (1.1)

can be reduced to (1.6)

+

2

—Au=K(yud2,u>0, yeRY
w e DI2(RV)

where D"?(R") denotes the completion of C§°(R") under the norm [py [Vul?.

Much less is known about the multiplicity of the solutions of (1.6). Amrosetti, Azorero

(1.6)

and Peral [1], and Cao, Noussair and Yan [8] proved the existence of two or many solutions

if K is a perturbation of the constant, i.e.
(1.7) K = Ky +eh(z),0 <e << 1.
On the other hand, Y. Li proved in [17] that (1.6) has infinitely many solutions if K(z)

is periodic, while similar result was obtained in [31] if K (z) has a sequence of strict local
maximum points tending to infinity. Note that this condition for K(x) at the infinity
implies that the corresponding function K defined on SV has a singularity at the south
pole.

In this paper, we consider the simplest case, i.e., K is rotationally symmetric, K =
K(r),r = |y|. It follows from the Pohozaev identity (1.2) that (1.6) has no solution if
K'(r) has fixed sign. Thus we assume that K is positive and not monotone. On the

other hand, Bianchi [6] showed that any solution of (1.6) is radially symmetric if there



INFINITELY MANY SOLUTIONS 3

is a ro > 0, such that K (r) is non-increasing in (0, 7|, and non-decreasing in [rg, +00).
Moreover, in [7], it was proved that (1.6) has no solutions for some function K (r), which
is non-increasing in (0, 1], and non-decreasing in [1, +00). Therefore, we see that to obtain
a solution for (1.6), it is natural to assume that K(r) has a local mazimum at ry > 0.

The purpose of this paper is to answer the following two questions:

Q1: Does the existence of a local marimum of K gquarantee the existence of a solution to
(1.6)?

Q2: Are there non-radially symmetric solutions to (1.6)?
(Question @2 has been asked by Bianchi [6].)

The aim of this paper is to show that if K(r) has a local maximum at ro > 0, then
(1.6) has infinitely many non-radial solutions. This answers Q1 and Q2 affirmatively.
As far as we know, we believe our result is the first on the existence of infinitely many
solution for (1.6).

We assume that K (r) satisfies the following condition:

(K): There is a constant ry > 0, such that

K(r) = K(ro) — colr — ro|™ 4+ O(|r — 10|™), 7 € (1o — 6,70 + 6),
where ¢y > 0, # > 0 are some constants, and the constant m satisfies m € [2, N — 2).
Without loss of generality, we assume that

K(To) =1.

Our main result in this paper can be stated as follows:

Theorem 1.1. Suppose that N > 5. If K(r) satisfies (K), then problem (1.6) has infin-

itely many non-radial solutions.

Remark 1.2. The condition (1.3) (or (1.5)) is a global one while our condition (K) is

local.

Remark 1.3. Theorem 1.1 shows that the condition in [6] is optimal. We shall prove
Theorem 1.1 by constructing solutions with large number of bubbles lying near the sphere
ly| = ro. So the energy of these solutions can be made arbitrary large and the distance

between different bubbles can be made arbitrary small. When N = 3,4, we know that the
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energy of the solutions to (1.6) is uniformly bounded and the distance between bubbles
is uniformly bounded from below. See [30] (for N = 3) and Theorem 0.10 of [20] (for
N =4). On the other hand, if K(y) = K(yo) + O(|ly — yo|™) where m € [N — 2, N) for
N > 5, the energy of solutions is also be bounded. See [20]. So our assumptions on N

and m are almost optimal in the construction of the solutions in this paper.

Remark 1.4. The radial symmetry can be replaced by the following weaker symmetry

assumption: after suitably rotating the coordinate system,

(Kl) K(y) = K(ylay”) = K(‘y,‘a |yN0+1|a SR ‘yNDa where Yy = (ylay”) € R2 X RN_27
(K2) K(y) = K(y0) — coly — yo|™ + Oy — %0|™**), ly'| € (lyo| — &, lyo| + ), [y"| <6,
where yo = (Y4, 0).

Remark 1.5. Theorem 1.1 exhibits a new phenomena for the prescribed scalar curva-
ture problem. It suggests that if the critical points of K are not isolated, new solutions to

(1.6) may bifurcate. We formulate the following conjecture in the general case.

Conjecture: Assume that the set {K(x) = max,cgn K(x)} is an l-dimensional smooth
manifold without boundary, where 1 < 1 < N — 1. The problem (1.6) admits infinitely
many positive solutions.

Before we close this introduction, let us outline the main idea in the proof of Theo-
rem 1.1.

