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Abstract

We consider an elliptic problem of Ambrosetti-Prodi type involving critical Sobolev ex-
ponent on a bounded smooth domain of dimension six or higher. By constructing solutions
with many sharp peaks near the boundary of the domain, but not on the boundary, we
prove that the number of solutions for this problem is unbounded as the parameter tends
to infinity, thereby proving the Lazer-McKenna conjecture in the critical case.
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1. INTRODUCTION

In this paper, we consider the following elliptic problem involving critical Sobolev expo-
nent:
—Au:ui_l—i—)\u—égol, in €, (1.1)
u =0, on 0f)

where 2 is a bounded domain in R with C? boundary, N > 3, 5 and A > 0 are positive
parameters, ¢; > 0 is the eigenfunction of —A in Q with Dirichlet boundary condition
corresponding to the first eigenvalue A;, u, = max(u,0), and 2* = 2N/(N — 2).

Problem (1.1) belongs to the following elliptic problem of Ambrosetti-Prodi type

—Au = g(u) — 5p1(z), inQ, (12)

u=0, on 012, ’
where ¢(t) satisfies lim;_, Kf) =v < A, limg, o ﬁtt) = pu > M. Here p = 400 and
v = —oo are allowed. It is well-known that the location of i, v with respect to the spectrum
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of (—A, H}(2)) plays an important role in the multiplicity of solutions for problem (1.1).
See for example [1, 6, 7, 14, 15, 16, 20, 21, 22, 23, 28, 29, 30, 31]. In the early 1980s, Lazer
and McKenna conjectured that if 4 = 400 and ¢(t) does not grow too fast at infinity, (1.2)
has an unbounded number of solutions as § — +o00. See [21].

There is no result relating to the Lazer-McKenna conjecture in the partial differential
equation setting until recently. Firstly, by using a partially numerical method, Breuer,
McKenna and Plum showed in [5] that (1.2) has at least four solutions if g(¢) = #* and
Q is the unit square in R%. Secondly, Dancer and the second author proved in [8] that
the Lazer-McKenna conjecture is true if g(¢) = |t|’, where p € (1,400) for N =2, p €
(1,(N+2)/(N-2)) for N > 3. We remark that for the nonlinearity g(¢) = |¢|P, v = —oo and
i = +o0o. In the case that v is finite, it is shown in [9] that the Lazer-McKenna conjecture
is also true if g(¢) =t} + M, A € (—o0, A1), N >3 and p € (1, (N +2)/(N — 2)). In two
dimensional case, Del Pino and Munoz [13] showed that the Lazer-McKenna conjecture
holds if g(t) is an exponential nonlinearity.

In this paper, we treat the critical case and prove the Lazer-McKenna conjecture for di-
mensions N > 6. The nonlinearity ti*_l is of critical growth in view of Sobolev embedding.
We assume that A and 5 satisfy one of the following conditions:

(A1) A€ (0,A) and s > 0;

(A2) A€ (A Aiy1) for some ¢ > 1, and 5§ < 0.

The main result of this paper is the following:

Theorem 1.1. Assume that N > 6, \ and 5 satisfy either (A1) or (Ay). Then, the number
of the solutions for (1.1) is unbounded as |5| — +o00.

It is easy to see that (1.1) has a negative solution
S
Us = _Al _ )\Sola
if (A1) or (Ag) holds. Moreover, if u; + u is a solution of (1.1), then u satisfies

{—Au = (u — sg01)2+*_1 + Au, inQ,

1.3
u =0, on 052, (13)

*~ > 0. The functional corresponding to (1.3) is

where s = X
1

1 1 ’
I(u) = 5/Q(|Du|2—Au2) dy — g/n(u—ssol)i dy, u€ Hy(Q).

To prove Theorem 1.1, we only need to prove that the number of solutions for (1.3) is
unbounded as s — +o0.
For any 7 € R, ji > 0, denote

Unaly) = coi -/
S Py =2

where ¢y > 0 is the constant such that U; ; satisfies —AU;z ;5 = Ua-%;{l. In this paper, we
will use the following notation: U = Uy ;.

(1.4)



Let PUsj be the solution of

APU;—C’ﬁ = AUi,ﬁa in Q,
PUj-,ﬁ = 0, on 0S2.

For any u,v € H} (), we define

(u,v) = [ DuDvdy, [ull = (u '
Q
We have the following existence result for problem (1.3):

Theorem 1.2. Suppose that N > 6, A and 5 satisfy either (A1) or (Ay). Let T' be any
connected component of 0S2. Then, for any integer k > 1, there is an s, > 0, depending
on k, such that for any s > si, (1.3) has a solution of the form

k
- Z PUws,jaUs,j + ws,ka
j=1
satisfying that as s — 400,
(0 3y = 2y €T wih = 25750 = maxyer(~9510), j =1,k
(if) s* “N |z — @55] = +o0, ¢7éj,
(1) pag, s 2N -2/ (V2 SN L F 0, =1, ks
(iv) (g;s],aQ) AN-O/(N*~6N+4) s b5 (0 j=1,--- k;
(V) w € Ho(Q), [lwsll = 0,

where n is the outward unit normal of 9Q aty € 9Q, t and b are defined in (1.6) and (1.7)
respectively.

It is easy to see that Theorem 1.1 follows directly from Theorem 1.2.

