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Abstract

We consider the following singularly perturbed elliptic problem

EAL—a+a =0, >0 inQ, Z_ZZO on 99,

where Q is a bounded domain in R? with smooth boundary, ¢ is a small parameter, n denotes
the outward normal of 9Q and the exponent p > 1. Let I' be a straight line intersecting
orthogonally with 00 at exactly two points and satisfying a non-degenerate condition. We
establish the existence of a solution u. concentrating along a curve near I', exponentially
small in £ at any positive distance from the curve, provided ¢ is small and away from certain

critical numbers. The concentrating curve will collapse to I" as € — 0.

1 Introduction

We consider the following problem

ENL—TU+aP =0, @>0 inQand?—Z:Oon@Q, (1.1)

where Q is a bounded domain in RY with smooth boundary, ¢ is a small parameter, n denotes the
outward normal of 02 and the exponent p > 1.
Problem (1.1) is known as stationary equation of Keller-Segel system in chemotaxis [20]. It can

also be viewed as a limiting stationary equation of Gierer-Meinhardt system in biological pattern



formation [10]. Problem (1.1) has been studied extensively in recent years. See [26] for backgrounds
and references.

In the pioneering papers [20], [27]-[28], under the condition that p is subcritical, i.e., 1 < p <
% when N > 3 and 1 < p < +00 when N = 2, Lin, Ni and Takagi established the existence
of a least-energy solution U, of (1.1) and showed that, for ¢ sufficiently small, U, has only one
local maximum point P. € 9. Moreover, H(P.) — IE%%H(P) as € = 0, where H(-) is the mean
curvature of 9. Such a solution is called boundary spike-layer.

Since then, many paper investigated further the solutions of (1.1) concentrating at one or
multiple points of Q. (These solutions are called spike-layers.) A general principle is that the
location of interior spikes is determined by the distance function from the boundary. We refer
the reader to the articles [2], [5], [7], [11]-[13], [31], and references therein. On the other hand,
boundary spikes are related to the mean curvature of 9€2. This aspect is discussed in the papers
[3], [4], [6],[14],[19],[30],[32], and references therein. A good review of the subject up to 2004 can
be found in [26].

The question of constructing higher-dimensional concentration sets has been investigated only
in recent years. It has been conjectured in [26] that for any 1 < k < N — 1, problem (1.1) has
a solution U, which concentrates on a k-dimensional subset of 2. We mention some results that
support such a conjecture.

In [24] and [25], Malchiodi and Montenegro proved that for N > 2, there exists a sequence of
numbers € — 0 such that problem (1.1) has a solution U, which concentrates at the boundary
00 (or any component of 9Q). In [22, 23], Malchiodi showed the concentration phenomena for
(1.1) along a closed non-degenerate geodesic of 91 in three-dimensional smooth bounded domain
. Mahmoudi and Malchiodi in [21] proved a full general concentration of solutions along k-
dimensional (1 < k¥ < N — 1) non-degenerate minimal submanifolds of the boundary for n > 3 and

N—k+42
1<p< §55-

In the above papers [21]-[25], the higher dimensional concentration set is on the boundary. A
natural question is if there are solutions with high dimensional concentration set inside the domain.
In this paper we consider problem (1.1) with solutions concentrating on a curve I near a straight
line T intersecting the boundary. More precisely, throughout the paper, we assume that N = 2.
The curve ' C Q satisfies the following assumptions (see Figure 1): The curvature of T' is zero
and after translation and rotation, I' is contained in the §; = 0 axis in the (§1,J2) coordinates. T
intersects 9f) at exactly two points, saying, 71,7, and at these points I' L 9. The boundary 902
can be represented as ¢1(¢1) and o (1) near 7,y respectively. Moreover, after rescaling, we can

always assume |I'| =1, i.e. ¢1(0) — ¢o(0) = 1. Let —k; and ko be the curvatures of the boundary



Figure 1:

01 at the points v, and 7y respectively, where
k1 =¢1(0), ko= po(0)- (1.2)
We define a geometric eigenvalue problem
FO+Xf0)=0,0<6<1, fQ)+kf(1)=0, f(0)+kof(0)=0. (1.3)

We say that T' is non-degenerate if (1.3) does not have a zero eigenvalue. This is equivalent to
the following condition:

ko — ki + koky|T| # 0. (1.4)

Before stating the main result, we introduce two functions w and Z. Let w be the unique (even)
solution of

"

w —w+w’=0andw >0in R, w (0) =0, w(+oo) = 0. (1.5)

It is well known that the associated linearized eigenvalue problem,
B —h+pwP~'h = Ah in R, / h? =1, h € H(R) (1.6)
R

possesses a unique positive eigenvalue A9 with a unique even and positive eigenfunction Z.

Our main theorem can be stated as the following:

Theorem 1.1. Assume that the line segment ' satisfies the non-degenerate condition (1.4). Given
a small constant ¢, there exists €9 such that for all € < g¢ satisfying the following gap condition

k2

- 2\ >¢ 1.
Ao e el >¢ce, VEkeEN, (1.7




problem (1.1) has a positive solution u. concentrating along a curve T'c near T'. Near T, u. takes

the form
ue(f) = w (y—) (1+ o(1)) . (1.8)

Moreover, there exists some number co, for § = (§1,92) € Q, ue satisfies globally,
ue(j) < exp[ —co & ' dist(§,T:) |
and the curve T'c will collapse to T as € — 0.

Let us comment on related results, and the difficulties as well as main steps in proving Theorem
1.1.

The geometric eigenvalue problem (1.3) also appeared in the study of transition layer for the
following Allen-Cahn equation

2Au+u—u* =0in Q, %:00n89. (1.9)

In an interesting paper [15], using I'—convergence, Kohn and Sternberg constructed local mini-
mizers to (1.9) with transition layer at straight line segment contained in © which locally minimizes
length among all curves nearby with endpoints lying on 9Q. (See Figure 1.) Later, M. Kowalczyk
[16] extended the construction to non-minimizing line segments. More precisely, assuming that T
satisfies (1.4), he constructed a solution u. whose zero set I'; converges to I, for all € sufficiently
small. In [29], Pacard and Ritore constructed transition layer solutions to (1.9) near minimal
submanifold on a closed Riemannian manifold.

To explain in a few words the difficulties we have encountered, let us assume for the moment that
Q) = (—00,+00) x [0, 1] is an infinite strip. In terms of the stretched coordinates (s, 2) = e~ (§1, 7=2)

the equation would look near the curve approximately like

1
Vgs + 0y —v+ 0P =0, (s,z)€6::IRx(0,E), %zOon@G

The effect of curvature and of the boundary conditions are here neglected. The linearization of

this problem around the profile w(s) becomes

¢zz +¢ss - ¢+pwp71¢ = 0, (S,Z) € 6, g—(ﬁ =0 on 06.

Functions of the form
¢! = wy(s) cos (kmez), ¢* = Z(s)cos (kmez),

are eigenfunctions associated to eigenvalues respectively —k2c? and \g — k2¢2. Many of these

numbers are small and thus “near non-invertibility” of the linear operator occurs. These two



effects, combined in principle orthogonally because of the L2-orthogonality of Z and w;,, are actually
coupled through the smaller order terms neglected.

In [1, 16, 17, 29], related singular perturbation problems, involving the Allen-Cahn equation
(1.9), the translation effect ¢' have been successfully treated through successive improvements of
the approximation and fine spectral analysis of the actual linearized operator. The principle is
simple: the better the approximation, higher the chances of a correct inversion of the linearized
operator to obtain a contraction mapping formulation of the problem. In [24, 25] resonance phe-
nomena similar to the “¢?-effect” has been faced in the Neumann problem involving whole bound-
ary concentration. In [21]-[22] this boundary concentration on a k—dimensional minimal surface
of the boundary, involving both ¢! and ¢? effects, has been treated via arbitrary high order ap-
proximations.

In [8], M. del, Pino, M. Kowalczyk and the first author constructed the curve concentrations

for nonlinear Schrédinger equation
AU -V()U+UP =0, U € H'(R?), U > 0. (1.10)

There, they faced the coupled effect ¢' and ¢2. They introduced a sort of infinite Liapunov-
Schmidt reduction method which is close in spirit to that of finite dimensional Liapunov-Schmidt
reduction method of Floer and Weinstein [9] and provides substantial simplification and flexibility
to deal with larger noise and coupling of the non-invertibility of the linearized operator. Their idea
is to solve first a natural projected problem where the linear operator is uniformly invertible, the
resolution of the full problem becomes reduction to a nonlinear, nonlocal second order system of
differential equations, which turns out to be directly solvable thanks to the assumptions made on
the curve.

The main difficulty in our paper will come from the coupling of ¢' and ¢?, and the boundary
condition. In [8], the error term is of the order O(g?), while here the error term is O(e) since the
stretching of the boundary conditions gives % + O(g). However, the spectrum gap in (1.7) is also
O(g) which creates additional difficulty. Worse than that, the spectrum gap caused by ¢? and the
boundary corrections are strongly coupled. We overcome these difficulties by first using successive
improvements of the approximation and then perform the infinite-dimensional reduction to reduce
the problem to two coupled nonlinear ODEs. The reduced ODEs involve coefficients of both fast
and slow variables (see (7.8) and (7.13)). A careful analysis of Fourier modes is needed to ensure
the invertibility.