Let us fix a positive integer

k Z kOa
where kg is large, to be determined later.
Set
N-2
= k~—=2-m,
to be the scaling parameter.
Let 2* = 2%, Using the transformation u(y) — ,u_¥u(%), we find that (1.6) becomes

_ _ lyly,,2* -1 N
(1.8) Au—K(“)u yu>0, yeRY,
u € DV2(RY).
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It is well-known that the functions

Usn(y) = (N(N =2)) T (1 T AQJIZ ~ xf?

are the only solutions to the problem

N-2

2
) , >0, zeRN

N+42 .
—Au=u~v2, y>0in RV,

Let y = (v, "), v € R?, y" € RV=2. Define
Yy )

H, = {u :u € DY?(RY), u is even in yp, h = 2,--- , N,

u(rcos B, rsinf, y") = u(r cos(d + %),Tsinw + %),y")}.
Let
z; = (rcos 20 ; 1)7r,7"sin 20 ; 1)7T,0), j=1,---k,
where 0 is the zero vector in R¥=2, and let
n-2 F AT
We(y) = (N(N=2)) ©

N—-2 "
o L+ Ay —z4?) =

In this paper, we always assume that

1 1 _
r € [rop — —,ropp+ —],  for some small 6 > 0,
7 7

and

Lo <A<L;, forsomeconstants L; > Lo > 0.
Theorem 1.1 is a direct consequence of the following result:

Theorem 1.6. Suppose that N > 5. If K(r) satisfies (K), then there is an integer ko > 0,
such that for any integer k > ko, (1.8) has a solution uy, of the form

U = er (y) + Wk,
where wy, € Hy, and as k — +00, ||w|[pe — 0, rx € [rop — #,ro,u + ui"] ,
We will use the techniques in the singularly perturbed elliptic problems to prove The-

orem 1.6. We know that there is always a small parameter in a singularly perturbed

elliptic problem. Although there is no parameter in (1.6), we use k, the number of the



6 JUNCHENG WEI AND SHUSEN YAN

bubbles of the solutions, as the parameter in the construction of bubbles solutions for
(1.6). This is the new idea of this paper. This is partly motivated by recent paper of
Lin-Ni-Wei [23] where they constructed multiple spikes to a singularly perturbed problem.
There they allowed the number of spikes to depend on the small parameter.

The main difficulty in constructing solution with k-bubbles is that we need to obtain a
better control of the error terms. Since the number of the bubbles is large, it is very hard
to carry out the reduction procedure by using the standard norm as in [3, 26]. Noting that
the maximum norm will not be affected by the number of the bubbles, we will carry out the
reduction procedure in a space with weighted maximum norm. Similar weighted maximum
norm has been used in [13],[27]-[29]. But the estimates in the reduction procedure in this
paper are much more complicated than those in [13],[27]-[29], because the number of the

bubbles is large.

Acknowledgment. The first author is supported by an Earmarked Grant from RGC of
Hong Kong. The second author is partially supported by ARC.

2. FINITE-DIMENSIONAL REDUCTION

In this section, we perform a finite-dimensional reduction.
Let

(2.1) lull. = sup (2

yerN VT (1 + |y — 33]|)¥+T

and

k

2:2) Il = s (32 ) W

ver T (L [y — ) 5

where 7 =1+ 7 and 77 > 0 is small.
Let

Consider
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(2.3)
—A¢p — (2% - 1)K(%)W2*_2¢k hi + ¢ 25:1 Ui:,PZi,l + co 25:1 UzQ:,XQZi,Q, in RV
¢k € Hsa
<U§;X2Zi,la¢k >=0 i=1,--,k, 1=1,2

for some numbers c;, where < u,v >= fRN uv.

Lemma 2.1. Assume that ¢y solves (2.83) for h = hg. If ||hg||« goes to zero as k goes to
infinity, so does ||dk/|«-

Proof. We argue by contradiction. Suppose that there are k — 400, h = hy, Ay € [L1, Lo},
Tk € [rop— 9;7“0/H‘ 9] and ¢y solving (2.3) for h = hy, A = Ay, 7 = 1k, with |||/« — 0,
and ||¢g ||« 2 d > 0. We may assume that ||@x||« = 1. For simplicity, we drop the subscript
k.

We rewrite (2.3) as

o) = =) [k (CwE 20 ds

1 * *
+ / oy (h(z) + 1 > Zin(UZ (=) + 2 Y Zin(2)UZ 32(2)) dz.
RN [2 —

=1 i=1

Using Lemma B.3, we have

e, Wm%w—w

k

0 <Ol [ W Y d

(1+]z— xj|) AT
k
<Clgll Z vt Z ).

_7:1 |y_$1|) j=1 1+|y_$3|) 7T

It follows from Lemma B.2 that



8 JUNCHENG WEI AND SHUSEN YAN

1
———h(z dz‘
o e

Kk
1 1
<C||h|| d
(2.6) <C|l] /RN 2 —y[V- QZ o

N2,
T A4z —g) =T

k

§C||h||**z !

N-2___>
o Aty —z))=

and

k
1 .
Ly DA
(2.7) k

1 1
< dz<C
OZ/N|Z_y|N21+|Z_x|)N+2 ¢<C)

i=1 (1+|y_xl‘) z i

Next, we estimate ¢;, [ = 1,2. Multiplying (2.3) by Z;,; and integrating, we see that ¢
satisfies

28) 3D ULA i B = (~A6— (2 ~ DK (‘y‘)w2* 26, 21,) — (h, Z1,).