De Figueiredo and Yang [17] proved that (1.3) has at least two solutions if N > 7 and
either (A1) or (A2) holds. In [24], it is proved that if N > 7 and (A;) or (Az) holds, then for
any integer k£ > 0, (1.3) has a k-peak solution, which blows up near the maximum points of
the function ¢;(y) in Q. On the other hand, it is proved in [25] that if N > 6 and (A;) holds,
the mountain pass solution exists and the mountain pass solution is a single peak solution,
which blows up near a point o, € 9Q with a‘pgsfo) = min,epn(— 6“;75‘2)). The solutions
obtained in Theorem 1.2 have several peaks clustering near a boundary point which is a
maximum of the function —BLTEZ). Therefore, the solutions constructed in this paper are
different from those in [24, 25]. As far as the authors know, no such type of solutions
have been obtained for Dirichlet elliptic problems involving critical nonlinearities. The
readers can refer to [2, 4, 10, 11, 12, 18, 19, 27, 32] for results on the existence of multipeak
solutions for other problems involving critical Sobolev exponent.

Our calculations also show that in lower dimensions N = 3,4, 5, (1.3) has no solution
concentrating at some points of the domain 2. Indeed, if N = 3,4,5, u; 3 is smaller than
the other two terms in the right hand side of (B.5). Therefore, there is no balance for the
concentration rate p;.



Before we close this section, let us outline the proof of Theorem 1.2.
We first reduce the proof of Theorem 1.2 to a finite dimensional problem. To achieve

this goal, for any integer £k > 0, z; € Q, 1 =1,--- |k, yu; € R1+, 1=1,---,k, we define
B = {u: w e BY@), (i, 2 il _ g, OPmans)y
0z p
h=1,---,N, j _1,... ’]f_}
Denote
_ 9¢1(y)
= — 1.5
@ =max(==5, ) (15)
— (N_ 2)606 NB2 N—-1 2/(N2_6N+4)_2 N—2)/(N2_6N+4
7= ( ) (N=2)/(N?—6N-+4) 1.6
9 (4/\B1) a ( )
and
- 4\B
h= FIN-6)/2 1.
NBsa ’ (1.7)

where By = % [ov U dy, By = [,n U* ' dy, o and ¢ are the constants given by (1.4) and
(A.3) respectively.
For any z; € 2, which is close to 0f2, there is a unique z; € 0¢2, such that

Let
o 0p1(T;) _ _ —0
Ve = 1 X; € F, — >a— ,
e={7:3 on =77 (1.8)
‘ji - '7_:]| 2 S_Q(N_4)/(N2_6N+4)+0/Na ’La] = 15 o :ka { ?é .7},
and
Wi = {(d, 1) 1 € [(T = L) 200200080 (7 4 =0 20V-2/(00 00
(1.9)

d; € [(5 _ LS—G)S—Q(N—4)/(N2—6N+4), (5+ L8—0)8—2(N—4)/(N2—6N+4)]}
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where Z = (T1,- -+ , %), b= (1, , pg), d = (d1,--- ,dg), L > 0 is a large constant, and
f > 0 is a fixed small constant.
Let

We will prove that there exists a C' map ws, , from My to H;(f2), such that w;, , €
E; .k, and



0J, (:E ,u, Ws,z,) ZA xj,u] i ZZBﬂh ax;c],u])’

for some constants A; and Bjp, Where

k
Js(z, p, w) = I (Z PU,, ,; + w).
j=1
Here we regard z; = a’:z — din(z;).
To show that Z Uzju; + Wszu is actually a solution of (1.3), we need to find a
(x5, jts) € My, such that the corresponding constants A; and B, are all equal to zero. It
is well known that if (z, us) € My is a critical point of the function

K('/I_:,d: ,U/) = Js(xalj'a ws,w,u), (jada ,U/) € Mk7

where z; = 7; — din(%;), T = (%1, ,%k), d = (dy,--+,dg), then the corresponding
constants A; and By, are all equal to zero. See for example [10] and [26].

In [8, 9], the nonlinearities are subcritical and the critical points for the reduced finite
dimensional problems are obtained by using a maximization procedure. These techniques
do not work here, because by (3.1), we can expect that K(Z,d, 1) has a saddle point in Mj,
such that K(Z,d, ;) attains the minimum in both the d; directions and the p; directions;
but K (Z,d, p) attains the maximum in the z; directions. In view of the above observation,
we will use a min-maz procedure to find a critical point for K(Z, d, ). To achieve this goal,
we need to carefully analyze the gradient flow of K(Z,d, ).

In section 2, we will reduce the problem of finding peak solutions for (1.3) to a finite
dimensional problem. We will prove the main theorem in section 3. We put the lengthy
calculations needed in the expansion of the energy and its derivatives in the appendices.

2. THE REDUCTION

In this section, we will reduce the problem of finding a k-peak solution for (1.3) to a
finite dimension problem. We always assume N > 6, and (z, u) € Mj.

Proposition 2.1. There is an s, > 0, such that for each s > s, there exists a Ct-map
Wszpu: My — Hy (), such that ws g, € Ey gk, and

k N
aJ,(z, u,wsw ZA PU O(PUs,;) +ZZBMM’ (2.1)
=1 h=1 ’

for some constants A; and B;,. Moreover, we have

1
[ws,z,ull = 0(82(1+U)(N—2)/(N2—6N+4) )’

where o > 0 is a constant.
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Proof. For each (z,u) € My, we expand Js(z, 4, w) at w = 0 as follows:

1
Js(x’ 22 w) = JS(J’" H, O) + <l'55'7"a/“ C()> + §<Qs5m5ﬂw’ w> + RS,I,H(w)7

where [y, € E; , « satisfying

k k
Iy gy w) = /Q D(>_ PU,, ) Dwdy — A /Q > PU,, ywdy
j=1 j=1

i (2.2)
— /(Z PU,, u; — 5¢1)% 'wdy, Vw € Eypy,
Q =
j=1
and @, is a bounded linear map from E, ,; to E; , i, satisfying
<Qs,$,pw,n> =/ DwDndy — )\/ wn dy
Q Q
k (2.3)
—-(2*=-1) /(Z PU,, u; — s¢1)” Pwndy, w, 1€ Egup,
Q<
7j=1
and R, ,(w) collects all the other terms, satisfying
. B .y .
RY) (w) = O(lw[*7), i=0,1,2.
Thus, to find a critical point for Jy(z, p,w) in E, , ; is equivalent to solving
lsawau + Qsawa“w + R{‘J,l',u(w) = 0' (2'4)

By Lemma 2.3 below, we see that (), is invertible in F, ,;, and there is a constant
C > 0, such that ||Q,} || < C. It follows from the implicit function theory that there is a

Ws,zu € Ey ik, such that (2.4) holds. Moreover,

| < Clllsz.pll-

|ws, .0
Finally, by Lemma 2.2, we have

| C

| < $2(1+0)(N—2)/(N2—6N+4) "

lS,iU,N

Thus the estimate follows.
O

To finish the proof of Proposition 2.1, it remains to prove the following two lemmas.

