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ABSTRACT. We consider the following Hénon equation with critical growth:

(%) —Au= |y|au%7 u>0 y€ B(0),
u=0, on 9B (0),
where a > 0 is a positive constant, B;(0) is the unit ball in RV, and
N > 4. Ni [9] proved the existence of a radial solution and Serra [12]
proved the existence of a nonradial solution for a large and N > 4. In this
paper, we show the existence of a nonradial solution for any o > 0 and
N > 4. Furthermore, we prove that equation (*) has infinitely many
non-radial solutions, whose energy can be made arbitrarily large.
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1. INTRODUCTION
Of concern is the following Hénon equation with critical growth:

{—Au: y[eutE w >0, ye B0),

(1.1)
u =0, on 0B;(0),

where o > 0 is a positive constant, B;(0) is the unit ball in RY, and N > 3.
Equation (1.1) arises in the study of astrophysics ([7]). If the exponent

M2 is replaced by p, where p < X224 solution can be obtained easily
by variational methods. When p = %, the loss of compactness from

H;(B1(0)) to L%(Bl(O)) makes problem (1.1) very difficult to study. Ni
[9] first proved the existence of a radial solution for any o > 0. On the other
hand, it is easy to check that the mountain pass value c corresponding to
(1.1) is
1
‘TN
where S is best Sobolev constant of the embedding from DY2(RY) to L¥~2 (RY),
from which we can deduce that c is not a critical value of the functional cor-
responding to (1.1). When N = 2, Smets-Su-Willem [13] showed that the

montain pass solution is non-radial when « is large. When N > 3, for
1

N
Sz,
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the Hénon equations with nearly critical growth (replacing % in (1.1) by
M2 _ ¢ with € > 0 small), Cao-Peng [3] proved that the mountain pass solu-
tion is non-radial and blows up as € — 0. Thus, it is natural to ask whether
(1.1) has a non-radial solution. Using variational method, Serra [12] proved
that (1.1) has a non-radial solution when N > 4 and « is large. As far as we
know, up to now, there is no existence result of non-radial solution for (1.1),
and there is no multiplicity result for (1.1) either, with arbitrary o > 0.
The aim of this paper is to prove that (1.1) has infinitely many non-radial

solutions if NV > 4. In fact, we will study a more general problem:

(1.2) {—AUZK(MA)U%, u>0, y€Bi0),

u=0, on 0By (0),

where K (r) is a bounded function defined in [0, 1]. It is easy to see that a
necessary condition for the existence of one solution for (1.2) is that K (r) is
positive somewhere. On the other hand, Pohozaev identity implies (1.2) has
no solution if K'(r) < 0 in [0,1]. Concerning the existence of solutions for
(1.2), using the same method as in [15], we can prove the following existence
result:

Theorem A. Suppose that there is a ro € (0,1), such that K(rq) > 0,
and

(1.3) K(r) = K(ro) — Kolr —ro|™ + O(|r — r0|m+9), asr — 1o,

where m € [2,N —2), Ko > 0 and § > 0 are some constants, then, for
N > 5, (1.2) has infinitely many non-radial solutions.

Note that for the Hénon equation, K(r) = 7%, which has no critical point
n (0,1). So, Theorem A does not apply to the Henon equation (1.1).

Condition (1.3) implies that ry is a local maximum point of K(r), and
thus a critical point of K(r). The function r® attains its maximum on [0, 1]
at ro = 1, but rg = 1 is not a critical point of .

The aim of this paper is to show that if K (r) is increasing near ro = 1 (so
it is a maximum point of K(r) on [1 — §, 1] for some small § > 0), the zero
Dirichlet boundary condition make it possible to construct infinitely many
solutions for (1.2), although 79 = 1 is not a critical point of K (r). Our main
result in this paper can be stated as follows:

Theorem 1.1. Suppose that N > 4. If K(r) satisfies K(1) > 0 and K'(1) >
0, then problem (1.2) has infinitely many non-radial solutions. In particular,
the Hénon equation (1.1) has infinitely many non-radial solutions.

Recall that a necessary condition for the existence of at least one solution
for (1.2) is that K'(r) is positive somewhere on [0,1]. If K(r) > 0 and
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N > 5, Theorems A and 1.1 show that under a condition which is slightly
stronger than this necessary condition, (1.2) has infinitely many solutions.

We think that the condition that N > 4 is just technical. The reason
is that the reduced energy does have a critical point when N = 3. The
problem lies in the reduction part which should be only technical. (Some
partial (negative) results are obtained by O. Druet and Laurain [6].)