The organization of the paper is as follows: in Section 2, we first study a linear problem in &
with both inhomogeneous right hand side and inhomogeneous boundary terms. Then we set up the

problem in stretched variables (s, z) where x = s — f(e2), and introduce the first approximations



involving two unknown functions (f(ez),e(ez)). In Section 3, a gluing procedure reduces the
nonlinear problem to a projection problem on the infinite strip &, while in Section 4 and Section
5, we show that the projection problem has a unique solution for the pair of (f,e) in a chosen
region. The final step is to adjust the parameters f and e which is equivalent to solving a nonlocal,
nonlinear coupled second order system of differential equations for the pair (f,e) with boundary

conditions. This is done in Section 6 and Section 7.

Acknowledgment. The first author is supported by an Earmarked Grant from RGC of Hong
Kong. We thank Professor M. del Pino and Prof. A. Malchiodi for useful conversations.

2 Preliminaries and setting up the problem

In the sequel, w is the even function defined in (1.5). Z is the even eigenfunction defined in the
eigenvalue problem (1.6). Throughout the paper, & represents the strip { (z,2) :z € R,0 < z < % }

in R2. 8,6 and 9,& are two components of the boundary of &, i.e.

"G ={(z,2):z€eRz=

™ | =

Y, 006 ={(z,2):z€eRz=0}

2.1 A linear model problem

We first consider the following linear problem

AP’ — K¢® + puwP~'¢° =0 in &, (2.1)

#? = Gi(z) on &6, (2.2)

¢2 = Go(z) on B, (2.3)

/qﬁomzwm )dz =0, /qboa:z x =0, 0<z<§, (2.4)

where K > )¢ +1 is a large positive constant. Suppose the following orthogonality conditions hold
/RGI ()wy (z)dz = 0, /RGO(:U)ww (z)dz =0, (2.5)

/RGI ()Z(x)dz = 0, /RGO(J:)Z(:c)da: =0. (2.6)

Lemma 2.1. If G; € L2(R), Gy € L2(R) and the orthogonality conditions (2.5), (2.6) hold,
then there is a unique solution ¢° to the problem (2.1)-(2.4) for any large positive constant K.
Moreover there is a constant C > 0, independent of €, such that the solution to the problem (2.1)-

(2.4) satisfies a priori estimate

16° Il m2(e) < C 1G]l L2®) + |Goll2(r))-



Proof. Since K is large, the proof of the existence and uniqueness of the solution and its esti-
mate is standard. To show orthogonality in L?, using the equations of Z(z) and ¢°, for ¢(z) =
Jg ¢° (2, 2) Z(z)dx, one finds

" 1 ! 11

@@= (K=1-X)¢(z) =0, 0<z<-, ¢©)=0, ¢(Q)=0.

Choosing K > Ao + 1, we deduce that ¢(2) = fR #°(z,2)Z(x)dx = 0,Yz € (0, é) Similarly we
have [, ¢°(z, 2)w, (z)dz =0,V 2z € (0,1). _

A special case of Lemma 2.1 is the following problem: finding function ¢ € H?(&) such that

Ap—Kp+puwPlp=0 in6, (2.7)
¢. =Gi(z) on 9,6, (2.8)
b, = Go(z) on 8,6, (2.9)

where K is a large positive constant.

Lemma 2.2. Suppose the functions G1(z),Go(z) are even in x, then there exists a large positive
constant K such that the problem (2.7)-(2.9) has a unique solution ¢, which is an even function

in the variable x and satisfies
18lls2(e) < C(I1G1llz2) + 1Gollr2w))-
Moreover, if G1(z),Go(x) are exponentially decaying in x, then
|<£(x,z)| < Ce= o, (2.10)
where a > 0 and the constant C' does not depend on €.

Proof. The existence of ¢ follows from Lemma 2.1. By uniqueness and evenness of Gi(z),Go(z),
¢ is even. By the exponentially decaying of G1(z),Go(z), we also have (2.10). O

Next, we consider the following problem

Lo(d) =Np—d+puP'g=h in8, (2.11)

¢. =Gi(z) on &8, (2.12)

. = Go(z) on oG, (2.13)
/Ras(x,z)ww(x)dx 0, /RQNS(:U,z)Z(x)dw —0, 0<z< % (2.14)



Lemma 2.3. If h € L*(6), Gy € L3(R), Go € L%(R) and the orthogonality conditions (2.5)-(2.6)
hold, then for any solution ¢ to problem (2.11)-(2.14) we have

[18llm2(s) < C[ ||hllL2(s) + [1G1llL2®) + [1GollL2w) |

where the constant C does not depend on h, G1, Gy and €. Furthermore, if |h| + |Go| + |G1| <
Ce=2l2l | then |¢| < Ce=c®l®l for some C,c > 0.

Proof. Let ¢°(z, z) be defined in Lemma 2.1 and ¢ = ¢° + ¢. Then we have

Np—p+puwP lo=h+(1-K)¢° in6, (2.15)
¢. =0 on016, ¢.,=0 on §&,

/ ¢(z, 2)wy (z)dz = 0, / d(z,2)Z(x)de =0, 0<z< 1
R R €

Let us consider Fourier series decompositions for h + (1 — K)¢° and ¢:

80,) = 3 duo) cos (kme2),
k=0
h(z,z) + (1 — K)¢°(z, 2) th cos (kmez).
From the equation (2.15) we arrive at the following equations
—k*7%% bt + Prpr — Sk + PP Gp, = hy, (2.16)
with the orthogonality condition

/ b1 (2)w, (z)dz = 0, / 64 (2)Z(2)dz = 0. (2.17)
R R

Let us consider the bilinear form in H!(R)

B(y,9) = /R [ be? + 62 — puP =[P de .

Since (2.17) holds uniformly in k¥ we conclude that

Cl okl Z2m) + 19k,2llTo@) ] < B(dk, br)
for a constant C' > 0 independent of k. Using this fact and equation (2.16) we arrive at
1+ 7k eI llF o) + 190,072y < Cllbkl72)- (2.18)
Moreover, we see from (2.16) that ¢ satisfies an equation of the form

¢k,wm_¢k:ilk7 z€R



where ||ﬁk||Lz(R) < C||hgllp2(r)- Hence it follows that

Pk.00llLz) < CllhkllLz ). (2.19)

Summing up estimates (2.18) and (2.19) in k, we conclude that

ID?8Il72(e) + 1D9lIZ2(e) + I8ll12(e) < ClIAlLae)-
The final estimate follows from the estimates of ¢ and ¢°. O
A corollary of Lemma 2.3 is the following
Corollary 2.4. Let Gy € L2(R), Go € L*(R) satisfy the orthogonality conditions (2.5)-(2.6) and

h=0. Then problem (2.11)-(2.14) has a unique solution ¢ such that

18]l m2(e) < C[1IGllz2®) + [|GollL2z) ]

where the constant C does not depend on Gi1, Go and €. Furthermore, if |Go| + |G1| < Ce2lzl,
then |¢| < Ce=c*2l for some C,c > 0.

Proof. The proof of existence follows from the construction in Lemma 2.3. O
Finally in this subsection, we consider the following problem: given h € L?(&) and Gy, Go €
L2(R), finding functions ¢ € H? (8), ¢,d € L*(0,1) and constants Iy, Iy, m1,mo such that

Ap—d+puwP td=h+ c(ez) x(ex) wy + d(ez) x(e|z|) Z in 6, (2.20)
¢, = G1(x) —ly xwy —my x (e|z))Z on &6, (2.21)

¢. = Go(x) — lo xwe —mo X (€]z)Z on 8,6 (2.22)
/qﬁmzww )dz = 0, /¢xz z =0, 0<z<§ (2.23)

where x(t) a smooth cut-off function such that x(¢t) = 1 for |¢| < 106 and x(t) = 0 for ¢ > 204, and

6 > 0 is a small constant defined in Section 3.

Lemma 2.5. There exist functions c(ez), d(ez) with respect to h and pairs of constants 1y, my and lg, mg
with respect to Gy and G respectively such that the problem (2.20)-(2.23) has a unique solution
¢ =Ti(h, G1, Go). Moreover,

9]l 2(e) < C (I[hllz2e) + [|Grllp2w) + 1Gol| 2 (®)s

where the constant C does not depend on h, G1, Gy and €.



Proof. Let

Jo Grw,dz Jo G1Zdz
h=—5+— mi=%—7—,
S xw2dz Jo xZ%dx

_ fRéowwdx B fRéoZdw

O T yw2ds o = xZ2%dz”
R XWz R

Then the functions
G1 = G1 — lixw, —mixZ, Go = Go — loxw, — moxZ,

satisfy the orthogonality conditions (2.5)-(2.6) and Lemma 2.1 is applicable. Let ¢° be the function
defined in Lemma 2.1 and set qs = ¢° + ¢. Then we can derive the following problem

ANp—p+puwPop=h+(1-K)® +cxw,+dxZ in G,
$,=0 ond6, ¢,=0 ondh6&

/qu(x,z)ww(a:)dx =0, /R¢(x,z)Z(w)d:U =0, 0<z< %

To establish the existence, we assume that

o

th cos (kmez), (1—K)¢®(z,2) = Z #% () cos(kmez),

k=0

and consider the problem of finding ¢ € H'(R) and constants ¢y, dy such that
22 P + Prpa — Gk + PWPT G = by + cp X we +di X Z + ¢} (2.24)

Set

_ Jg hrweda 5 = Jg b Zdx
k= Jp xwidz’ k= Jp xZ2%dx’

Then we can obtain the trivial identities
/(hk + g xwy +dpx Z + ¢2)wzdx =0,
R
/(hk + kX We + dp X Z + ¢3) Zdz = 0.
R

Applying Fredholm’s alternative to equation (2.24), we can find the existence and uniqueness

of solutions ¢y, for k > 0. Obviously,
o0
Z |Ck|2 + |d;c ) < Cs||h||2LQ(G). (2.25)
k=0