Lemma 2.2. Assume that N > 6 and (z,p) € M. We have



<ls,w,u7 w>

k k

1 Sdz' 1to 1

- (z;(,ﬁrf (u(N_Z)/Q) ’ ) ZW—N+2)/2+§ :% )||w||
i= i ; im1

1

1
=0 (52(1—1—0)(N—2)/(N2_6N+4) ) [[wll,
where 0 > 0 is a constant, and &;; is defined in (A.2).

Proof. For any w € E, ,, , we have

k

_ 21
sw,uaw> /(Z wj,u] - SQDI 2 1 ZPU$J7I'L] S(p1)+ )w
7j=1
k
3 [ (U5 = PO =30 )o S [ Pl
j=1
But
(N+2)/2N C'ln p,;
[ PUso| < / Usyuslil < O( [ U207 o) < S5
Q Q i
. 21
‘/ 5]}“; ””J’“J 8801)4— )w‘
. 2 -1 .
<[ (U;,,; Uspas = 560)% )+ O( [ U2 5200,0510])
1
+0’
/( ;u; T (spr)? |W\)+O<W—N+2)/2)||w||
1—|—0’ 1
(( N 2/2) *+ (dips) N +2) /2)““’”
and

2*—1
m]aﬂj SQ01 Z PUQ/‘J:I‘] 5@1)+ )w‘

S,

Mar [ M?r

k
e 2*—1 sdj | (1+0)/2
Ua)" ™ = (0 PU) ol + (i) ) el

J

<.
Il
—

<0( 7+ () ol

€ij + ( (N—2)/2
i£] Hj
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In view of (1.8)—(1.10), Lemmas A.2 and A.3, the result follows.

Lemma 2.3. There is a constant p > 0, independent of s, (z, u) € My, such that
||Q37$7llw|| 2 p”w“a w € Ea:,u,k- (25)

Proof. We just sketch the proof of this lemma, since it is similar to the proof of Lemma 2.3
in [24].

We argue by contradiction. Suppose that there are s, — +o0, (2, un) € M and
wn € By, 4.k, such that

Qs znpnnll = o(D)[lwnll, (2.6)

where o(1) — 0 as n — +o00. In (2.6), we may assume |jw,|| = 1.
By using the standard blow-up argument, we can prove that for any R > 0,

which implies that

k
[0 PV s = 500 el = (1), 2.7
Combining (2.6) and (2.7), we are led to
[ DDy = Xt = o)l V1 € By 23)
Since wy, is bounded in H{(£2), we may assume that there is an w* € Hj(f2), such that

wn = w*  weakly in HZ(Q).

From (2.8), we can deduce

/ (Dw'Dn— \o'n) =0, Vne H(Q). (2.9)
Q

From (A;), or (Ag), A is not an eigenvalue. So we obtain from (2.9) w* = 0. Thus
Jo w2 = o(1), which, together with (2.8), gives

[ 1pe = o).

This is a contradiction.



3. ANALYSIS OF GRADIENT FLOW AND PROOF OF THEOREM 1.2
Let

K(jadau) :Js(xa,u'aws,w,u)a (iadaﬂ) € Mka
where w;, is the map obtained in Proposition 2.1, z; = z; — n(z;)d;. Then, noting
that ¢i(z;) = —22g,(1 + O(d))) and H(zj,z;) = @%(1 + 0O(d,)), we obtain from
Propositions 2.1 and B.3 that

K(z,d, u) = Js(x, p, )+O(||wsw,u||2)

k 3901 Z;) k ~
A\B; )djS coCBy
=kA - Z Z N 2)/2 +j2:;2’u;v sz 2 (3.1)

1
~ByY ey +0( T )

N—2)/(N2—6N~+4)
1#£]

Next, we need the following expansions of the derivatives of K (Z,d, y)

Lemma 3.1. Assume (z,u) € My. Then

OK(7,d,p) 20B, N —2By(=243))d;s (N — 2)eyéBy
O 1 2 ' 2u; d; (3.2)
1
+0 (SG(NfQ)/(N276N+4)+0) ,

and

_ B _&pl(fvj) _ ~

OK(Z,d,p) Ba(——5,2)s (N =2)cpeBy
dd; M§N72)/2 Q,UN 2dN 1

(3.3)

82(N—4)/(N2—6N+4)
+ (34(N—2)/(N2—6N+4)+9 ) :

Intuitively, the estimates in Lemma 3.1 can be obtained by differentiating (3.1) with

respect to d; and p;. We will postpone the proof of Lemma 3.1 in Appendix C. Now we
are ready to prove Theorem 1.2.