The readers can refer to [1, 2, 4, 8, 10, 11, 14] for results on Hénon equa-
tions involving sub-critical and near critical exponents.

Before we close this introduction, let us outline the main idea in the proof
of Theorem 1.1.

Let us fix a positive integer £ > ko, where kg is large, which is to be
determined later.

Set

N
u=kn=2 N>4

to be the scaling parameter.

Let 2* = 2% Using the transformation u(y) — u’¥u(%), we find that

(1.2) becomes

o=

I

(1.4) —Au:K(u)uT_l,u>O, y € B,(0),
' u =0, on 0B,,(0).

It is well-known that the functions
N-—-2

N-—2 A 2
— (N(N=2) % RN

are the only solutions to the following problem
N+42
—Au=u~2, u>0in RY.

As the scaling parameter A — 400, Uy  is called a single-bubble centered
at the point z. Since there is no small parameter in (1.1) (here y is fixed),
we use the scaling parameter A as the blow-up parameter. Our main idea
is to place a large number of bubbles inside (2. Then the scaling parameter
will be determined by the number of bubbles. We put many bubbles along
a k—polygon inside the domain By (0) but near the boundary. See Figure 1.

(The idea of using the number of bubbles as parameter was first introduced
in [15].)

Let us remark that the variational method of Serra [12] also uses the
dihedral symmetry of k—polygons. By using symmetry of Dy x O(N — 2),
the problem (1.1) can be reduced to the one in a sector. He then showed that
under the dihedral symmetry, the loss of compactness can be recovered if
the critical value is below some constant, which holds true when N > 4. To
show that the solution is nonradial, he needed to compare with the energy
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FIGURE 1. The location of the bubbles

level of radial solution. There the condition that « is large is needed. Our
method of construction is direct and gives more information.

We continue our construction. Since Uy 5 is not zero on 0B, (0), we define
PU,  as the solution of the following problem:

(1.5) APUw,A = AUw,A, in BN(O), APULA =0 on aBH(O)
Let y = (v',y"), ¥ € R?, y" € RV~2. Define

H, = {u:u € Hy(B,(0)),uis even in yp,h = 2,--- , N,

219 27r1i
U(TCOS H,T‘Siné’, y”) = U(TCOS(O + %),TSin(e + Z])’yll)}
Let
2(7—1 2(7—1
Ijz(rcos%,rsin¥,o), j=1,---,k,

where 0 is the zero vector in RV~2, and let

k
WT‘,A(y) = Z Pij,A-
j=1

In this paper, we always assume that

re [pl- %0), p(l— %)], for some constants r; > ry > 0,
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and

Lo <A<L;, forsome constants L; > Lo > 0.
Theorem 1.1 is a direct consequence of the following result:

Theorem 1.2. Suppose that N > 4. If K(1) > 0 and K'(1) > 0, then there
is an integer ko > 0, such that for any integer k > kg, (1.4) has a solution
uy, of the form

u = Wr 2, () + wi,
where wy, € Hg, and as k — +oo, ||wk|ze — 0, Ly < Ay < Ly, and
Tk € (,U( - 2),u(l = %))

Unlike Theorem A, where the result was proved by constructing solutions
with many bubbles near the local maximum point r € (0, 1), the solutions
constructing in Theorem 1.1 have many bubbles near the boundary of the
unit ball B;(0). In Theorem 1.1, ry = 1 is not a critical point of K(r)
anymore. It is the zero boundary condition that plays a very important role
in the construction of solutions with many bubbles near |y| = 1.

Acknowledgment. The first author is supported by an Earmarked Grant
from RGC of Hong Kong, a direct grant from CUHK and Oversea Joint
Research Grant of NSFC. The second author is partially supported by ARC.
The first author thanks the hospitality of the institute EHESS during his
stay in June, 2009.

2. FINITE-DIMENSIONAL REDUCTION

In this section, we perform a finite-dimensional reduction.
Let
k

ey = s (3 ) )

veBu(0) V=] (1+ [y — z4))

and

22) = s (3 1 ) 17w,

y€B,(0) 1+ y —z)) 5+

where 7 = =2 if N > 4. For this choice of 7, we find that

=1

k s k
L _ L %o
o |$j _ $1|T IUT = ]T /J/T
Let
OPU,, OPU,, o
Z;y = Sl = & el
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Consider

(2.3)
CAG— (2~ DE(U)WE g = b+ S 6 Y U232, in B,(0),
¢k € Hsa
<U§:,X2Zi,la¢k >=0 =1k, 1=1,2

for some numbers ¢;, where < u,v >= fBu(O) Uv.

