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ABSTRACT. We consider the following nonlinear Neumann problem

N+42
—Au+pu=u~v2, u>0 in Q;
gu =, on 99,

where p > 0, Q is a bounded domain in R, and n denotes the outward unit normal of 8€). Lin
and Ni ([7]) conjectured that for p small, all solutions are constants. It has been shown in [14],
[13] that this conjecture is true if  is convex and N = 3. The main result of this paper is that
if N > 4, Q is convex and satisfies some symmetric conditions, then for any fixed u, there are

infinitely many positive solutions. As a corollary, the Lin-Ni’s conjecture is false in some convex
domains if N > 4.

Mathematics Subject Classification (2010): 35J65 (primary); 35B38, 35B45, 47H15
(secondary).

1. INTRODUCTION

This paper is concerned with the existence or nonexistence of positive solutions for the fol-
lowing nonlinear elliptic Neumann problem
—Au+pu—u!=0, u>0 in €, (1.1)
g—z =0, on 0. '
Here 1 < g < +o00, 4 > 0,n denotes the outward unit normal vector of 02, and €2 is a smooth
and bounded domain in RV, N > 3.
Problem (1.1) has been studied intensively in recent years. When ¢ is sub-critical, i.e. ¢ < %,
Lin, Ni and Takagi [8] proved that the only solution to (1.1), for small u, is the constant v = /uﬁ.

Based on this, Lin and Ni [7] made the following conjecture:

Lin-Ni’s Conjecture: For p small and q = %, problem (1.1) admits only the constant

solution.
We recall below the main results towards proving or disproving Lin-Ni’s conjecture. Adimurthi-
Yadava [1], [2] and Budd-Knapp-Peletier [4] first considered the following problem:
Au—pu+uvs =0 in Br(0), uw>0 in Bg(0),
=0 on OBg(0).

The following results were proved:

(1.2)
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Theorem A ([1], [2], [3], [4]). For p sufficiently small,
(1) if N =3 or N > 7, then any radial solution of (1.2) must be the constant solution;
(2) if N =4,5 or 6, problem (1.2) admits a non-constant radial solution.

Theorem A reveals that Lin-Ni’s conjecture is not true in dimensions 4,5 and 6. But for the
other dimensions, Theorem A gives neither a positive answer, nor a negative answer to Lin-Ni’s

conjecture. In three and five dimensional cases, the following result was proved in [9], [14], [13] :

Theorem B: The conjecture is true if N = 3, ¢ = 5 and 2 is convex ([14], [13]). The conjecture
is false if N =5, ¢ = L and Q is any bounded domain ([9]).

Recently, in [10], we gave a negative answer to Lin-Ni’s conjecture in all dimensions for some
non-conver domain 2. More precisely, we assume that 2 is a smooth and bounded domain

satisfying the following conditions

(Hy) y € Qif and only if (y1,vy2,Y3, " »—Yi,---,yn) €2, V i=3,...,N;
(Hy) if (r,0,y") € Q, then (rcos@,rsinf,y”) € Q, V8 € (0,2n), where y" = (y3,- -+ ,yn);
(Hs) Let T:=00QN{ys =---=yny = 0}. There exists a connected component I' of 7', such

that H(x) =v <0, Vz €T, where H(z) is the mean curvature of 992 at x € 0f.

Theorem C [10]. Suppose that N > 3,q = % and € is a bounded smooth domain satisfying
(H:), (Hy) and (H3). Let p be any fized positive number. Then problem (1.1) has infinitely many
positive solutions, whose energy can be made arbitrarily large.

By the result of [14] and [13], the assumption that € is non-convex is necessary to obtain the
result of Theorem C for N = 3. By Theorem A, we know that Lin-Ni’s conjecture is not true in
the dimensions N = 4,5, 6 even if the domain is convex. Now we can ask the following question:
is Lin-Ni’s conjecture true for convex domains when N > 77 The result in (1) of Theorem A
seems to suggest that Lin-Ni’s conjecture may be true for N > 7 and Q2 = Bg(0). However this
is not the case, as we shall prove in this paper.

The purpose of this paper is to give a negative answer to Lin-Ni’s conjecture in some convex
domain including the balls for all N > 4. First we make the assumptions on the domains.

For normalization reason, we consider throughout the paper the following problem:

—Au + pu — aNu% =0, u>0 in €, (1.3)
& —, on 09, '
where ay = N(N — 2). The solutions are identical up to the multiplicative constant (cy) 7.

Our main result in this paper can be stated as follows:
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Theorem 1.1. Suppose that N > 4 and Q satisfies (Hy) and (Hy). Let u be any fized positive
number. Then problem (1.8) has infinitely many positive solutions, whose energy can be made

arbitrarily large.

If Q = Bg(0)\ B,(0), R > r > 0, (Hy) and (H,) hold. So, (H;) and (H3) do not implies
the convexity of the domain. Certainly Q = Bg(0) satisfies (H;) and (Hy). Thus we have the

following corollary, which complements Theorem A in the case of N > 7.

Corollary 1.2. Suppose that N > 4, Q = Bg(0). Let p be any fized positive number. Then

problem (1.3) has infinitely many non-radially symmetric positive solutions.

Theorem B suggests that for any N > 3, Lin-Ni’s conjecture is not true for domains in RY
whose boundary admits a geodesics with negative curvature. On the other hand, Theorem C
suggests that for any N > 4, Lin-Ni’s conjecture is not true for domains in R whose boundary
admits a geodesics with positive curvature.

Based on Theorems B, C and Theorem 1.1, we propose the following conjecture
Conjecture: (a) Let N > 3 and p > 0 be fized. If 000 admits a geodesics with negative
curvature, then there are infinitely many positive solutions to (1.8). (b) Let N > 4 and pp > 0
be fized. If OS2 admits a geodesics with megative curvature, there are infinitely many positive
solutions to (1.3).

This paper is arranged as follows. In section 2, we outline the proof of the main result. The
reduction procedure is carried out in section 3, and the main result is proved in section 4. We

put all the technical estimates in the appendices.

Acknowledgment. L.Wang is supported by NSFC 10901053 and NSFC 10926116; J.Wei is
supported by an Earmarked Grant from RGC of Hong Kong and Focused Research Scheme of
CUHK; S.Yan is partially supported by ARC.

2. OUTLINE OF PROOFS

In this section, we will outline the main idea in the proof of Theorem 1.1.