Define

B Bya cB
f(b,t) _ _/\ 1 QCLb CoCD2

2 TN T yN-apN2-
Here @ is defined in (1.5). Then, we have

of(b,t)  Bsa

006B2
L O P T e (34)
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and
0f(a,b,t) 2\B; N — 2 Byab
o0 B 2 NP
It follows from (3.4) and (3.5) that

CoéBQ
IN—-1pN—-2"

— (N —2) (3.5)

0f(bt) _, 05 (b1)
o ot
has a unique solution ¢ = £ > 0, b = b > 0. For the definition of # and b, see (1.6) and
(1.7). )
On the other hand, using (3.4) and (3.5), we find that if N > 6, at t =¢ and b = b,

=0,

o0 f(b,7) 6AB; N(N —2) Bab coéBs
oz~ @ T 1 et W2AW-lgaes
(N —6)(N —2) Bab cotBs
and

an(B f) CoéBg

LT (N — _ - ~ .
Ob2 ( 2N 1)2tN—2bN >0

Let
62,3 = kA + n,

where 1 > 0 is a small constant, and

T kA + kf(B,E)S—4(N—2)/(N2—6N+4) _ 8—30/2—4(N—2)/(N2—6N+4).

For any ¢, let K¢ = {(z,p) : (z,p) € My, K(z,u) < c}. Here, we denote K(z,u) =
K(z,d, p).
Consider the following flow:
dx(t) .
i = —DuK(z(t), u(t)), t>0; (3.6)
((0), £(0)) = (zo, to) € K.

Proposition 3.2. Suppose that N > 6. Then (x(t), u(t)) will not leave My, before it reaches
K,

K
K

Before we prove Proposition 3.2, we prove the following lemma.

Lemma 3.3. For any T € 0V}, we have (z,u) € K, where

Pls = ClLs — 28—36/2—4(N—2)/(N2—6N+4).

’



11

Proof. Denote
pi = ;82N D/ 6N e fp Ls0 {4 Ls7Y),

Y

and

di = bi8_2(N_4)/(N2_6N+4), bz € [E - LS_H, [_) + LS_H].
Since (b,%) is the unique minimum point of f(b,), we have

fbit:) = f(b,1) + O(s7%). (3.7)
Suppose that |7; — 7;| = s 2(N=-49/(N=6N+0)+0/N  Then_ it follows from Lemma A.2 that
P> 618—4(N—2)/(N2—6N+4)—0.

By (3.1), noting that — a‘“(m’) < a, we have

K (z, u)
<kA+ Zf g—4(N=2)/(N?—6N+4) _ Bsei; + O(874(1+0)(N72)/(N276N+4)>
2 2 (38)
<kA+kf(b,1)s (N—2)/(N2—6N+4) _ Byes; + 0(572074(N72)/(N 76N+4)>
<kA+ kf(B zg)s—4(N—2)/(N2—6N+4) _ 01338—4(N—2)/(N2—6N—|—4)—0
+O(s (N— 2)/(N2—6N+4)—20) < G
Thus, (z,pu) € K.
Suppose that —201@) — g _ 0 for some i = 1,--- k.
It follows from (3.1) and (3.7) that
K(a: ,u)
<kA+Zf g UN- 2)/(N2—6N+4) B2bz g HN= 2)/(N2—6N+4)-0
j=1 t B
n O(8—4(1+a)(N—2)/(N2—6N+4)) (3.9)
o A(N_2)/(N?— Bob  _y(n—2)/(N?—6N+4)
<kA+kf(b,D)s 4(N—2)/(N2—6N+4) {N—zs 4(N—2)/(N2—6N+4)—0
+ 0(874(N72)/(N276N+4)720) <&,
Thus, (z,u) € K.
O

Proof of Proposition 3.2. Suppose that there is a ¢, > 0, such that (x(to), u(to)) € OMj.
We will prove that either (z(to), u(to)) € K=, or aK( 0 > 0 at (x(to), p(to)), where v is
the outward unit normal of M}, at (z(to), (to))-
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Note that 8Mk = aVk X Wk U Vk X 8Wk
If z(ty) € OVj, then it follows from Lemma 3.3 that

(z(to), p(to)) € K.
Now we consider the case (d(tp), u(to)) € OW.
Let

pilte) = ;"IN g e [F— LsT T+ Ls77),

and

dz‘ (t()) = bi872(N74)/(N276N+4), bz € [Z_) - LSie, 6 + LSie].
Suppose that p;(to) = (t + Ls?)s2N-2/(N*~6N+4) for some j. Then, t; = ¢ + Ls~’.
Thus, noting that — 6("1(%) =a+ O(s%), from (3.2), we obtain

OK (z,p)  OK(z, )

ov Oy,
g 6V 2)/(N2 6N +4) (L ((t;, % 4 o(s ")
t
o 17
— g—6(N=2)/(N?—6N+4) (5 fa(tza bj)LS—a n O(L23_2" 4 S—a))
t
o e T
:S—G(N—2)/(N2—6N+4)<6 gg;; b)L -0 4 O(L2 —26 +Ls_0|b _ b| + 8—0)) >0,

if L > 0 is large, since |b; —b| < Ls™%. Thus, (z(t), u(t)) will not leave My, at (z(ty), p(to)).
Similarly, if u;(to) = ( — Ls %) s2N -2/’ =6N+4) for some 7, then at (z(to), p(to)),

OK(z,p) _ OK(z,p)
o op;
So, (z(t), u(t)) will not leave My at (z(to), p(to))-
Suppose that d;(ty) = (£ + Ls?)s 2N-49/(N*~6N+4) for some j. Then, b; = b+ Ls’.
Thus, from (3.3), we have

> 0.

OK(z,p) _ OK(x,p)

ov dd;
— g—2N/(N?=6N+4) ( (8—0)>
_g—2N/(N?—6N+4) <8 +O(L25_29 i 5_9)>

2
_ —2N/(N?=6N+4) <3 J; 2’ Ls " +O(L?s™ + Ls™°|t; — 1] + s~ )) >0,
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if L > 0 is large, since |t; — | < Ls™%. Thus, (z(t), u(t)) will not leave My, at (z(to), u(to)).
Similarly, if d;(to) = (£ — Ls=?)s2(V=2/(V?=6N+4) fo1 some j, then at (z(to), p(to)),

OK(z,p) _  O0K(z,p)

ov (961J
So, (z(t), u(t)) will not leave M at (x(to), u(to))-

> 0.