Lemma 2.1. Assume that ¢y solves (2.3) for h = hy. If ||hi||« goes to zero
as k goes to infinity, so does ||dkl|«-

Proof. The proof of this lemma is similar to the proof of Lemma 2.1 in [15].
Thus, we just sketch it.

We argue by contradiction. Suppose that there are & — +oo, h = hy,
Ay € [L1, Lo, i € [p(1 — 22), u(1 — %)], and ¢y, solving (2.3) for h = hy,
A = Ay, 7 = 1, with ||hg]|« — 0, and ||¢k||« > ¢ > 0. We may assume that
||ok||« = 1. For simplicity, we drop the subscript k.

We rewrite (2.3) as

(0% _ 1 2]\ 1120 —2 .
¢(y) _(2 1) /BM(O |Z—y‘N_2K(M)WTA ( )d
(2.4)

2 k
]. %
+/ — (02 +) e Y Zij(2)UZ 32(2)) dz.
B,(0) 1z —y| i — ’
Using Lemma B.3, we have
‘(2* —1)/ %K(B)Wf*ﬁ () dZ‘
Buoy lz—yN2 T
d 1
<C|l¢ / — W ——dz
(2.5) ” ” y|N 27" rA — (1+ |Z—.Ij|)¥+7
<CWIL Y s
It follows from Lemma B.2 that
1 i 1
(2.6) ‘/ . h(2)dz < O .
B, |2 —y[N7? Z Ly — )T
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(2.7)
1 k k .
N Zu()U R dz‘ <C .
‘/B"(O) [z —y|¥ 2 i1 ) ot ) ; (1+ |y_$i|)NTz+T

Next, we estimate ¢;, [ = 1,2. Multiplying (2.3) by Z;; and integrating,
we see that ¢; satisfies

(2.8)
2 k
S-S (U250 e = (== (2 =DKW 0 2= (2.

t=1 i=1
It follows from Lemma B.1 that

k
[(h, Z1)| < C||h||**/ i+ \z g dz

1+ |Z—$a\)7+7
<C[A]ls-

On the other hand, using Lemma B.3, we can prove

(—A¢ — (2" — 1)1r<(|2|)wfﬁ“A 0, Z1)
(2.9) a0
=2 - 1)((1 - K(* )WZ*—ZZM, ¢) = o(llgll.)-

But there is a constant ¢ > 0,

Z< Usix’Zigs Z14) = (€ + 0(1))dy.

Thus we obtain from (2.8) that

(2.10) ¢ = o([|9ll) + Ol )
So,

k 1

=L (g y—a ) T
(2.11) o], < (0(1)+ A e + Z’?_(+|y )

3= s ) A2
(I+ly—z;[) 2
Since ||@[|« = 1, we obtain from (2.11) that there is R > 0, such that

(2.12) o)l Br(z:) = a >0,
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for some i. But ¢(y) = ¢(y — ;) converges uniformly in any compact set to
a solution u of

(2.13) —Au— (2" = 1)U§y *u=0, inRY,

for some A € [Ly, Ly], and u is perpendicular to the kernel of (2.13). So,
uw = 0. This is a contradiction to (2.12).
0

From Lemma 2.1, using the same argument as in the proof of Proposi-
tion 4.1 in [5], we can prove the following result :

Proposition 2.2. There exists kg > 0 and a constant C' > 0, independent
of k, such that for all k > ko and all h € L®(RY), problem (2.3) has a
unique solution ¢ = Ly (h). Besides,

(2.14) [Le(P)llx < CllAlles,  [ar] < Cl[R|-

Now, we consider

(2.15)
_A(W'I‘,A + d)) = K(%) (WT,A + ¢)2 _1+ 2?21 cr Z,I;ZI Ui;xzzi,t, in Bu(o)’
¢k € Hs,
< UxQZ,X2Zi,la¢k >= 0, 7 = 1’ ,k, l:1,2

We have

Proposition 2.3. There is an integer kg > 0, such that for each k > ky,

Lo < A< Ly, re [p—2),pul—")], (2.15) has a unique solution
¢ = ¢(’I", A)7 satisfying

N

]_ l+o— ]. +o
« < c(—)> 3 < C(- ’
loll. <0, el < 0(3)