N-2

It is well-known that the functions
A =5
) ,A>0, aeRY (2.1)

a0 = (T =ap

are the only solutions to the problem

N2 .
—Au = ayud-2, >0, in RV.
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As the scaling parameter A — +o00, U, , is called a single-bubble centered at the point a. Our
objective is to construct solutions with large number of bubbles. For this purpose, we first need
to determine the location of the bubbles, and then the scaling parameter. Unlike a singular
perturbation problem, where there is a parameter which can be used to determine the scaling
parameter as well as the location of the bubbles, problem (1.3) has no parameter, since pu > 0
is fixed. In this paper, we will create a parameter: the number of bubbles, so that we can use
this number to determine the scaling parameter. Now the problem is where to put the bubbles.
This is an important problem, since the location of the bubble affects its energy and thus the
existence of the bubbling solutions. When €2 satisfies (H;)—(H3), we put all the bubbles exactly
on the component I' of the boundary [10]. In the construction of boundary bubble solutions, to
determine the scaling parameter, it is necessary to assume that the mean curvature is negative
at the places where the bubbles are put. But in a convex domain, such component does not
exist. It is well known now that for Neumann problem, the energy of a bubble will decrease as
the bubble moves toward to boundary. On the other hand, if all the bubbles move toward the
outer boundary, the distance between bubbles will increase and so will the energy. From this
observation, in the present situation, we can put many bubbles in the domain but near an outer
component of the boundary.

Let us explain the precise ideas. We fix a positive integer
k Z kO;

where £k is a large positive integer, which is to be determined later. In this paper, we will show
that for any £ > ko, (1.3) has a solution u with

k
um Y Us e (2.2)
j=1

where z;, € €2, and as k — +o0, d(x;x, 02) = 0, Ay — +00.
The function Uzj

solution of the form (2.2) for (1.3), it is crucial to find a better approximate solution for (1.3).

o can be regarded as an approximate solution of (1.3). To construct a
Here, we need to take into account of the linear term pu in (1.3).
Integral estimates (see Appendix A) suggest to make the additional a priori assumption that

the scaling parameter )\, behaves like
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where

£ = e Dik’ if N =4 (2:3)

6 < A < 5, Dy satisfies 0 < Dy < Dy, < Dy, 6 is a small positive constant which is to be

determined later. From now on, ¢ is given by (2.3).

{s:kH if N> 5,

Let 2* = 2. Using the transformation u(y) — e~ 2 u(¥), we find that (1.3) becomes
{;UAU + petu = ayu? ~Lu >0, in Q, (2.4)
a3 =0, on 0f),,

where Q. = {y: ey € Q}.
For any a € Q. with d(a, 02.) large, Ut
additional linear term pe?u in (2.4), Ui , has to be improved. To this end, for N' 2> 5, let U(ly|)

be the radial solution of

is an approximate solution of (2.4). Because of the

AV +U; ;=0 inRY, ¥ -0 as |yl — +oo. (2.5)
Then, it is easy to check that
1 1
U(y) = (1 +0(— ) as |y — +oo. (2.6)
sty =\ O

For a € RV, we set

Upaly) = AT 0 (E).
Then

A¥Upo+Us,=0 inRY.
It is easy to check that

C C
Uara(y)], 10a¥raly) < o 100, PAL(y)] < . 2.7
TaaW)l 108 ¥aeW)l < oo 1a¥aal)l < =0 (2.7)
For N = 4, we let ¥(|y|) be the radial solution of
AU +U; ;=0 in R, T(0)=1. (2.8)
Then
— 1 1 - 1 In(1 + |y|)
U(y)=—=In|y|+ T +0(—), ¥(|ly :——(1—#07), as |yl - o0, (2.9
(1) = 5 Iyl + 1+ 0(0 ). ¥(lyl) = —go (1+ 0 y (29)
where I is a constant. Let
A1 - y—a
a1 —_a — 4. 2.1
Uaaly) 21nA€+A\II( A ), N=4 (2.10)
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Then

A‘I’A,a%—U%, =0.

a

Note that we have

C

Ty ()], 1050 sa(w)] < C|ln <
(Paa(m)l; 10a¥aa(y)] < Clin \—1+|y_a‘

1
NN aaiqj ,a
(1+‘y_a‘)‘ | A (y)

(2.11)
It is easy to see that
—A(U%’a — ue®Up ) + pe’ (U%,a — pe®Uy,) = ozNU?,;l — 12y .

Now, we define the approximate solution W , , as the unique solution of

—Au+ pe?u = ayU? 1 — p2e* Uy, in Q.
{ g V% THETA (2.12)

g—z =0, on 0f2..

Take any connected component I' of 92 N {yg ==Yy = O} satisfying
<y, n> >0, yel. (2.13)
Without loss of generality, throughout this paper, we always assume that
P={yi+y;=14p="-=yn=0}.
Define

Hy={uwe€ H'(Q.),uis even inyp,h =2,---, N,
2my ori
u(rcos 0, rsin 6, y") = u(r cos(6 + %),Tsin(ﬁ—{— %)’y//),j — 1, k1),

and

1—d 2(5—1 1—d 2(5 —1
z; = ( ——cos (Jk )ﬁ, . sin (]k )W,O), j=1,---,k,
where d € [5k~ N1, %k‘N_j], § > 0 is to be determined later and 0 is the zero vector in R¥~2,

From (2.13), z; € Q, j=1,--- k.
We are now able to define the approximate k-bubble solution. Let x = (z1,--- , xx) and define

our approximate solutions as
k
Werx(®) =3 Wena,. (2.14)
j=1

Theorem 1.1 is a direct consequence of the following result:
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Theorem 2.1. Suppose that Q) satisfies (Hy) — (Hs) and N > 4. Then there is an integer
ko > 0, such that for any integer k > ko, problem (2.4) has a solution uy of the form

U = Ws,A,x(y) + W,

where wy, € Hy, and as k — 400, ||wk||z= — 0.

Let us point out that the non-convex domain 2 = Bg(0) \ B,(0), 0 < 7 < R < 400, satisfies
(H,) and (H3). From (2.13), for the solutions obtained in Theorem 2.1, the bubbles are closed
to the outer boundary |z| = R. This is in contrast with the boundary bubble solutions obtained
in [10], where all the bubbles are exactly on the inner boundary |z| = r.

The proof of Theorem 2.1 is by the method of localized energy. Associated with (2.4), there

is an energy functional

I(u) = —/ (|Dul? + pe*u?) — V=27 lu|?".
2 Ja. 2 o
We look for solutions of the following form:
u=Weprx+w

where w is small in some suitable norms. For each fixed A,x, we solve a nonlinear projected

problem for w = w, 4 x and then we find a critical point of the reduced energy functional
T(Wesx + wenx)

in some finite dimensional configuration space. Such method has been used in many papers for
singular perturbation problems. But only recently, it was used to study non-singular perturba-
tion problems. See [10, 11, 12]. In [10], the bubbles locate exactly on the boundary, while in this
paper, we need to determine how far away the bubbles are from the boundary. So the estimates
in this paper are more difficult than those in [10].