Set

z) = f: o cos(kmez), clez) = f: ¢ cos(kmez), d(ez) = i dy, cos(kmez).

k=0 k=0 k=0

10



Obviously, (2.25) shows that ¢(ez)w,(z) and d(ez)Z(z) have their L?>-norms controlled by ||A[|%.
The a priori estimate of Lemma 2.3 gives that the series of ¢ is convergent in H?(&) and define a

unique solution ¢ with the properties

/ (@, 2)w (z)dz = 0, / ¢(z,2)Z(x)dx = 0.
R R

Finally, the solution ¢3 = ¢° + ¢ have the properties required in the Lemma. O

2.2 Setting up the problem

Now, we turn to the procedure of setting up the problem near I'. By scaling (y1,y2) = (371 52),

problem (1.1) becomes

8
Au—u+u?=0andu>0 inQ., a—zzo on 9., (2.26)

where 2, = %Q

By our assumptions on I', there exists a small positive constant dy such that we can introduce
r

PR

a local coordinate near

Y2 — poleyr)/e do do 1
,2) = , , —— <s< =, 0<z2< ~. 2.27
(2) (yl p1(ey1) — woleyr) ) e S° % " (2.27)

The problem restricted to the region €. = { (s,z)| — % <5< 0<2<1} becomes

1+ [(ez — 1)y — 62(,0’1]2 2(ez — 1)ipy — 2e2¢0;
Ugs + 5 Uy, + sz
(1 = o) (¥1 = o)
4 [(sz —1Dpy — Echl]((pl — o) — 2[(5,2 — L)y — Ezﬂpl] (p1 = ¢0) u (2.28)
(¢1 — 0)? ’
—u4+u?P =0 in Q;.,
! _ 6 6 1
e1 (1 1900) we—u, =0, -L g -2 (2.29)
1+ (1) € € €
! _ 6 6
volor=9o) o _ g S g (2.30)
1+ (25)? : :

Using the assumptions on I' and Taylor’s expansion, the problem near g can be rewritten as

Ugs + Usz + Bi(u) —u+u? = 0 inQ, (2.31)
0, d, 1
kiesus + bse®s’us —u, + Dy(u) = 0, —f <s< ?0, 2=, (2.32)
2.2 0 do do
koesus + bge”s“us —u, + Dg(u) = 0, - <s< ) 2= 0, (2.33)

11



where

Bi(u) = &’bi1s’u,; + [ebas+e%ai(2)s +e%bss” Jug,
+ [ ebs +€%az(2) + €%bss Ju. + Bo(u), (2.34)
’ 1\2
1+ ((ez — 1)py — e2¢1) 0, o
By(u) = - —1—e“b1s8° | uy,
@ = [ o |
2ez — 1)y — 2e2¢;
[ (e = 1)ipg = 26200, — boes — ay (2)e%s — bge?s® ] Us,
(1 = o)
L] ez =1)py —201](e1 = o) = 2(e2 = 1)y = e2¢1](1 = 0)
(p1 — ¢o)?
—by — az(2)e — bses } EU,
= ag(s,z)uzz + a4(S,Z)’LLsz + a5(s,z)uz, (235)
Dl _ 901(801_‘P0)_k — bse25%| u, 9.
o(u) [71 () 168 — bse”s ]u , (2.36)
orn _ [Poler—w0) . . 5,
Dgy(u) = [71 e koes — bge”s ]us, (2.37)
k - k nr ]. nr
bi=k§ = =5, br=~2k, bs=g, (0), bi=—ko, b5= 3501 (0)

b = %so;” (0),  a1(e) =2(ko — k1)z,  ax(2) = (ko — k)2

Note that Bo(u), D§(u) and D3 (u) are of size O(g?).

We assume that the location of concentration of the solution is characterized by the curve

T.: s = f(ez) in the (s, 2) coordinates, where f satisfies the uniform constraint
£l = Nfllz=@n + 1f =@ + 1 |z < ek
We consider now a further change of variables as follows
z=s5— f(ez), z==z.
This gives the following problem on the infinite strip &
S(u) = ugy +uzz + B3(u) —u+uP =0 in G,
with boundary conditions
e(kiz + ki f + fl)uz +e%bs(x + f)?us —u, + Di(u) =0 on 9,6,
e(kox + kof + f )ug +&2bs(z + f)?ug — uz + D(u) =0 on 5,8,

12

(2.38)

(2.39)

(2.40)

(2.41)

(2.42)



where

Bs(u) = —62fluzz +eba(z + fluze +ebsu,
+ 52(fl)2um - 62f”uz + 20 (z + ) us.
, (2.43)
- E2b2f ('Z' + f)uzw + Ezal (Z)(m + f)uzz + 52b3($ + f)2uzz
— 52b4fluz + e2az(2)u, + 2b3(z + fu, + Ba(u),

and

By (u) = —=°2by(z + £)°f Usz — €201 (2)(@ + F)f tgw — 7b3(x + [)2f tUga
—e%ay(2)f ua = b3 + )f ua + b1 + F)*(F )t (2.44)
—e'bi (@ + £)2f ua + Bo(u).
Note that Ba(u) is a term of size O(e?). All the derivatives in By(u), D}(u) and DS(u) are

expressed in the variables (z, 2).

We take u; = w(x) as the first approximate solution of the problem in &. Then we compute

S(w) = Bs(w) = &S5 + €Sy + Bo(w) in &, (2.45)

!

where S3 = —f”ww - bgf'a:wm - b4flww is an odd function in the variable z, Sy = (f 2wy, —

bof fwse is an even function in the variable z. On the boundary, the errors become
e(kiz + ki f + [ Jwy +&bs( + f)*w, + Dy(w) on 86,

e(koz + kof + f )we + %b6(z + f)*w, + DY(w) on 6.

To cancel the term of first order of £ on the boundary (in the sense of projection against Z in L?)
and improve the approximation, we introduce a boundary layer term ¢(x, z) = b(ez)Z(z) with b(2)

satisfying

!

€2 +Xob(2) =0, 0<z<1, b(1)=c1, b(0)=co,
where ¢;, ¢g are constants such that
c1 =k / zweZdx, co=ko / Twy, Zdx. (2.46)
R R

It is easy to calculate directly that

__cocos(v/Ao/e) — a1 Vo co . Vo
b(z)=¢ e sin(vaa/e) cos( . z)+e I sm(T 2).
Hence,
$(x,2) = eA(2)Z(x) = epu (, 2), (2.47)
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where

_cocos(vAo/e) — ¢t co .
Az) = Vo sin(v /) cos(vho 2) + I sin(y/ Ao 2). (2.48)

By Corollary 2.4, there exists a unique solution (denoted by ¢;2) of the following problem

Agry — 1o + pwP g1, =0 in G,

0
P12 =kizw, —c1Z on 9,6, % = kozw, — cgZ on §pS.
0z 0z
Moreover ¢15 is even in x. We set
o1 = e d11(x, 2) + € xo(ez) pr2(z, 2). (2.49)

where xo is a smooth cut-off function such that xo(n) = 1 if n| < &2 or |1 —n| < €2, xo(n) = 0 if
2e2 < < 1— 2% Note that ¢ (z, 2) is size of O(g) under the gap condition (1.7).

Let us = w + ¢ be the second approximate solution. We compute the new error
S(w+ ¢1) = S(w) + g2 2)(;] P12,z + EBXS ¢12 + B3(¢1) + No(¢1) in &S, (2.50)

where No(¢1) = (w + ¢1)P — wP — pwP~1¢; and S(w) is defined in (2.45).

On the boundary, the new errors become

e(krf + fwy + e2bs(z + ) w, + 2 (ko + ko f + f')[A(g)Zw + br12,0]
+ (o + [[AC)Zs + Graa] + Dhw + 1) on &8,

elkof + f ) we + e2b6(z + F)*wy + e2(kow + ko f + f)[A(0)Zs + b12.4]

+&%bs(z + )?[A(0)Z, + d12,2) + DY(w + ¢1) on 9.

To improve the approximation for solution still keeping the term of £2, we need to introduce a new

parameter e, in additional to f, and define the third approximate solution to the problem near g

as
us =w+ ¢ +ee(ez)Z(z). (2.51)

In all what follows, we shall assume the validity of the following uniform constraints on the

parameter e
’ " 1
llells = llellz=(o,1) +elle [lz2,1) +€°lle llz2(0,1) < €. (2.52)
For simplicity, define

F = { (f,e)| the functions f and e satisfy (2.38) and (2.52) respectively }. (2.53)
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To decompose the coupling of the parameters f and e on the boundary of & (in the sense of
projection against Z in L?), by Lemma 2.2, we introduce a new term ¢ (even in z) defined by the

following problem
A(ﬁ — K’qE +pwp_1<$ =0 in G,
B = s f (1) aws + kialA()Ze + buza(,2)] on 16,
b, = 2bs £(0) zw, + koz[A(0)Z; + ¢12,2(0,2)] on 9,6,
where K is a large positive constant. Define a boundary layer again

¢ = 9. (2.54)

@2 is an exponential decaying function which is order €2 and even in the variable z.