N-1

if N >4, where o > 0 is a small constant, p = kv—=.
Rewrite (2.15) as

(2.16)
—A¢— (2 = DK (LYW= N(9) + e+ Xy ¢ >y U2 3 Ziy, in B,(0),
¢ € Hi,
<U§:,X2Zi,l’¢>: 0, ’L:l’ ,k, 12112’

where

lyl

N(¢) = K( . )((WT,A +o) T WA (20 - 1)W3*—2¢),
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L =K \y\ W2*—1 ZUz*—l

zj,A

In order to use the contraction mapping theorem to prove that (2.16) is
uniquely solvable in the set that ||¢||. is small, we need to estimate N(¢)
and lk.

Lemma 2.4. If N > 4, then

[N (@) < C||¢||1:ﬁn(2*,172).

Proof. We have

Clo[> 1, N > 6;
IN(¢)| < 6N .
C(W. e +16[77"), N =4,5.

Firstly, we consider N > 6.

Using
k k 1 ; 1 1
SR} S SRR
i=1 i=1 j=1 P
we obtain
N < Ol (3 !
< Clloll )
= 1+ |y—%\) Tt
k 1
(2.17) <Clg)z" N
Z(H\ y— ;) ; +\y—$]\))
2% —1
<C|l¢lI: Z_: —x;l)¥+"

Thus, the result follows.
Suppose that N =4, 5. Noting that N —2 > Y2 4+ 7 we find
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k 6—N k 2
IN()| <Cl? )
Z_Zl 1+\y (Z 'Hy_ng > +r)
‘ 1
+CllgllZ "
! Z(1+| )T

k " k

<l (3 ) ‘1+0||¢||2**Z e
=a0 p— Oty — )T
k

=Cllo|: Z - I)¥+T'
7j=1 J

So, we have proved that for N > 4,

[N (9)]]5x < C||gp]| 02271,

0
Next, we estimate [.
Lemma 2.5. Assume that r € [pu(1 — ), w(l="1)]. If N >4, then
1,14
l %k S C - 2
1] (u)
Proof. Define
Q={y:y=0"y" <| T ‘> cos 7 }.
We have
£l : (s s
b =K (L) (W2 = 3 (PU ) ) + K (2 (Z PULA)" T =30z
H Jj=1 j=1 j=1
. Iyl
+Z Uz 1( ) - 1)
=:Jy + J1 + Jo.

From the symmetry, we can assume that y € {2;. Then,

ly—z;| > |y — 21|, YyeQ.

Firstly, we claim
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1

S ) vyEij#l
L+ |y — x5 = |z — a1

(2.18)

In fact, if [y—z1| < Lz —g;|, then [y—z;| > Lz —z;|. If [y—z1| > 5|z1—x],
then |y — x| > |y — 21| > %|x1 — x|, since y € Q.
For the estimate of Jy, we have

(2.19)

Mar

Jol <
Jol < © (1+\y—m4

k 2% 1
1—|—|y—xj (]2: 1+\y—x]\N2> )

Using (2.18), taking 1 < a < N — 2, we obtain for any y € €,

J=2

1 1
I+ |y =2 )t (1 + |y — ay]) N2
1 1
1+ |y — | )V*2=2 |z — 24|

(2.20)

j>1.

Take o > max(®2, 1) satisfying N +2 —a > Y22 + 7. Then

k
( +Iy—x1\ 42 +|y—fva\)

j=2

(2.21) < c (Fye = ¢ y
A+ ly =z V2o tp 1+ |y — ay[)V 2o
s ()
(L+]y—z])
Using the Holder inequality, we obtain
k 2% -1

(Z +\y—xj N 2)
i (2 : )"
= 1+|y—xj NS Wy ) T DS

Noting that 2F2(22 — 78=2) > 1 if N > 4, we obtain
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j=2
b 1 . 1
SC(Z N+2/N-2 —2) _22 2
i o — T O ) o Aty —z)) =
k
(2.22) <C(E)%(%_T%)%Z 1
K o L+ ly =)=
k
1\ mt21_ 7 ) 1
:C(_) SR R ) Z o
K j=1 I+ [y —z4) >
k
1 l+o—z 1
— 2
- (_) N+ )
K j=1 (L+[y—a4) =7

Mol < ()77

=l

Now, we estimate J;. Let H(y, x) be the regular part of the Green function
for —A in B;(0) with the zero boundary condition. Let 7} be the reflection
point of z; with respect to 0B;(0). Then