It follows from Lemma B.1 that

k
[tz < Ol [ s Do —

1+|z— xj|) 2
ZCh][sx-

On the other hand,
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(—A¢— (2" — 1)K(%)W,?*‘2¢, Z1y)

=(=AZy; — (2" - 1)K(%)Wr2*_2zl,la $)

(2.9) .
=)W 204, 6)

2]
1

B 21y _ -2, 1 b 1 .
_||</5||*O(/RN\K(H) 1wy Ol p p——y Z(1+|Z_%)22+Td).

=2 - 1){(1 - K(

Similar to the proof of Lemma B.3, we obtain

k
] 2% -2
K(—)—-1W; ~*(2) —dz
/w‘0|<\/_‘ (:u) ‘ (1+‘Z_$1 Z:: 1+|Z—$]‘)
k
C . 1 1
L W2 2(2) ——dz
VB Jry T (14 [z — )N_Z;(1+|z—xj|)¥+7
C
S—a
Vi
and
k
|y| 2% 2 1 1
— 1|W7 2(2) ——dz
LG =1 O ey o
k
C .
<— W2 2(z) dz
pe Jrw " (1 +\Z—$1 ; 1+|z—x]\)7+7 20
C
_Ea
since if ||z| — pro| > /i, then
1 1
||z = lza[| = [[2] = pro| = [Ja] = prol = /ju — 2 SV

Thus,
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|| 22 :
K(Z) -1|w —d
N‘ (,u) ‘ r (z)( +|z—x1| Z 1+|2—x3|) nr o, 2

<

7

tq|q S

which, together with (2.9), gives

(2.10) (=g — (28 = DK (ZD)W2 29, 2,,) = |||\, o( )

2|
1
But there is a constant ¢ > 0,

Z<U§*X2Zz 1, Z1g) = )04

Thus we obtain from (2.8) that

o= O (¢l + Al.)

So,
Z?ﬂ e
= 1+|ly—z; T+7—+6
(2.11) 61l < (o(1) + Il + ; e ma—

Pty ) e
Since ||@[|« = 1, we obtain from (2.11) that there is R > 0, such that

(2.12) 16(W)l Br(a:) > @ >0,

for some i. But @(y) = ¢(y — z;) converges uniformly in any compact set to a solution u
of

(2.13) —Au— (2" = 1)U5, >u=0, inRY,

for some A € [L1, L], and u is perpendicular to the kernel of (2.13). So, u = 0. This is a
contradiction to (2.12).
0
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From Lemma 2.1, using the same argument as in the proof of Proposition 4.1 in [13],

we can prove the following result :

Proposition 2.2. There exists kg > 0 and a constant C > 0, independent of k, such
that for all k > ko and all h € L>®(RY), problem (2.3) has a unique solution ¢ = L(h).

Besudes,
(2.14) [Lk(R)][« < Cllbllss,  la] < Cl|h]ss

Now, we consider

~AW+6) = KB (W +6)" 7+ e S UL Ziy, inRY,
< UzQ;XQZi,lagbk >= 0, 7= ]_’ ’k’ | = 1’2
We have

Proposition 2.3. There is an integer kg > 0, such that for each k > ko, Lo < A < L,
|1 — pro| < ﬁ, where > 0 is a fived small constant, (2.15) has a unique solution
b= o(r, A), satisfying

k. N+2 - N42

B foone2
||¢||*SC(;) 2 |Ct|§C(;) 2

Rewrite (2.15) as

—Ag— (2" - 1)K(%|)Wf*_2gb = N(@)+h+ Z?:l Ci Zf:l U;f:,XQZi,ta in RY,
(2.16) | ¢ € H,,

<UZ32Zi0,0 >=0, i1k 1=102
where
= M 21 12l ok 9% o
and
k
T N— a
b= K(%)Wf D L
j=1

In order to use the contraction mapping theorem to prove that (2.16) is uniquely solvable
in the set that ||¢||, is small, we need to estimate N(¢) and Ij.
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Lemma 2.4. If N > 6, then

2*—1

IN()|le < CE2||0)2

IfN =5,
N (8) ]l < CI8]12

Proof. We have

CloIT-1, N >6;
IN(¢)| < W;’ 7
CWj¢?, N =5.

Firstly, we consider NV > 6. For any p > 1, the function ¢* is convex in ¢t > 0. Thus

: %o Nk
(2.17) 2}7 2:2.
j=1 j=1

Using (2.17), we obtain

IN(@)| < Cllg]lZ Z !
< ot =)
= 1+ ‘Z‘/_xj|)T2+T
P 1
(2.18) <C||g|* kT —
Z (14 |y —ay]) 2 +v=T
k

* 4
<C||p||> k™ 22 -
T+ y—y)

Thus, the result follows.