Before we close this section, let us mention that the techniques in this paper can be used to

study the following Dirichlet problem:

(2.15)

—Au+uu—u%:0, u >0, in €
u =0, on 052,

where p > 0 is a fixed constant, ) is a bounded smooth domain in RY, satisfying (H;), (Hz)
and

(H,) there is a connected component I' of Q2 N {ys = --- = yy = 0}, such that
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(y,n) <0, Vyel, (2.16)
where n is the unit outward normal of 0€2 at y.

In fact, for the Dirichlet problem, the energy of a bubble will increase as the bubble moves
toward the boundary. On the other hand, if the bubbles move toward in “inner” boundary, the
energy will be smaller. So we can construct solutions for (2.16) with large number of bubbles
near I', where (2.16) holds.

It is easy to see that an annulus or a torus satisfies (Hi), (H2) and (Hy). In particular, if
Q= Bg(0) \ B,(0), R > r > 0, then (2.15) has infinitely many non-radial solutions, no matter
how small » > 0 is. It is interesting to know whether (2.17) has non-radial solution if p = 0,
2 = Bg(0) \ B-(0) and r > 0 is small. Unfortunately, the method in this paper can not be used
to deal with (2.17) if u = 0. Note that similar conditions were used in [6] to construct bubble
solutions for the following Dirichlet problem with slightly super-critical growth:

(2.17)
u =0, on 052,

where € > 0 is a small parameter.

{ Au—u%+§+5—0 u>0, in

3. FINITE-DIMENSIONAL REDUCTION

In this section, we perform a finite-dimensional reduction.

We first introduce two norms for u and the error:
k

full. = sup (3 ) )l (31)

Yy =1 (L + |y — )

k
-1
17].s = sup —) 1w (3.2)
Y T
where we choose
N —4
= —. 3.3
T= N (3.3)
For this choice of 7, we have
i 1 F
Y ————<CKY — <Cke" <C, ifN2>5, (3.4)
=l — ol =

since & = k~v=1. If N = 4, then for any 71 > 0,
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1

zj — 21|

< CEMme™ < C. (3.5)
j=2
To simplify the notations, we use W; to denote W, 5 .. Let
ow; ow;
Yii= 57, Yig= 5
1T ad 27 9A

and
Zip = =AY, + /1521@,1, Zig=—AY;9+ ,U€2Yi,2-
Then, it is easy to check

C
Ziil < . 3.6
2l S = o0
We consider
( ; 2 k
—A¢k + /,L&‘QQSIC — N(N + 2)W2 72¢k =h+ Z Z CjZi,ja in QE,
j=li=1
9k _
{ on 0’ on an, (37)
(lsk € Hs:
k
<2Zi,ja¢k >= Oa ]:1,2
\ =1

for some numbers ¢y, ¢y, where < u,v >= fQ Uv.
13

We recall the following result, whose proof is given in [9].

Lemma 3.1. Let f satisfy || f||.«« < oo and let u be the solution of
ou

—Au+pfu=f in Q. — =0 on 09,.
on

Then we have

lu(z)] < C’/Q %dy.

Next, we need the following lemma to carry out the reduction.

Lemma 3.2. Assume that ¢y solves (3.7) for h = hy. If ||hi||«« goes to zero as k goes to infinity,
s0 does || k|«

Proof. The proof of this lemma is similar to that of Lemma 3.2 in [10]. We thus just sketch it.

We argue by contradiction. Suppose that there are ¥ — +oo, h = hy, Ay € [6,6 '], d}, €
[6k~%1, 1k~%71], and ¢y solving (3.7) for b = hy, A = Ay, d = dy, with ||hg]l.. — 0, and
|okll« > ¢ > 0. We may assume that ||¢x||« = 1. For simplicity, we drop the subscript k.
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According to Lemma 3.1, we have

1 "
6()] so/ﬂ W W2, 2(6(2)| d

(3.8)
g R ICIR) 9 9L
Q2. j=1 i=1
Using Lemma C.3, there is a strictly positive number 6 such that
i 1
W22
22 d4gc7¢* S— 3.9
‘/EV—MNQ Ax012) “"Z;u+w—mm%#ww (3.9)
It follows from Lemma C.2 that
1
———h(z dz‘
[,
k
1 1
<C|lh **/ — dz
il e |z —y|N 2 ; (1+ |z — xj|)NT++T (3.10)
i 1
<ClA.. 3" —
o (Lt ly =) =

On the other hand, using (3.6), we find

‘/ lz—y |N 2ZZJ dz‘<CZ N3 J=12. (3.11)
Q.

+w—x02‘”

Next, we estimate c;, j = 1,2. Multiplying (3.7) by Y7, for [ = 1,2, we see that c; satisfies

k
<Z Zig, Yig)e; = (—A¢ + pe’¢ — N(N + 2) EzA_,fqﬁ Vi) — (h, Y1) (3.12)

2
=1 =1

J

It follows from Lemmas A.2 and C.1 that

k
h,Yia)| < ClAl..
(kY] < Cl / (1+1]2— xﬂ 2:: (1+]

dz < C|[h]n-

Z = 33J|)N;r2+T
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On the other hand,
(—A¢+ pe’¢ — N(N +2)W2 26, Y1)
=(=AYy + pe’Yi, — N(N + 2)W2 2V, 6) (3.13)
=N(N + 2)(UY 20Uy ,, = W2 2V10,0) — €' (0%, 6)-

It is easy to see that

1 m k
In 5737 !
|g4u2<8‘1’Aw1,¢>‘ < C||9]l« / Ty (A+ly o)V 42

j=1 (1+ |y—x1\)¥+7
k
<Ceh o / —— = o(1)|8]..
19l 1+|y—rv1 )N ; 1+|y—x1|)N22+T

where m=1if N=4, m=0if N > 5.
Using Lemmas A.2, A.3 and C.1, similar to (3.12) and (3.13) in [10], we can prove

(UT 20U, — W21, 6)| = o(1)]4]].

ATl ¢

But there is a constant ¢; > 0,

Z zya}/il =q ]l+0(1)

Thus we obtain that

= o(ll#ll) + O(llAll+)-

So,
¢ 1

JZ (Lly—a;) 7+
6l < (001) + lAelloe + 2= ) (3.14)

S S

21 =) T

Since ||@[|« = 1, we obtain from (3.14) that there is R > 0, such that

16 Br(e:) > co >0, (3.15)

for some 4. But ¢(y) = ¢(y — ;) converges uniformly in any compact set of RY to a solution u
of
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-2 _
Au+ N(N + 2)U%,0 u=0 (3.16)

for some A € [6,07'], and u is perpendicular to the kernel of (3.16). So, v = 0. This is a
contradiction to (3.15).