Finally our basic approximate solution to the problem near the interface g is
ugs = w+ ¢1 +ee(ez)Z(x) + ¢a. (2.55)
We set up the full problem in the form S(u4 + ¢) = 0 which can be expanded as follows
S(us + @) = S(ua) + L1(¢) + B3(¢) + N1(¢) =0 in &, (2.56)

with boundary condition

Di(¢) — ¢, + Dy(us + ¢) = g1 on 8;6,

(2.57)
DY($) — ¢ + Dy(ua +¢) = go on o6,
where
L1(8) = boa + b2z — b +pul 1o, (2.58)
Ni(¢) = (us + ¢)7 — uf —pul "9, (259)
Di(¢) = e(krz + ki f + f )po + b5 ( + )* o (2.60)
DY(¢) = e(koz + kof + f o +€%b6(x + ), (2:61)
g1(@) = —e(ks f + f Ywy — b5 (2” + [P wy + % Z
(kS + FIAC)Z + dro] ~ haz + ki f + [ )eZ -
— ol + PPIAC)Ze + b12.] - (e + [P |
Sk + kS + el 1) — hs(a + 1Bl 2),
90(z) = —e(kof + f Yws — ebg(2” + f*)w, + %€ Z
— (ko f + [)A(0)Zo + dr2.0] — €2 (kow + ko f + f)eZq .69

—e%bg(x + £)?[A(0)Z, + h12.0] — e3bg(x + f)’eZ,

— &3 (kox + kof + f )u(,0) — e*bs(z + £)? bz (z,0).
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The error of the approximation is
Ey = S(uq)
=S(w+ ¢1) +e(e’e Z + MeZ) + Bs(ceZ) + e2(K — 1)¢ + 2 Bs(9) 064
+(w+ g1 +eeZ+e%G)P — (w+¢1)P —p(w+ )P [ eeZ +6%¢ | 20
+p[(w+¢1)P ! —wP ] (ceZ + £29),
where S(w+¢;) is defined in (2.50) and the operator Bs is given by (2.43). Moreover, we decompose
Ey = Ei1 + Ei2, go = go1 + go2, 91 = g11 + 912 (2.65)
with
Ey = e Z +eXoeZ and FEi» = Ey — Eyy,
gor = —e(kof + f )ws +€*¢' Z and go2 = go — go1,
gu = —e(kof + [ )ws + %€ Z and g = g1 — gu1.

For further reference, it is useful to estimate the L2(&) norm of E;. From the uniform bound

of e in (2.52), it is easy to see that

|| EuilLo(s) < Ce?. (2.66)
Since ¢ and eeZ are of size O(g), all terms in FEj, carry €2 in front. We claim that

|| Erz|lra(s) < Ce®. (2.67)

. . . . 1 . .
A rather delicate term in Fjo is the one carrying f since we only assume a uniform bound on

1" |z2(0,1)- For example, we have a term K; = e2f" in S(w) which has bound like
||K1||L2(6) S 052.
Similarly, we have the following estimates

llgozllza ) + 1912l z2(r) < Ce?. (2.68)
Since
INo(¢1)] = |(w + ¢1)? —w” — pwP~ ¢ | = |p(w + t$1)P 47|,
we obtain
[[No(¢1)]|z2(e) < Ce3.

Other terms can be estimated in the similar way. Moreover, for the Lipschitz dependence of
the term of error E15 on the parameter f and e for the norm defined in (2.38) and (2.52), we have

the validity of the estimate

[|E12(f1,e1) — Er12(fa, €2)||02(e) < 053/2[ I1f1 = falla + llex — e2llo ]- (2.69)
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Similarly we obtain

||902(f1;€1)—902(f2;€2)||L2(R) + ||912(f1,€1)—912(f2;€2)||L2(R)
< C2f— fella+lles —ealls ] (2.70)

3 The gluing procedure

In this section, we use a gluing technique (as in [8]) to reduce the problem in () to the infinite
strip 6.

Let 6 < d0/100 be a fixed number, where o is a constant defined in (2.27). We consider a
smooth cut-off function 7s(t) where t € Ry such that n5(t) = 1 for 0 < ¢t < ¢ and n(t) = 0 for
t > 26. Set n5(s) = ns(e|s|), where s is the normal coordinate to L. Let u4(s,z) denote the
approximate solution constructed near the curve g in the coordinates (s, z), which was introduced

in (2.27). We define our first global approximation to be simply
W = s (s)us. (3.1)

In the coordinates (y1,y2) introduced in (2.26), W is a function defined on Q. which is extended
globally as 0 beyond the 63 /e-neighborhood of g
For u =W + gf) where ¢A5 globally defined in ., denote

Su) =Ayu—u+u? in Q..

Then u satisfies (2.26) if and only if

L($)=-E—-N(¢) inQ., (32)
with boundary condition .
op  OW
% + % =0 on 895, (33)

where
E=SW), L(§) = Dyb— ¢+ pWP4, N(§) = (W + )" — WP —pWP™'4.
We further separate qg in the following form

¢3=n§a¢+¢

where, in the coordinates (z, z) of the form (2.39), we assume that ¢ is defined in the whole strip

G. Obviously, (3.2)-(3.3) is equivalent to the following problem
s (D90 = 6+ WP '6) = 0 [~N(niso + ) — B —pW? 'y, (3.4)
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Ayt =+ (1= nf)pWP™ 1 = —*(Aynss)¢ — 26(Vynss) (Vy )

_ B (3.5)
—(L=n5)N(n5¢ +¢) — (1 —n3)E.
On the boundary, we get
e 06 OW _
T35, T 65 = 0, (3.6)
6¢ & ow 6,'756 —

The key observation is that, after solving (3.5) and (3.7), the problem can be transformed to the

following nonlinear problem involving the parameter 1)

L) =n| -Ng+v)-E-pw | i, (3.8)
0 ow
(9_Z + nga—n =0 on 06. (3.9

Notice that the operator £ in Q. may be taken as any compatible extension outside the 64/e-
neighborhood of g in the strip & and the operator % may be taken as any compatible extension
outside the 6d/¢-neighborhood of g on the boundary 06.
First, we solve, given a small ¢, problem (3.5) and (3.7) for ). Assume now that ¢ satisfies the
following decay property
V()| +[6w)] < e i [s] > /e, (3.10)

for certain constant v > 0. The solvability can be done in the following way: let us observe that

W is exponentially small for |s| > d/e, where s is the normal coordinate to g Then the problem

AY—[1—(1—n5)pW?P Y =h inQ.,

6¢__ _58W_%
an = (=)~ <,

has a unique bounded solution ¢ whenever ||h|| < 4+00. Moreover,

[%]lo0 < CllAlloo-

Since N is power-like with power greater than one, a direct application of contraction mapping

principle yields that (3.5) and (3.7) has a unique (small) solution ¢ = ¥ (¢) with

(@)L= < Ce[ |llz(s>6/e) + IVlloe((s>67e) +€7¢ ], (3.11)

where |s| > d/e denotes the complement in Q. of §/e-neighborhood of g Moreover, the nonlinear

operator v satisfies a Lipschitz condition of the form

[(p1) — P(2)l|Loe < Ce[ |1 — dallpee(s|>67¢) + [Vh1 — Vallpeo(s/>87¢) |- (3.12)
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Therefore, from the above discussion, the full problem has been reduced to solving the following

(nonlocal) problem in the infinite strip &

£2(6) =15 [~N (6 +6(6) — E - pW" (9)] in 8, (3.13)
B(¢) + ng%—v: =0 on the boundary of the strip &, (3.14)

for ¢ € H?(S) satisfying condition (3.10). Here £, denotes a linear operator that coincides with
L on the region |s| < 86/e, B denotes the outward normal derivatives of & that coincides with
outward normal 2 of (). on the region |s| < 8/e.

The definitions of these operators can be showed as follows. The operator £ for |s| < 80/¢ is
given in coordinates (z, z) by formula (2.56). We extend it for functions ¢ defined in the strip &

in terms of (z, z) as the following

L2(¢) = L1(¢) + x(e|z|)Bs(¢) in &, (3.15)

where x(r) is a smooth cut-off function which equals 1 for 0 < r < 106 and vanishes identically
for r > 204, £1 and Bs are the operators defined in (2.58) and (2.43). Similarly, the boundary
conditions can be written as

X(elz))D5() = ¢: + x(elz)Do(W + ¢) = x(elzl) g1 on 8,6

X(elz))D5(¢) — 6= + x(elz)Dg(W + ¢) = x(elz]) go on &6,
where the operators D} and DY are defined in (2.60)-(2.61) and the operators D§, DY are defined
n (2.36)-(2.37).

(3.16)

Rather than solving problem (3.13)-(3.14), we deal with the following projection problem: for
each pair of parameters f and e in F, finding functions ¢ € H*(&), ¢,d € L?(0,1) and constants

l1, lg, m1, mg such that

La(P) = —xE1 — xN2(9) + c(ez) xw; +d(ez) xZ in B, (3.17)

xDé(¢) — ¢, +XDS(W +¢) = xg1 + 11 xwz +my XZ on 8,6, (3.18)

xD3(¢) — ¢ + xDY(W + @) = xgo + lo Xwz +mo xZ on 6, (3.19)

/qﬁmzwz da:—/quz z)dz =0, 0<z<§. (3.20)

where Ny(¢) = N(¢ + ¢(¢)) + pWP~14)(¢). In Proposition 5.1, we will prove that this problem

has a unique solution ¢ whose norm is controlled by the L2-norm, not of the errors E1, go, g1, but
rather of their components FE1s, go2,912. Moreover, ¢ will satisfies (3.10).

