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Abstract We consider the equation e2A% — @ + 4P = 0 in a bounded, smooth
domain € in R? under homogeneous Neumann boundary conditions. Let T' be a
segment contained in (2, connecting orthogonally the boundary, non-degenerate and
non-minimal with respect to the curve length. For any given integer N > 2 and
for small ¢ away from certain critical numbers, we construct a solution exhibiting
N interior layers at mutual distances O(e|lne|) whose center of mass collapse onto
T at speed O(e'*#) for small positive constant p as € — 0. Asymptotic location of
these layers is governed by a Toda system.

1. Introduction. We consider the following problem

ENi—a+a = 0and >0 in QCR"?, (1.1)
i
w - 0 on 09, (1.2)

where (2 is a bounded domain in R® with smooth boundary, € is a small parameter,
v denotes the outward normal of 2 and p > 1.

Problem (1.1)-(1.2) is known as stationary equation of Keller-Segel system in
chemotaxis [23]. It can also be viewed as a limiting stationary equation of Gierer-
Meinhardt system in biological pattern formation [11]. Problem (1.1)-(1.2) has been
studied extensively in recent years. See the review papers [30, 31] for more details.

In the pioneer papers [23], [32] and [33], under the condition that p is subcritical,
ie, 1 <p< Z—J_r; when n > 3 and 1 < p < +o0 when n = 2, Lin, Ni and Takagi
established the existence of a least-energy solution U, of (1.1)-(1.2) and showed that,
for ¢ sufficiently small, U, has only one local maximum point P. € 9§). Moreover,

H(P.) » maxH(P) ase — 0,
PEdQ

where H(-) is the mean curvature of 9. Such a solution is called boundary spike-
layer.
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Since then, many paper investigated further the solutions of (1.1)-(1.2) concen-
trating at one or multiple points of 2. (These solutions are called spike-layers.)
A general principle is that the location of interior spike-layers is determined by
the distance function from the boundary. We refer the reader to the articles [2],
[7],14],113],[14], [12],[22], [37],[39] and references therein. On the other hand, the
boundary spike-layers are related to the mean curvature of 9. This aspect is dis-
cussed in the papers [3],[6],[15],[21],[38], [40],[41] and references therein. A good
review of the subject is to be found in [30, 31].

However, in all the papers mentioned above, the concentration set is zero-dimensional.
The question of constructing higher-dimensional concentration sets has been investi-
gated only in recent years. It has been conjectured in [30] that for any 1 < k < n-—1,
problem (1.1)-(1.2) has a solution U, which concentrates on a k-dimensional subset
of Q.

In [27] and [28], Malchiodi and Montenegro proved that for n > 2, there exists a
sequence of numbers £; — 0 such that problem (1.1)-(1.2) has a solution U,, which
concentrates at boundary 9 (or any component of 9Q). (Recently, Wang and Wei
[36] showed that the same results hold for any e sufficiently small.) In [25, 26],
Malchiodi showed the concentration phenomena for (1.1)-(1.2) along a closed non-
degenerate geodesic of 92 in three-dimensional smooth bounded domain 2. As for
the conjecture in [30], the general result by F. Mahmoudi and A. Malchiodi, [24],
gives a full answer about the concentration phenomenon on the boundary. They
prove a full general concentration of solutions along k-dimensional (1 < k < n — 2)
non-degenerate minimal submanifolds of the boundary for n > 3 and 1 < p <
n—k+2
n—k—2"

In [42], we considered the case of concentration on line segments lying in a two-
dimensional domain Q. More precisely, let T be a line segment lying in  C R?
and after translation and rotation, T' is contained in the §; = 0 axis in the (§1,%2)
coordinates. T intersects 02 at exactly two points, saying, v1,7 and at these
points I' L 9Q. The boundary 09 can be represented as o1(§1) and ¢o(g1) near
~1, 7o respectively. The lines §» = ¢;(0),7 = 1,2 are tangent to 2. Moreover, after
rescaling, we can always assume |I'| = 1, i.e. ¢1(0) —¢o(0) = 1. Let —k1 and ko be
the curvatures of the boundary 0f2 at the points 71 and -y respectively, where

"

k1 =1 (0), ko= pq(0). (1.3)
We define a geometric eigenvalue problem

—f(0) = Xf6), 0<6<1, (1.4)
FQ)+kfa) =0, f(0)+kof(0) = 0. (1.5)

We say that I' is non-degenerate if (1.4)-(1.5) does not have a zero eigenvalue [9, 19].
This is equivalent to the following condition:

ko — k1 + k0k1|rl 75 0. (16)
Under the condition (1.6), we proved the existence of solution concentrating along

an interior curve I'; near the line segment I', provided ¢ is small and away from
certain critical numbers. The curve I'; will collapse to I' as ¢ — 0.
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For the above I', we assume in this paper the following more restrictive condition,
called as non-degenerate and non-minimal condition
k1 <0, ko >0,
ko — k1 + ko k1 |F| >0 (17)
ko + &
1< Mo + K1
k1 ko T
The first condition means that the domain looks locally strictly convex near 7
and 7g. The third condition sets a bound on the degree of ”asymmetry”, while the
second one not only gives non-degeneracy, but also requires that exactly one negative
eigenvalue of problem (1.4)-(1.5) is present. (An example of curve I satisfying (1.7)
is the short axis of an ellipse.) After the statement of our conditions on I'; we also
make the assumption that

<1

n=2andp>2, (1.8)

and show that if ' is non-degenerate and non-minimal, then for any integer N >
1, there exists a solution exhibiting N concentration layers with mutual distance
O(e|lne|), and these N layers collapse to I', as € — 0.

Before stating the main result, we introduce two functions w and Z. Let w be
the unique (even) solution to

"

w —w4+w’=0and w>0in R, w (0) =0, w(doc) = 0. (1.9)

It is well known that the associated linearized eigenvalue problem,
B —h+pwP 'h=Ahin R, /h2 =1, he H'(R), (1.10)
R

possesses a unique positive eigenvalue A\g with a unique even and positive eigen-
function Z.
The following is the main result of this paper.

Theorem 1.1. Assume (1.8) holds and T satisfies the nondegenerate and non-
minimality condition (1.7). Then for each N > 1 and all sufficiently small € satis-
fying the following gap condition:

Ao — k?n%e?| >¢e, VkeN (1.11)
where ¢ > 0 is a small constant, there exists a solution u. to (1.1)-(1.2) with exactly
N concentration layers at mutual distances O(e|lne|). In addition, the center of
mass for N concentration layers collapse to T at speed O(e'*#) for some small
positive constant p.

More precisely, in the (§1,92) coordinates u. has the form
N

~ - ~ —¢ ~
w1, 52) ~ 3w (‘MSM)
k=1
where the fi’s satisfy
N
2 . ~
| frllo < C|lng| ;lglrcréljr\lr_l(fkﬂ — fx) > 2|lng|, I;fk _— (1.12)

and solve the Toda system, for k=1,..., N,
52]",’6’ — ag [e_(fk_fk—l) _ e_(fk+1—fk)] =0 in ((), 1), (1.13)
f1(0) + ko f£(0) =0, Fe(D) + k1 fe(1) =0, (1.14)
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for a universal constant ag > 0, with the conventions fo = —00, fny1 = .

Let us comment on related results and the difficulties and main steps in proving
Theorem 1.1.

The geometric eigenvalue problem (1.4) also appeared in the study of transitional
layer for the following Allen-Cahn equation

e?Au+u—u*=0in Q, Z—Z =0 on 9. (1.15)

In an interesting paper [16], using I'—convergence, Kohn and Sternberg con-
structed local minimizers to (1.15) with transition layer near a straight line seg-
ment contained in 2 which locally minimizes length among all curves nearby with
endpoints lying on 0. Later, M. Kowalczyk [19] extended the construction to non-
minimizing line segments. More precisely, assuming that I satisfies (1.6), for all €
sufficiently small he constructed a solution u. whose zero set I'c converges to I" as
€ = 0. In [35], Pacard and Ritore constructed transition layer solutions to (1.15)
near minimal submanifold on a closed Riemannian manifold.

In a recent paper [9], M. del Pino, Kowalczyk and Wei constructed clustered line
concentrations near a nondegenerate and non-minimal line segment for the Allen-
Cahn equation (1.15). The location of the layers is governed by the Toda system
(1.13).

To explain in a few words the difficulties we have encountered, let us assume
for the moment that = (—o0,400) x [0,1] is an infinite strip. In term of the
stretched coordinates (s,z) = e (§1,J2) the equation would look near the curve
approximately like

1 Ov

— P _ = - v _
Vss + Uz —0 + 0P =0, (s,z)GG_Rx(O,g), % 0 on 06.

The effect of curvature and of the boundary conditions are here neglected. The
linearization of this problem around the profile w(s) becomes

Gz + bss — 9+ PWP 1P =0, (5,2) €6, % =0on 06.
Functions of the form
¢' =w,(s) cos (kmez), ¢* = Z(s)cos (knez), (1.16)

are eigenfunctions associated to eigenvalues respectively —k2e2 and A\g—k2e2. Many
of these numbers are small and thus “near non-invertibility” of the linear operator
occurs. These two effects, combined in principle orthogonally because of the I2-
orthogonality of Z and wy, are actually coupled through the smaller order terms
neglected.

In [1, 18, 19, 35], related singular perturbation problems, involving the Allen-
Cahn equation (1.15), the translation effect ¢! have been successfully treated through
successive improvements of the approximation and fine spectral analysis of the ac-
tual linearized operator. The principle is simple: the better the approximation,
higher the chances of a correct inversion of the linearized operator to obtain a
contraction mapping formulation of the problem. In [27, 28] resonance phenom-
ena similar to the “@?-effect” has been faced in the Neumann problem involv-
ing whole boundary concentration. In [24]-[25] this boundary concentration on a
k—dimensional minimal surface of the boundary, involving both ¢! and ¢? effects,
has been treated via arbitrary high order approximations.
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In [8], M. del, Pino, M. Kowalczyk and J. Wei constructed the curve concentra-
tions for nonlinear Schrédinger equations

AU - V() U+UP =0, U € H'(R?), U > 0.

There, they faced the coupled effect ¢' and ¢2. They introduced a sort of infinite-
dimensional Liapunov-Schmidt reduction method which is close in spirit to that of
finite dimensional Liapunov-Schmidt reduction method of Floer and Weinstein [10]
and provides substantial simplification and flexibility to deal with larger resonance
and coupling of the non-invertibility of the linearized operator. Their idea is to solve
first a natural projected problem where the linear operator is uniformly invertible,
the resolution of the full problem becomes reduction to a nonlinear, nonlocal second
order system of differential equations, which turns out to be directly solvable thanks
to the assumptions made on the curve.