It remains to prove the result for N = 5. We have

k

1 2
IN(g)] < Cll6]12 Zmy m(z |)%+T> |

1+ |y —a;

Define

o Y x; T
Q={y: y=("y") e R xR (=, ~L) >cos —}.
Y| 2] k

Without loss of generality, we assume y € €2;. Then
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|y—$]|2|y—.’r1\, .7:2aak

So,
k 1 K
<
;1“?/_5“” a (1+|y—w1\ IZ 1+\y—wz\)%
C z’“: 1
T+ |y —a1))s S e — il
C k C
= 2_1S 2
(I+]y—m))sps (14 |y —21])5
since
k Ck
_1§ 3 1 SC
us ~ ksms
Similarly

b C
Z 47 S §_|_Tfl
= 1+Iy—wgl)2 (T+ |y —mz])277 3

So, we have proved

ZHw—xz\@ )

C
< 3
(1+1]y— xll)?’“f T (Lt y w3

N

yEQIa

since 7 > 1. Thus,

IN (@)l < ClIgI:-

Next, we estimate .

Lemma 2.5. Assume that ‘|x1| - /H’()| < %, where 8 > 0 is a fized small constant.
If N > 5, then
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k. N+2_

+

=

Proof. Define

Qj:{y: y=(y,y") € R? x RV~2

We have

k

<— — cos—}

Y| |

I, = (|Z|) (WZ*—l Z Ui*a_l)

Jj=

1

o (s -)

=:J; —|— J2.

From the symmetry, we can assume that y € {2;. Then,
ly—zil 2y —a1], Vye.
Thus,
(2.19) |L|<C Ek: zk: ! “
. < ( )
H= (1+|y—961|4F2 1+|y—x9) = ]y — oV
Using Lemma B.1, we obtain
1 1
A+ ly—z ) A+ fy — 2 )V
<C’( 1 n 1 ) 1
P20 T )T Wy — o) gy -
1 1 )
<C i j>1.

(L ly = )55 oy — |57

Since 7 < 2, we see Y2 _ 7> N=2 5 1 Thus

2
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k
(2.21) (H'y_‘”l 4; 1*‘9‘%)
1 k\Nt2

<C N+2 (_) ’

(I+|y—mz|) =+ 1

On the other hand, for y € €2, using Lemma B.1 again,

1 1 1
< = =
L4l =D 7 (@t fy = ai)™5 (Lt y =)
< C ( 1 n 1
Tlag—m| TN NI+ jy—m|) T TN (L4 [y —ay]) T AR
j j
< C 1
_‘x._x1|¥7%7-_}-g7— (1+‘y—x1|)772+%7
IfN>5 7=1+nand 7 >0 is small, then——— > 1. Thus
k
k N-2_N-2_ 1
SC e 2 T2
32: 1+|y—x3 N2 (,u) (1+ |y —z1]) N2y J2r?

which, gives

i -1 k\N+2_, 1
(Z 1+|y—x ) SC(_)Néir Ni2
Jj=

Thus, we have proved

k\yt2 .
Jill <C 2.
11 (u)

Now, we estimate Jy. For y € {21, and 7 > 1, using Lemma B.1, we have

. 1 1
Uiy <C 5
A+ ly—2)F (L +]y— )7
1 1
SC —|—7' w—T
A+ ly— 1)) T |21 — 5]

which implies

15
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k
1 1
(2.22) <C rEawl) e

For y € Q; and ||y| — pro| > dp, where 6 > 0 is a fixed constant, then

1
Iyl =zl 2 [lyl = prol = [f2] = pro 2 Sou.

As a result,

vz (k () - 1))
1 1

N+2

(L+ly—a )5 st

(2.23)

<C

If y € Qp and ||y| — pro| < du, then

\KPﬁ—ﬂsmM—mm
K Iz
C . -
< (sl = ol + o] = o)
C . C
Su—mHy\—IfclH +W’

and

[yl = |zl < Nyl = prof + [ro — ||| < 26

But
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[ly] = ||| 1
pm (14 |y — o [)VF2
_ 1 1 [yl = ||| 1
T (U g — )T R (L [y — )
C 1 [yl = Jza |5
Ty = m )T (L fy =)
C 1

TR (L ) T
Thus, we obtain

v (k () - 1))

¢ ! yl — prol < 6
< , Y| — UTro| = OU.
WET (L4 |y — a1 B

Combining (2.22), (2.23) and (2.24), we reach

(2.24)

C k,N+2 k Ntz
[ollee € 7 +C ()7 "<C() 77
w2 T H M
Now, we are ready to prove Proposition 2.3.
Proof of Proposition 2.3. Let us recall that
p=kN-m-2

Let

k. N+2_ .
E:{UUEC(RN),“U”* < (;) 2 n,/N U;z:,X2Zi,l¢:0’ Z:l,"' ,k, l:1,2},
R

where n > 0 is a fixed small constant. Then, (2.16) is equivalent to
¢ = A(¢) =: L(N(¢)) + L(lk)-

We will prove that A is a contraction map from E to E.
In fact, if N > 6,
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18]+ < CIN(D)[lsx + Clllkll s

<ormsolr 7+ ()

(2.25) §Cl€%2(

since

N -2 (N+2(2_ ) — 47')

N-m—2\N_2¥ """ N9

N—2<N+2(2_ )_ 4T> 4 +N+2(2_ )_ 4T
SN_a\N 2V VT N9) T N2 TN YT VT Ny

if we take n > 0 is small and 7 is close to 1. Thus, A maps E to FE.
On the other hand,

[A(¢1) = A@2)lls = [L(N(¢1)) = L(N(¢2))l« < ClIN(¢1) = N(2)]].s

If N > 6, then

IN'(t)] < Cl” .