After this has been done, our task is to adjust the parameters f and e such that the functions
c and d are identically zero, and the constants l;, lg, mi, mg are zero too. It is equivalent to
solving a nonlocal, nonlinear coupled second order system of differential equations for the pair

(f, e) with boundary conditions. In Section 7, we will prove this system is solvable in F.
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4 The invertibility of L,

Let L5 be the operator defined in H2(&) by (3.15) and g1, go be the functions in (2.62)-(2.63). Note
that the function x(e|z|) is even in the definition of £2. In this section, We study the following
linear problem: for given h € L?(8), go, g1 € L?(R), finding functions ¢ € H?(8), c¢,d € L?*(0,1)

and constants Iy, lg, m1, mp such that

Lo(@) = h+c(ez) xwz +d(ez) xZ in &, (4.1)

xD3(¢) — ¢ + xDg(W + ¢) = xg1 + 1 xwz +m1 xZ on 6,6, (4.2)

XxD3(¢) — ¢= + xDo(W + ¢) = xgo + lo xws +mo xZ on &G (4.3)
1

/¢xzw$ /d)xz z =0, 0<z<g. (4.4)

Proposition 4.1. If § in the definition of Lo is chosen small enough and h € L*(S), then there
exists a constant C > 0, independent of , such that for all small €, the problem (4.1)-(4.4) has a

unique solution ¢ = To(h) which satisfies
19l 2(e) < Clh]|L2(s) + 19021l L2R) + [912]| L2(R)) (4.5)
Moreover, if h,go, g1 have compact supports contained in |z| < 20d/e, then
|¢(:L",z)| + |V¢(m,z)| < ||¢|lre € 275 for |z| > 405/e. (4.6)

Proof. Note that xg11 and xgo1 can be absorbed by —I; xw, —m1 xZ and —ly xw, —mg xZ, the
problem can be written as

Ap—¢+pwlp=—p(Wr™t —w' )¢ — xBs(¢) + h

+ c(ez) xwy +d(ez) xZ in G,
¢, = —Xxg12 + xDé(qﬁ) + XDé(W +¢) =l xwy —m1 xZ on 6,
= —xgoz + XD5(¢) + xDo(W + ¢) —lo xwy —mo xZ on 86,
1
/qﬁxzww dz =0, /d)(a:,z)Z(:c)dx:O, 0<z<g.
R
Let
p="T (h —p(WP™! —wP™1)p — xBs(9), Gi, éo)

where

G1(¢) = —xg12 + xD3(9) + xDg(W + ¢),

Go(9) = —xgo2 + xD3(¢) + xDy(W + ¢),
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and T3 is the bounded operator defined by Lemma 2.5.
The key point is that the operator

Bu(¢) = —xBs(¢) —p(WP™" —wP™ 1)
is small in the sense that

[|B4(d)|L2(e) < C6|B|r2(s)-

Similar results hold for Go(¢) and G;(¢). Hence, the results can be derived by the invertibility
conclusion of Lemma 2.5 if we choose § sufficiently small.

Since x is supported on |z| < 205/e, then ¢ satisfies for |z| > 205/e a problem of the form

1
¢zz +¢zz - (1+0(1))¢ =0 |.’L'| > 206/5,0 <z < g,
1
(bz:O; zZ=-,
I3
¢.=0, 2=0,

Hence, the validity of formula (4.6) can be showed easily.

5 Solving the nonlinear projection problem

In this section, we will solve (3.17)-(3.20) in &. A first elementary, but crucial observation is the

following: The term

E = 836”2 +eXoeZ

in the decomposition of E;, has precisely the form d(ez)Z and can be absorbed in that term

xd(ez)Z. Then, the equivalent equation of (3.17) is
L2(9) = xEr2 + xN2(¢) + c(e2) xw, + d(ez) xZ

Similarly we can also absorb the O(g) in go and g;.
Let T be the bounded operator defined by Proposition 4.1. Then the problem (3.17)-(3.20) is

equivalent to the following fixed point problem
¢ =To( xBrz + xNa(9) ) = A(4). (5.1)

We collect some useful facts to find the domain of the operator A such that A becomes a contraction

mapping.
The big difference between E;; and Ejs is their sizes. From (2.66) and (2.67)

|| BrallL2(e) < cn €9/, (5.2)
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while Ej; is only of size O(¢'/?). Similarly, we have

llg02]|L2®) + 912 2(R) < s e/, (5.3)

The operator T has a useful property: assume h has a support contained in |z| < 200/e, then

¢ = Ty(h) satisfies the estimate
|¢(z,2)| + |Vo(@,2)| <||§]l= e /% for |z| > 406/e. (5.4)
Recall that the operator 1)(¢) satisfies, as seen directly from its definition
0@z < Ce[ 1161+ 9] || e (oys0asey +€ |- (5.5)
and a Lipschitz condition of the form
[[(¢1) — (d2)]|pe < CE[ [ 161 = d2| + V(81 = D2)| || oo (115208 /) ] (5.6)

Now, the facts above will allow us to construct a region where contraction mapping principle

applies and then solve the problem (3.17)-(3.20). Consider the following closed, bounded subset
ol er2(e) < %72,

)
+ |V H < 2 —d/e,
H o] + Vel Lo (o] >408/e) = 191l (o) €

D={¢eHS (5.7)

We claim that if the constant 7 is sufficiently large, then the map A4 defined in (5.1) is a
contraction form 2 into itself. Let us analyze the Lipschitz character of the nonlinear operator

involved in A for functions in ®

XN1( + 9(8)) + xpWP ™ (9)
Na(¢) + xpWP '4p(9). (5.8)

xN2(¢)

Note that N1(p) = p[(W + te)P~! — WP~ ]y for some t € (0,1). From here it follows that
INL()| < Clel” + o).
Denoting S5 = & N {|z| < 10§/¢}, we have that for ¢ € D
1Ra(@)llz2(e) < CLIAE o) + 81Es(ey + 10O Ban sy + 0 Eacsy I
Using Sobolev’s embedding, we derive
1611720 (&) + 101124(e) < C (N8l + 11lz2(s) )-

Using estimates (5.4), the facts that ¢ € D, (5.3), that of the area of Ss is of order O(d/¢e) and
Sobolev’s embedding, we get

() Baesy) + 1B 3a(sy) < Ce4 [ 14116l ey + 1l3ra(e |
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Hence, from the properties of W and ¢(¢) we obtain
IIXN2(9)|lz2(s) < C(*/27P + €377). (5.9)

As for Lipschitz condition, we find after a direct calculations

[IN1(1) = Ni(p2)||2(s) < C[||901||]£§13(6) +lerllnae) + @2l Dane) + ||902||L4(6)]
x ([ler — wallL2ee) + o1 — @2llLe(s))-
Hence,
| N2(61) = Na(#2)||2(e) < |IN1(d1 + 9(41)) — Ni(¢2 + 9 (d1))l]L2(s5)
+ [|N1(p2 + ¢(b1)) — N1(d2 + ¥(h2))||22(s5)
< U(||¢1 — ¢2llLa(ss) +l|o1 — ¢2||L2p(s,;))
+0(l(81) = 0(92)llps(s + 0(91) = (62) (s )

where v = v1 + v9 with

= (101l sy + 100D an sy + 11l macss) + 19(0) Lacsy)-

Arguing as above and using the Lipschitz dependence of 1) on ¢, it can be derived

[IXNa (1) = xNa(2)|lr2(e) < C (2@ VP 4 £57) |61 — o2 (e)- (5.10)

Now, we can find the solution of (5.1) in the sequel. Let ¢ € D and v = A(¢), then from
(5.2)-(5.3) and (5.9)

Wllsey < Tl eac¥/2 + Croesol? 4 07263 .
Choosing any number 7 > C.||T2||, we get that for small e
|||z (e) < /2.

From (5.4)

—26 )
14+ 90| < lloo €7 < Wiz €= -

Lo (|z|>406 /<)
Therefore, v € ©. A is clearly a contraction thanks to (5.10) and we can conclude that (5.1)
has a unique solution in 2.
The error E12 and the operator T5 itself carry the functions f and e as parameters. For future
reference, we should consider their Lipschitz dependence on these parameters. (2.69) is just the

formula about the Lipschitz dependence of error E;5 on these two parameters. The other task can
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be realized by careful and direct computations of all terms involved in the differential operator
which will show this dependence is indeed Lipschitz with respect to the H2-norm (for all €).

Within the operator, consider for instance the following term involving f”

Qs (¢) = 2f ¢a.