The main difficulty in our paper will come from the coupling of ¢!, #?, the bound-
ary condition and the interaction between layers. In [8], the error term is of order
O(g?), while here the error term is O(e) since the stretching of the boundary con-
ditions gives % + O(e). However, the spectrum gap in (1.11) is also O(e) which
creates additional difficulty. Worse than that, the spectrum gap caused by ¢? and
the boundary corrections are strongly coupled. We overcome these difficulties by
first using successive improvements of the approximation and then perform the
infinite-dimensional reduction to reduce the problem to a system of 2N coupled
nonlinear ODEs. The reduced ODEs involve coefficients of both fast and slow vari-
ables (see (7.37)-(7.38)). A careful analysis of Fourier modes is needed to ensure
the invertibility.

The organization of the paper is as follows: In Section 2, we set up the problem
and find a approximate solution, taking into account of the curvature contribu-
tions. We perform a gluing procedure in Section 3 and study the linear theory in
Section 4. In Section 5, we solve the nonlinear problem, using infinite-dimensional
Liapunov-Schmidt reduction procedure. We derive a reduced system of 2N equa-
tions including a Toda system and N nonlinear ODEs in Section 6. Finally we use
Schauder fixed point theory to solve the reduced nonlinear ODE.

Throughout the paper, A, ~ B, means that there exists fixed constants Cy, Cs
such that C; < g—z < (), for ¢ small.

2. The Ansatz. In the sequel, w is the even function defined in (1.9). In fact

w(z) = Cp{exp[W] + exp[w] },,__1

Z is the even eigenfunction defined in the eigenvalue problem (1.10), associated to
the unique positive eigenvalue Ag. It is easy to see that for |z| > 1

w@) = Cpe #l = Zeorkl 4 o bl (21)
w(z) = —Cpe™® + %e—plwl + O(e~ =i, (2.2)
Z@) = Chewriel Z 2PEDG oy | @iy (g3

p—1
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where

6=[25™, - [(pﬂ)]ﬁ[/kwp“dm]_?

Let & be the infinite strip:
1
6 = {—oo<a:<oo, 0<z<g }

2.1. Approximate solution. We first formulate our problem in conveniently cho-
sen coordinate system. We recall that we may assume that the segment I is given
by
I'={(5,92) 51 =0,0<g2<1}.

We also assume that near the endpoints of the segment, 99 is described as the
graph of two smooth functions, let us say respectively g2 = vo(91), J2 = ¥1(91),
with

©0(0) =0, ¢1(0)=1, ¢,(0)=0=¢)(0).
We also denote —k; and ko the curvatures of the boundary 99 at the points 7, and
7o respectively, where

k=1 (0), ko =g;(0). (29)
Let us consider the scaling u(y) = @(ey). Problem (1.1)-(1.2) is thus equivalent
to
Y(u) = Ayu+F(u)=0 inQ., (2.5)
Ou
Euw) = =—=0 ondQ,, (2.6)
vy

where Q. = e~ 1Q. Here and in what follows we denote
F(u) = —u+ uP.

For some small, fixed number g, we can parametrize all points y € Q. with |y1| <
doe~! by means of coordinates (,z) which straighten the boundary as follows:

T =y,
z = yz — Ne(ey2) poleys)/e (2.7)
— no(1 —ey2) [p1(eyn) — 1]/e.
Here 7, (s) = n(o~'s) where 5 is a smooth cut-off function such that
n(s) =1 for |s| < 1 and n(s) = 0 for |s| > 2.
For our purpose it is important to compute Laplacian in these coordinates. We call
Y(z,2) = (Yl(:c,z), Yg(m,z))
the inverse of the transformation defined by (2.7). We have that
Ay=202z: + Bs:,

where B, . is a second order differential operator with small coefficients:

2 2

0 0 0
B,.. = Ba(z,2) ) + Boi(z, 2) 9205 + eBao(z, 2) 55 (2.8)
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with
By(z,2) = O %al)iis(Y2),
B (z,2) = 2696[—160170(61’2) — kine(1 —€Y2)]
+ [0t e[a]) + 0o~ 26%af?) | s (72),
Bx(z,2) = —kone(eY2) — kin,(1—eY2)
+ [0 elal) + O(~2%al?) | 1 (eY2),
and

ﬁa(s) = na(s) + 77«7(]- - 68)'
In particular, B, . is a small perturbation of A provided that ¢ is chosen sufficiently
small. In fact we will choose

Q

Il
m
ol

We also have for z = 0,
0 _—l-lep(Eem) 9 ¢y (e2) a
vy (1 + |y (ez)|2)1/2 0= (1+ |py(ez)[2)2/2 Oz’
with a similar formula near z = 1/e. In the sequel we will write
0 0
— = (-1 Lo b . T.z E = 1 == @ .
8Vy ( ) 62 + £($7 Z) V %) 07 Y z /E

For a fixed integer N > 1, we assume that the location of the N concentration
layers are characterized by functions z = f;(ex), 1 < j < N in the coordinate (z, z).
These functions will be assumed to satisfy

f;i:(0,1) = R, (2.9)
I fillrz01y < Cllnel?, (2.10)
fi+1(Q) = f;(¢) > 2|Ing| — 4In[Ine|. (2.11)

For convenience of the notation we will set

fo(¢) = =do/e = f1(Q) and fn41(¢) =do/e — N (Q)-
Set

wj(z,2) =w(z = fi(e2),  Zj(z,2) = Z(z - f;(e2)),
and define the first approximate solution to (2.5)—(2.6) by

N

uo(z, 2) = Z wj(z, z) .

Jj=1

2.2. Accuracy of the approximation. Our first goal is to compute the errors of
approximation in a dp /e neighborhood of g, namely the quantities
6UO

T(uo) = Ayuo + F(uo),  E(uo) = o (2.12)

We shall do this in (z, z)-coordinates. Thus we estimate the first term

EO = (Az,z + Bz,z)uo + F(”O) = EOl + E02
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where
et = 2w a = 1)~ 3 a1+ S 1)

Then, taking into account (2.8), we get

EOI = Az,zuo + Bm,z Uo

N
Zw”(x—fj)[ — ¢ fj Ba(x, 2) ] —622 filw' ar—fj)[lJrBzz(m,z)
j=1

+522 (f})? a:—fj)[l—kng(xz ]—EZZf] (x — f;) Bao(z, 2).

j=1

We now turn to computing the term Eg2. For every fixed k, 1 < k < N, we consider
the following set

t={ ) eo| IETEIED <o ¢ HEOTIED ]
For (z,z) € Ay, we write
1
Epx = F(wg) + F'(wg)(uo = wi) + 5 F" (wi) (uo — wg)? + mﬁcO(e ~8li=el)
j
N
= ZF(wj) + plwg)? " (uo — w) — Z(wj)p
Jj=1 Ji#k
L g 2 3145l
+ [2F (wi)(up — wg) +r§1;m]§cO(e )]
N
= ZF(wj) + Eozor + Eo21,k + Eozz,k- (2.13)
j=1

It follows then for (z,2) € Ax, k=1,...,N:

N N
Ey = —EZf]Iw fJ B21.TCZ — Z IB—f] [1+BQQ($,Z)
N - N
+622 x—fj)[1+B22$Z]— wa (x = f;) Bao(2, 2)
j=1 j=1

+ Eo20,k + Eo21,k + mﬁ,ﬁ‘O(e —21fialy,
J

From the above expressions for E; we see that, given the bounds for fi’s in (2.10)-
(2.11), denoting by x4, (z) the characteristic function of the set A, we have

Z XAy [ € |1n6| )e —|fr—=| + Eooo,1 + O(l)mﬁge—z\fjle )
Fi
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Next we estimate the accuracy of the Neumann boundary condition for ug. Again
n (z, z) coordinates

—1—|po(ex)|*  Bug Po(ex) dug
(1+|<;0()(€30)|2)1/2 0z (1+|<P'o( z)[2)? O

EZ[ ) + kof;(0 ]—+52k0( — £(0 )%

Ep(z=0) =

8’11)]'

+522[ (ko = £OP) + 01H0OP) | 52

6wj

+e32[ (o = H;OP) + 01£O)P) ] £0) F2.

A similar formula holds for Egp(z = 1/€). Thus we see that it is natural to take the
following boundary conditions for f;

£5(0) + ko f5(0) =0, .
)+ k‘l’f;(l) _o  d=LooN (2.14)

We assume the validity of these conditions in the sequel.

For further application, the evaluation of the first approximation is of importance.
Using the condition (2.10)-(2.11), a tedious computation implies,

|2

Sse/e = {—=do/e <x < do/e, 0 <2< 1/e}.
In fact, we should handle the terms Foaq , carefully. If p > 2, then from (2.1)-(2.3),
we obtain the estimate

[wk(xaz)]p

— O3 |Ingl? 2.15
PECITED (215)

where

e (2, 2) Ce=P-Dle=i(2)| . g=lo=fi1(2)]

Ce~ o= | g=lz—=fre41(2)]

IN N IA

Cer+1(2)—Fi(2)]

Similar estimates hold for other terms like [wk(:c,z)]Vl -w;j(z,z) for all j # k.
Hence, there hold, for kK =1,--- ,N

Euoslfiacay < 8 [l *uo - we)? dodz
Ak
< C [e*2|fk+1(2)*fk(z)\ + e 2@ F1G | qpds.
Ak

From the above formula, we use (2.11) to get

3
|| Eo20,|[72(4,) = O(e%[Inel?).

On the boundary, the error can be written as

N
Egp(2) = O(e) Z(m - fk(sz)) e l2= M=l for 2 =0, 71,

k=1
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As a matter of fact, we actually have that Eg, can be extended as an H 1(550 /e)
function satisfying
1ol (s5,..) = Oe3).

The discrepancy between the order of approximation in the interior and on the
boundary (Ey and Eg respectively) makes it necessary to improve the original
approximation ug and eliminate the O(g)-part of the error on the boundary. In
the language of formal asymptotic expansions one can say that we need to find a
boundary layer expansion of our solution. We shall do this in the next section, as
well as reformulating the full problem in a convenient way by the gluing procedure.

3. Improvement of Approximation and the Gluing.

3.1. The boundary layer problem. We notice that function ug(z, z), i.e. the
first approximation constructed near g, can be easily extended to the whole strip
6.