O

From Lemma 3.2, using the same argument as in the proof of Proposition 4.1 in [5], Proposi-

tion 3.1 in [9], we can prove the following result :

Proposition 3.3. There exists kg > 0 and a constant C > 0, independent of k, such that for
all k > ko and all h € L>(S2,), problem (3.7) has a unique solution ¢ = Ly(h). Besides,

[Le(P) ]l < Cllallaslejl < Cllbflass 5 =1,2. (3.17)
Moreover, the map Ly (h) is C' with respect to (A, d).

Now, we consider

* k
_A(Wfa/\ax + ¢) + MEQ(WE,A,X + ¢) = an (WE,A,X + ¢)2 - =+ Z CjZi,j, in QE,
=1

) j=1i
£ =0, on 0f),,
¢ E H87

k
<2Zi,j;¢>: 0, ]21,2
\ =1

(3.18)

We have

Proposition 3.4. There is an integer ko > 0, such that for each k > ko, § < A <61, where §

is a fized small constant, (3.18) has a unique solution ¢, satisfying

1+o > 5-
lo. <G5 V=
Ce, N =4,

where o > 0 is a fized small constant. Moreover, (A,d) — ¢(A,d) is C'.

Rewrite (3.18) as
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e

—A¢+,u52¢—N(N+2)Wf;g3¢:N( )—i-lk—i-ZZc] ij, in €,

j=1li=

¢ __
! Zn HO on 9K, (3.19)
€ H,,

Z Zij ¢ >=0, j=12,

where

N(¢) =an ((Wg,A,x + ) 7

and

k k
- 2% -1 2. 4
l, = (WEZA; St ) i T
In order to use the contraction mapping theorem to prove that (3.19) is uniquely solvable in
the set that ||¢||. is small, we need to estimate N(¢) and [j.

In the following, we always assume that ||¢||. < ¢|Ine].

Lemma 3.5. We have

IN(D)|]r < C||¢||inin(2*_1’2),

Proof. We have

Clo 2*_1, N > 6;
N)| < o
( Equ5 +|¢‘ ) N:4’5
Similar to the proof of Lemma 3.5 in [10], we can prove

2* 1 .
Nl < NI NV =6
clolt, N=s.

Now, we discuss the case N = 4. In this case, 7 = 0. Similar to the proof of Lemma 3.5 in
[10] for the case N = 3, using

Z|$ —901|T1 <o
J

for any 71 > 0, we can also prove
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IN(8)]l+x < Cl0]12-

O
Next, we estimate [.
Lemma 3.6. We have
Celte, N > 5;
1Tkl < _
Ce, N =4,
where 0 > 0 s a fired small constant.
Proof. Recall that m =1if N =4, m=0if N > 5. Let
Q—{y—yy ) € Q. <‘/| > cos—}
By the symmetry, we can assume that y € 2;. We have
ly -zl > ly—z1|, Vy€ Q.
Thus, for y € €y,
k k
1 21
z + c( )
W<y —ar L e
Jj=2 j=2
N , . m (3.20)
e(1+ly—z;[) I)
C
where Qp ;; = U%Jj — Wepg,-
Let us estimate the first term of (3.20). Using Lemma C.1 and |y —z;| > |y — 21| in 4, taking
1 < a <min(N — 2,22 — 7). we obtain for j > 1,
1 1 < C 1
T+ Ty =)t O+ = o)V = [ Iy = o)V gy — e
o ) (3.21)

1+ |y—x1|) 3T |z — [

As a result
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k
(1+|y—$1\ 42 1+|y—~%\)

Jj=2
C @ 1
(ke)® < Ce'te
Tty —a]) T L+ ]y — )2+

(3.22)

since, if N = 4, ke = O(e|ln¢l) (so we take @ > 1), while if N > 5, ke = ev= (so we take
N-2

Now, we estimate the second term of (3.20).

If N > 5, then%—N—HT> 1. If N = 4, thenT_z—N—HT—lslnce 7 = 0. Using
Lemma C.1 again, we find for y € Qq,
1 1 1
T+l =D 7 L+ ly—a)™T Ay — )7
C ( 1 1 )
Ti— T ¥_L-T-§T 1+ Y — Ty T_2+L-T-§T 1+ Yy— T_2+L-T-§T
J j
C 1
< N2 _N-2_ N-2 N-2_
25 — 2|77 TR (L |y — o) E TN
N-2 N-2_ 1
<C|Ink|™(ke) = ¥ 3 N3

which, gives for y € €y

2% _1
1+ ‘y_%‘ )N 2>

N+2 1

% == —7 1
g()\lnk\m@ 1V (ke) > < Ce'te :
(ke (L4 ly—a)) 2 (L4 ly—a )5

QM?T

Now, we estimate the third term of (3.20). From Lemma A.3, we obtain
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k 1
2 Ty o ha
k 1 m
C e’ In =y
< 2 +eN2H ey, ex;)
) e i i)

,_.

j=
k ko N_

<Celto Z C Lo eN"?H (ey, ex;)

B j=1 (1+ |y_$j‘)¥+T j=1 (1+‘y—$]|)4

But from (A.2),

eN?H(ey,ex;) < CU.,

Zj*

So if o > 0 is small,

Z N72H(€y, &TZ‘J')

¢ (L4 ly —z4))

k
C 1—|—g’

<> (" ?H(ey, ex))*

j=1 (1+ |y_$ ‘)4+N 2(;-)

k

6 (N-2)(3+0) 4o 1
<(2)! < Ce

d 1+\y—xg|)2” Z( L+ |y — o)) 35

So, we obtain

Mw

1
|90A:c | < CgH_GZ Niz,_*
=1 1+|y ’ = A+ ly—z) =

Finally, we estimate the last term of (3.20).
Suppose that N > 5. Since N —1 > % + 7, we obtain

k !

k k
Celto Celto
2 <D i S =
(14 |y — ;)N (14 |y —zj|) : :

j=1
if 0 > 0 is small.
If N =4, then
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et ;| < Ce*In
Z Yae| Z T

1
<C € < Ce .
Z 1+|y—$g\) ;(1+|y—%l)3

Combining all the above estimates, we obtain the result.

Now, we are ready to prove Proposition 3.4.

Proof of Proposition 3.4. Let us recall that

e=k N4, f N>5 e=e D ifN=4
Let

Ey ={u:ue C(Q.),||ul. <€|ln5|/z ju=0,j=12}.

511

Then, (3.19) is equivalent to

¢ = A(¢) =: L(N(9)) + L(lk)-

Now we prove that A is a contraction map from Ey to Ey. Using Lemma 3.5, we have

148]l < CIN(®)lles + Clilkllax < ClIGIIFF 52 + Ol |1
<C(e|Ine))™ 12 4 O] (3.23)
<C™ + O||l]| s
Thus, by Lemma 3.6, we find that A maps Fy to Ey.
Next, we show that A is a contraction map.
1A(01) — A(@2)llx = [IL(N(¢1)) = L(N(¢2))ll« < ClIN(61) — N(¢2)]|s«

On the other hand, we have

Clt* 2, N > 6;
IN'(8)] < -
( 6Ax|¢|+|¢ ) N:435>

from which, we can deduce (see the proof of Proposition 3.4 in [10] for details)
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14(61) = A(2) ]l < CIIN(¢1) = N(62)]]--
o o 1
SOl 720 + g™ 72D) 61 = Ball. < M1 = ol

Thus, A is a contraction map.