As a result,
IN(¢1) — N(¢2)| < C(|61” 72+ [¢2* %) |61 — ¢2]
C 2% -2 2% 2 . . _
(6122 + gl 2) 161 — ol (}jﬂj o |y_mj|)7+7)

As before, we have

(>

]:1 1+ ‘y—.’L']D

)2*1§0k%i 1

(1+ [y —a) 5
So,
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A1) — Aéo)llx < CIN(61) = N()][n
<Ck™=2 (|17 72 + [l 6ol =2) |61 — ]l

4 2(N+2) _ 4(7+n)
Ckv—2t"~N=2 ~—n-2 1
< 2(N+2) _ 4(r+n) ||¢1 - d)?”* < §||¢1 - ¢2||*

/11 N-2 N-2

Thus, A is a contraction map.

The case N =5 can be discussed in a similar way.

It follows from the contraction mapping theorem that there is a unique ¢ € E, such
that

¢ = A(9).

Moreover, it follows from Proposition 2.2 that

N+42

==

3. PROOF OF THEOREM 1.6

Let

F(TaA) :I(Wr+¢)a

where 7 = |z1|, ¢ is the function obtained in Proposition 2.3, and

1 1

rw=j [ 10w -5 [ k@

Proposition 3.1. We have

2%

F(r,A) =I(W,) + O(MWZU)

By
Amum

By 9
(A + s + e (o = 1))

1 —

k
B, 1 1
- +0( gz + o = ) ).
; ANZ2 gy — N2 T
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where o > 0 1s a fized constant, B; > 0, 1 = 1,2, 3, is some constant.

Proof. Since

(I'(W),9) =0,

there is ¢ € (0, 1) such that
F(r,A) = I(W,) + %DZI(W + ) (¢, )
1) + [ (Do - (2 - DE(L) (W, + 10)" )

—107) + @ - ) [ K (004 00)" - w2

RN

+/RN(N(¢) + k)¢

:I(WT)-l-O(/RN(

74 IN@) 9]+ [1l[9])).
But

[ (v @161+ 9]
<C(IN@l.+ 1)l [ 3 D

Y 527 ( Iy—fvgl) 2 (L4 |y — )=

Using Lemma B.1

=3

(1+‘y_:1:] 2 7

M=

1+|y—azz|) Nyt

=1
k
1
:Z(l—l—\y—x N+27+ZZ RE)

j=1 =1 2] 1+\y—l‘gl) ST (Lt y — )

B

B

1 1
L+ ly—; |)N+TZ |5 — a1 |7

M;r

_|_

1
<y C
T (L ly =)V

]: ]:1

B

1
<
SR Dl i

]:
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since 7 > 1. Thus, we obtain

[ (N@liel+ tl1¢)) < OR(IN@) . + el 8] < Cr(5)

On the other hand,

NA42-21

k

£ 3 1 2*
A ) -
IR

i=1

/ 6% < Cllo
RN

But using Lemma B.1, if y € €y,

i 1
Z N-2, .

j=2 (T+ly—z4]) >

k
1 1
39 _—

N-2 1
o Lt fy—a]) 2T (L4 |y —2y))

Thus,

Thus,

So, we have proved

2*( N;—2 _7_)

¥ < Ckll¢

[1e

Proposition 3.2. We have

. k
¥ < Ck(—-
< k()
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OF(r,A\)
oA

Bim - —2) 1 1 9
:k( Am+1m ZAN 1‘351 ;N2 +O(’um+g +,u_m|/”“0— |z1]| )),

where o0 > 0 s a fized constant.

Proof. We have

OF(r,\)
oA

9¢
oA

= (I'(W, + ¢),

2 k
( g OO
=(I'(W, + ¢), 8A>+ZZZC,<U§ 3 Zit 51)-

1 =1
But

s, 00 O(Uq, 2" Zia)
<U$2“ °Z Zis 6A> _< OA ’¢>
Thus, using Proposition 2.3,

‘ch< zla 8A>‘
<Olei||#]] / Z 1+|y—96|NJr

C

— Nm—f—o )
On the other hand,

M;r

- 1+|y—%|) R

oW, ow,
D pe _ [ pw p™:
/RN We+o)D5 = | | PWeDHe

and

|y| 2% 1 oW,
K
R [

w1 OW, ly| « o OW,
2*—1 x 11 2% —2
/RNK YW A (2 1)/RNK(M)WT A

([, o)
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Moreover, from ¢ € E,