We will construct an improvement in approximation by first solving the following

problem

d
AP —® 4+ puwP'® =p(e2)Z in &, Z—V =g ondG, (3.1)
/@(w,z) wy dz =0, /@(m,z)de = 0, (3.2)
R R

where g is any H'(&)-extension of the boundary error term —zw, € H'(R). Let
us take for instance

g9(x, 2) = —e 7 2w, (x) 7(2e2),
with a suitable smooth cutoff function 7, in such a way that g is an even function
in the variable x for each z, and satisfies the estimate

llglle(e) < C,
and the boundary constraints
9(z,0) = —zw,, g(z,1/e) =0,
with C independent of €.
Lemma 3.1. There exists a function p(¢) in L?(0,1) with the bound
16l 2201y < Ce?, (3.3)

such that problem (3.1)-(5.2) has a unique solution ® € H?(&) which is even in x
for each z. Besides, there is a constant C > 0 such that for all small €,

1@l 5>e) < C. (3.4)

In addition there exist constants 0 < ¢ < 1/4, p > 0 and C, > 0 such that the
following estimate holds:

|®(z,2)| + |[V®(x, 2)| + |D*®(x, 2)| < Cpe (- zHnz] (3.5)

We will give the proof of this lemma at the end of Section 4. O
Let ® be the function defined by Lemma 3.1 and set

83(@,2) = ko ®(z = f(e2), ) + k@ (2 =~ f(e2), g ~2).
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We define the approximate solution of the following problem
Ap+F'(w)p = 0 inG

bl ]) = ezkl( —5m) %4,

Ow;
$:(z,0) = ezko( - £0)) 52,
by the formula

N
5 (@2) = 3 91, 2).
j=1

The next goal is to show that ¢*(x,z) is the right boundary layer correction.
Define the second approximate solution to (2.5)—(2.6) by

u = ug + ¢*.
The new error in the interior of & can be written as follows
By = By + [ (Ds: + Ba2)d™ + F'(uo)” | + N ()
where

N(¢") = F(uo + ¢") — F(uo) — F'(uo)¢", (3.6)

”¢*+F’( 0)¢" + B, 9"
N

—sz Ap )+ F'(w;)g; ]+ ep Y (ub™" —w?™" )¢} + By 6"
j=1

= E11 + Eq2 + Eqs.

We fix an integer k and consider the error in the set Ay, as in the previous section.
A¢} + F'(w;);
= ko | ple2)Z; — 261;(e2)®0z (2 — fi(e2), 2)
- e2f; (e2)®, (x — fi(ez),2) + €° (f] (5z))2<1>m (z — fi(ez), z)]
+ ki [p(l —e2)Z; — 2ef;(e2)®0. (z — fi(e2), % —2)

" ]_ ! 2 ].
— 2 f; (€2)®a (2 — fj(e2), -~ z) + €°(f;(£2)) ®aa (2 — fj(e2), - - z)]
Combining above formula and the decay estimate (3.5), we get
N
Ey = EZ [kop(ez) + kip(l — EZ)] Z; + 0(e?) |Ing|? e ~(1-0)lfe =2l
j=1
= FEi19 + 0(62) |1n5|2 e (1-olfi—zl
Term E;» is estimated using (3.5) by

|Es| < Ce maxe—(1-0lfi—l [e —nz e—u(l/s—z)]_
J#k

(3.7)

Therefore, the following lemma is readily checked.
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Lemma 3.2. With the notation of the previous section we have

E, = Y(u)

N
= O(E2|1n6|2) Z X Ag I:e_‘fk—m\ + Ee—(1—9)|fk—a:|:|

N N

+y XAk[EU20k+E021k] + E110 + O(1 Z X4, maxe 2]
k=1 =1

N
—(1-o)lfi—z| |, —nz —p(1/e—2)
6); X4, maxe [e +e },
where Ego 1, Eo21,x and E110 are defined by (2.18), (3.7) respectively. Moreover,

HE1 - EHOH < 03| nel?. (3.8)
12(e)

Similar decay estimate holds for Ey, = E(u1). In addition there is an extension of
FEqp to the whole strip & such that

| Evollan sy < Ce®?|Inel’. (3.9)
(&)

Proof. The remaining terms B, .¢* and N (¢*) are easily seen to be smaller
than the ones we have just considered. Estimate (3.8) follows immediately from
(3.8). Obviously (3.9) is an easy consequence of the construction. O

To improve the approximate solution to (2.5)-(2.6) while still keeping the terms
of order O(e?|Ing|?), we need to introduce new parameters e = (e, ...,en) with
each e; : (0,1) = R satisfying

lleslls = llejllze(o,1) + llejllzz0,1) + €llej lz2(0,1) < Ce” (3.10)
where 7 is a positive constant to determined. Define
N

¢ = ej(e2)Z;, ¢ =) o},

j=1
and choose our basic approximate solution to (2.5)—(2.6) by

us = uy + ¢**. (3.11)
We have the basic error in the interior of & as

E2 = El + [(Az,z + Bz,z)¢** + FI(UO + ¢*)¢**] +N(¢**)a

where
N(@™) = F(uo + ¢" + ¢™) — Fluo + ¢") — F'(uo + ¢")¢™", (3.12)
Aw,z¢** + FI(U'O + ¢*)¢** + Bw,z¢**
N N
—¢ Z[ :czd)** +FI( ) ;:*] +ep Z ((uo_,’_qs*)pfl _w;)—l) ;* +Bz,z¢**
Jj=1 Jj=1

= Foy + Eos + Eos. (3.13)
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For further reference, we set

”

N N
Ba =Y (% +Moe;) Z; + & 3 (f))2e; 2,

Jj=1 7j=1
N 3 1 1 ! 3 " ’ (314)
—2(26 e; f; Z; + €°¢; [; Zj)
Jj=1
= FEs10 + Eo11 + Ezpo.
Term Fs» in the set Ay, is estimated by (2.1)-(2.3) and condition (3.10)
|Eys| < Ce maxe~i—2l.
J#k
As before, we also take the following boundary conditions for e;
e (0) + koe;(0) =0 .
j J ’ =1,...,N. 3.15
() +ke(l) =0, 7 (3.15)
Similarly as Lemma 3.2, we can prove that
Lemma 3.3. With the notation of the previous section we have
E, = Y(ug)
N
= O(E2|1n6|2)ZXAk I:e_lfk_"v‘ +6e_(1_g)|fk_$‘]
k=1
N N
—2|f;—xz|
+ ; XAy, [EOZO,k + EOQl,k] + Ei10 +0(1) ZIXA,C IjIlqéalgce i
= J:
N
10(e maxe ~(1-olfi—z| [e —nz ew(l/sfz)]_
( );XAk 2k
Moreover, in the L*(&) norm
HE2 — EllO — E210H S 053/2| In E|2, (316)

L*(8)
where Eo21¢0 is defined by (3.14).
Similar decay estimate holds for Eap, = E(us). In addition there is an extension of
E(usy) to the whole strip & such that

| B2l 1 sy < C®/?|Inel. (3.17)
O

3.2. The gluing procedure. We will now reduce the original problem which is
defined in €. to a problem defined in the strip &. This will be done by using a
gluing procedure similar to that in [8].

For § = £'/%, we consider a smooth cut-off function 7s(t) where ¢ € R, such that

ns=1ift <8 andns =0 if ¢ > 26. (3.18)

Denote as well 75(s) = ns(e|s|), where s is the normal coordinate to L. We define
our first global approximation to be simply

W = n55(s) ua. (3.19)
extended globally as 0 beyond the 64 /e-neighborhood of 5
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We look for a solution of (2.5)—(2.6) of the form u = W + ¢. Then
YW+¢) =0 inQ, E(W+¢)=0 ondQ
if and only if
—-E—-N(¢$) inQ., (3.20)
= Ep on 0, (3.21)

[1] Ez
§;1 \%/z
|

where we have denoted

L(@) = Dyp— o +pWP 19, N(§) = (W +¢)P — WP — pWP 14,
and
E=YW), E,=-5E(W).
For simplicity of notation, we replace the error terms Egz9 and Ejjg corresponding
to the second approximate solution us in & by the error terms FEgoo and FEiig
corresponding to approximate solution W' in (2. respectively.
We further decompose ¢ in the following form:

(;sz: n§6¢+¢7

where, in coordinates (z,z), we assume that ¢ is defined in the whole strip &.
Substituting in (3.20) we find

Lnss¢) + L) = —E — N(n5s6 + ).

We achieve this if the pair (¢,) satisfies the following nonlinear coupled system:

L) =n5[-NGsso +9) - E—pwlp] i, (3.22)
o -
(_1)e+16_‘ﬁ + 0550e(x,2) - Vg, = —n5Ep on 96, (3.23)
and
Dy = + (L =n5)pWP=p = X (Dynss)¢ + 26(Vynss) (V)
—(1-n5)N(mso+¢)—(1—n5)E inQ,  (3.24)
Y = ong
— = —(1=-nd)Ey — o2 0 2
61/ ( 776) b ¢ 61/ Ona o8] (3 5)
where ¢ is defined globally on & and ¥ is defined in €2.. Note that the operator in the
strip & may be taken as any compatible extension outside the 64 /e-neighborhood
of the curve.
What we want to do next is to reduce the problem to one in the strip. To do
this, we solve, given a small ¢, problem (3.24)—(3.25) for ¢.

Let us observe that W is exponentially small for |s| > /e, where s is the normal
coordinate to g, then the problem

9

D= [1=(=m)pW" Y =h inQ Zo

=g on 909,
has a unique bounded solution ¢ whenever

Pl .y, lgllLe(a.) < +o0.

Moreover,
9]l < ClIIAlL< (02 + gl (o0.) ]-
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Assume now that ¢ satisfies the following decay condition for some v > 0
)

|Vo(z,2)| + |¢(z,2)| <e 7= for |z] > g (3.26)

Since N has a power-like behavior with power greater than one, a direct application
of contraction mapping principle yields that problem (3.24)—(3.25) has a unique
(small) solution ¢ = v(¢) with
[e@)le < C[II(L=15)EllLee(0,) + 11 = 15) Ebll s (502, ]
+C 67 [ 19l (z/>se-1) + IVBllLe(o>ee-1y ], (3:27)

where with some abuse of notation by {|z| > §/¢} we denote the complement of
0 /e-neighborhood of g The nonlinear operator 1 satisfies a Lipschitz condition of
the form

10(91) = $(@2)lloc < Ced [ lld1 = dallzoqepsae

IV (91 = @2)ll o (af>5- |- (3.28)

The full problem has been reduced to solving the (nonlocal) problem in the
cylindrical strip &

Ly(¢) = =05 E = 05N (¢ +4(9) = n5pW? 14 (9) (3.29)
foragpe H 2(62 satisfying condition (3.26). Here Ly denotes a linear operator that
coincides with L on the region { [z| < & }.

We shall define this operator next. The operator L for |z| < & can be extended
in coordinates (z, z) to functions ¢ defined in the entire strip & ‘as follows:

Ly(¢) = Az 2 — ¢+ pWP ¢ + 15 By - (9)- (3.30)
Rather than solving problem (3.22)—(3.23) directly, we shall do it in steps. Setting
f = (fi,...,fn), f;satisfies bounds (2.10) — (2.11),

= (e1,...,en), €; satisfies bound (3.10)
(c17 7CN) ¢j € L2(051)7 (331)
d = (dla )7 dj € L2(07 1);
Na(¢) = (¢+¢(¢)) +pWPp(6),

we consider the following projected problem in H?(&): given parameters f and e,
finding functions ¢ € H?(&) and ¢, d such that

N
La(9) = —n5 B —n5Na(9) + m5 Y[ es(e2) wye + di(e2) 23] in 6, (3.32)

=1
(=1)¢t 6¢ +nisbe(x,2) - Vy 0= —n5E, on 086, (3.33)
1
/gb(:z:,z)wj,z(x,z) dr=0, 0<z< . j=1,...,N, (3.34)
R
1
/qﬁ(m,z)Zj(w,z)dm:O, 0<z<g, j=1,...,N. (3.35)

We will prove that this problem has a unique solution whose norm is controlled by
the L2 norm of n§(E — E119 — E210) and H' norm of the suitable extension of 75 F;
After this has been done, our task is to adjust the parameters f and e in such a
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way that ¢ and d are identically zero. Finally, this turns out to be equivalent to
solving a nonlocal, nonlinear second order differential equations for f and e with
Robin boundary conditions. As we will see this system is solvable in a region where
the bound (2.10)-(2.11) and (3.10) hold. We will carry out this program in the next
sections. To solve (3.32)-(3.35) we need to investigate invertibility of Ly in L2-H?
setting under the boundary and orthogonality conditions.