It follows from the contraction mapping theorem that there is a unique ¢ € Ey, such that
¢ = A(4).
Moreover, it follows from (3.23) that
9l < Ce™ + Clllk| v

So, the estimate for ||¢||. follows from Lemma 3.6.

4. PROOF OF THE MAIN RESULT

Let
F(A,d) =I(Weax +¢),
where ¢ is the function obtained in Proposition 3.4, and let
1w =5 [+ ety - B2
Using the symmetry, we can check that if (A, d) is a critical point of F(A,d), then W + ¢ is
a solution of (1.3).
Our next result shows that the estimate in Proposition 3.4 implies that F(A,d) is a pertur-
bation of I(WE,A,X),

o*

Proposition 4.1. For N > 4, we have

O(ke**), N >5;

F(A,d) =I(Weax) + {0(]%2) N = 4.

Proof. There is t € (0, 1), such that
1
F(A7 d) = I(We,A,x) + <II (WE,A,X + ¢) ) ¢> + §D21(W6,A,x + tgzﬁ) (¢7 ¢)

=H0Won)+ [ (PGP + e = NN +2)(Wep+10)”*6?)

Qe

=I(Weax) — N(N +2) / ((WE,A,x +i9)” - Wf,jgf) ¢* +/ (I + N(¢)) 8.

Qe e
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But

[+ @)

Qe

<O(lellun + IN @)1 1] / Z

Qe j— _%D 2 i=1

Using Lemma C.1, we find

j=1 (1+y—=;)) = (L+ |y — zi])
k k
1 1 1

:Z 1+ |y — z;)N+2r + Z Ni2 i, N2,

j=1 Yy J J=1 i£j (L+ [y =) I+ [y =)™
RO >
_]:1 ( +|y—$ |)N+2T = 1+|y—x N+27’ T1 |$Z—.T1|T1

k
1

<C ,
iy ]Zl (1 + |y — T |)N+2T T1

where 71 = 7 + 0 with # > 0 small. Thus, we obtain,

/ (It + IN@)) 18] < CE(llkllsx + 1N (@) ]e) 1]l <

Qe

Cke?te, N > 5;
Cke?, N =4.
Now

* N 0) 2* -2 ’ N > 6
(W&A,x + t¢)2 -2 WEQA—X2 — (‘(b oo ) ) =
oIR8 ), N =45,

from which we can deduce that

‘/ EAX+t¢) ng\)?)qg
<Cke~ 9‘1n8‘m2* ¢||inin(3,2*) < Ck€2+0—7

where € > 0 can be taken as any fixed small number. Thus, we obtain

O(ke*™?), N >5;

F(A,d) = I(Wex) + {o(ksz) N=4
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Proof of Theorem 2.1: We just need to prove that F(A,d) has a critical point.
Let

_ 1 1
F(Ayd) = —(F(A,d) — =Ap).
( ? d) k€2( ( ? d) N N)
N-2 N-2
Define ¥ = {(A,d) | 6 <A<, 0k 31 <d< 1k v}, where § is small positive number.
We consider the following maximum problem
max F(A,d).

We will prove that F(A, d) can’t attain its maximum on 9% for suitable . Thus we get a critical
point of F(A, d).
For N > 5, by Lemma A.4, we have

EN 2B

F(A, d) = BlA2 + AN_26N_4 (BQH(al, al) - W) + 0(1)

c
H(ay,a1) = —dN—O,Q(l +0(d)),
where ¢y > 0 is a constant, we find
i _ 2 N-2 coBs B
F(A,d)=BiA*+ A (_dN*QkN*Q — e d)N*Q) +0(1).
Let
- _ C()BQ B
F(A,d) = BiA? + AN 2(_dN—2kN—2 o (1- d)N—Z)'

Then, F(A,d) has a maximum point (A, dy) with

dp = k™51 (d" 4+ 0(1)), Ap=A"+0(1),

where d* and A* are positive constants, independent of k. Thus, if § > 0 is chosen small enough,

F(A,d) can’t attain its maximum on 0X.

Finally, we consider the case N = 4. Now
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] 1 B B
F(A,d) =BiN’In— + AR (— 5 — ) A+ O()
X B 5 (4.24)
_ 2 L 2;2¢ D260 2
=B;A’(In Ag+ﬂ’“)+A k*( 5z (1_d)2) +0(A?),

where (3 is independent of A and satisfies §y = O(kInk) as k — +oo.
Let di be the solution of

BQCO o B
Bk2 - (1—d)p

Then, we have dj = (d* +o0(1))k™3 for some positive constant d*, and dj is a maximum point of

=0

the function

BQCO B
d) =— - )
D) = ~5E ~ T ap
Define
k2 gy (dp)+By,
e=e B (4.25)
Then,

_ 1
F(A,d) = B;A%In T N’E? (g (d) — gi(di)) + O(A?).
Let (Ag,d;) be a maximum point of F(A,d) in 3. Firstly, we claim

mng(A, d) > ag > 0. (4.26)
In fact, take d = d;, and Ay > 6 small. Then
_ _ 1
max F(A, d) > F(Ao, dy) = B;A31n T+ O(A2) =: ag > 0.

0
Secondly, we claim Ay € (6, 5). Since gi(d) — gi(dx) < 0, we find from (4.26)

_ 1 _ _ o _
BiAZ1n T + O(A}) > F(Ag, di) > ag > 0. (4.27)

But B;A%In £ + O(A?) — —o0 as A — 400, and BjA%In £ + O(A?) — 0 as A — 0. So we obtain
from (4.27) that A, € (6, }) if & > 0 is small enough.
Lastly, it follows from (4.26) that

k*(ge(d) — gi(di)) > —C. (4.28)
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Since ¢"(d) = —%B2% — _8B_we find that if d = 6k %, or d = Lk 3, then

1
d2K2 (1—d)®> K

k(g (d) — g(di)) < —c'k*d* — —o0, as k — +oc.
This is a contradiction to (4.28). Thus we have proved that (A, d}) is an interior point of X.

O
APPENDIX A. ESTIMATE OF THE APPROXIMATE SOLUTIONS
Recall that N > 4 and W, 5 , is the solution of
—Au+ pPu = ayU3 -1 — p?e Wy ,, in Q; (A1)
A .
& —, on 09,

where W, , satisfies

AVp,+UL,=0, in RY.
In this section, we will estimate W 5 4.
Denote d = d(ea, 052) > 0. Let K,(|ly — z|) be the solution of

—Au+ pu =96, inR".