Y|\ oo o OW,
[ e

1
B DI ) A o Qanj / |y| p 20Uy A
= EC 58 Z )6+ Z it B
— Y] LA - 2 —29Uz;.1 / Y| _ 22 0Uq, A
= [ Ky G - S ek [ (L) -zt

AL Yt
‘/91 K(u)(Wr OA ;ij,A OA )¢
/ ( 517\22[]3],/\’*—2 2 _1)|¢|
< C
—u’m—ka
and
\y\ 909 OUz ‘
‘/RN le’A OA ¢
«_oOUg, A ly| «_oOUyg, A
<‘/ i' Uz 2 1’¢‘+‘/ (K (L) — 1)z poty
\y| Mo\<x/_ “) D Iyl —parol >y (N) RN
Mm—l—a
Thus, we have proved
OF(r,A) _ 0I(W,) 1
oA oA +O(Mm+a>
and the result follows from Proposition A.2. O

Since

xj — 21| = 2|z;|sin J

we have
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k k
Z S S p—
< |z — $1|N 2 2le)N? o (sin LT )N-2

_ 2‘z1| N 2 Z] =2 (sin G— 1)7r) + (2|$1|1)N_2, if k is even;

s Lo if £ s old.

But
s (G=Dm
PSR gk
O0<c< G=D)r <d, j7=2, ,[5].

k
So, there is a constant B4 > 0, such that

Z B4]€N_2 +O< k )
. _xlNQ_ xlN—Z $1N—2 :
J

Thus, we obtain

B B, By
F(r,A) =k (A + A T A2 (prog — 1)
B4kN_2 1 1 3 k
AN—2,N—2 O(Mm+g+u_m|ﬂ7'0_T| ‘f‘TN,Q));
and
OF(r,A)
OA
Bim B4(N — 2)]{}N_2 1 1 2 k
:k(_Am“,um + AN-1pN=2 +O('um—|-tf +,u_m|/”0_r| +7.N—2))'

Let Ay be the solution of

Bim  By(N —2)

T AmFL N_1,N—2 —
A ANy

Then
Ag = <B4(N 2))Ném.

Define
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1 1 1 1
D= {(r,A):7 € [pro— — o+ —], A€ [Ao— —5 Mo+ —gg]}a
Iz Iz % 2
where 6 > 0 is a small constant.
For any (r, A) € D, we have

——7’0+O( 1—|—§)'
Thus,
— _ _ 1
P72 = N Q(T‘(J)V 2+O(ﬁ)).
So,
(3.26)

and

(3.27)
OF(r,\)
OA
Bim  By(N-2), 1 11 ,  k
= ((_Am—l—l AN71T§_2)M_m 0</1,m+0' +'u_m‘/'[’r0_r| + MN_2)>a (TaA) €D.

Now, we define

Let

1 1
a=k(-A+mn), ,ou= k(_A_ (@ - W)M_m N um+§9)’

where 1 > 0 is a small constant.
Let
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F*={(r,A) € D,F(r,A) < a}.

Consider
# = —D,F, t>0;
% = —DAF, t > 0;
(r,A) € F.
Then

Proposition 3.3. The flow (r(t), A(t)) does not leave D before it reaches F*'.
Proof. It A = Ag + ﬁ, noting that |r — pry| < #, we obtain from (3.27) that
OF (r,A) ¢, 1 1

—n k(c /Lm+%é + O(um—l—Qé)) > 0.
So, the flow does not leave D.

Similarly, if A = Ay — %, then we obtain from (3.27) that
"

8F’g/'\,/\):k(_c, 1 —i—O( 1 ))<O.

So, the flow does not leave D.

Suppose now |r — urg| = “ie Since |A — Ag| < %, we see
I

B, B, By B, 2

o P P L O(A= A

Am AN—QT(J)VJ AT AéV—2r(J)V—2 + (| ol )

B, B, 1

ey e
So, using (3.26), we obtain
F(r,A)
B, B, 1 By \ 1
:k<—A— T TN NT3) o — o (Mo —T) +O(——

(328) (Asn A(])V 27,,(])\] 2) > AO 2,U'm lum—|—30
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Proof of Theorem 1.6. We will prove that F, and thus F, has a critical point in D.

Define

I' = {h:h(r,A) = (hi(r,A), ho(r, A)) € D, (r,A) €
1
p

(r,
h(r,A) = (r,A), if |r — uro| = }

Let

c= irellﬁ (ﬁ?EXDF(h(r, A)).

We claim that ¢ is a critical value of F. To prove this, we need to prove

(i) o < ¢ < aw;
(ii) sup|,_mo|:ﬁ F(h(r,\)) < ai, VheT,

To prove (ii), let h € I'. Then for any 7 with |7 — urg| = %, we have h(7,A) =
for some A. Thus, by (3.28),
F(h(r,A)) = F(7,A) < .

Now we prove (i). It is easy to see that

c < Q.

For any h = (hy, hy) € . Then hy(r,A) = r, if |r — uro| = /%9 Define

hi(r) = hi(r, Ay).

Then hy(r) = r, if [r — pro| = u% So, there is a 7 € (urg — %,,uro + “%,), such that

Let A = hy(7, Ag). Then from (3.26)

27

(7, A)
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(r,A)eD
:k(_A_(%_NV%:{]V—Q)MLm_FO(MWiU uf\]f?)>
-4~ Gy~ i ) >

APPENDIX A. ENERGY EXPANSION

In all of the appendixes, we always assume that

2(5—1 2(j—1
zj = (rcos (]k )W,rsin (]k )W,O), j=1,---k,

where 0 is the zero vector in R¥N -2, and r € [rop — ﬁ, Top + u%,] for some small > 0.
Let recall that

and

In this section, we will calculate I(W,).