4. Linear Theory. This section will be devoted to the resolution of the basic linear
problem, which we define next. Recall (3.19), let us consider the linear operator,
defined on functions ¢ € H%(&) as

L(¢) = Ap — ¢+ pWP™ 4.

Given functions h € L?(&), g € H' (&) and A, ©; € H?(0,1/¢) for j =1,...,N,
we consider the problem of finding ¢ € H?(&) such that for certain functions
¢j, dj € L*(0,1), j = 1,..., N, we have

v

N N
L(¢) = h+;Cj(EZ) Wie +jZldj(5z) Z; in 6, g—¢ =g on 06, (4.1)

*° 1
/ oz, 2) Wiz (x, 2) de = A;(2), 0<z<g,j:1,...,N, (4.2)

/ oz, 2) Zj(z,2)de = O;(z), 0<z<§,j:1,...,N. (4.3)

For simplicity of notation, let
A=(A1,..,AN), ©=(0Oy,...,0n).
Our main result in this section is the following.
Proposition 4.1. There exists a constant C > 0, independent of € and uniform
for the parameters £ and e in (3.31) such that for all small € problem (4.1)-(4.3)

has a solution ¢ = T'(h, g, A, ©), which defines a linear operator of its arguments
and satisfies the estimate

N N
lpllz2(s) < C [||h||L2(e) +llgllmre) + D Al 0,1y + D 10ll 20,1 | -

Jj=1 =1

For the proof of Proposition 4.1 we need the validity of a priori estimates and
existence result for a simpler problem. Given h € L?(&), § € H' (&), let us consider
the operator

Lo(¢) = A — ¢+ puw? ™' ¢
and the problem

Lo(¢) = h in &, —‘If =§ ondG, (4.4)
/ (2, 2) we(x)dz = Ao(2), 0<z< % , (4.5)
R

/q@(w,z)Z(m)dxz(:)o(z), 0<z< %, (4.6)
R
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where
IAollz2(0,1/5) < C,  11O0llm2(0,1/) < C. (4.7)
Lemma 4.1. There ezists a constant C' > 0, independent of € such that solutions
of (4.4)-(4.6) with Ay and ©¢ satisfying (4.7) have the estimate
||<73||H2(6) < C[”E”LZ(G) + |9l 1 (e + ”AOHHZ(O,I/E) + ||(:)0||H2(0,1/s) -
Proof. Let ¢g be the solution of

A¢0 - ¢0 = 07 in 67 % = g: on 667

and set & = ¢ — ¢g, then ¢ is a solution to a similar problem, except that it
has homogeneous Neumann boundary condition, with all nonhomogeneous terms
replaced by h, Ag, ©¢ with bounds like

Illz2e) < Cllllz2e) + dlla e 1,
Aol 20,1/¢) < C I AollEr2(0,1/¢) + 1l (s) 1

190llz2(0,175) < C 10l (0,1/¢) + ldllzr(s) |-
To prove the general case it suffices to apply the following argument with
o Ao(?) Oo(2)
p=0¢ - wa(z) — Z(x).
Jewd " 2
Then ¢ satisfies a problem of the same form with homogeneous Neumann boundary

condition and orthogonality condition replaced by Ag = 0,09 = 0 as well as h
replaced by a function h with L?(&) norm bounded by

IRz < Cllbllzzs) + lldllms) + lAollaz0,1/e) + 1©0llm20,1/¢) -

Let us consider Fourier series decompositions for A and ¢ of the form

d(z,2) = Z o (z) cos (mkez), h(z,z) = Z hi(z) cos (mkez) .
k=0 k=0
Then we have the validity of the equations
—k*n%% ¢y, + Lo(pr) = hg, z ER, (4.8)
and conditions - -
/ o w, dx =0, / or Zdx =0, (4.9)

for all k. We have denoted here
Lo(or) = Prox — Pk + pwP ™ @y

Let us consider the bilinear form in H'(R) associated to the operator Lo, namely

B,¥) = [ [P + 10 ~ pur 10 ] do.
R
Since (4.9) holds uniformly in k we conclude that

Cllkl72my + 19k, 172m) ] < B¢k, P) (4.10)

for a constant C' > 0 independent of k. Using this fact and equation (4.8) we find
the estimate

(1 + 7k ekl 72w + 19k, ll72@) < CllhelZ2 (-
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Moreover, we see from (4.8) that ¢ satisfies an equation of the form
Pkaw — Sk =hr, TER

where ||h]| 2®) < C||hg||z2w). Hence it follows that additionally we have the
estimate

6k,22llT2m) < CllbklL2)- (4.11)
Adding up estimates (4.10), (4.11) in k& we conclude that

ID*¢ll72(s) + 1D¢ll72e) + 191172() < ClIAIIT2(s)-

The final estimate of ¢ can be easily derived. O
We consider now the following problem: given h € L*(&), g € H'(&), finding
functions ¢ € H?(8), ¢,d € L?(0,1) such that

Lo(¢) = h + clez)wy + d(ez)Z in G, (4.12)
%y mos, (413
/¢(x,z) wy(z)dz = Ao(2), 0<z< L, (4.14)
R €
/qﬁ(x,z)Z(w) dz = 0Og(z), 0<z< é (4.15)
R

Lemma 4.2. If then functions h, g, Ag, O satisfy the conditions in previous lemma,
then problem (4.12)-(4.15) possesses a unique solution, denoted by ¢ = To(h, g, Ao, Og).
Moreover,

18l z2(s) < CLIIhz2e) + llgllar(e) + [|Aollz2(0,1/6) + @0l 20,1 /2) |-

Proof. From the argument in Lemma 4.1, it is sufficient to prove this result for
the case Ag =0, Q¢ = 0 and g = 0. For existence, we write again

h(z,z) = i hi () cos (mkez)
k=0

and consider the problem of finding ¢, € H'(R), and constants cg, dj, such that
—k271'262¢k + £0(¢k) =hp +cywy +dpZ z €R

/(ﬁkwmdm:O, /¢kZdw=0,
R R

where Lo(pr) = Prze — ¢k + pwP 1ds. Fredholm’s alternative yields that this
problem is solvable with the choices

and

Ck:_thkwwdw kZ—Ithde-
Jpwidx ’ Jp 2% dx
Observe in particular that
S lenl? < CellhlBas), 3 ldil? < Cellhll3a o). (4.16)
k=0 k=0
Finally define

o(x,2) = Z ¢ () cos (mkez) ,

k=0
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and correspondingly

o0 o0
e(Q) =) crcos(nk(), d(¢) = dicos (k).
k=0 k=0
Estimate (4.16) gives that c(ez)w, and d(ez)Z have their L?(&) norm controlled
by that of h. The a priori estimates of the previous lemma tell us that the series
for ¢ is convergent in H2(&) and defines a unique solution for the problem with the
desired bounds. O
As a special case of Lemma 4.2, we give a proof of Lemma 3.1.
Proof of Lemma 3.1. From the linear theory just developed in Lemma 4.2, the
problem has a unique solution ® € H?(&) for some p. Careful checking the proof
of Lemma 4.2 will give the estimate of p and ®. In fact, we derive (3.3) by (4.16).
On the other hand, uniqueness of the problem and evenness of the function g in the
variable = imply that ® is even in z for each z and c(ez) is identically zero.
We observe first that since

/ ®(x, 2)w, dz =0, / ®(x,2)Zdz =0,
R R

hence
/ [|<I>gc(.7:,z)|2 + |® (2, 2) 2 —pw”_1|<1>(a:,z)|2]dx > )\2/ |®(z, 2)|?dz, (4.17)

where Ay > 0 is the third eigenvalue of the operator

Lo(¥)) = —Ppe + 9 —pwP~ ')  in R
Consider function

H(z) = /00 |®(z, 2)|* dz.

—o0
From (4.17) it follows that
_sz + )\ZH S 0
and from (3.4) we get that |H,(0)| < C. Clearly we have also H,(1/¢) = 0 and thus
by a comparison argument we get that
|H(z)| < Ce ™, u< /).
Using local elliptic estimates we then get
|®(z,2)e"?*| <C in 6.

From this, using the maximum principle we get (3.5). O

In order to apply the previous result to the resolution of the full problem (4.1)-
(4.2), we define first the operator, for a fixed integer j

Li(¢) = Ap— ¢+ puwl o,
and consider the following problem

Li(@) = h + cj(ez) wj, + dj(ez) Z; in &, g—f =g ond6, (4.18)
/ d(x,2)wjz(x)de = Ao(z), 0<z< %, (4.19)
R

/ d(z,2) Zj(x)dz = Og(2), 0<z< % (4.20)
R
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We have
Lemma 4.3. Problem (4.18)-(4.20) possesses a unique solution ¢. Moreover,
19l az(e) < CllRllL2e) + [[Aollmz(0,1/6) + [O0lla2(0,1/2) + 9l 2 (s) -

Proof. We recall that w; = w(z— f;(e2)) and Z; = Z(z— f;(ez)). For a function
&(z,2) defined in & we denote below

E(z,2) =&z + fi(ez),2).
Direct computation gives that problem (4.18)-(4.20) is equivalent to
A+ Bi(¢) —dp+pwP~'d = h+cijlez)w, +dj(e2)Z in G,
0 . -
W - g+ B2(¢) on 06,
. 1
[de @ = o), 0<z<,
R

/(;NS(a:,z)Z(x)da: = 0O(2), 0<z<1,
R €

where

Bi(¢) = € (f}(EZ))Qém — 2 (e2) o — 26 f'(2) buz

BQ(¢) = Ef;(ez)ém-
This problem is then equivalent to the fixed point linear problem
¢ = To(h+ B1(9), § + B2(9), Ao, ©o)

where Tj is the linear operator defined by Lemma 4.2. The linear operators B; and
B» are small in the sense that

1B1(d)llz2(e) + 1B2(D)llmi(e) < o) I9lluz(),

with o(1) — 0 as ¢ — 0. From this, unique solvability of the problem and the
desired estimate immediately follow. O

Proof of Proposition 4.1. A first claim we make is that to prove the above result
it suffices to consider the case g = 0, so that we will only need to find the operator
T(h,0,A,0). Indeed, let us consider the solution ¢g = ¢(g) to the problem

Agg— o = 0 in G, %:g on 06.