H{(y, z;) C ¢
N2 NG — V2 T (I |y — )2

Take t =1 — @ with 6 > 0 small. Then using (A.1), we find
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k
H(y,7;)
<
- _Z 1+|y—ﬂﬁgl)4 pN2

k _
C H(yﬂxj) t
<
< ]Z_; 1+ [y — z;])* (N2 ( N2 )
1 yw-2) 1
. <C
(2.23) S (,ud Z 1+ |y — a]) -2

2

-2
t -1

_1 in
4+tN
u = (L ly =z )2

k
Gy

J=1

2

1+|y—rr\) e

since t8=2 > L for N >4, 4+ ¢(N —2) > "2 4 7 and d > 2.
Flnally, we estlmate Jy. For y € Qq, and j > 1, using (2.18), we have
« 1 1
Urally) <C :
(L4 ly =) 4 foy — a5
which implies
(Y
> (x(Y) -z
j= M
( ) 1 i 1
2.24) <
(L+ly— )T ; e
Y B
(I+ly—mzf) =7 H (4 ly—m) ok

For y € Q; and ||y| — p| > 0, where § > 0 is a fixed constant, then

1
1yl = 2]l = [ly] = pl = llza| = pl 2 S0ps.

As a result,

(2.25)
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If y € O and ||y| — pu| < 6, then
Y|
K=
x(,

C

<_ - —
<o (Ul = faall + loa] = )

)—1\§O|M—1|
1

C C
<—lyl = laa || + =

M k
C C C C
==yl = 21|l + == < —lyl = |a ][ + T,
2 pUN-1 1Y 142 o
and
[yl = Tzl < Myl = pl + |1 = ||| < 20p.
But
[ly[ = ||| 1
e (I+ |y — a1 )V +2
_C |yl = mlF C 1
N%W (14 |y — x| )N+2 — M%Jra (1+ |y_x1|)N+2—§+a
C 1

< .
Tt (L Jy — )T

Thus, we obtain

vz () -1)]

o
(2.26) c .
<— oyl = pl <op.
P
Combining (2.24), (2.25) and (2.26), we reach
1,144
2l < O ).

Now, we are ready to prove Proposition 2.3.

Proof of Proposition 2.3. Let us recall that

N-1

p=kv2, N >4

?

Let
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wl’-‘

E = {u :u € C(BL(0))NHs, [|ufl. < (

)

/ Upr®Zigd =0, i=1,---,k, 1 =1,2}.
)

B,(0

] =

Then, (2.16) is equivalent to

¢ = A(¢) =: Le(N(9)) + Li (k)

where Ly is defined in Proposition 2.2. We will prove that A is a contraction
map from E to E.

We have
[A(D) [+ < CIN(D)|lex + Cl|lk ]|+
(227) min(2*—1,2) C 1
<Cli¢ll: + Ol < Tio < i

Thus, A maps E to E.
On the other hand,

| A(¢1) — A(do)ll« = ILe(N (1)) — Le(N(2)) |l < C|IN(¢1) — N(62) |l
If N > 6, then

IN'(t)] < CJe .

As a result,
IN(61) = N(¢2)| < C(11]* 7% + [2]* 72)[ 61 — 2]
* * k ]_ 2*_1
C 2*—2 2% 2 — doll,
(loallZ 2 + 162112 ) 161 — o (;:: Trm— —)

As before, we have

k

O

= (L ly —4))

TR
So,

[A4(8) — Al < CIN () - (o).

<C(I6al 2 + 16allZ )61 = ball. < 5161 = bl

Thus, A is a contraction map.
For N = 4,5,

2*—2

IN'(8)] < CW, Tltl +Clt
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So,
IN(¢1) — N(¢2)|
<C (> 72 + |p2]* 7)1 — o + C(\¢1| + |¢2)W, T|¢1 b2
. 1 2*—1
<C(I6 1+ el )0 = el (3 )
o Aty =)=
(2.28)

M;r

6—N 2
C(l¢1ll« + lid2lle) l¢r — ol W, N3
, (]:1 1+\y—ﬂ:]|) 2 +T)
k

1
<C « T * - *
(I1ll- + llg2l.) o1 @H;( T E

+2 _|_7.

Thus, A is a contraction map.
It follows from the contraction mapping theorem that there is a unique
¢ € E, such that

¢ = A(9).