Then we have )
1@y <* [ 17/ @) db(sup [ 10:(a,2)a).
Let pu(2) = [; |92 (2, 2z)|?dz. Then

1
supu(z) Se/ |¢w|2d$+_/ |¢x||¢$z|dw
z R € Jr

. A (5.11)
<e / 6o Pdz + & / 6oz + / |22
R 2 Jr € Jr

and we can obtain
(z) < Ce™?||l|F2 (@) -
Therefore,

1Q7(IL2(e) < Cellflla-

Similar estimates can be applied to other terms in the operator involving f "

For the linear operator T>, we have the following Lipschitz dependence

[|T2(f1) = To(f2)|| < Cel|f1 = falla-

Moreover, the operator N also has Lipschitz dependence on (f,e). It is easily checked that for

¢ € © we have, with obvious notation
XN, 11 00) () = XN, (1) (D) l22(8) < C2[ L1 = Folla +lex —eally |-
Hence, from the fixed point characterization we get that
|p(f1,€1) — (f2r €2)||2(e) < C¥/2[ || f1 = folla + |ler — eal]s ]- (5.12)

Proposition 5.1. There is a number T > 0 such that for all € small enough satisfying (1.7) and
all parameters (f,e) in F, problem (3.17)-(3.20) has a unique solution ¢ = ¢(f,e) which satisfies

]| 2 () < TEY/2,

161 +1va1 ||, < |l epe "

Moreover, ¢ depends Lipschitz-continuously on the parameters f and e in the sense of the estimate

(5.12).

z|>406/¢)
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6 Estimates of the projection against w, and Z

As we mentioned in Section 3, in the next part of the paper, we will set up equations for the
parameters f and e which are equivalent to making c(ez), d(ez), li, lop, mi1, mg zero in the
system (3.17)-(3.20). These equations are obtained by simply integrating the equations (3.17)-
(3.19) (only in z) against w, and Z respectively. Using the equations of w and Z in section 1 and
formula (3.20) and the fact that x is an even function in the variable z, it is easy to derive the

following equations

/R [ XEr + XNa(9) + XBs(9) + p(WP™ = w?™)¢ |wedz = 0, (6.1)
L[ XB 4 xNa(0) +xBa(@) 477 =)o ] 2z = o, (62)
/R [ x91 = XD} (6(,1/2)) + XD} (6(2,1/2)) |woda = 0, (6.3)

/R [ x90 = XxDY(6(2,0)) + xD§ (8(2,0)) |wedw = 0, (6.4)

[ [xn = xD3(6(@.1/0) + xD§(¢(2.1/9)) | 2as = o, (6.5)

/R [ x90 = XD§(6(=,0)) +xD§(6(2,0)) | Zdw = 0. (6.6)

It is therefore of crucial importance to carry out computations of the estimates of the terms

/ Fiwzdz and / FE, Zdx and, similarly, some other terms involving ¢.
R R

6.1 Estimates for projections of the error

We carry out some estimates for the terms fR Fyw,dx and fR FE, Zdx in this section. For the pair
(f,e) satisfying (2.38)and (2.52), denote by by, and bs., generic, uniformly bounded continuous

functions of the form

be = bie( 2, J(e2), e(e2), ['(e2), e€'(e2) ), 1=1,2

where by, is uniformly Lipschitz in its four last arguments. Let oq(2), I = 1,2,3, be smooth
bounded functions depending only on z.
First, multiplying (2.64) by w, and integrating over the variable x, using the decomposition of

E; (2.65) and the fact that the functions Z and ¢ are both even in z while w, is an odd function
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in x, we obtain

/ Fiw,dx
R

= / Elz’wmd!]}
R

:/S(w+¢1)wzdm+/[633(eZ)+6QB3(¢3) Jw,dz
R R

-}-ep/R[ (w4 ¢1)Pt —wP? ]( eZ +e¢ Ywydz

+ / [ (w + ¢1 +56Z+€2<$)p — (w4 ¢1)? — pw + ¢1)P H(eeZ + 52<;3) ]wzdx
R

=L +L+ 13+ 14

We calculate these terms as follows. From (2.50) and the fact that ¢15 is even in the variable z,
I, can be rewritten as
I = / S(w + ¢1)wzdz
R
= / S(w)wydz + / Bs(¢1)wydx + / [(w + ¢1)? —wP —pw”_1¢1]wwd:c
R R R
=TI+ 5+ 6is.
From the formula (2.45), using by — £by = 0, we get
I = 52/ Sswdx + / By (w)w,dz
R R
= —52f” / widx — E2b2fl/ W Wedr — 52b4fl / widx
R R R
—etby f” / 22widr —e'by f f? / w2dz — &2 f" / as(z + f,2)wdz + by,
R R R
=e?01f +e'baf +e%bie

where 0; = — [, widz.
From the definitions of A and by, we can estimate the component / Bs(ep11)wydz in Iy
R

/ Bs(e¢11)wedr = —224  f / Zyweds + e2bo A f / Zywydz — 3 Af" / Zywedz
R R R R
— S Af” / 22 Zyweds — b1 AF2F | Zywgdz
R R

- 63f”A/ as(z + f,2) Zywedz + e3boe
R

= £26,(@1(2)f + G2(2)f) + €3 [b% F baf + sz]

where
_ B c1 —cgcos(vAo/e) . c
ai(z) = -2 5 sion(m/z) sin (v Ao 2) + 2 % cos(v/ Ao 2) (6.7)
072(2) = ko@l(z). (68)
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A similar computation gives

/RBg(E Xo(E Z) ¢12)’U}wd.’L’ = 82(51 (C~ll (Z)fl + 6(2 (Z)f) + 63 I:bzgf” =+ b2€f’ + b25

where
5[1(2’) = _%/RXO(EZ) ¢12,zz(xaz)wwd$7
5[2(2’) = k‘() 641(2’)
Hence,
Ly = %51 (1 (2)f + a2(2)f) + € [bac " + bacf +2c), (6.9)
where
a1(z) = a1 (2) + au(z), a2(z) = az(z) + ao(2). (6.10)

Since ¢4 is of size O(e) and even in the variable z, it follows

1
Lz = 51007 - 1)/ wP™? (¢1)?wdz + €%y
R

= 631)15.

In the term of I, since the terms in e2Bs(¢) are of order O(e3), we only need to find those parts

in B3(eZ) which are odd in
I = —253f'el/ Zpwedx + ESbgfel/ Zpwadx — 63f”6/ Zpwadx
R R R

+ 265b, fe /

Ty wedr — 53b4f’e/ Zywedx
R R

rZwydr — 53b2f'e/
R
- a5b1f”e/ 22 Zwyde — 55b1f2f”e/ Zwydx
R R
—e2f" / az(z + f, z)wdz + by,
R
=%l e+ %€ +e0be +EB3 f + b

Obviously, since ¢, is a term of size O(¢) and even in the variable x

I+ 1

2
=p(p-1) [se/ wP 2y Zwydx + % /(w + ¢1)p*262Z2wzdm] +&%b1c
R R

= E3b15.

Therefore, we conclude that

/ Eyw,dz = £26; [f” + o (z)f’ + s (z)f] +&3bye [e +e +e% | + 53b25f” + &3bse. (6.11)
R
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Next, multiplying (2.64) by Z and integrating over the variable z and using the decomposition
of Ey (2.65), we get

/E1Zd$=/E11ZdIL’+/E12Zd.’L'
R R R

where

/ EnZdz = e(e%€ + Aoe) / Z%dz = €% + e)e,
R R

/ E12Zd.’L'
R

:/S(w+¢1)de+/[aBg(eZ)+e233(q§) 1Zdx
R R
2 [ (K -1)¢Zd =l _ P (eZ +e¢ ) 2Zd
+6/R( 1)¢ a:+5p/R[(w+¢>1) w ](e +e¢ ) Zdz
+/[(w+¢1 +eeZ + 2P — (w+ ¢1)P —p(w + ¢1)P " (ceZ + % )]de
R

=i+ 4+ I3+ i+ Js5.

The detailed computation for these terms are listed in the following: The formula (2.50) gives
Ji = /RS(w + ¢1)Zdx
= /RS(w)de +62/R[2X6(€Z) o122 + 6x3 (€2) p12,. | Zdx + /RB3(¢1)Zdw
+ /R [(w + ¢1) —wP — wp_lqbl] Zdz
=Ju + Ji2 + i3 + Jia-

We deal with the components of J; in the sequel. The expression (2.45) and the properties of

its components of S(w) give

Ji = 52/ S4Zd.’L'+/Bz(’U))ZdIL‘
R R

52/(fl)2medaz - 52/ bgfflmeda:
R R
- 642b1ff”/ Tw, Zdx — s2f”/ as(z + f,2)w. Zdx + €3by,
R R
= 53b15 + 54b2sf”-
For further reference, it is obvious to make the following notation

Jia = ey (2) + 53b157

where a4 (2) = 2X'0(6z)/ 12,5 (2, 2) Zdz.
R

Using the facts by = %bz, as(z) = %al(z) and the relation /

1
rlyZdr = —5/ Z%dx, we cancel
R

R
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the terms of order O(g?) in the component / Bs(e¢11)Zdzx in Ji2 and obtain
R

27, Zdx + e2bs A’ / Z2dx
R

/B3(6¢11)Zd$ = 62b2Al/
R R
+&%ay (z)A’/ ZoZdx + 3ay(2) A / Z%dx
R R
+ 52, Af” / 272, 7dx — 2 Af" / as(z + f,2)Zo Zdx + €3bye
R R
= 83b15 + 55b2sf” -

Similar computation will give
/ Bs(e x0(e2) ¢12) Zdx = 2 aqn(2) + €3b1e + 65b25f”.
R
where

ay2(z) = by Xo(sz)/Rcbu,m(m,z):chm + by Xo(ez)/R¢12,z(x,z)Zda:.

Hence,

Jia = 52a42(z) + €3b15 + 55b25f .

From the formula (2.47)

1
Jiz = §p(p - 1)/]pr*2¢de3: + &3by.

= %p(p -1 /pr_2[A(Z)Z($) + x0(e2)p12(z, 2)]? Z (x)dx + by,
=elausz(z) + €%bie

In the term of J, since the term £2Bs(¢) is of order O(e?), we shall find those parts in Bs(eZ)

which are even functions in z:
Jy = 5/ Bs(eZ)Zdx + by,
R
= 53bzel/ zZ,Zdx + 63b4el / Z%dx — 552b1ff”e/ zZ,Zdx
R R R
- E3f”€/ as(x + f,2)Z, Zdx + E/ By(eZ)Z*dx + e*bo. + £3by.
R R

=e3b. + {:‘4b156” + €5b25f”.

where we use /

2, Zdx = —%/ Z2%dz and by — %bQ =0.
R
We denote

R

Jy = 52/(k—1)$(x,z)2dm
R

= 52a44(z).
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Since ¢; is of size O(e), from the assumption on e, then we get

-1
Ji+ Js zep(p—l)e/wp_2¢1Z2dx + p(p2 )52/(w+¢1)p_262Z3dx + £3by.
R R
1
:52p(p—1){e/wp_2[AZ+X0 ¢12]Z2d:c + —eQ/wp_2Z3dw} + &3by.
R 2 R
=caz(2)e + b

where

az(z) = asz(z) + as(z), (6.12)

as(z) = plp- I)A/ wP~? Z3dx,
R
as(z) = plp- I)Xo(ez)/]pr*2¢12Z2dx.