From standard elliptic theory, we find that
I$ollz2e) < Cliglla(e)-
On the other hand, we check directly that
¢ =6 — do
satisfies a similar equation, but now for g = 0, with A; and ©; replaced by A; and
©; respectively, where

A

1Al 520,1/¢) < CLIA I E2(0,176) + gl E1(85) 1,
19llm2(0,1/¢) < CLIO;llm2(0,1/¢) + lgllmr(e ],
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and with h replaced by h = h(h, g), a linear operator in its argument satisfying
”B”L?(G) < Cllhlle2e) + llgllar @) ] -

With the aid of this and the definition of é, the operator in Proposition 4.1 is thus

built just from T'(h,0, A, ©), as claimed.

We search for a solution of ¢ = T'(h,0, A, ©) to problem (4.1)-(4.2) in the form

N
$=> md+1 (4.21)
j=1
where
nj(z,z) =no (%Z(Ez)), R =2|lng|,

and 7o is smooth with 7o(s) =1 for |s| < 1/2 and = 0 for |s| > 1. We will denote

N
X = 1—2771-
=1

It is readily checked that ¢ given by (4.21) solves problem (4.1)-(4.2) with g = 0 if
the functions ¢ = 7,¢ and ¢ satisty the following linear system of equations.

oloy
ov

- ~ 1
/qb;f(a:,z)wj,z dz = Ay, /(b;f(x,z)Zj dz = 0;, 0<z< o (4.23)
R R

L (¢7) = w(9;) + cj(e2)wjo +dj(e2)Z; in G,

=0 ond6, (4.22)

and
N N
A —xp+ xpwP™ My = xh+ Y (1—n)cj(e2)wie + (1 —n;)d;(£2)Z;
j=1 j=1
N
= [2Vn; - Ve + 6347, ], (4.24)
j=1
oy
o = 0 on 06, (4.25)
where

w($5) =y (h -+ — pWP 1) — WP — pu? )5,

Aj=A;+ /R(l — 1)) bjwj e dz — Y [ mkdrwj . dz — /Riﬁwj,w,

k#j 'R

0, =®j+/(1—n,-)qs,-z,-dx—z:/nkqskzjdx—/wzj.
R k#j R R

In order to solve this system we will set up a fixed point argument. To this end
assume that function ¢ is given and define

N
5 =dn. $=9-30
j=1
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First we replace ¢}, 9 by <;~S;‘, v on the right hand sides of (4.22)-(4.23) and solve
(4.22)—(4.23) for each j = 1, ..., N using Lemma 4.3. We get the following estimate

95 la2e) < C[”h”L2(6) + 19ll2(e) + 1Al m2(0,1/¢) + 1Ol 220,1/6)
N ~
+0(1) Y 1195 |2 - (4.26)
j=1

Given ) we can now find functions ¢ = ¢;‘(1ﬁ) which solve (4.22)—(4.23) by a
fixed point argument. Next we observe that the norms ||c;(ez)wj.||12(s) and
lldj(e2)Zj||L2(s) are controlled by [|h||z2(s) as it was pointed out in Lemma 4.2

(see (4.16) and the argument that follows). Therefore we can now solve (4.24)—
(4.25) for v which in addition satisfies

N
16l a2(e) < Clibllzage) +0(1) > 165 @) a2 (e)- (4.27)
j=1

Combining this with (4.26) and applying a fixed point argument again we get finally
a solution to (4.24)—(4.25). This ends the proof. O

5. Solving the Nonlinear Intermediate Problem. In this section we will solve
problem (3.32)-(3.35). The linear problem associated to L is

N N ¢
Ly(¢) = h+1nj j;cj(sz) Wje + N5 Zdj(ez) Z; in 6, 5 —9 on 06,(5.1)

=1

1
/¢($,Z)wj’zd$:0,0<z<E,j:].,...,N, (5.2)
R

1
/¢(5E,Z)Zjdx:0,0<z<g,j:].,...,N. (5.3)
R

From the choice of o = £!/8, § = £/6 and the definition of the operator B, , we get
1765 Be,=(d)|lL2(s) < o(1)||9lla2(s),

hence L, is just a small H? — L2-perturbation of the operator L treated in the
previous section. Since the presence of the extra factor 15 can be dealt with easily
because of the decay exponential of w;, and Z; as an immediate consequence of
Proposition 4.1 we get the following.

Proposition 5.1. There ezxists a constant C > 0, independent of € and uniform
with respect to £ and e in (3.31) such that for all small € problem (5.1)-(5.83) has
a solution ¢ = Tt o(h,g,0,0), which defines a linear operator in its argument and
satisfies the estimate

¢llze) < CllIbllzze) + llgllare)]-

Our next goal is to solve the nonlinear problem (3.32)-(3.35). An important
observation is that the terms El 10 and Ezl() in the decomposition of E’, have precisely
the form 75 Ejvzl d;(ez)Z; and can be absorbed in that term. From the estimates
in Lemma 3.2, By = E — Ey1g — a1 is of order O(¢?|Ing|?), which is needed to
apply contraction mapping theorem.
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Proposition 5.2. There exist numbers D > 0, vo > 0 such that for all sufficiently
small € and all £ and e in (3.81) problem (3.32)-(3.35) has a unique solution ¢ =
o(f, e) which satisfies

I9ll2e) < De?|Inel?,
@1l (toi>s/e) + IVBllLoe(lo>s/e) < € 7%
Besides ¢ depends continuously on f and e.
Proof. Let T¢ be the operator defined by Proposition 5.1. Let us denote

M(¢) = —n35be(2,2) - Va0
Then, given f and e in (3.31), the equation (3.32)-(3.35) is equivalent to the fixed
point problem for ¢(f, e):

6(f,€) = Tro(h, 9,0,0) = A(6.1,e) (5.4)
with
h = —n5Ex(f,e) —n5Na(6(f,e)), g = —n5Ep(f,e) + M((f,e)).

In the sequel we will not emphasize the dependence on f and e whenever it is not
necessary.

We will define now the region where contraction mapping principle applies. We
consider the following closed, bounded subset of H?(&):

4ll7r2(e) < De?|Inel?, }
||¢||L°°(|z|>6/5) + ||V¢||Loo(|z|>6/s) S 6—705/5

and claim that there are constants D,~o > 0 such that the map A defined in (5.4)
is a contraction from B into itself, uniform with respect to f and e. Given ¢ € B
we denote ¢ = A(¢, f, e) and then have the following estimates. Firstly, (3.27) and
Lemma 3.2 imply that for <Z) €B

IEs + N @llzaey < Cor®/?nel? + Clldlne) + ¢ 5 (55)
+Ce [ 18llz(o15570) + VBl (iaisa72)

B= {¢6H2(6)‘

with some v > 0.
Secondly, using Lemma 3.2, and the fact that |b(z,z)| < Ce|z| we get for the H 2
extension of —n5Ey + M ($) (denoted by the same symbol)

| =n5Es + M(9) luz(e) < Cr®?|Inel® + Cd|dl| a2 (e)- (5.6)

Finally, the exponential decay of the basic approximate solution W outside the
region: {|z| > 8 /e} and the fact that F'(W) = —1 + O(e~"1?l) for some constant
v > 0 imply

||‘A(($5f7 e)||L°°(|z|>6/€) + ||VA(($, fa e)||L°°(|z‘|>6/E)
< Ce /e 4 C5[||<Z>||Lw(|z\>a/s) + ||V¢~5||Loo(|z\>a/s)]- (5.7)

Since § = &'/6 from (5.5)-(5.7) we get that A indeed maps B into itself provided
that D is chosen sufficiently large and ~, sufficiently small.
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Let us analyze the Lipschitz dependence of the nonlinear operator involved in A
for functions in B, namely Na(¢ + ¥(¢)). For ¢1, 2 € B we have, using (3.27) and
(3.28):

| 5261+ 6(61) = i Na (2 + (62)) |

L2(8)

S 0[63/2| 1n€|2 + 6*705/5] { ||¢1 — ¢2||L2(G) (58)

+ e 4 p1 = bollpoe(a>6/e) + YAV (1 = b2) | Loe (fa|>6/2) }

Using this one can show that 4 is a contraction map in B and thus show the
existence of the fixed point.

A tedious but straightforward analysis of all terms involved in the differential
operator and in the error yield that the operator A(¢, f, e) is continuous with respect
to f and e. Indeed, indicating now the dependence on f and e, let us make the
following decomposition:

L2,f1,el ( ¢(f17 el) ) - L2,f2,62 ( ¢(f27 e2) )
= Logi e [$(F1,01) = 6(E2,02)| + | F'(W(f1, 1)) = F'(W (f2, e2)) | 9(F2, 2),

N
s Z [Cj (ez;fi,e1) wj(f1) — cj(ez;fr,€2) Wy (f2)]
j=1
N
= 0 Z [cj(az;fl,el) - cj(az;fg,eg)] wj (1)
j=1
N
+15 Y cjezifa, @) [wj,w(fl) — Wjo(f2) ]7
j=1
N
ng Z [dj(sz; fl, el) Zj(fl) - dj(sz; fg, 62) Zj(fz) ]
j=1
N
= ’r)gz [dj(EZ;fl,el)—dj(EZ;fQ,EQ)] ZJ(fl)
j=1
N
+15 > di(ez; B, ) [zj(fl) — Zi(£) ]
j=1

and finally, for each j =1,..., N
/R[¢(f1,el) — ¢(f2,€2) |wj. (f1) da
= = [ 0l8a,e0) [w(8) = w;0(8) ] do,
R
[ 16tt1,e0) = 6182, e0)1 2,(61) da
= —/R¢(f2,ez) [Z;(f1) — Z;(f2) ] dz.
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Using these decompositions one can estimate ||¢(f1, e1) — ¢(f2, €2)|| z2(s) employing
the theory developed in the previous section. Observe that this estimate does not
depend on ¢;(ez; fi) — ¢j(ez; £2) and dj(ez; f1) — dj(ez; £2). Tedious but straightfor-
ward argument shows that in fact for fixed e the fixed point of A, ¢(f, e) is Lipschitz
with respect to f and e and thus continuous with respect to f and e. This ends the
proof. O

Clearly Proposition 5.2 and the gluing procedure yield a solution to our original
problem (2.5)—(2.6) if we can find f and e such that

c(f,e) = 0, (5.9)
d(f,e) = 0. (5.10)

As we will see this leads to a system of 2N nonlinear ODE’s. We carry out this
argument in the next section.

6. Toda System. It is easy to see that the identities (5.9) and (5.10) are equivalent
to the following system of equations

/ [La(9) + 0B + miNa(¢) Jwiwdz = 0, k=1,...N, (6.1)
/OO[L2(¢)+n§E+n§N2(¢)]de:c = 0, k=1,..,N. (6.2)

6.1. Estimates for parameter f. In this subsection we deal with the estimates
of the terms in (6.1). Introduce the notations

S={zeR: (z,2) €6}, Sp={zeR: (z,2) € A},

and consider for each k, (k=1,---,N), the following integrals

{/ +/S\sk}nsé<w,z> w'(z - fi(e2)) da

Er1(e2) + Epa(ez).