Then, we have the following expansion

C
Kully=al) = =25 (14 O(y=a])), asy—a,
and
c, (N — 2
Ky —al) =Y =D 1 Loy —al)), asy—a,

ly — [V
where ¢, > 0 is a constant. Let H(y,x) be the regular part of the Green’s function under the

Neumann boundary condition. That is, H(y,z) satisfies

OH _ OKu(ly—z|)
e 5, on 0.

Set G(y,z) = K(ly — z|) — H(y,x). Then, it is easy to check that

{—AH+uH:0, in Q;

C
< ——mMm—.
G0 < s
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We have

Lemma A.1. For any a € §Q., then

) AT&N*Q
Wena®) =Us o(y) — ne*¥aly) - —————H(ey,a)
i
EN_2 SN_2 52

‘gy _ Ea|N_3+9 + dN—3+0 + |€y _ 60"]\]—2-1—9 + dN—2+9 E

+o(
and

-2
A 3 SN_2

OWeralv) =0(Uya(y) — n"¥aaly) = =
U

H(ey, w))

9 9 9

+ O(
where 0 denotes either Oy or Oy.

Proof. Let
Pe,Aja = U%,a - M€2\IIA,a - Ws,A,a-
Then

{_ASO&A,G + /'1'52906,A,a =0, in €,;

B(PE,A,a, __ 0 2
St = %(U%,a — UE \IIA,G), on 0f),.

It is convenient to carry out the estimates in {2. For this reason, we let

N-2

by =" w(l). yeq

for any function w defined in €2.. Then

_A¢6,A,a + N@s,A,a =0, in €
a~5 a T,
Foho — %(Uiﬁa — ue?Wy,), on dQ.

Let

(‘bs,A,a = @s,A,a,l - Sbs,A,a,Qa

where ¢, 5 o1 satisfies

{_A()bE,A,a,]_ + M@E,A,a,l = 07 in Q;
on on

a‘AZa,A,a.,l — aUalr,Ea on 89

).

N-2 N-2 2

ey — ea|N—3+0 4 N—3+0 + ey — ea|N—2+0 4 N-2+0 ﬁ>’

23
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and @g A ,q,2 satisfies

a‘z’s,A,a,Z _ 6N52@A,a
Pt = on 0f2.

{_A(‘bgaA’an + M@E,A,G,Q = 07 1n Q,

By (2.7) and (2.11),

—2

CglfNT < Cg%

- (1+ |z—€sa|)N_3 — |Z_6~a|N—3’

Y z € 010,

‘ 8/1‘82 \ijA,a
on

So,

N-2
1 £ 2

% <C dz.

“Ps,A,a,Q(y)‘ = ~/6§2 |Z — y‘N_Q ‘z — ea\N_?’ ‘

If |y — ea| > d, then

Ce's’ 1 1
s < d
| e na2(y)] < ly — ea|N-4+0 /aQ(|Z N0 + Z — sa|N7179) Z
05¥ C’g¥
—_ |y _ 8G/|N_4+0 S |y _ 8a‘N—4+0 + dN—4—|—9 '

On the other hand, if |y — ca| < d, then |z — y| < |z — ca| + d < 2|z — cal. As a result,

- < Ce'r 1 < Ce™r
|Pera2(¥)| < J7i7g P dz < SN i

N—2
< C'e™>
- ‘y _ 8a‘N—4+0 + dN—4+9.

So, we have proved
Cg%
|¢E,A,a,2(y)‘ S |y _ €a|N_4+9 + dN_4+9.

where 6 > 0 is any fixed small constant.
On the other hand, for any z € 0f)

OV o :(As)V@(l * 0(6720

on on |z — eal?
2

_ (Agc)u? aKu(\;n— 24l (1 £ (2 — cal)) (1 + O(V_S—MP)).

So, similar to the estimate of @, A 42, we can deduce
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¢E,A,a,1(y)
N-2 N=2 N-2
_(ae)? 7 - =
=, Wea)+0 ( [y = eal V=0 & g3 [y eq[N210 1 gN—2+ )

which gives

¢E,A,a(y)
N-—2 N=2 e
_(Ae)= £z € e*
_TH(y’ ca) + O(\y ea| VI 4 gN=5+0 [y = N2+ 4 gV ﬁ)

Therefore, we have the following expansion for the approximate solution W; 5 4

ATgN_Q
Wena =U%,a - usZ\IIA,a - CiH(sy, ga)
"
oN=2 N-2 2
+ O(|gy — ga|N-3+0 4 gN-3+0 + ey — ea|N-2+0 4 gN-2+0 ﬁ)

Finally, since Op, s, satisfies

_A(a(ps,A,a) + Usz(agps,A,a) =0, in €;
Hobere) = D (QUs , — pe?0Wp,4), on OQ,.

we can prove as above that

Ae
0P A =6(¢H(6y, sa))
Cu
N-2 N-2 2
O( € N € s_>
+ ey — ea|N=3+0 4 gN=3+0 " |oy — gq[N-2+0 4 gN-2+0 g2 )

So, the result follows.

We also need the following result.

Lemma A.2. There is a constant C > 0, such that

|W55Aaa|7 |8WE,A,(1| < CU%’

a’

where 0 denotes either 0y or Ox.

25
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Proof. Note that |y — a| < % for y € Q..
If N > 5, then from (2.7),
Ce? C
2
20, ,(y)] < < <CU: .
el S Gy ey = a2 =
If N =4, then from (2.11) and In¢ < ¢ for ¢t > 1, we obtain

1 C
Upa(y)l < Clin = '
[Tau(y) < O 6(1+‘y_a|)| e(1+y — al)
As a result,
Ce? c
2\1[ . < < <CU1 .
‘8 A, (y)| = 5(1+ |y_a|) - (1+ ‘y—a‘)Q - Aoe