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. We will prove that K (z, ) has a critical point in K¢ \ K.
Let A be the set of maps h(Z,d, u) from My to My, satisfying

hi(z,d,p) =z, ifz eV,

where h(x, p) = (hi(z, u), he(z, 1)), hi(x, ) € Vi, hao(x, p) € W.
Define

cs = inf sup K(h(z,p)).
heA (W;N)EMk

We will show that ¢, is a critical value of K(z, ). To prove this claim, we need to prove
(i) c1,s < €5 < €3
(ii) sup (g meavixw, K (h(z, 1)) < cis, YV h € A
To prove~(ii), let h € A. Then, for any (Z, d, 1) € dV; x Wy, we have h(z,d, u) = (z, d, 1)
for some (d, 1) € Wy. By Lemma 3.3, we obtain

K(%,d, i) < &,
which implies

sup K (h(z, 1)) < ¢15 < 1,6
(%,1)€OVi X Wy,
Now, we prove (i). It is easy to see ¢; < sup(, e, K (2, 1) < 6.
On the other hand, let

t—82(N72)/(N276N+4)

d; 25872(N74)/(N276N+4) ]: 1’.‘. ’k’

M=
where ¢ and b are defined in (1.6) and (1.7) respectively.

For any h € A,. Define h(Z) = hy(z,d*,u*). Then, h(Z) is a map from V; to V4,
satisfying

Thus, for any z € Vj,
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Therefore, for any z € Vj, there is a Z € Vi, such that h(Z) = z. Let (d, i) = ho(Z, d*, pu*) €
W,. We have

sup K (h(z,p)) > K(z,d, fi).

(-CU,[L)EMk
So, we see that to prove c¢; > ci 5, we only need to choose z € Vi, such that for all
(d’ lu’) € Wka

K(z,d,p) > c15 + 15_35/2—4(N—2)/(N2—6N+4)
? 7 ,S 2 .

Let Zg be a maximum point of —% on I'. Choose %, ; € By-¢(Zo) NI, j =1, ,k,

satisfying |Z,; — 24| > /s ?, Vi # j, where ¢ > 0 is a small constant. Then

_0p1(%5)
on

As aresult, Z; = (Z5,1,- -+ , Zsx) € Vik- Now, we estimate K (Zs, d, u) for any (d, ) € W.
Denote

=a+0(z,; — 5[} =a+O0(s ).

zizéi—din(ii), ’Lzl, ,k,

where n(Zz) is the outward unit normal of I at z € I'. We have

1

MgN—Q)/2M§N—2)/2|zS,i iy

:O(SB(N—2)—2(N72)2/(N276N+4)), 17&]

“i = N-2

which implies

1

N- N-—
Nz( 2)/2u§- 2)/

2G’(zi, zj) < Cey = O(SQ(N*Q)*2(N72)2/(N276N+4)).
So, from (3.1), we obtain

K(Z, d, ,u) —kA+ kf(B’{)874(N72)/(N276N+4) + 0(874(N72)/(N276N+4)720)

201,5 + 18—4(N—2)/(N2_6N—|—4)—30/2. (3_10)

So, we have proved (i). Therefore, K(z, 1) has a critical point in M} with critical value c;.
Ol
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APPENDIX A

Let G(y, ;) be the Green’s function of —A in  with the Dirichlet boundary condition,
and let H (y, z;) be the regular part of G(y,z;). Then, there is a constant ¢ > 0, such that

Cc

G(y,z;) = e H(y, z;).
For any i # j, define
1
Eij = (N—2)/2 (N_2)/2G(.Ii, .Tj), (Al)
M e
and
1
£ = ooz (N N2 (A-2)
pi g e g

In this section, we will derive some estimates for the quantities ¢;; and &;; under the
assumption that (z,u) € M.

Firstly, we will give an estimate for the Green function G(z;,z;) for ; and z; close to
09Q. For any z; € 2, which is close to 0€, it follows from [26] that

DiH(y, ;) = Di( ) (1+0(d(z;,00)), i=1,2, (A.3)

ly — 2|V
where Z; is the reflection point of x; with respect to 0€2.

For any d;, d; € [(b— Ls™0)s 2N=0/(N?=6N+4) (§ 4 [,5=0)s—2N=9)/(N*~6N+4)] 7.  9Q),
.7_3]' S 69, let

T; =XT; — dzn(:iz), Tj = .fj — d]n(:r])
Then
Lemma A.1. Suppose that |z; — Z;| > d;. We have

1 c*d? di
G(zi,xj) = —— (_ I _ 1+ O0(—L—+57! ),
(i) |7 — 25N\ [z — 752 (Ixi—le‘* )
where ¢* > 0 is a constant.
Proof. We have
c
G(xzaxj) :|xz mj‘N,Q H(xia‘rj)
c c d;
— O J
fod + (‘xz _jj|N72)

On the other hand,
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|.’Ei — ij|2 = |l’z — .Z‘j|2 + |.’1?j — ij|2 + 2<IEZ — L5, T5 — ij>

But
(i — xj,35 — &5) = (@ — j, —2d;n(3;))
=(z; — Ij, —2d;n(Z;)) + (din(Z;) — djn(Z;), —2d;n(z;))
:O(djl.fz — .i‘j|2 + |dz — dj|dj -+ d,d]|§31 — j?jD,
and

@i — x| =T — T;| + O(|din(Z;) — djn(z;)|)
=|z; — z;| + O(|d; — d;| + dj|z; — z5).