/ ns E(z, 2) w'(z — fr(ez)) dz
s

Note that in Ay, n5E(,2) = Ea(z, 2), we begin with

N
Eue) == [ S[fwe— )+ P 1)) f)de
koj=1
N

+ /Sk(Buo)w'(x—fk)dx + /Sk [E()g —;F(w])] w'(z — fr)dz

+ / [Ev1 + Erg + Ers]w'(z — fi) de + N(@*)w'(z — fr) d
Sk Sk

+ < [E2 + Eap + Eps|w'(z — fi)dz + B N(@*™)w'(z — fi)dx
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Using the fact that ffooo w" (s)w'(s) ds = 0 and the asymptotic formulas for w' in
(2.2), we get

I — 2 ol II al 2
1=—ev fi(ez) + O(e Zf15z+0 Z( EZ),
j=1 j=1

where v1 = [ _(w'(s) )2 ds.
Now, from the definition of the operator B, , in (2.8)

N
Ly(ez) = €2 by (e2) f}, + O(o 2 3)z:[f]' + (fjl-)2 + f]'-'];
j=1
where
bs(e2) = Mkons(€2) + v1kins (1 —€2). (6.3)

As for I3, using the expression of the error term FEgs in (2.13), we find
N
Eoy — Y F(w;) = plwe)? (uo —wi) — Y _(w;)?
j=1 J#k
1
+ [ §Fll(wk)(u0 _ wk)2 + 1;1;?’?0(6 =3|f; —w|)]

Eooo,k + Eo21,6 + Eo2o,-

We will now write

E020,k w'(a: - fk) dx
Sk

p—1
= w We—1 + W w'(x — fr)dz + & max O(e™ i~ /¥
P/Sk( k) [ k—1 k—H] (z — fx) max ( )

= 7 [e—(fk—fk_l) _ e—(fk+1—fk)] + M max O(e~ 1= v),
i#k

where py is a small positive constant depending only on p, and v, is a positive
constant given by the following expression

fyzzpCp/ w”_l(s)w'(s)e_sds—pcp/ wP™(s)w'(s)e®ds.
0 0

For k fixed let us consider the following integral

1 [
5 ‘/fk—l‘*'fk
2

Similar estimates hold for

F" (wy) (uo — wi)*w' (z — fi) dx‘ < gh2 mﬁgo(e_‘fj_fk‘)-
J

1 f1c+12+f1c
3 ‘ F" (wy,) (ug — wy)?w' (z — fr,) ‘ dz.
Jre
Therefore, in Ay, there exists a small positive constant us such that
I, = v [e_(fk—fk—l) _ e_(fk+1—fk)] 4 ghs maxo(e—\fj—fk\)_
ik
Similarly,

L = —Bi(2) fy + ™ mﬁlch(e_‘ff_M),
j
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where

!

Bi(z) = 2/R[ko<1>zz($,z) + k19, (2, % —2)|w (z) da.

In fact, we will use the smallness of L2 (0, 1)-norm of the term involving f;c (e2)®,. (z—
fr(e2),z) in Iy. Let

Ke) = [ fi(e2)Ben(o = ulen).2) /e - fule) de,

then

2
||/c||%2(071) < Cs4|ln5|2/ @u(x—fk(E),g)‘ dzdé < Ce®|lnel’.

Sk

Using the facts that the function w' () is odd and the functions ¢*(z,z) and Z(z)

(in the definition of construction of the approximate solutions) are even, we can
derive, for i = 5,--- ,7

1Ll 22(0,1) < Ce*t#5, for some small pg > 0, (6.4)

which end the estimates for all terms in &1 (e2).
To compute £z (e2) we notice that for (z,2) € S5/ \ Ax we have

1o _ 0 — 21 fi—fel
w'(x — fr) max (e )

and thus we can estimate
7
Era(e2) = e? max O(efi= ey 4 O (/2 I;.
ta(e) = &2 max O( )+OE 3

Gathering the above estimates, we get the following, for kK =1,..., N

/S 7§ Bla,2)w' (¢ — fule2) da = —n fl — € Bal2)

+72 (e_(f’“_f’“—l) - e_(f’““_f’“)) + Pr(e2), (6.5)

where
N
— -2.3 2 —|fi=f
Pu(es) = 0T LS+ (7 + £)) + ¥ mgrOle ),
Ba(2) = Pi(z) — bs(e2),

with pug < pi, ¢ = 1,---,5. Moreover fi’s need to satisfy boundary conditions
(2.14). For further references we observe that

||,Pk||L2(071) < 052'{‘#77 for some 7 > 0, k= - 7N' (66)

The above estimate is possible thanks to the fact that we have chosen o = £s.

Continuing with the terms involved in (6.1), using the quadratic nature of Na(¢)
and Proposition 5.2, we get for

Qu(e2) = [ 1 Na ) v/ (@ = fulez) da
S
a similar estimate holds
1QkllL2(0,1) < Ce* T8, k=1,--- N. (6.7)
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We point out that, by Proposition 5.2, O is a continuous function of the parameters
f and e. The last term in (6.1) can be written as

Vi (ez) = /S Ly(p)w'(z — fr(ez)) dx
=/ ¢ w'(z — fk(ez))dx-i—/ B, (@) w'(z — fr(e2)) dz
s &
+/s ¢ [w" (z — f(ez)) + FW)w'(z — fr(ez)) ] da.

A similar estimate holds
[1Bk||L2(0,1) < Ce*the k=1,---,N. (6.8)

In fact, the proof is very straightforward. For example, using the orthogonality
conditions we can get

By (e2) = /s ¢ w' (x — fr(ez)) da
=8L¢Lﬂww—n&wrwﬁﬁwu—n@anm
s2efy [ gow@ = fuen) do
S

The estimate for U} follows from Proposition 5.2. Moreover, it also depends con-
tinuously on the parameters f and e.
We define for { = ez

Nk(f,f,f,f ,€,e,e ) = Pk + Qk +%k
From above discussion, we draw a conclusion as the following proposition

Proposition 6.1. For k=1,--- ,N, there holds the following estimate

/[mw+ﬁé+%m@wmm

o0

_ _52'71fllcl _ g2 ﬂ2(g)fllc + 7 (e_(fk—fk—l) — e_(fk+1—fk)) + N.

Moreover, Ny can be decomposed in the following way

Nk :Nkl(Cafafla.f”;eJ elae”) + NkQ(CJf’f{Je’ el)‘

where Ng1 and Ny2 are continuous of their arguments. Function Ny satisfies the
following properties for k=1,--- |N

||Nk1(§,f,f’,f’,e, e,’e”)||1,2(0,1) < Qg?tro,
||Nk1(§7faflafuaea e,e)=Nu(G.fi.f.f e, e, e) |L2(0,1)
< Ce?o|Inel? [||f — fillm2o,1) + |le — edlls ]
Function Ny satisfies the following estimates for k=1,--- N
[Ne2(G £ € €)|| gy < C*He.

We omit the proof of this proposition. In fact, careful examining of all terms will
lead the decomposition of the operator N}, and the properties of its components
Nkl and ng. O
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6.2. Estimates for parameter e. In this subsection we turn to the estimates

of all terms in (6.2) and firstly consider for each k, (k = 1,...,N), the following
integrals

[ 15 B 2) 200~ fule) do
S
= {/ +/ } 05 E(a:,z)Z(x—fk(ez))dw
Sk JS\Sk
= Fri1(e2) + Fra(ez).
Note that in Ay, n5E(x,z) = Ea(x, 2), we begin with

-7:k1 (EZ)

——s/Zf” (o= )+ (5w — 1) ] 2(0 = i) do

k]]_

+/Sk(Bu0)Z(m—fk)da:+/ [EOQ—ZF w,] (z — fi)dz
: [Ey + B+ B3] Z(x — fr)de + ; N(¢*) Z(xz — fr) dz

+/ [Ea1 + Eas + By | Z(x — fi)de + N(¢™) Z(z — fr) dz
Sk

Sk
7
= Z J;
=1

Using the fact that ffooo w'(8)Z(s) ds = 0 and the asymptotic formula for Z we get

N N
Ji = 23 (f1)? Z( (e2) ) 3)ij"'(ez)
j=1 j=1
where 3 = fR s)ds. By similar computation of I»
N
Ja(e2) = 29 fibo(e2) + 02 Y[ £+ (F))2 + £ ],
j=1

where b, (ez) is defined in (6.3) and ~ys is a constant defined as above.
Similarly as in the computation of I3, we get that there exists a small positive
constant 77 with % < 11 < 1 depending only on p such that

J3 = m [e_(fk_fk—l) + e—(fk+1—fk)] 4t maxO(e_lff_f’“l)
i#k

where

4 = pCp /Ooo wP"(s)Z(s)[e * +e®]ds.
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Since w' (z) is odd in the variable z and Z(z) is even in the variable

J41 = / E11 Z(.’L‘ - fk) dx
Sk

[kop(sz) + k1p(1 —€2) ZZ x— f;) Z(x — fr)de
Sk] 1

+O(53)|1n6|‘1/ e U-olfi=el 75 — f,) da

Sk
= co(ez) + emaxO(e”fi=Txl)
i#k

+0(53)|1n5|4/ e=(1=015=2 7(x _ £,)dz
Sk
where

a1(ez) = kop(ez) + kip(l —e2).

Since the functions ¢*(z, z) and w(x) are even in the variable

J42 = E12 Z(.’IJ — fk) dz
Sk

/S spz ¢] Z(x — fr)dx

_ 6ma.xO(e (95— #ily,
J#k

Js = N(¢*) Z(z = fi) dz

I
m
Q
M)
+
™
M
B
=5
S
>

where
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Since Z' (z) is odd in the variable z and Z(z) is even in the variable

J61 = E21 Z(.Z' — fk) dz
Sk
N
= / Z [(se +eXoej ) Z; +E3z e]Z Z(x — fr)dx
Sk j=1 j=1

N
+/s Z (—253e;f;-Z;+ 63ejf;-l Z;) Z(x — fr)dx

k=1

N
e, +eXoer + Z(E‘iﬂ’e; +ePt2e;)
i=1
N N
+ettP Z(fj)zej + ettP Z(ejfj +2e;f;)-
i=1 i=1
Since the functions ¢} (z,z) and w(z) are even in the variable z

Jeo = Es Z(x — fi)dx
Sk

/Sspz[uow —ut )¢ Z(a — fi) d

= 2a3(2) er + /> max O(e~Fi~Irl),
J#h
where
1
az(z) =pp-1) / wP%(s) [ko B(s,2) + k1 D(s, o z)]Z2(s) ds.
R
Since ¢** is a term of order ¢ and from the assumption on ey, we derive

Jr = N((ﬁ“) Z(.’E—fk) dz

Sk

/s [F(ug + ¢* + ¢**) — F(ug + ¢*) — F'(ug + ¢*)¢** ] Z(z — fr) dz

1
= 5p(p—l)azei/wpﬁ( VZ3(s)ds + O(e Zek
R
N

= eye; +0( Zei,

where 75 = 3p(p — 1) [ wP~%(s)Z3(s) ds.
To compute Fya(cz) we notice that for (z,2) € Ss/. \ A