Therefore, we conclude that
/ E\Zdz = €% +cehoe + e2a3(2)e + £2as(2) + e*bice +e*bacf + by (6.13)
R

where

a4(2) = a1 (2) + aa2(2) + aus(z) + ca(z). (6.14)

6.2 Projection of terms involving ¢

We will estimate the terms that involve ¢ in (6.1)-(6.2) integrated against the functions w, and
Z in the variable z. Concerning w,, we denote by A(¢) the sum of these terms, which can be
decomposed as A(¢p) = 2?21 Ai(9).

Let Aq(e2) = / xBs(¢)w,dz. We make the following observation: all terms in Bs(¢) carry &
and involve powersRof z times derivatives of 1, 2 orders of ¢. The conclusion is that since w, has

exponential decay then )
2
/0 AL(6)]*d8 < O[] e
Hence,

IA1l|2 0,1y < CE®. (6.15)

We shall analyze the properties of the operator A; acting on the pair (f,e) in H?(0,1). We
single out two less regular terms which are operators depending Lipschitz continuously on (f, e).

The one whose coefficient depends on f~ explicitly has the form

’ 1\2
Al* — —62f” /]R¢w[1+ ((52(5(;1 1_)(/:000)—2 52901) _1 —E2b1(.’1!+f)2]wmd$

o 1+ ((e2 — 1)y — ezgoll)2
=<7 R¢{[ (¢1 — ¢o)?

—1 - (z+ f)z]wm}wdm.
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Since ¢ has Lipschitz dependence on (f, e) in the form (5.12), from Sobolev’s embedding, we derive

that
¢(f1,e1) — B(f2, €2)l|L (&) < C¥2[||f1 — folla + |ler — e2[s].

Hence,

1AL (f1r€1) = Ave(fa, e2)||r201) < CE¥F2[[|f1 = folla + [l — e2l]s]- (6.16)

The another one comes from second derivative of ¢ in z

! r\2
Al** = ‘[R(ﬁzz [1 b ((Ez((p_l 1_)9;00)_2 Echl) —-1- 621)1(.%' + f)z] wwdm

Then
[[ALs(f1,€1) = Avus(f2,€2)||L2(0,1) < CE3[||f1 = falla + |lex — e2][o]. (6.17)

For fixed €, the remainder A; — Ay, — Aq.. actually defines a compact operator of the pair (f,e)
from H?2(0,1) into L2(0,1). This is a consequence of the fact that weak convergence in H?(&)
implies local strong convergence in H'(&), and the same is the case for H2(0,1) and C'[0,1].
If f; and e; are bounded sequences in H?(0,1), then clearly the functions ¢(f;,e;) constitute
a bounded sequence in H?(&). In the above remainder we can integrate by parts once in z if
necessary. Averaging against w, which decays exponentially localizes the situation and the desired
result follows.

We also observe that Ax(e2) = / XN2(p)w,dz can be estimated similarly. Using the definition
of Ny(¢) and the exponential decayRof wy we get

1
1A2]lz2(0,1) < Ce7||@]|2(e) < CE°.

Let us consider Az(ez) = /p[Wp_l —wP ] ¢w,dz. Since W = w + ¢ + ceZ + e2¢y and
R
¢1 + €eZ can be estimated as

5|eZ| + |¢1(m,z)| < Cee 17,
we obtain that for some o > 0 the following uniform bound holds
(WP — wP M, | < Cee~ll.

From here we find that
1AsllL2(0,1) < Ce*[|@ll(e) < Ce.

These two terms Az and Az also define compact operators similarly as before. We observe that

exactly the same estimates can be carried out in the terms obtained from integration against Z.

31



6.3 Projection of errors on the boundary

In this subsection we compute the projection of error on the boundary. The main errors on the

boundary integrated against w, and Z in the variable x can be calculated as the following;:
Aglwmdm=551[k1f(1)+f'(1)] + e2obs + 5261b5f2(1)
e[ ki f (1) + £ (1) [{BsA( / 12,0 (=, z)w,dz }
+ &2 kuf(1) + £(1) ]e(l) + 0@,

where d; = — [, z*w2dz and d5 = —/ Z wydz.
R

Similarly,
/ gowwdmzsal[ko £(0) + f’(O)] + 28,0 + £261b6£2(0)
R
52[ ko £(0) + £ (0) ]{53A(0) + / $12.0(0, T)wyda }
R
+ 5253[k0f(0) + f’(o)]e(o) + 0().

Using the definitions of ¢; and ¢g in (2.46) to cancel the terms of order O(¢) and using the

/ Z%dz = —2/ 2Z,Zdz =1,
R R

we get the following two estimates

/Rngdx:— 52[e’(1)+%kle(1)] _ 53b5f(1){A(§)++/R¢12,$(§,w)wwdm}

following formulas

by f(1)e(1) — 53k1/ 260, 1) Zdz + O(eY,
R £

/Rgode =— 52[ e (0) + %koe(O) ] — b6 f(0){ /¢12w 0, 2)wydx }

— b f(0)e(0) — 5%0/ 260 (2,0)Zdz + O(Y).

Higher order errors can be proceeded as follows:
' 1
/ Dj(¢ ))wydz = 6/ [ kiz+ ki f(1)+ £ (1) ]q&z(x, E)wzdx
R
2 1
+52b5/ (24 £() ] gula, 2 wsda (6.18)
R €

/ D§(¢(z,0))wedz = e/ [ kox + ko f(0) + £ (0) ]qﬁx(m,O)wzdx
R R
n s2b6/ [ z + £(0) ]Qqsz (z,0)w,dz (6.19)
R

= 0(e?),
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/RD§ (6(z, é))de = E/R[ bz + ki f1) + £ (1) ]qﬁz (z, E)de
+s2b5/R[ z+ f(1) ]2%(:3, é)de (6.20)
= 0(c%),
/ DY(é(z,0)) Zdz = 5/ [ koz + ko7 (0) + £ (0) ] 6 (z,0) 2z
R R
+ s2b6/ [ z + £(0) ]quw (z,0)Zdz (6.21)
R

= 0(e?).
The other terms D{(¢) and DJ(¢) on the boundary integrated against w, and Z in the variable

z are of size of order O(g3).

7 The system for (f, e): proof of the theorem

Using the estimates in previous section, we find the following nonlinear, nonlocal system of differ-

ential equations for the parameters (f,e) in the variable 8 = ez

"

g0 = £ O+a)f O +a)ie) =M., 0<0<1, (1)

£3(e)

"

e?e () + Eag(g)e(é’) + Xoe(d) = cay(2) + M., 0<6<1, (7.2)

I

with the boundary conditions

F)+kfQ)+ M (fe) = 0, (7.3)
F(0)+kof(0) + M¢(fe) = 0, (7.4)
e’(1)+1k1e1 +M2(f,e) = 0, (7.5)
()+;koe )+ MJ(f,e) = 0, (7.6)

where a1(z) and as(z) are smooth functions defined in (6.10), as(z), @4(z) are smooth functions
defined in (6.12) and (6.14) respectively. M} are some terms of order O(e?). The operators M.

and M. can be decomposed in the following form

MlE(f) 6) = Als(fa 6) + Kls(f; 6), 1=1,2

where K. is uniformly bounded in L2?(0,1) for (f,e) in F and is also compact. The operator A;.

is Lipschitz in this region, see (6.16)-(6.17),

[Ae(f1,e1) = Aie(fa, e2)l|20,0) £ CL I fr = falla + ller — ealls ] (7.7)
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Before solving (7.1)-(7.6), some basic facts about the invertibility of corresponding linear operators
are derived. Firstly, we consider the following problem

£'6) +ar(D) 6) + ax(D)F6) = h(®), 0 < <1,

F @) +kf@)=0, (7:8)
£ (0) + ko f(0) = 0.
Lemma 7.1. Under the non-degenerate condition (1.4), if h € L?(0,1) then there is a constant

go for each 0 < € < gy satisfying (1.7), the problem (7.8) has a unique solution f € H?(0,1) which
satisfies || f||a < C||h||L2(0,1)-

Proof. Under the non-degenerate condition (1.4), the existence part comes from the a priori estimate
and the continuity method. Hence, we focus on the proof of the estimate. Note that if the non-
degenerate condition (1.4) holds, then al(g) # 0 in the sense of the equality of two functions.
There exists an orthonormal basis of L?(0, 1) constituted by eigenfunctions {y,,}, associated to the

eigenvalues {(,}, of the following eigenvalue problem
~y"(0) = (y(0), 0< <1,
y (1) + kiy(1) = 0,y (0) + koy(0) = 0.

The result in [18](on Page 9 and 10 ) shows that, as n — oo

Vi = nm + kln_ﬂk" + 0(%). (7.9)

n

It is easy to see that there exist a positive constant C' such that |y, ()| < Cn for all n € N. We

then expand

h(0) =Y hayn(0),  F(8) = anyn(6),
n=0 n=0

a7 0= w0, o) =3 o),
n=0

a0 =Y dwa®), )0 =3 awa0)
af 0= a0, 0xDi0) =Y can®)

Now, we estimate the above Fourier coefficients. Let

/] /]
1 (60) = /0 sin(@ yn(s)ds,  Bna(8) = /0 cos(@ $)yn(3)ds.