So, we obtain

+ O(dﬂfz — .’f'j|2 + |dz — dj‘dj + dzd]|i'z — iﬁj| + ‘dz — dj|2 + d§|.’f‘z — fj|2)

As a result,
1
i — 25|V 2
1 ( N—-2 A4d? d?
=1 — 4+ O(—L— +s ’ )
e\ e O )

So, the result follows.
A direct consequence of Lemma A.1 is

Lemma A.2. For any (z,pu) € M,

Eij S 08_4(N_2)/(N2 —6N—|—4)—9.

Moreover, if |z; — ;| = §T2AN—)/(N?~6N+4)+0/N ypon
£ij > 0187074(N72)/(N276N+4).

Proof. We just need to use

32
—J < CsTBN Y (z,d,p) € M.

|z — z4[?

Next, we need to estimate &;;.



Lemma A.3. For any (z, 1) € My, we have

€ij = O(&ij + 8_4(N_2)/(N2_6N+4)).

Proof. By definition, we have

C

/LEN_2)/2,U§'N_2)/2

We may assume that d; = min(d;, d;).
For any (z, u) € My, we have

Eij < Ceyj + H(z, ;).

@i — ] =@ — 7] + O(dis™ + d;|7: — 751
> d;s’™N + O(dis™ + d3s*N) > d;.

Then from G(z;, ;) > 0, we find

C C
H(z;,z;) < .

(6, 2;) < |z — 2N T a7

As a result,
1 C 2
H(:L‘Z SE) < < 0874(N72)/(N 76N+4).
N-2)/2 (N—2)/2 i) = T(N=2)/2 (N-2)/2 jN—2 —
MZ( )/ u§- )/ MZ( )/ u§- )/ dj'v 2

Lemma A.4. For any (x, ) € My, we have

74 — 51y = (s~ #4640

Proof. Suppose that |z; — x;| > s7%. Then

1

N—2)/2 (N—2)/2 _
/«‘z( )/ ,u§ )/ |$i_$j|N 3

<CS2(N—3)9—2(N—2)2/(N2—6N+4) -0 (8—29—4(1\7—2)/(1\72 —6N+4)) )

|z — |8 <

If |z; — z;| < s7%, then by Lemmas A.2 and A.3,

|$i _ xj\E_z'j < 5—208—4(N—2)/(N2—6N+4) — 0(8—20—4(N—2)/(N2—6N+4)).
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APPENDIX B

Denote
Vaj; = Usj; — PUsj ;-
The following estimates can be found in [26].

Lemma B.1. We have the following expansion for vy, .-

C H(y,.’L‘) 1
Vo5 (Y) = W (1 + O((djuj)Q))’

J

awz,-, ](y) _ _(N B 2)00H(y,$) 1
o o (1+0(59):

and

8¢xj,uj (y) _ Co aH(yv xj) (1 + O(

= -, N
aﬂ?j,h ,Ulg-N_Z)/Q axj,h IEAR]

(dij)2)>a h=1,--

In this section, we will expand Js(z, i, 0) and its derivatives. These expansions provide
a very good guide on the type of critical points we can expect to obtain for the reduced
problem.

Proposition B.2. Assume N > 5. Then

B\ Bopi(zj)s  coBoH(xj, ;)
I,(PU,. ,.) =A— + J D
( ]1:”']) /13 ,U,;N_Z)/Q 2/1‘;_\/'—2
1 1 sd; 140 s
+ O( + + J + —)
(dju;)N—2+0 M?(djﬂj)(N_4)/2 (M§N—2)/2) M;V/Q
where

1 1 .
A:—/ \DU|2dy——/ U? dy.
2 RN 2* RN

1 .
Blz—/ U? dy, BQZ/ U¥ dy,
2 RN RN

and o is some positive constant.

Proof. The proof of this proposition can be found in Proposition A.2 of [25]. The the sake
of completeness, we sketch it.
Write

L) = 100 = 3 [ = [ (s = ),

where



We have [3, 26]

and

1 1
PU,. _2:_/ U?+0 .
/Q( ) M? RN (N? (djﬂj)(N_4)/2>

On the other hand,

/(Pij,uj - 5801)?: B /(PU%W)Q*
o) Q
:/Q((ij’”j - 8901)1 N Ug;ﬂj)

2*—1

2 [ (=507 02+ O s

J

1 s (sd;)t*e

_ __ o% 2*—1 __(N_Q)/2 .
-7 /RN UT e eila) & O<(djuj)N T e

J

So, the results follows from (B.1)—(B.3).

Proposition B.3. Assume N > 6 and (z,u) € M. We have

BQ(—&pl—(‘rj))djS C()éBQ

k k
B\
L,(Y PU, ,.) =kA+ (— + n +
(& Pl 2t L\ o

1
— Bs Z &ij + 0 (826+4(N—2)/(N2—6N—|—4) ) g
1#£]

where By > 0 and o > 0 are some constants.

Proof. Write

N-2 N-2
] J

19

(B.1)

(B.2)

(B.3)
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k
Z PUIJ ’NJ Z Is zf ’“J
= j=1
k
:j(z PUzjaNy Z “”J ’NJ )\ Z/ PUx““‘PUz” Hi
j=1 j=1 i#]
k
[ (Pt 0T~ (P
i =1
Z/ w]’“] QO)?: o (Pijh“j)Q*)'

By [3], we have

k k
I(Z PU,, ;) Z (PUy; ;)
7=1 7j=1

—Byey; + O(E5°) = Baeyj + 0(

4(1+0)(N—2)/(N2—6N+4) ) :

Here, in the last relation, we have used Lemmas A.3 and A.2.
On the other hand, for 7 # 7, from

/ PUmuﬂl Pij My — 571 / Um”f Hi UZ'J' ]