On the other hand, if ey — ea| < d, then 1+ [y —a| < 1+ ¢ < 24 (since ¢ — +00). As a
result
CelN 2 C
< <CU.,.
7 =y a2 = b
Suppose that |ey —ea| > d. Then |y —a| > ¢ — 400. So

eN?|H(ey,ea)| <

CeN—2 C (o
N-2
H < < <CU
e = A T e (T e
since ﬁ < m Thus, we have proved
N-2
e "|H(ey,ea)| < CUL,. (A.2)
Using (A.2), we can deduce
SN2 SN2 R
ey — ea|N—3+0 4 gN—3+0 + ey — ea|N—2+0 4 N—2+0 a2 (A.3)
N-2
=0(e"?H(ey,ea)|) = O(Us,)-
So, we have proved |W, 5 4| < CU%,G.
Finally, by (A.1), we find
—AIWepo + p*Weno = an (2" = D)UY 20U , — p’e* 00 s,
Ao
and W =0, on 02. But from ¢ < ﬁ for any y € €., (2.7) and (2.11), we obtain
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* C
o _ 1\ 2 S-S T P
‘O{N( )U%’a aU%’a MnEe A,a‘ = (1 + |y — CL‘)N
So, we can prove
C|llneg|™
‘awa,A,a| < ‘ n€| N—2 < CU: a-
1+ |y —a)V- &
O
Define
Pha = U%,a - We,A,a- (A4)
Lemma A.3. There is a constant C' > 0, such that
e2|In o———=|™  (N-2)0
5ral, 10BALl < C e(1+|y—al) Ul-o
|Paals 1004l < ((1 + |y —a])N-* ' dN-2)e *.a )’
where o > 0 s a fired small constant, m =1 if N =4, and m =0 if N > 5.
Proof. This lemma follows from Lemma A.1, (A.2), (A.3), (2.7),(2.11) and
N cN-2
e 7%|H(ey,ea)| < CdN—Z'
O

To end this section, we prove

Lemma A.4. Suppose that N > 4. Then

k
H(sx;, ex) = o(kN72).
j=2

Proof. Let a; = ex;. Then

Cu

H(aj,al) = — (1+O(‘G/j—dl|)),

|aj — @[V
where a; = (1+d,0,---,0) is the reflection point of a; with respect to 9. But

1
la; — 1| = \/4(1 — d)2sin? % + 4d2.

So
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k +o0 1
Y Hl(ew; emy) <CEN™? / —dt
— L (R + )

“+o00
SC’kN_Z/ > L — dt = o(kN7?),
1 (kT +12) 2

N-2

since d € [51(m

N—

LR

[¥]

APPENDIX B. ENERGY EXPANSION
Recall that
1
Iw) =5 [ (Du?+ ueluf’)

€

N-2
(%)
-2

AT (1 Ly — ay)2)

and

sAx E WsAwJ

where W, 5 , is defined in (2.12),

In this section, we will estimate the energy of W, 4 «.

Proposition B.1. For N > 5, we have

1
](Ws,A,x) = /f NAN + Bl(A8)2 + B (AE) (61,1, CL1)

where Ay, B1, By and B are some positive constants.

Proof. Using the symmetry, we have
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2 + /1’82W62,A,x)

[ (9.
k k
= Z / (aNU%* _,1 + 54N2q]A,wj)Ws,A,wj +2 Z / (aNU%*;l + 64/'[’2\IIA,:B¢)WE,A,$]‘

i=1 € Aot i A
J= J7F

k
—k / (anU3 ;) + e W2 Un ) Wenay + 2k / (anUT )+ W a)) Wena,
e j=2 e

On the other hand, it follows from Lemma A.2 that

|/ e PN g Wep | < C/ ' Wrm|Us 4,
Qe Qe

But
O(eY), N>T,
/gwxp U 0(/ el ) = { 0| nel), N =6
A Y g = 1+ |y — 2N 6) nej), =0
Qe Qe ( |y xl‘) 0(53), N =5

So, we obtain

4 2 2
/ P 5 We Az = 0(€%).
Qe

We estimate

/ a’NUi*;IWs,A,wl
A1
. AT eN2H ey, exy) gN—2 eV
— 2*—1 2 ’ 1
_/Q anUi o, (U%,x1 —pe"Vag, — c + O(dN73+9 TNt
, Voo -2 cN-1

:AN — Bl(EA) — BQ(EA) H(E.’L’l,gﬂh) + O(dN_3+9 + dN_l)

=An — Bi(eA)? — By(eA)N2H (ex1,e1) + 0(e?),
where

AN = O!N/ U12;),
RN

and

* 1 *
B, = OZN,U/ U12,0 1\1,, B, = —OZN/ U12,0 g
RN RN

Cu

)

29

(B.5)
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Now we estimate the interaction terms. Suppose that ¢ > 2. From Lemma C.1, we find

« 1 1
|/QE U;zllngAM <Cg? /Q O+ |y -z )2 (14 |y — i)V 2
e (B.5)
Thus
v [ VW
—ay Uy, - ouetu, . — A¥5N_2H(5?Ja5$i)
gN—2 gN—2 g2 B.9
+O(|sy—6x,~|N*3+9 T |ey—6x,~|N2+9ﬁ)} B
=By(Ae)N2G(exy, ex;)
. O( g2 oN—2 . oN—2 i)
|z; — 21 |N=%  Jemy — ex|[N=34H0 0 |emy — exy| V240 @277
where
Gly,z) = ‘Z_c% — H(y, 2).

On the other hand, using ¢ < m for any y € ()., and Lemma A.2, we can deduce

4
‘ € lIlEaAawIWE;A,zi
Qe

1 1
=C U, AL |U .<052/ B.1
/5 VeralUte <CE | Gip—apveasw—an B0

:O(| e?|Ine] )

T; — $1|N74

So, we have proved

/ (IVWerxl® + pue®W2y )

€

=k (AN — Bi(eAN)? = By(e AN 2H (ex1,e21) + Ba(Ae)N %G ey, e;) + 0(52)).

Let

!
Q= {y=(y") e (L Ty > cos T\,
1= =YD €0 ) = s b

Similarly, by symmetry, we have
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aN * aNk *
9 W52A x = 9 / W52A X

k k (B.11)
aN (/ €A$1 + 2*/ 2Ai.’Elll/I/r yiw 2 + O( W52A7$21 ZWE,Aawi)2>) ‘
Su =2 i=2
It is easy to check
1 1
?OZN/QI eAml = aN/ sAxl NkNlng)
1 ) A2 eN2H (ey, exy) V=2 \? Non. 1
2—*C¥N /QE (Ul z1 — uE ‘IIA,zl - s + O(W)> —+ 0(5 k™ In g)
2 N-2 eV? M v ]
:§AN — Bi(eN)? — By(eAN)V?H (exy,e11) + O(dN_3+0 togmte kI g)-
(B.12)
On the other hand, by Lemma A.1,
Ov’N/ WEAzIWEA:cl
1951
. AT eN2H i
:OéN/ WEZAzll (Ul b — HENTy, — T € (ey,emy) +o(eN 2H(6y,sx,)))
1951 Cu
From Lemma C.1, we obtain
,u62/ W62A:C1\IIA$1 < Cg? / U* ;1\11,\mz
“1 & (B.13)

9 1 1 Ce?
<Ce N+2 No1 S N—4’
o T+ |y =z )V (1 + |y — i)V Ty — 2|V

and, using (A.2)