Proposition A.1. We have

Bl B2 2
+ Am'um + Am—2'um ('U'TO - T’))

I(W,) :k(A

k
Bs 1 1
- 0z + gl = 1))
; AN=2[g, — ;N2 T Lo + ,um‘/”o 7|

1 —
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where B;, i =1,2,3, is some positive constant, A > 0 is a constant, and r = |z|.

Proof. By using the symmetry, we have

/ |DW,.|” = ZZ / U2 3 Usi

7j=1 =1

=k Uy, Uz,

(/RN 0,1+;/RN z1,A l,A)

(Y ol )
RN 0,1 — AN_Q‘.CC]_ —CC]|N 2 |$1 — T |N 240

Let

QG={y: y=0y) =R xR, <|y| > COS—}
Then,

Yl g2 / lyl

K(E)W, P =k | K(*=

[ [ K

([ x@uz,-2 [ k() Yoz,
1 1 i

7

co( [, U v )

Note that for y € Q, |y — z;| > |y — :rl\. Using Lemma B.1, we find

ZU%A_CZ e

1+|y—9«“1|) Ty m)T

1 1
< .
T+ |y — @)V ; |7 — 31|

If we take the constant a with max(1, (N;VQ)Z) <a< N —2, then

/ $21*’/2 ZUml, 2*/2 <(E)N—2+U)‘

1

29
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On the other hand, it is easy to show

/ ‘y‘ Z AlUm'A
-1 M _ - 241
/nw A Usin +/QI<K(M) 1) Y U2 e

=2
k\N-2+0
— o)
ZAN 2|x1—x|N 5 T (M)
Finally,
‘?J‘ 2*
K(—=)U;,
/nl (u) A
2* Co myr2*
=/ Upp — —- | [yl = pro|™Ug, o
RN " Ja,
+ 0 [ Iyl = pro U )
1
* CO
[ v i o)
vt [l = o+ 0
:/ Ué,’i—— |\y—$1|—lﬂ‘o|mU3A+0( m+g>
]RN
But

1
[y = 21| = puro|™ = ]| = 1+ O(—) = parol™
|331|
1
—))

|21

1 _
+ ém(m — D)|y1 ™ (uro — |z1] 4+ O(

=ly:|™ + mly: |2y (pro — |z1| + O(

1]

Thus,

)+ 0((m =l + O )))
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[Ny =a1] = o2,
R

* 1 — £3
= [ nmUga e gmm=1) [ UG o = )

+O(|puro = [2a| 7).

Thus, we have proved

Y]

[

_ 2 G myr2

—k(/RN Amum/RN 1" Up
Co

1 o
~ rgmm = 1) [ 20 (o 1))’

by B co(1)
p AN_2|.T1—.TJ'|N_2 Mm-l—a :

dI(Wy)
TN

We also need to calculate

Proposition A.2. We have

k

or(w,) Bs(N —2)
OA _k< Am+1 +ZAN Yy — |V -2

1
+0( s + i luro = 1))

where B;, i =1,2,3, is same positive constant in Proposition A.1

31

Proof. The proof of this proposition is similar to the proof of Proposition A.1. So we just

sketch it.
We have
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aI(W ) 2% —2 aUJIl:
i —k ) Z/ Ui Ui A

_ | 2*—18W
/nl KEIWETSE)

It is easy to check that for y € €y,

k
o (07 =022V Y| < CUERO )
=2

Thus,

W = DU 40 z:—;zu@ O(UZR (Y Un)™").

As a result, we have

* Y 21
2 /QIK(M)W aA
:/ K(|y|) Uz +2*/ K(@) UZERD  Usyn)
a, oA r1,A L oA z1,A . iy
(/ Uz ZU% 2*/2)

So, we obtain the desired result.

APPENDIX B. BAsic ESTIMATES

For each fixed ¢ and j, ¢ # j, consider the following function

1 1
(2.29) 9ij(y) = 1+ |y — ;) (1 + |y — z)®

where o > 1 and > 1 are two constants.

Lemma B.1. For any constant 0 < o < min(a, 3), there is a constant C' > 0, such that

w50) < T (T S—

Ty = o N(L+ |y — xg)o B0 (14 |y — z;|)otF—0
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Proof. Let d;j = |z; —x;|. If y € Big, (x;), then
1 1
ly =z > Slag —ail, ly =250 = 5ly - al,
which gives

1
<
W= o=l Oy —a)

Similarly, we can prove

< C 1
gij <
VT =l U+ |y —

|)a+g_g’ yc B%dij (xj)

Now we consider y € RV \ (B%dij (x;) U Big, (z;)). Then we have

1 1
ly — x| > 5\%‘ —zil, |y—=z > 5\%‘ — zil.