1
<Ca:~—x-N_2/ d
SCOlei =2l | = oy =gy 2 Y

1 1
SC’:{:-—:}:-(/ d +/ d)
L A e T 2 X A A e e

<C'|x; — z;].

and using Lemma A.4, we obtain

~ 1
Z/ PUs; PUs; p; < Clzy — m4lé55 = 0(520+4(N—2)/(N2—6N+4)>'
i#]

It is easy to check
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k

k k
/Q<(Z PUsjp; = sw)i N (Z PU%W)Z -2 (Z PUzjﬂ“j)Z _l‘wl)
Jj=1 j=1 j=1
k
ol [t
j=1

k ( )1+a 1

_ J _

_O<Z (1+o)(N )/2) _O(54(1+0)(N—2)/(N2—6N+4))’
j=1 Hj

and
P P 7 _ov(p >t
Q(( ij:l‘j - 8(10) ( Umia”]) —2 ( U“”J’NJ) S(P1>
o <84(1+U)(N—2)/(N2—6N+4) ) :
Finally,

2*—1
PU‘”J ] ) ) 5¥1

1

k

2 —1
L
J
2*—1) 2 (2*-1)/2
<OSZ/ éul‘z / -"ijl‘] )/ Qol

#J

-1
E : R

< [J(V+2)/2(N~2) (v) _ o1k Y i dy
el / (U4 [ gy + (i — ) [2) N+2)/4

Csd 1 1
< = 0( | )
MZ(N —2)/2 ; (pjlms — xj|)(zv+2)/2 §4(1+0)(N—2)/(N2—6N+4)

0

Next, we will expand the derivatives of Js(x, u, 0) with respect to x and p. Intuitively,
we can differentiate (B.4) and obtain the desired results.

Proposition B.4. Assume that N > 6 and (z,u) € My. For anyi=1,--- k, we have

o
_2BiA N —2By(=%%)dis (N —2)coiBs (B.5)
W2 ' 2

1
+0 (56(N72)/(N2 “6N+4)+0 ) ’
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and
0Jg(x, 1, 0)
0x;p, B
_ Bys 0pi(xi) | colBy OH(y, ;) AR (B.6)
_N(N*Q)ﬂ Oz, +2MN 2 Oyp ly=z (54(N*2)/(N2*6N+4)+9 )
(2
In particular,
0Js(x, p1,0)
od;
_BQ(_aw(;;wi))s 00632(]\/ _ 2) g2(N—4)/(N*~6N+4)
O R e (sicravoveveoss)

Proof. We will prove (B.5). The proof of (B.6) is similar.
Note that for any (z, u) € My, we have

€ijy |Ti — x;|Eij, le+0 <COs N-2)/(N?-6N+4)-0.
It is easy to see that
aJ (x /’1’7 I . PUzz;,uz)
O <I Z PUC‘J HJ O; >
k
a(PUw’L7 'L)
<I, z:: ) O } > (B.7)
k -1 S 2"-1 8(PU$¢,M)

N Q <(Z PUsj; = 501)+ (Z PUs; ;) ) T dy

j=1 j=1 T

Similar to [3, 26], we can prove

<I’ ZPUWJ Palf;“‘“)>

2B1/\ (N - 2)CocB2 1 P _
= 3 N_1IN_2 + Z 0(51] + €1+ + ‘IL‘z — xj"sm) (B8)
Hi 2u;d; i#] Hi
_2B1/\ (N - 2)CocB2 O 1
B (36<N—2)/<N2—6N+4>+o)'

On the other hand,
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Ot;

k
. 1\ O(PUsy
O S
j=1
k
o O(PUs,y,
~1) /Q O PU,, ) —23901% dy (B.9)
=1 '

k
o/ b3 PULy ) %507 PUL, ).

But

k
/(Z PU‘T]'!:“]')2*_2_U(8S01)1+0M PU‘T'L Mg d
Q

j=1
k k
R " C 5~ (sgu(z;)* (B.10)
SC2 o | Vs “(s00) 7 dy < > o o7
o j=1 M

1
_O( (1+0)6(N—2)/(N2— 6N+4))

For any a > 0 and b > 0, we have the following estimate

a((a +b)P — ap) < CaPtD/2pp+1)/2. (B.11)

where p € (0,1) is a fixed constant. Using the above inequality, we obtain

k
.y O(PUs
[ PU Y 250, X Vi) g,
=1

O
.y O(PU,,,. . .
:/Q(PUxi,m)Q 239017“ n ZO</ Uig,ml Uﬂ(?iujl)ﬂs{pl) ( )
J# B.12
. d(PU,, 1
2*—2 55@:“1
/Q(PU;m i) 8%76/% 1 ;O< fv 2)/ ujm — |)(N+2)/2>
a(PU$u“z)

« . 1
_ 2*—2
—/Q(PUmi,ui) 5§11 Ot dy +O( (1+0)6(N—2)/(N2— 6N+4))

It is easy to see
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O(PUs; 1)

2" —1 PU,. ,.)* 2 d
( )/(\2( z:,uz) S(PI a/_},z y
2, U spi(zi) 1
(9% __ 2% -2 I Y 7
=(2 1)/9Ux,,ul spr—p it dy + - O(M(N o ;) (B.13)
N -9 B 6<;01( ) d 1
2 M?V/Z 5(1+0)6(N—2)/(N2 —6N+4)

Combining (B.9)—(B.13), we find

k
/ ((Z PUSU]‘,H] 8(p1 ZPU%,MJ 2*_1> 6(PU$1 M) "
o\

O
(B.14)
. N—QBQ(—a(pé—ff;i))diS 1
- 9 ,UJ'V/2 +0 <S(1+U)G(N—2)/(N2 —6N+4)>
So, the result follows from (B.7), (B.8) and (B.14).
U

APPENDIX C

In this section, we will estimate the derivatives of the function K(z,d, ). Basically,
what we need to prove is that the perturbation term wy, , is negligible in the expansion
of these derivatives.