Using the following formula, the equation for ¥, and integrating by parts two times

62

®,1(0) = N

6 ”
[ 1m0 )Y gy,
0

34



we can get
Ce(en +1)

3, et L) 7.10
204(0)] < T oo (7.10)
Similarly, it can be derived

Ce(en + 1)

—_—. 7.11

5,2(0)] < oo (7.11
From the gap condition (1.7) and the expression of @y (z) in formula (6.8)
b, _ . VX Vo

@z(g) = K, s1n(T 0) + ks COS(T 0),

for parameters K., kp depending on e, which are also bonded by a universal constant independent

of £. Hence, ) )
Cn = Ra / ., 1 (0)f(6)d6 + Ry / 3., ,(6)f(8)db.
0 0

Integrating once by parts and using (7.10)-(7.11), we obtain

_ Celen+1)
el < ey {11l + 1Al -
Similar approach will implies
Ce(en+1)

du| < {1F 11 + 11l + 11plles ).

Ao — &%¢nl

The estimate of d,, can be showed as

@l = 2 [ @1 0)x000) b2t s w1nce
< //|f Ywg ()| da:dG% //|X0 ) f12,22 (2 )| da:d&}%
< ollf e,

where o; can be chosen small if € is sufficiently small. Similar estimate hold for &,

|En] < oul[f]|L2-
From the equations

_Cnan +cn + dn = hna
Cp+Cp = Cn,

dn + dp = dy,

and estimates of the Fourier coefficients &y, dy,, &, dn, we get

h Ce(en+1) . o1 ,
+ m X { ||f ||L2 +||f||L2 +||h||L2 } + C_n X{ ||f ||L2+||f||L2}
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Therefore, from asymptotic expression of ¢, in (7.9) and the smallness of o1, we get

Iz + (111172

. 2 2 1 2
gcmm@2+<n§:|" elen+1)

Gl (Mo —€2¢n)?

x {15 1B+ 1F1132 + A2 }.

where the positive constant C, does not depend on £. From the asymptotic expression of (,,, there

exists a positive constant €9 such that, for all positive € < ¢, there holds

2 1 B
2 \ZAQ = 1000, X{ maX(LAo)} .

2e2¢n > Ao

For all positive £ < g satisfying (1.7), elementary analysis will imply the following estimates

Z n? e2(en + 1)? P
[Gal? (Mo — €26)? — 50C,°

262 >320
Z n? %(en + 1)? <L
T\ 220 )2 =
Ao <22(n <3Ao [Gal? (Ao —€%Cn) 50C

2 2 1)2
Z n 25}\(5n +2 ) _<Ce.
262¢, <Ao Knl ( 0—¢€ Cn)

Since

1£ 12 < CIRllE2 + 11£ 1122 + [1F]l2)s (7.12)

the final result then follows. o

Secondly, we consider the following problem

"

e%e (0) + 6043(2)6 + Xoe(d) =g(0), 0<b<1

e (1) + %kle(l) =0, (7.13)
am+%%dm=a

Lemma 7.2. If g € L%(0,1) then for all small € satisfying (1.7) there is a unique solution e €
H?(0,1) to problem (7.13) which satisfies |le|ls < C e ||g]|r2(0,1)- Moreover, if g € H?(0,1) then

e%|le [lz20,1) + lle 1lz2(0,1) + Ilellz=(0,1) < Cllglla2(0,1)-

Proof. The proof is similar to Lemma ??. Let {x} be an orthonormal eigenfunction basis of L*(0, 1),

associated to the eigenvalues { }, of the following eigenvalue problem

—y'(6) =€y(9), 0< B <1,
1

Y (1) + 5hy(1) =0, y'(0) + Shay(0) = 0.
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By [18], as k — oo

k1 —k 1
Ve = kr + lk 0+0(k—3).

™

- 1
xr, = cos(knd) — MG sin(kw@) — @sin(lmﬂ) + O(=).
km k k2

(7.14)

We expand
9(6) =Y grwr(6), e(6) =D arzi(8),
k=0 k=0

65(2)e®) = Y erz®), as(D)el6) = exrs(6), cx =+
k=0 k=0

Now, we can use (7.14) to calculate the coefficients ¢y,

= [ a2 e(®) (o)t

i /1 cos(Y200) cos(2knt) e(8)d8 + rg,,/l sin(Y299) cos(2km) e(8)d0 + 0(%)||e||Lw
0 0
= %gb /0 sin[(@ — kn)d] e(6)d0 + %ra,, /0 sin[(@ + 2km)6] e(6)d0
1 1
+ %n/o cos[(\/T)\_O — %km)f] e(6)d0 + %m/o cos[(@ + 2km)6] e(6)d0 + 0(%)||e||Lm

4 1
=Y i + O()lellz=-
=1

Using the following formula, the equation for e and integrating by parts twice, we have

Ck,1 = —% Fp [ VAo — 2km ]_2 /01[ sin(\/T/\_0 — 2km)0 ]”6(0))ds,

and hence

|Ck1| £ O —————="le]| Lo
2kme |km — ‘/TTO|

Similar estimates hold for other terms as well:

1 1

|Ck,al; [Ck2] < C—————="lellz~, [Ch3| < C———=lle[lr=.
’ 2kme |km + \/Tfo| ’ 2kme |km — @|

Adding the last four estimates, we obtain

1 1

o] < C{ 2kme |km — ‘/T)‘T’| N k

Hiellze.

Similar to the estimate of d,, in Lemma 7.1, we can get

k| <ellef|ze-
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Using the equation

—62§kak + eck + doax = gk

we get
elek| + |grl
a < -
lax] < | Ao — €2&k|
< |9k elle||r= glle]| e?|el| L
T o — €%l k|Xo — €28 | 2kme [kr — Y22| - |\g — £2&| Ao — €2&k|
< |9k |le|| [lel| = e’[lel| L~ _
= Ao — €% kYo _ /& | 2kme |k — Yo| .| Yo _ /7 Ao — e2&k|

From the gap condition (1.7), we have
| Ao — £2&| > Ce. (7.15)

Using the asymptotic expression of & in (7.14) and the gap condition (1.7), we derive

1
— < .
E Y %z | < Cellne|, (7.16)
VRecvas e e ¢
1
E < Ce|lne|. (7.17)

Okme |k — Ya| . Yo _ =
@S\/E_kss\z/:_o e |km 5||5 \/§_k|

Combining (7.15)-(7.17), some elementary calculus gives

lell~ < CY layl
< Cellne| -[lellz= + & 'lgllz2-
Hence,
lellz= < Ce™H|gl|L2- (7.18)

Multiplying the first equation in (7.13) by e and integrating by parts, and then using (7.18), we

can get

elle’llze < CelglLe. (7.19)

The rest part of the estimates can be derived easily.

Under the gap condition (1.7) and (7.14), we can solve the following problem
g%’ (6) + Moe(¥) = 9(8), 0< <1
' 1
(1) + She(1) =0,

¢ (0) + %koe(o) 0.
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The existence part comes from the a priori estimate and the continuity method. O

Thirdly, we consider the following system

L(f,e) = (Li(f), L3(e)) = (h(9), 9(6)), 0<O<1
F Q) +kfQ)
£(0) + ko £(0)

, 1
e (1)+§kle(1) = 19,

1
Fla

T}, (7.20)

' 1
e (0) + ikoe(o) = Ty,

where I'}, i, j = 0,1 are some constants.

Lemma 7.3. Under the non-degenerate condition (1.4), if h, g € L*(0,1) then there exists g9 > 0
such that for all 0 < € < &g satisfying (1.7) there is a unique solution (f,e) in H*(0,1) to problem
(7.20) which satisfies

1flla + llells < C [BllLso,1) + € Hlgllz2o,) + 35 j=olT51 -

Proof. Under the non-degenerate condition (1.4) and the gap condition (1.7), there exist fo and
eo satisfying

"

fo =0,
6263 + Xdeo = 0,
foW) +kafo(1) = T,
f5(0) + kofo(0) = T,
o(1) + ghieo(l) = %,
0(0) + Shoco(0) = TY.
Setting f = f + fo, e = € + g to the system (7.20), the final conclusion can be derived from
Lemma 7.1 and Lemma 7.2. O
Proof of Theorem 1.1: Let é solves
L3(é) =eaz, 0<O<1
e (1) + %klé(l) =0,
¢ (0) + %koé(o) ~0.
By Lemma 7.2, we get
|[élls < Ce.
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Setting e = é + €, the system (7.1)-(7.6) keeps the same form except that the term cay disappear.
Let (f,&) € F, where F is defined in (2.53), and define

( h(fae)a g(fae) ) = ( EAls(fae) +5K15(f:aé)a 52A25(f76) +52K25(faé) )a

F; = M;(faé)a i,j=0,1

From (7.7), A;. and A, are contraction mappings of its arguments in F. By Banach Contraction

Mapping theorem and Lemma 9.3, we can solve the nonlinear problem

£(f,0) = (£1(5).£3()) = (hy9),

with the boundary conditions defined in (7.20) on the region F. Hence, we can define a new
operator Z from F into F by Z(f,é) = (f,e). Finding a solution to the problem (7.1)-(7.6) is
equivalent to locating a fixed point of Z. Schauder’s fixed point theorem applies to finish the proof
of its existence. Hence, by Proposition 5.1 and the lines followed, we complete the existence part

of Theorem 1.1. Other properties of u. in Theorem 1.1 can be showed easily. O
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