If |y — z;| > 2|z; — z;], then

1
ly — x| > |y — 25| — |25 — 5] > 5\3/—3%'\-

As a result,

C < 4 1
T+ Iy =)™ = o=yl L+ ly— a7

gz'jé(

because |y — z;| > $|z; — z;].
If |y — z;| < 2|z; — x|, then

1 C < C 1
T ly— o) foi — o3P = Joi— 5317 (L+ Iy — )0

Qz’jS(

because |y — ;| > 1|z; — ;.

Lemma B.2. For any constant 0 < 0 < N — 2, there is a constant C' > 0, such that

1 1 C
dz < ———.
/RN ly — 2" 2 (L4 [2))2e = (L4 yl)

33
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Proof. The result is well known. For the sake of completeness, we give the proof.

We just need to obtain the estimate for |y| > 2. Let d = |y|. Then, we have

/ 1 1 &y < C / 1 d
72 < —— ——dz
By [y — 2|V 2 (1 + [2])?He dN"? [, (14 |2])*te

C N—-2—0o C
SdeQd S da’

and

1 1 1 c
dz < / dz < —.
/Bd<y) [y = 2772 (14 [2])** & Jpy) 12 = YN d°
Suppose that z € RV \ (Bd(()) U Bd(y))' Then

o=ul 2 Sl 122 5l
4 "J_an Z_2y-
If |z| > 2y|, then |z — y| > |z| — |y| > 3|2|. As a result,

1 1 - C
ly — 2[¥2 (14 (2247 7 [2[V2(1+ [2])>+

If |z| < 2|y|, then

1 1 < C < Cy
ly —2[V2 (14 [2)24e 7 [y[N2(1+ [2[)20e 7 [N 2 (1 + [2])2
Thus, we have proved that

1 1 < C
ly — 2[V72 (14 [2])2*7 7 [2[V72(1 + [2])>F”
which, give

2 € RV \ (B4(0) U By(y)),

1 1 C
N—2 240 dz < g0
BN\ (By(0)UB4(y) ) ly — 2| (1+2]) d

Let recall that
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Lemma B.3. Suppose that N > 5 and 7 € (0,2). Then there is a small @ > 0, such that

1 k
S d
| e &3, iz

2 T

e 1+|Z—l‘gl) Tt

k

<CZ +’r+0 Z

1+\y—x\) s 1+\y—$g\)2”

where o(1) — 0 as k — +oo0.

Proof. Firstly, we consider N > 6. Then +*5 < 1. Thus

k
<
_; 1+|z—a:z|)

So, we obtain

1 k
/]RN |y_Z‘N 2 Z N_2 dz

j=1 1+|Z_xj|) g

1
< d
Z/le—Z|N21+\z— iz @

)

+22/ ! L

pariewy |y—z|N A+ lz =z 1+ |z —ay) T 17

By Lemma B.2, if # > 0 is so small that % +74+60 <N —2, then

1 1
~3 1 dz
'Y Y= 2N (14 |z — gy )T

1 1 C
= N—2 N—2 dz S N—2 .
RV |y =2V (14 |z — gy )22 L+ |y —ay)) = 7

On the other hand, it follows from Lemmas B.1 and B.2 that for 7 # 7,
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/ 1 1 1 d
z
rv [y — 2V (1+ [z — @) (1+|z—:r]\) 3oHT

< C / 1 ( 1 " 1 )d
< - - z
zi — 2 Jow [y — 2NN (U |z — )PP (L4 |z — )2 AT

C 1 1
< :( + )
i = 2PN+ ly —m) T (4T
Noting that

we obtain

1 1
ZZ/N‘y_Z‘N2 T4 qusz

j= 1Z?5] +|Z_‘,'EZ|) (1+|Z_.T]D 2

Z

T

Suppose now that N = 5. Recall that

_ y o T
QG={y:y=0y") eR xR, (= =) >cos - }.
Y17 | k

For z € O, we have |z — x| > |2 — 21]. Using Lemma B.1, we obtain

k

k 1 1
<
; 1+\Z—$JI)3 (1+\Z—$1\)2;1+|z—%|

b C
< E .
(1 +Iz—w1 )? Ixj—cvll (14 |z = z1])?

j=2
Thus,
Wi (2) < ¢c
(1 + |Z — $1|)§

As a result, for z € €0y, using Lemma B.1 again, we find
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wl.us

Wiy

= L+ ]z - x]‘)fﬂ

C k
< +
(L+ |z —a))s2 (1+|z—$1| EAE ”]z:; |$g—331|3
C Lk C
- 1+ Z— X1 §+%+T % 14 Z— X %+2+%+T
M
C

T4z - $1\)%+2+%+T’

since

Q
=~

IA
IA
Q

‘w

Sl =
e

¥

3

ol

So, we obtain

M;r

dz

4
5
/Ql ly — Z|3

1 C C
< 3 5 dz < T -
o 1Y =23 (14 |z — zy|) 31227 (1+ |y —xq])st2t7

]:1 1+|z—:cj|) =

which gives

/ 4
3
PRl ]:1
k
= dz
Z/ |y—zl3 ; 1+|z—x]|) 2t
<Z

M;r

dz
1+ Iz—xal)z”

(I+y— \ Easasd
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