Moreover, it follows from Proposition 2.2 that

811 < Clltgllx + CIN(@)llse < Clllillse + ClllI7 =2,
which gives
1,14
¢ * S C(— e )
1l (u)
if N >4,
Finally, the estimate of ¢; comes from (2.14). See also (2.10).

3. PROOF OF THEOREM 1.2
Let

F(d,A) =I1(W,s + ),

where r = |21, d=1— i, ¢ is the function obtained in Proposition 2.3, and

1 1
nm:—/ |mﬁ——/ K ()
2 JB.0) 2" Jp,0) M

I
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Proposition 3.1. If N > 4, then

;)

—k< (2 ) +B,K'(1)d — ZAN sz;vxIQ O<ﬂ11+0))’

F(d,A) =I(W, 4 +o(

where By and By are some positive constants, A > 0 is a constant, and
o > 0 1s a small constant.

Proof. Since

(I'(Wyp+0),6) =0, V¢eE,

there is ¢ € (0, 1) such that

F(d,A) = [(Wya) — DT (Wos +16) (6,)

-2

=I(W,p) — %/B (0)(|D¢|2 —(2* = 1)K (‘/?JJ) (WTA + t</5) ¢2)

2r -1

KO (Won+ 1) 7 w2 7) g

:I(WT,A) +
BL(0) H

1
S N Iy
2/M)( (6) + 1)

=1(W,.2) + O / (o +IN(@)][9] + [1e]|61) )

By

But

/ NOCIEENAIR)

gC(HN(qﬁ)II** + ||lk||**)||¢|| / i > 1

=1 1+|y_xj|)_+T i=1 (1+|?/_$z|) T

Using Lemma B.1, for N > 4,
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Thus, we obtain

| N@ 8t 16l) < Ok (IN@ el )6l < CK(G) ™, N 24,

BL(0

On the other hand,

* * 1 2*
o <clol [ ( ) -
/Bm) B (0) ;(1+|y—fcjl)7”

But using (2.18), if y € Q, and N > 4,

B

>

s +\y—x]\) I

i 1
SC Z J_xl‘T N-2)

(1+\y—$1 R (1+|y—x1\)2
Thus,
k
1 )2* C
_ S ) yEQIa
S ) <mear

which gives

So, we have proved
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"< Cklnkl|¢

* 1 (240
2 < Cknk(=)"0", N>4
1

/Bum)

Proposition 3.2. We have

OF(d,\)
OA
H(z,71) <~ G(zi,71) 1
:k/‘Bl(N—Q) ST — AN—1, N—2 ( 0') ?
( AN-1 N2 s AN-1 N2 pit )
and
OF(d,\)
ad
6H(z1,z1) B 0G(i,Z1) 1
_ ! 1 ad
k(AN 2,N-2 + B K'(1) — AN-T N2 +O(E))’

1=2

if N > 4, where By and By are the same constants as in Proposition 3.1,
o > 0 s a small constant.

Proof. We estimate 6F6(31\A) first. We have

OF(d, A)
oA

aWT,A + a_¢
8A OA

) Y U202, 22)

=1 =1

<II T'A+¢)

8Wr A

—<I, 7‘/\'i_q5

But

a¢ > _< a(Uzgik X2Zi l)

2% —2 i ’
Uik Ziss 55 S0 0)

Thus, using Proposition 2.3,

\chaﬂ* 2Zzl,8A>\
b 1
<C|CZH|¢|| / Z 1+|y NJ,_QZ )%4—7

= (L+ |y — =
C

— M1—|—0' '




20 JUNCHENG WEI AND SHUSEN YAN
On the other hand,

OW, A OWia
D D — = DW,\D——"—

and

|y| 2*_18”7"A
K (=)W, ’
Jo KOO 755

- 9]\ 1y Wi *_/ 9]\ 12 Wi / ,
_/RNK(M)W,,,A Rl IR LA ¢+0(RN\¢\ ).

Moreover, from ¢ € E,

Y[\ 22 OWra
/I;N (’u )W’I”A BTN ¢

. M 2*_28WT,A_ b 2 QaUz] / M . 2*_28ij,/\
_/RNK(N)(WT,A aA ;Umj Z RN 1 Uj,A 8A ¢
B M o2 OWrn k oo OUz; A / @ B g9 OUg, A
- /mm)(wm an VAR g ek [ (KO - UG
p2OWen =02 0Us; ‘
‘/Q ) Vra™ 54 ;ij’A an )?
SC/ (UaZcI,XQ(Um,A_PUmA +U;, AZZUEJA+ZU§ 7‘1)|¢|
931
C
—'u1+a’
and
Yly 990Uz 2 ‘
‘/]%N ]‘ leA oA ¢
<‘/ Wy iz 2Pl 4 \/ @ ) - vz,
\yl u\<\/_ " llyl- N|>\/_ ot 0A
M1+U

Thus, we have proved

OF(d,\) _ 0I(W,) 1
oA~ aA +0(M1+0),
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and the result follows from Proposition A.2.