N-2
SC‘EN_2/ : N+2 : Nop S ce N—2'
o T+ =DV (1 + |y — 2 )VN72 7 |z — 2 V-



32 LIPING WANG, JUNCHENG WEI, AND SHUSEN YAN

So,

-2

k
. A7 eVN2H(ey, ex;
:aNZ/ WE2,A,$11 (U%,Ii - ( z )) + 0(62)

Cu

(B.14)

B AT eN2H gy, 6x1)>

k

— 2% 1

_aNZ/ U%;zl <UKazi c
, L ’

* O(Z / U (| + V2 H ey, 1) ) U o, ) +0lc?).
1=
Moreover,
1 1

U2 2220, |Us <052/
/Ql %azl | A’wl‘ %’wl o 1951 (1+ |y_$1|)N (1+ |y—$z|)N_2

Ce?|Ine|
T

(B.15)

<
\531

and

. CeN-2)a 2* _24(N=2)(1-a
/ U2 2 N 2‘H(6y,€$1)|U1 T _W/ []%,w1 +( )( )U%,xl
Ql Q1

CeN—2)a 1
<
=T qN2a |z, — g, N2’

(B.16)

where « is a constant with o € (0, 5%5). Thus, we obtain from (B.11), (B.12), (B.14)-(B.16)

aN W2y« =k AN — Bi(eA)* — By(eA)N?H(exy,e11)

k k
+BzAN_26N_QZG(5m,~,sx1)+ o(e )+O(/ U;;Q(ZU%M)Q)).

i=2 ! i=2
Note that for y € Qy, |y — z;| > 3|2; — z1|. Thus
k k 1 1
Y Ui, <C)

i A i=2 (1+|y—x1|)¥ ‘xl_xi‘¥
1 1

T+ ly—a)T i—2 @1 — ;7

M;r
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As a result,
k

*— _ N—-1;.N—1
[ VLA vy = 0w,

i=2
which, together with (B.17), gives

an
2*

/ W2\ =k (A = Bi(eA)? = By(eA)V "2 H ey, em)
Qe

. (B.18)
+ ByAN 2N 2 Z G(exi,ery) + 0(52)> :

1=2

So, we have proved

1
I(Weny) =k (NAN + Bi(Ae)? + By(eA)V 2 H(ewy, ex1)

sy

— By(Ae)N 2 Z G(exi, exy) + 0(52)).

i=2
But from Lemma A .4,
k k =
~ c N BEN-2 7
D Glemem) =3 oty +olk™ ) = g gy + ok )
i=2 i=2 ¢

ex1|N-2

Thus, the result follows.

Now, we consider the case N = 4. We have

Proposition B.2. For N =4, we have

B(Ake)?

m + ﬂkA282 + O(A2€2) y

1 1
I(WE,A,X) =k ZA4 + B]_(AE)2 In A_{-j + BQ(A€)2H(G1, a]_) —

where Ay, B, By and B are some positive constants, and (3 is independent of A, satisfying

By = O(kInk).

Proof. The proof of the proposition is similar to that of Proposition B.1. So, we just point out
the difference.
In the case N = 4, using Lemma A.2 and ¢ < in €., we obtain (compare with (B.6)

and (B.7))

1
I+[y—=z1]
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|54/ \I;A,z1W6,A,z1| < |54/ \IIA,I1W6,A,:E1| + |54/ \IIA,$1WE=A,$1|
Q. Q\B_1 (z1) B_1 (1)
€

€

A 1
3054—/ -t U, +Cs Ine] U,
2 JoaB, (@) Ely—m| © B (1) N
Ve Ve (B.19)

2 1
<O AA4 3
<CA%e /1;\1/— | In Asr\dr—i-O(a [Inel)

70 1
§0A252/ rlIn | dr + O(& Ine) = O(A% + & Ine)),
Ve
where 7 is a large fixed positive number such that Q C B(exy,79).
By (2.9) and (2.10), we can deduce
1 1
2 3 _ 2 3 2.2
[ Vv = S /R Uy + O(Ne?). (B.20)

Moreover (compare with (B.8)),

52/ U Wy, 252/ U Wy, +O(Ine)
. Atl BL(-’L’l) A l1

Ve
Ae? 3 PA2 2 3
= 1, In + BA*¢” + O(€°|Inel) (B.21)
2 JBy @) ™ ely—
Ve
1_ 1 _
_(—B21n7+B>A252+O(83\lne|),
2 |€$i—6$1|

where B, and B are some constant.
We also need to estimate e* 3% Jo. Urai Wena;-
Similar computation in (B.19) gives out
4| Up o Wens| <Ce?|Ineg U3 . = O(’|Ine|)
O\B 1_(a:) NB g (a1) A7
Ve Ve
which, together with Lemma A.2, gives (compare with (B.10))
|64/ \]:JA7$1WE=A7$i| S 6\4| \IIA,J)IWE,A,Eil + 0(63| 1n6|)

B_1 (%)
v

1
<Ce*|lnelln ——— Us,.
lex1 —emi| Jp | (@
Ve

+ O(£%| In¢gl)

=0 (&% Ine/?).
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So, we obtain that for N =4,

| (e

k
1
=k (A4 — Bi(sA)?In - By(eA\)*H (ex1,ex1) + Ba(Ae) Z (ex1, em;)

Wohx)

€ =2
+ b + 0 (M%) ),
where
- Pl 1 _ Lok

=3 (5B ————+B) =0(k+ Y In=) =0(knk
B ;(2 oI Jri:ZQnZ (k1n k)

To finish the proof, we need (compare with (B.13))

/ sAwl Az :‘52/ WsAml\I]A%—i_O( 3|ln€|)
e B (x1)
Ve
:52/ U, Vs, +O(52\lns\ Ut , (2[Wns |+ H ey, em)) —|—53\lns\)
B%(ml) v B%(Il) v

1_ 1 _
:(—32 In — + B>A252 + O(®|Inel).
In the last relation, we have used (B.21). The rest of the proof is similar to that in Proposi-

tion B.1.
O

APPENDIX C. BASIC ESTIMATES

In this section, we collect some lemmas, whose proof can be found in the appendices in [10]

as well as [11].

Lemma C.1. For any constant 0 < o < min(«, ), there is a constant C > 0, such that

1 1
I+ |y =z 1+ |y —x4])?
c 1 ]
< ( + ).
r— = a7 (4 g7

where 1 # j, a > 1 and f > 1 are two constants.
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Lemma C.2. For any constant 0 < 0 < N — 2, there is a constant C' > 0, such that

1 1 C
N-2 240 dz S o’
ry |y —2[V72 (1 +[2]) (1+1yl)
Let us recall that

e=k Ni if N>5 e=e ¥ if N=4

Lemma C.3. Suppose that 7 = N—:;L. Then there is a small 8 > 0, such that
1 k
_— dz
/RN ly — 2|V~ o ; +|z—x]\) AT

k

=%

— 1+|y—x |)¥+T+0'
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