Z(z — fr) = mﬁfo(e BIti=1uly

and thus we can estimate

F — gl/2 O(e i=fely L O(£1/? J;.
) = maxOfe M) + 0 1
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Gathering the above estimates, we get the following, for k =1,...,N
/Sn§ E(z,2) Z(x — fr(ez)) dz = e2v; (fr )2 + e2ys ez
+74 [e ~(he=fim1) 4 g =(fer1=Fr) ] +eai(z) + 2 aa(z)
+63e;€’ + 2az(2)ex +edoer + Ri(e2), (6.10)
where

N N
Ri(e2) = O(0 ") 3_[fj + (F)" + f{ 1+ 0E") Y _ei

k=1
+e2y3 fr by (e2) + €™ miicO(e_m_f’“'). (6.11)
j

For further references we observe that

||Rk||L2(0,1) < 082+T2, for some 7 >0, k=1,---,N. (6.12)

Continuing with the terms involved in (6.2), using the quadratic nature of Na(¢)
and Proposition 5.2, we get that for

Hale2) = [ 15 Na(@) 2o — fule2)) do,
S
a similar estimate holds
[[Hellz2(0,1) < Ce*T™, k=1,---,N. (6.13)

We point out that, by Proposition 5.2, Hj, is a continuous function of the parameters
fand e.
The last term in (6.2) can be written as

Up(e2) = /S Lo(6) Z(z — fu(e2)) dz
- / bos Z(z — fi(ez)) do + / B, +(6) Z(z — fu(ex)) da
S S
+ /S 612" - fu(e2) + F (W) Z(z — fi(e2)) ] da.

A similar estimate holds
||uk||L2(0,1) SC€2+T4, k=1---,N. (6.14)

In fact, the proof is very straightforward. For example, using the orthogonality
conditions we can get

The estimate for U4}, follows from Proposition 5.2. Moreover, it also depends con-
tinuously on the parameters f and e.
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We choose 7 in (3.10) is a small constant such that 0 < 7 < min(r;,po), 1 =
-,4 and define for { =€z

Mk(47faf17f”5e7elae”) = Rk: + Hk + uk; + 62’)’5 6%,
then we can conclude with the following proposition

Proposition 6.2. For k=1, --- ,N there hold the following estimates

/°°[L2<¢) + B+ mNa($)] Zede = 2 (1)

o0

+ v I:e*(fk*fk—l) +e*(fk+1*fk)j| 4 6&1(() + 820[2(%)

+63€Ik’ + 52a3(§)ek + eXoer + My.

Moreover, the operator My, can be decomposed in the following way

Mk = Mkl(C)fafafl7ea elae”) +Mk2(C7f7f,7ea el)a

where My and Mys are continuous in their arguments. There exists a positive
constant 19, To > T, such that function My satisfies the following properties for
k=1,--- N

[Mir (G155 €€ )| oy < CE*,
M (G 15, F e e) = MuC fiu i fisenens€)|] g
< Ce* ™| lInel? [||f_.f1||H2(0,1) +|le— e1||b],
and function Mya satisfies the following estimates for k =1,--- |N
[Mia(G £ F e €)oo, < 2.

7. Location of the Concentrating Layers. Setting
1
0:2((—5), —-1<6<1,

and defining the operators

Li(f) = Evfi +VAB0) fi, — e rlimt) pemimmii),
« " A
Li(er) = e, +eald) e, + Z"ek,

from previous section, after obvious algebra, we have to deal with the following
system with &k running from 1 to N

Li(fr) = N, (7.1)

Li(en) — as(0) — as(d) = éMk, (7.2)
(1) + K4 fe(1) = 0, (7.3)

fr(= 1) + K_ fr(-1) = 0, (7.4)

€, (1) + Kiep(l) 0, (7.5)

€ (=1) + K_ex(=1) = 0, (7.6)
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where K_ = 1 ko, Kt = k1, v = 4n/v > 0, fo = —00, fy41 = oo and the
functions defined by

1-—

as(6) = o 9)+ea2<1 b,

2¢
ag(0) = evs [fk [ (Fs=Fi-1) 4 g=(Fot1— fk)]
( 0+1) T ( 12—60)] dz,

i e ko ® 0;5 )+k1 ( %)]w'(:c)dm
k 9 k -
- () - 5w ()

Before solving the above system, we study two simpler problems in the following
two subsections.

alf) = C/w" 272

7.1. In this part, we consider the following Toda system for k =1,--- | N

Li(fe) = hg, (7.7)
(D) + K4 fi(1) = 0, (7.8)
fie(=1) + K- fr(=1) 0, (7.9)

where fo = —o0, fy41 = 0.

Proposition 7.1. Assume that the following conditions hold:
K_ >0, K; <0,
K - K, +2K_K; >0, (7.10)
K_ + K,
—_— -1,1
2K_K+ G ( ? )7
and let functions hy, be such that
lhellL2(—1,1) < Ce?t,
with some p > 0. Then, for each sufficiently small € there exists a unique solution
f=Ti(h1,...,hN) to the system (7.7)-(7.9) which satisfies
I fillzr2(—10y < Cllnel’,  k=1,...,N,
and fork=1,...,.N—1

N

fer1(6) — fr(6) > 2|Ine| —4In|Ing|, > fr =", (7.11)
k=1
with some 0 < p' < p. Moreover there exist A = c|Ilng| + O(In |In¢gl), 6 € (0,1),

which do not depend on hy,k =1,--- , N, such that we have the following represen-
tations, fork=1,...,N —1

Fr(0) = q (MO —00)) — (k—1)In X’ + ¢4(6),
and fork=1,...,N -1
Fre1(0) — fx(0) = qey1 (MO —60) ) — (A6 —60) ) — InX’e? + g k41(6)-
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Functions q are explicitly given as solutions of the Toda system
q;c' —elaw-1=ar) 4 olak—ar+1) — 9 jp R, qry1 —qr >0,

where we take go = —00, gn+1 = 00, and functions ¢r, and @y k11(6) satisfy

Ikl < Ce® s ok prrllm < Cet .

Note that since [I| = 1 and K = % K, = £ condition (7.10) is actually

equivalent to (1.7). We mimic the proof of Theorem 6.1 in [9]. By setting

N
V=> fi, Ve=fi—frrr, k=1,---,N—1,

j=1
N

H=Y hj/e’, Hy=hy—hgp, k=1,---,N -1,
j=1

problem (7.7)-(7.9) is equivalent to the following systems. One describes the location
of the center of mass of N-concentration layers as

yV" + BO) V' =H, (7.12)

V'1l) + K,V(1)=0, V'(-1) + K V(-1)=0, (7.13)

and the other relate to the balance of mutual distance between N-concentration
layers, for k=1,--- N — 1,

2V + 27 BO)V, — e¥rt + 2eVr — Vit = Hy (7.14)

Vi(l) + K, V(1) =0, V/(-1) + K Vx(-1) =0, (7.15)

where Vo = Vy = 0.

The next proposition focuses on the solvability of (7.12)-(7.13) and gives a de-
scription the location of the center of mass for the N concentration layers, which
will collapse to the line segment I' because of the smallness of H.

Proposition 7.2. Under the non-degenerate condition (1.6), if H € L?(0,1) then
there is a constant € for each 0 < € < €g satisfying (1.11), the problem (7.12)-
(7.18) has a unique solution V € H?(0,1) which satisfies the following estimate

WVlleo + IV {l2 + IV [l2 < CllH]|L2(0,1)-

Proof. Under the non-degenerate condition (1.6), the existence part comes from
the continuity method and a priori estimates, whose validity can be proved because
the nontrivial term a;(£) posses fast variable. Hence, we focus on the proof of the

e
estimate by the method of Fourier expansion. There exists an orthonormal basis of
L?(0,1) constituted by eigenfunctions {y,}, associated to the eigenvalues {(,}, of

the following eigenvalue problem
—y"(0) = Cy(6), 0< O <1,
y (1) +kiy(1) =0, 3 (0) + koy(0) = 0.
The result in [20](on Page 9 and 10) shows that, as n — oo
Ve = nm + Bk 4o o). (7.16)
It is easy to see that there exist a universal positive constant C' such that

l9n(8)] < Cm,
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for all n € N. We then expand

6) = Huyn(0), V(6) =1 anya(6), BOV (6) = duyn(6)

and carry out estimates of above Fourier coefficients d,’s. We only calculate two
components of d,, in the sequel

‘/ / za( ﬂ)wz(ﬂf)Vl(ﬁ’)yn(ﬁ)davda‘

\/71’)’2
<o[ [ [womwran) < { [ [ |eae e}
< anllVlz= (r.17

and

2\/7_2 ‘/ 1*‘9 )V’ (0) a(6) 6|

off v ()Pdo] AL )’

o[|V'||z2, (7.18)

IA

IA

where o1 can be chosen small if the constant ¢ is sufficiently small. The estimates
for other two components in d,, can be showed similarly.

From the equation

_Cnan + dn = hn;

and estimates of the Fourier coefficients d,,’s, we get
hn
Cn
Therefore, from asymptotic expression of ¢, in (7.16) and the smallness of o1, we
obtain

lan| <

g1 !
— IV ||2-
eIVl

V1132 + 1IVI2 < ClIH|S.
Hence
IV Nz < C (bl + IV (|22 + [[V]Iz2),
and the final result then follows. O

From now on, the subsection is devoted to the solvability of (7.14)—(7.15). Let
us set

Vi = Vi +1In(e?)
so that (7.14)—(7.15) becomes
VY + ABO) VL — eVt 4 2e% — et = 1y, (7.19)
Vi(=1) + K_Vi(=1) = =K_ In(e?), V{(1) + K, V(1) = =K, In(e?), (7.20)

where Hj, = e~2Hj. To solve the above problem we will take advantage of the
fact that the equation (7.19) without the first order term considered on the whole
real line has an explicit solution. To this end we introduce two parameters 6y and
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[A| > 1 and then define a change of variable t = A (6 — 6y), and look for a solution
to (7.19)—(7.20) in the form:

7(6) = @ (M0 — 60)) + 32,

where for convenience we have set A = A V7. Tosolvefor k=1,--- ,N -1
@ + Bt)q — ™t + 2e — e+ = XT2H, (7.21)
AG, () + K_g(t) = —K_In(3&?), (7.22)
AG(tY) + K1 qe(tt) = —Ki In(3¢?), (7.23)
where 3(t) = B(6o + t/AN)/X, t= = =M1 +6p), t+ = A1 — 6p), we first solve

(approximately) the homogeneous problem without the first order term to determine
just two parameters 6y and A and next set ¢ = g+, where g, satisfy the following
equations

qp — e™ ' + 2e% — et =0 inR k=1,....N-1
where g = gn = 00. The procedure to find the corrections ¢y will be described in

the following for N = 2. For general N > 3, the proof is similar and the reader is
referred to the paper [9].