In the following, we will use 0; to denote either aim or

Using Proposition 2.1, we find

9
Oxin *

0;K(z,d, p) = 0;Js(x, p, ws ) + < (&, 1, o) aiws,w,u>

ow
o7 k 4 8PU$],;1,J a B IJ:I‘] a
; s(w,u,ws,m,u)+z ]< o1 U.)sz‘,p, +ZZ ]h< ws,x,u> (C.1)
j=1 j=1 h=1
U.r

:au]s (.’13, My Ws o, u — A <a — 2 y Ws m,u> Z Bzh<a I“M ws,z,u>-

Thus, to estimate 0; K (z, i), we need to estimate 8,~J5 (z, 1, ws,w,u), A; and Bjp,.
First, we estimate 0;Js(, (1, Ws g )-

Lemma C.1. Let ws,, be the function obtained in Proposition 2.1. Then for any fized
1=1,---,k,andh=1,--- )N,

aJS (37, 12 ws,w,u) _ 8Js (.’L‘, M, O) 1
Opi B Ol 0 (Sa+6(N72)/(N276N+4) )a (C.2)
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and

g2(N—4)/(N2—6N-+4)

aJS 3 ) S, aJS ) ) 0
() DL o ST
Ozin OLin 50 +4(N—2)/(N?—6N+4)
where o > 0 18 some constant.
Proof. We just prove (C.2), since (C.3) can be proved in a similar way.
We have
OJo(@, 11 Vo) _ [ 1 (% O(PUs, )
8/1/1 = <IS (; Pijauj + w5’$7u>, T>
(T, w1, O(PUg, p;
:a‘] (l’ ,LL 0) . )\/ wswu ( liul) (04)
Opi o Opi
k 21 k 2°~170(PUy,, ,.)
- PU, o + s — ) —( PU, , —s ) ]#
A[(; R w sy Tyl 8801 + ; ok (pl + a/'l’l
But
O(PUy, C Clnpy;
‘/ ws7w7“(7.u) S _/ |w5,$,u Umi;“i S 73Z||w3,$,ll” (0'5)
Q O Hi Ja s
On the other hand,
k 2r-1 k =11 9(PUy, ,..)
/ (3 PUL iy + i = $g01)+ — (D PU, - s¢1)+ ] B )
Q j=1 j=1 Hq (C 6)
k »-2  §(PU, ) 1 '
=(2* -1 ( PU,. ., —s ) Ws.pr ¢+O(— Ws 2).
( )/Sz ; J;ﬂ] (pl + 5Ty fb 8MZ MZ“ ) 5/1'”

For fixed small constant o > 0, we have

(@ — b —a?| < CaP~GHp3te V>0, b>0,

where p € (0,1). So,
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3 22 O(PU,, ..
/(Z PU‘”]‘:“J‘ B 5901> ‘*‘)s,sc,liM
Q2 j=1 +

Opi
:Axg?%%wyhﬁmwﬂ%%%ﬁ (C.7)
O [ tn) ) el
Since
L (3 0) ™ o) il U
pi Jo\ =

]_ 2*_1_1_ 1
SC;/(ZUIMJ‘ ’ 0(3901)2”\%%“0
i JQ

$¢1 (.23 +o
<CZ (N— )J/Q)2 ||ws w,u|
]

we obtain from (C.7) that

k 22 Y(PUpy,
/Q(; PUs;u; — 5@1)+ ws’z’“(i.““l)

Opi
k 2% 9 a(PU, 1k (C.8)
- Tiy 7, Sgol +o_
= [ PUe) nan™ g (—Z ) Nl
Finally,
k 9% _9 a(PUw. )
/(Z PUEj’I"‘]) Ws,z,u 8[“,-““1
Qj? . (C.9)
-2 ou, . 1 1
= Uz . Wg , T, + - O R ws’m’ ‘
/Q<; hw) S5l Ol i ; ((djuj)(N+2)/2> || u |

Using (B.11), we find
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k e s 2 * o
U ) 2] T / < U 2 —2 U2* _2> W T4
/ (; Zjilhj Ws » Ty b a,uz Z Z; =u; Tjylh; Sy, a,uz

=t (C.10)
_ § 2* 1)/277(2*—-1)/2
O o / Liykbs )/ :E] sy / | Ws »THH

_ (1N o2
) = (5 22e™ ) lwseal.
So, (C.2) follows from (C.4)—(C.10) and Proposition 2.1.

g

Next, we estimate A; and Bjy,.

Lemma C.2. Let A; and B;, be the constants obtained in Proposition 2.1. Then, we have

Y

A; = O( —2(N-— 2)/(N2—6N+4))

and
82(N—4)/(N2—6N+4

Bin =0 (88(N72)/(N276N+4) ) :

Proof. From Proposition B.4 and Lemma C.1, we know that A; and B;;, satisfy

k
8PU$'5P‘ zz;ﬂ% ﬂ: Hj z““”
DGR CETIING 9 pad I CEEVN
7=1 I 3=1 h=1 (C.11)
dJ, O0PUy, ,, )
_/9s ziski \ _ ) (g—B(N=2)/(N?~6N+4)).
(O ey _ o, )
kN
Z OPUy; ; Us, s A Z aPij,uj BPU%M>th
= Oy axlm ‘= Oz OLim (C.12)
<aJ 3fTGMh>__ (S(NMKN26N+®)
ow’ Orim ' s4(N=2)/(N?>—6N+4)
Thus, we can solve (C.11) and (C.12) to obtain the result. O

We are now ready to prove Lemma 3.1.

Proof of Lemma 3.1. 1t follows directly from Proposition B.4, Lemmas C.1 and C.2.
O
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