Finally, noting that % = —/L%, we can estimate % in a similar way.
O
Now, we estimate H(Z, ;) and G(Z;, Z1), i > 2. Let 77 = (l%d,O, -+-,0)

be the reflection of Z; with respect to the unit sphere. Then

H(y, 1) = W(l + O(d)).

So, we obtain

1

H(#1, 1) = Symm=s

On the other hand,

14 0(d)).

Z; — T = /|Ti — Z1|? + 4d? — 4d|Z; — %] cos b,

where 6; is the angle between z; —Z; and (1,0,---,0). Thus, 6; = g—&-@

1 1
G(z;, 1) = 14+0(d
1 1+ 0(d)
- |i‘z — I |N—2 1= 1 4d2+4d|z;— 1| sin (i_zl)ﬂ _—2)
1+ o )2
Since
-1
|Z; — z1| = 2|zy| sin T)W’ i=2,...,k,
using dk — ¢ > 0 and
s =17
, . sin~— " _ k
0<CSWSC’ ]_27' :[5]7
k

we obtain

a _ Ad? + 4d|7; — 7 | sin 20T Lo
J*2 - T; — 1|2 J

for some constant a; > ag > 0, which implies

ar d 1 o a d
j_](\)] +O(jN—2) < kN—ZG(xj’xl) < j_;f +O(jN—2)

for some constant a > af, > 0. So there is a constant B, > 0, such that
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k
B 1
ZG(%’@) - kN_2(|a‘c1|;\l’—2 + O(kN—1) + O(d)> = Bk + O(KN2d).

=2

Thus, we obtain that there are positive constants A;, A, and Ajs, such that

(3.29)
Ay AzkN—2 1
F(d,\) =k (A + gzeages + Au = vt g O (—u“‘f))’
OF(d, A)
oA
(3:30) AN —2)  Ay(N — 2)kN-2 1
=k <_ AN—T;;N-2gN—2 + AN—T;N-2 +0 (u1+a ) ) ’
and
OF(d, A)
od
(3.31)
A (N —2) 1
:k(_AN2MN2dN1 + A+ O(E))’
Note that d =1 — ﬁ, = kv—2. Define
d
D=—.
k
Then, from (3.30) and (3.31), aFéi’A) =0 and % = 0 are equivalent to
Ai(N —=2)  A3(N —2) 1
(3.32) e O(E) =0,
and
Ai(N —2) 1
(333) - W + A2 + O(E) = O,
respectively.

Proof of Theorem 1.2. Let

_AN-2) | (N -2)

(D, A) = AN—1DN—2 AN-1

and

A(N - 2)

F2o(D,A) = — s mn—t

+ A,.
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Then, f; =0 and f; = 0 have a unique solution
1

A1 ﬁ A1 (N — 2) N—2
DO_ (A_3> ) 0 — ( AQD(I)Vil ) .
On the other hand, it is easy to see that
0f1(Do, Ao) 0 f2(Doy, Ao)
on ap 0
and
0f1(Do, Ao) _ 0f2(Do, Ao) >0
oD OA )
Thus the linear operator of f; = 0 and fo = 0 at (Do, Ag) is invertible. As
a result, (3.32) and (3.33) have a solution near (Dy, Ag). O

APPENDIX A. ENERGY EXPANSION
In all of the appendixes, we always assume that

2(7 -1 20 —1
T = (TCOS%,TSM%,O), ]:1, ,k,

where 0 is the zero vector in R¥=2, and r € [p(1 —

Let
_ 1
iEj = ;fl)j.
Let G(y, z) be the Green function of —A in By (0) with the Dirichlet bound-

ary condition. Let H(y, z) be the regular part of the Green function.
Let recall that

-

N

p=kv-z,

1 1 "
I(w) =1 / Du? - L / k(W
2 JB.(0) 2* JB,0) M

I

(]

N-2 A%

Us;a(y) = (N(N =2)) * (1+ A2y — 2,2

bl

and

k
Wialy) = Z PUg; A (y),
j=1

where PU,  is the solution of (1.5). It is well known that
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(A1) Uey(9) = PUza(0) = S 40 (),

where d =1 — |z :1—%'.
In this section, we will calculate I(W, 5).