¢ Cluster of two layers: Since N = 2, system (7.21)—(7.23) can then be
reduced to a single scalar equation

§ +B)§ +27 = X2h, tT<t<tt (7.24)
AN§(t7) + K_g(t7) = —K_In(e?)\?), (7.25)
MG (tT) + Ky gtt) = —K,In(e2)?). (7.26)

The homogeneous version of the equation (7.24) without the first order term con-
sidered on R has an explicit solution

q(t) = In (W) '

It can be seen easily that uo(t) < 0 and also that
q@(t)=—lt|+ 0 "), ¢t +oo.
We will now look for the first approximation of the solution of (7.24)—(7.26) in the
form ¢(t) = go(t) and then get the following system for the parameters 6, A:
Ay (=A(1+60)) + K_qo(-A(1+6p)) = —K_ In(e2)?), (7.27)
Ago(A1—60)) + Ky qo(AM(1—80)) = —K;In(*)\?). (7.28)
This is in fact a nonlinear system for (6, A). Although it is in principle possible to
find exact solution (6, A) to (7.27)—(7.28), we will not do it here. Instead, taking

into account the asymptotic behavior of go, we will look for (6, A) that solve the
following system

AM1-K_(1+60)] = —K_In(e2)?)
A[=1=K,(1-6)] = —K In(c2X?)
which has a solution (fp,A) such that A = O(|Ine|) > 0, 6y € (—1,1) thanks to
(7.10) and our assumption. In fact we have that:
0 - K++K_ _ K+ ln(525\2)
T K, K’ " T 1+ K (1-6)

(7.29)

(7.30)
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Notice that to find A in (7.30) we have to solve a simple nonlinear equation. One
can show that

9K K, 1 1
A= K — K, 12K K, lng + O(Inln E) (7.31)
Denoting
gr = Agy(t) + Kiqo(t) + K4 1n(e?X?), for t = A(1 — 6p),
g- = Agy(t) + K_qo(t) + K_1In(e?)?), for t = —A(1 + ),

we get from (7.31)
lgx| < Ce*, (7.32)

with some p > 0. We will seek an exact solution to (7.24)—(7.26) in the form
q(t) = qo(t) + o(t).

To find ¢ we will use a fixed point argument and thus we need to study the linearized
version of (7.24)—(7.26) as
¢" + B¢ +2eTp=h, (7.33)
AP+ K o(t7)=g-, A'(t7) + Kig(t") = g4, (7.34)
with a given function h € L2(t~,t") and small constants g. .
Before that, we need the solvability of a more simpler problem like,

¢" + 2e™¢ =h,
with the same boundary condition as (7.34). Functions

di(t) = qo(t),  ¢2(t) = tgo(t) +2,

form the fundamental set for problem (7.33)—(7.34) without the first order term
in the equation and the Wronskian is W (41,12) = 1. By variations of constants
formula

t

w>=—wm/ wwmwﬁ+ww/ 1(5)h(s) ds

7/\(1+90) 7/\(1+90)
+eai(t) + catha(t).
Functions 91, ¥ satisfy the asymptotic formulas
Gi(t) =FL+ 0™ M), o(t) = —Jt| + 0™ "), t— oo

from which it follows easily

Igllze < CX*/2 [|Allzz + A fer| + Jea] ] (7.35)
To determine constants c1,c2 we need to solve the system:
e [My + K] + e[ My + K _tp2] = g, at t = —A(1 + o),
e [M] + Kpr] + co[ My + Kol = g4 + g4, att=A(1—6o),
where
A(1—60) A(1—6o)
g =Katn [ wahe)ds - Kevn [ da(o)h(s)ds.
—A(1+90) —/\(1+90)

This system has a unique solution for X > 1 since the matrix

( K_ 1—K(1+00)>
—-K, 1-K(1-6p)



CLUSTERING CONCENTRATION LAYERS AND TODA SYSTEM 39

is nondegenerate thanks to the non-degeneracy conditions. In fact we find

el < C[lg-1 + g+ X2(|]l 2 ]
leal < CXT[lg-| + lga| + X272 IRl 2]

From (7.35) we get
lgll: < C [X[lhllze + X2(|lg-| + lg4+]) ]
By a straightforward argument we get a further estimate

1911 16" |2 + 16|12 + l|4llz>
< C[XIhllzz + A2 (9= + g+ ]- (7.36)

Hence, we can solve the following problem

¢ + 2ep =,
M) + K g(t7) =g, AG(E) + Kid(t?) = g4,

and the estimate (7.36) holds.
Just as the computations in (7.17)-(7.18), it can be derived that

1Bl]2 < e, for i’ > 0.
Given the last formula and (7.32) and assuming in addition that
||z < e*,

it is easy to solve (7.24)—(7.26) using a standard fixed point argument in the set of
functions

x={o]lgllx < e} with p" <min(u, ).

After this is done one can go back to the original problem solving the following
equation for f; and f

fo= gV 4TV, fo = 5 (V=Ta).

It is easy to check the validity of Proposition 7.1 and we finish the proof for the
case N = 2. O

7.2.  We turn to the following linear problem
Li(e) =g(0), -1<0<1, (7.37)
/ 1 ' 1
e (1) + §k1€(1) =0, e(-1)+ §koe(—1) =0. (7.38)

Proposition 7.3. If g € L?(0,1) then for € satisfying (1.11) there is a unique
solution e = Ty(g) in H?(0,1) to problem (7.37)-(7.38) which satisfies

llells < Ce™ ' lgllzz(o,1)-
Moreover, if g € H*(0,1) then

e?lle lz2(0,1) + lle llz2(0,1) + llellz=(0,1) < C llgllm2(0,1)-
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Proof. The proof is similar to that of Lemma 7.2 in [42].
There exists an orthonormal basis of L%(0, 1) constituted by eigenfunctions {zy},
associated to the eigenvalues {£;}, of the following eigenvalue problem

~y () - &y(6) =0, 0<b<1,
Y (1) + 5k =0,y (=1)+ Shoy(~1) =0.

The result in Page 9-10 of [20] shows that, as k — oo

_ km k,‘l - ko 1
Ve = 5+ T+ 0(), (7.39)
Tp = cos(k;(0+1)) + 0(%) (7.40)

Let
9(6) =Y grzr(6), e(®) =D arzi(8), a®)e(d) = crzi(9).
k=0 k=0 k=0

Now, we can use (7.39) and (7.40) to calculate the coefficients cx

Ck

1
/ a(6) e(6) cos(%”(eJr 1)) + 0(%) el o

-1

_ %/1 a(@)e(e)[cos(kg(e-i-l))]” do + 0(%)|Ielle

-1

+%/1 [a(e)e(é’)]” COS(%(G'{‘I))da + O(%)He”L“'

-1

Using the formula of definition «, the estimates of ®(z,z) in Lemma 3.1 and the
equation for e, we can find

c
lex| < )2 llel| e - (7.41)

Using the equation
A
—e?&ar +eck + Zoak = 0k
it is derived that

|9k | lle]| Lo
< . 42
arl <O Mo — 4226 T (k)] Mo — 42761 | (7.42)

From the gap condition (1.11) and (7.39), we get
|Ao — 42&,| > Ce. (7.43)

Using the asymptotic expression of & in (7.39) and the gap condition (1.11), it can
be derived

1
< Ce|lng|. 7.44
2 ()2 %o — 4225, | < Cllnel (7.44)
VAR N/ RS
Combining (7.42)-(7.44), some elementary analysis will give

llellz= < C_ laxl

Ce|lng||le|lz~ + e |gllz2-

IA
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Hence,
llellr= < Ce™H|gl|z=. (7.45)

Multiplying the equation (7.37) by e and integrating by parts, and then using (7.45),
we can get

elle'||z2 < CeY|gll 2 (7.46)

The rest of the estimates can be derived easily. Under the gap condition (1.11), we
can easily solve the following problem because of the good asymptotic expression
of & in (7.39)

e%e’ (6) + %e(o) =g(6),0<0<1

(1) + %kle(l) =0, ¢(0)+ %koe(o) ~0.

The existence part comes from above estimates and the continuity method. O
We give a proof of the main theorem in the final part of this section.
Proof of Theorem 1.1: If € solves

L5E)=a;5 —1<6<1
e(1)+Kpe(1)=0, é(-1)+K_é(-1)=0,
from the definition of a5 and Lemma 3.1, we get
el z2(-1,1) < Ce'/2.

Replacing ey, by é + ey, the system (7.1)-(7.6) keeps the same form except that the
term ay disappear. Moreover, let € solves

L3(ér) = aer(0),
& (1) + Ky &,(1) =0, é,(-1)+K_&(-1) =0,
where

_ _ , 2
a(®) = enud?en(N000) an(NO0) 452 [ (36— 6y))]

+ e\ ! ( A(6—00) ) — ( A(0—00) ) ’
combining the fact that gy — gx—1 > 0 and Proposition 7.3, it derives
€kl m2(-1,1) < Ce*.
Define
D= {f,e € H*(8)

||f||H2(—1,1) < D|ln5|2, }
llells < Cet.
For (f,&) € D, we can set for k=1,--- | N
he(f.e) = Nu(ff,f ,e,e,e) + N, F,e,8),
gr(f,e) = éMkl(f,f’,f”,e,e',e”) + %ng(f,f",é,é').

We now use Contraction Mapping Principle and Schauder Fixed Point Theorem to

solve (7.1)-(7.6) with the right hand replacing by hx and g. In fact, for any f° and

€%, we can use Proposition 7.1 to get

1 =T (hi(£°,e°), -+, hn(f0,e%)).
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Moreover, for k=1,...,N
0 =ar (A6 —6p)) — (k—1)InN’e* + ¢, (£°,€"),
and fork=1,...,N -1
Fer1(0) = £ (6) = ar1 (MO = 60) ) — ax (A0 —b0)) — InA%e® + ¢ 411 (£, %),

where we use ¢ (f°,e°) and ¢ ;. (f°,€°) to denote the dependence of these two
functions on f° and €°. Setting for k=1,--- ,N

Hi(£0,€%) = eqah? et (3O=00) ) =auss (X0=00) ) ~trvmnsr | 9e0, X g1 (N8 = o)) 6
+ 5,745\2 eTk—1 ( A(8—60) ) —qk ( A(60—60) ) —taPr—1k + &vs [¢Ik] 2

where t1,t2 € (0,1), then we can use Proposition 7.3 to set
e = To(Hi(f% ") +g1(£%,€%), -, (£, ) + gn (£°,€%)) + (@1, én),

where
llexllo < Ce.

Whence, by the fact that N1, M1 and H are contractions on D, making use of
the argument developed in Proposition 7.1 and 7.3 and the Contraction Mapping
theorem, we find f and e for a fixed f and e. In this way we define a mapping
Z(f,e) = (f,e) and the solution of our problem is simply a fixed point of Z.
Continuity of N3; and My;, i = 1,2, with respect to its parameters and a standard
regularity arguments allows us to conclude that Z is compact as mapping from
H'(-1,1) into itself. The Schauder Theorem applies to yield the existence of a
fixed point of Z as required. This ends the proof of Theorem 1.1. O
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