Proposition A.1. We have

B H(21,21) G(z;, 1) 1
I(WT’A):k(A TAN-2N=2 + BoK'(1)d — Z AN-2N=2 O(#Ho))’

where By and By are some positive constants, A > 0 is a constant.

Proof. By using the symmetry, we have
JARCIEED 9 oY ANV
Bu(0) j=1 =1

k([ U [ U U= PUn) + 3 [ UZFPUL)
B(0) B.(0) =2 / B.(0)

. BH(Z,5) B Yr,G@,n) 1
:k(/RN U _ e + AN—QQMN—Q +0( )),

where By = [x U L.
Let

O ={y: y=(y"y") € B,(0), <% E |> COS%}

Then,

ly| . Y|
/}_;;A(O)K(%)‘W _k/ (Z)|W’
i /Q & (ypu,, 07 - /Q ijPle,A)Q*—lPU@,A

14=2

Lon
k
+0(/Q |K(%) _1|ZUI2:,R1U%A+/ il/AQ ZU% 2*/2))
' i=2

Note that for y € Q, |y — z;| > |y — x1]. Using (2.18), we find that for
any t € (1, N — 2),
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k k
Z C Z 1
U iaA S *
T (L y—w )V S -

If we take the constant ¢ close to N — 2, then

k
/ Uj:,/AQ(ZUz,-,A)Z*/Q _ O((
! i=2

On the other hand, it is easy to show

)tm) = O(u11+g—)'

k
1

i _ ByG(z, @) kN, BoG(3i, 1) 1

/91 ;(PUxI,A)T_lPUm,A = vz TO0R) = Jaa s 00 ),

and

k
Y . 1
[ 1) <1y vz v = 0.
! i=2

Moreover,

/Ql <K(M) - 1)U§f,A = (K(j#) - 1)/ U +0(=)

1 RN ©

=— K’(l)d/ U* +0(d?) = —K’(l)d/ U” +0( !

N u1—|—0

Thus, we have proved

|y| 2%
K(—=)|W,
/]RN ( M )| ’A‘

. . B1H (%1, 7,)
— 2% gt 2 ox 21 1,41
=k /R UT - K'(1)d /R Uy

i BlG(ji;fl)

N 1
+2 AN-2;N=2 O(MHJ))'

=2



26 JUNCHENG WEI AND SHUSEN YAN

aI(Wr,A) and 6I(W’I‘,A) .

We also need to calculate A o

Proposition A.2. We have

H(I, %) <

OI(W;n) G(Z1,T;) 1
O%A) _ (N —2)B, (—W +3 gt O(u1+”>>’

oA

and

aIW 0H(Z1,T1) 1 k BM 1
o ) o 1)

where By is same positive constant in Proposition A.1

Proof. We use 0 to denote elther
Using the symmetry, we have

E

AI(W,.») * 1) Z / UZ 20Uy 0) PUs, 0

Y| 2*—1
_/91 (W W1 ).

Then the proof of this proposition is similar to the proof of Proposition A.1.

So we just omit it.
d

APPENDIX B. BAsic ESTIMATES
In this section, we list some lemmas, whose proof can be found in [15].

For each fixed ¢ and j, ¢ # j, consider the following function

1 1
I+ ly =) (1 + |y — 24])P

where @ > 1 and 3 > 1 are two constants.

(B-2) 9ii(y) =

Lemma B.1. For any constant 0 < o < min(w, ), there is a constant
C >0, such that

9ii(y) < c (( ! — + ! — )

Cwi gt NA + y —m)etPr (L Jy — )t
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Lemma B.2. For any constant 0 < 0 < N — 2, there is a constant C' > 0,
such that

/ 1 1 Ay < C

P —
Ry [y — 2[N72 (14 [2])2 7 = (14 Jy[)°
Let recall that

k
= PUs .
j=1

Lemma B.3. Suppose that N > 4. Then there is a small 6 > 0, such that
1
—_ ——dz
/RN ly — 2" o ]Z_; 1+|z—x,|)¥+f
SO

Proof. The proof can be found in [15]. We just need to use

+|y—:c |) R 24740

1

W, <C

.
End
—_
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