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Abstract. We give negative answers to Lin-Ni’s conjecture for any four and six dimensional
domains.

1. Introduction

We start with the following nonlinear Neumann elliptic problem:{
∆u− µu + uq = 0, u > 0 in Ω,
∂u
∂ν

= 0, on ∂Ω,
(1.1)

where 1 < q < +∞, µ > 0 and Ω is a smooth and bounded domain in Rn (n ≥ 2).
Equation (1.1) arises in many branches of the applied sciences. For example, it can be

viewed as a steady-state equation for the shadow system of the Gierer-Meinhardt system in
mathematical biology [11], [17], or for parabolic equation in chemotaxis, e.g. Keller-Segel model
[15].

Equation (1.1) has at least one solution, namely the constant solution u ≡ µ
1

q−1 . It turns out
that this is the only solution, provided that µ is small and q < n+2

n−2
. This was first proved by

Lin-Ni-Takagi [15], via blow up analysis and compactness argument. Based on this, Lin and Ni
[14] made the following conjecture:

Lin-Ni’s Conjecture [14]: For µ small and q = n+2
n−2

, problem (1.1) admits only the constant
solution.

In recent years, many progress have been made towards the understanding of Lin-Ni’s con-
jecture.

The first result was due to Adimurthi-Yadava [1]-[2] (and independently Budd-Knapp-Peletier
[5]). They considered the following problem




∆u− µu + u
n+2
n−2 = 0 in BR(0),

u = u(|x|), u > 0 in BR(0),
∂u
∂ν

= 0, on ∂BR(0)

(1.2)

and the following results were proved

Theorem A. ([1]-[5]) For µ sufficiently small
(1) if n = 3 or n ≥ 7, problem (1.2) admits only the constant solution;
(2) if n = 4, 56, problem (1.2) admits a nonconstant solution.

The proof of Theorem A relies on the radial symmetry of the domain and the solution. In
the asymmetric case, the complete answer is not known yet, but there are a few results. In the
general three dimensional domain case, Zhu [28] and Wei-Xu [26] proved
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Theorem B. ([26],[28]) The conjecture is true if n = 3 (q = 5) and Ω is convex.

Zhu’s proof relies on blowing up analysis and a priori estimates, while Wei-Xu [26] gave a
direct proof of Theorem B by using only integration by parts.

Part (1) of Theorem A is generalized by Druet-Robert-Wei [10] to mean convex domains with
bounded energy.

Theorem C. ([10]) Let Ω be a smooth bounded domain of Rn, n = 3 or n ≥ 7. Assume that
H(x) > 0 for all x ∈ ∂Ω, where H(x) is the mean curvature of ∂Ω at x ∈ ∂Ω. Then for all
µ > 0, there exists µ0(Ω, Λ) > 0 such that for all µ ∈ (0, µ0(Ω, Λ)) and for any u ∈ C2(Ω), we
have that 




∆u + µu = u2∗−1 in Ω
u > 0 in Ω
∂u
∂ν

= 0 on ∂Ω∫
Ω

u2∗dx ≤ Λ




⇒ u ≡ µ

n−2
4 .

It should be mentioned that the assumption of bounded energy in Theorem C is necessary.
Without this technical assumption, it was proved that solutions to (1.1) may accumulate with
infinite energy when the mean curvature is negative somewhere (see Wang-Wei-Yan [22]). More
precisely, Wang-Wei-Yan gave a negative answer to Lin-Ni’s conjecture in all dimensions (n ≥ 3)
for non-convex domain by assuming that Ω is a smooth and bounded domain satisfying the fol-
lowing conditions:

(H1) y ∈ Ω if and only if (y1, y2, y3, · · · ,−yi, · · · , yn) ∈ Ω, ∀i = 3, · · · , n.
(H2) If (r, 0, y′′) ∈ Ω, then (r cos θ, r sin θ, y′′) ∈ Ω, ∀θ ∈ (0, 2π), where y′′ = (y3, · · · , yn).
(H3) Let T := ∂Ω∩ {y3 = · · · = yn = 0}. There exists a connected component Γ of T such that
H(x) ≡ γ < 0, ∀x ∈ Γ.

Theorem D. ([22]) Suppose n ≥ 3, q = n+2
n−2

and Ω is a bounded smooth domain satisfying
(H1)-(H3). Let µ be any fixed positive number. Then problem (1.1) has infinitely many positive
solutions, whose energy can be made arbitrarily large.

Wang-Wei-Yan [23] also gave a negative answer to Lin-Ni’s conjecture in some convex domain
including the balls for n ≥ 4.

Theorem E. ([23]) Suppose n ≥ 4, q = n+2
n−2

and Ω satisfies (H1)-(H2). Let µ be a any fixed
positive number. Then problem (1.1) has infinitely many positive solutions, whose energy can
be made arbitrarily large.

Theorems A-E reveal that Lin-Ni’s conjecture depends very sensitively not only on the di-
mensions, but also on the shape of the domain (convexity). A natural question is: what about
the general domains?

So far the only result for general domains is given by Rey-Wei [20] in which they disproved
the conjecture in the five-dimensional case by constructing an nontrivial solution which blows
up at K interior points in Ω provided µ is sufficiently small. In view of results of Theorem A, we
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expect to have an negative answer in the case n = 4, 5, 6. This is exactly what we shall achieve
in this paper.

The purpose of this paper is to establish a result similar to (2) of Theorem A in general four,
and six-dimensional domains by constructing a nontrivial solution which blows up at a single
point in Ω provided µ is sufficiently small. From now on, we consider the problem

∆u− µu + u
n+2
n−2 = 0 in Ω, u > 0 in Ω,

∂u

∂ν
= 0 on ∂Ω, (1.3)

where n = 4, 6 and Ω is a smooth bounded domain in Rn and µ > 0 very small. Our main
result is stated as follows

Main Theorem. For problem (1.3) in n = 4, 6, there exists µ0 > 0 such that for all 0 < µ < µ0,
equation (1.3) possesses a nontrivial solution which blows up at an interior point of Ω.

In order to make this statement more precise, we introduce the following notation. Let
G(x,Q) be the Green’s function defined as

∆xG(x,Q) + δQ − 1

|Ω| = 0 in Ω,
∂G

∂ν
= 0 on ∂Ω,

∫

Ω

G(x,Q)dx = 0. (1.4)

We decompose
G(x,Q) = K(|x−Q|)−H(x,Q),

where

K(r) =
1

cnrn−2
, cn = (n− 2)|Sn−1|, (1.5)

is the fundamental solution of the Laplacian operator in Rn(|Sn−1| denotes the area of the unit
sphere), n = 4, 6.

For the reason of normalization, we consider throughout the paper the following equation:

∆u− µu + n(n− 2)u
n+2
n−2 = 0, u > 0 in Ω,

∂u

∂ν
= 0 on ∂Ω. (1.6)

We recall that, according to [6], the functions

UΛ,Q = (
Λ

Λ2 + |x−Q|2 )
n−2

2 , Λ > 0, Q ∈ Rn, (1.7)

are the only solutions to the problem

−∆u = n(n− 2)u
n+2
n−2 , u > 0 in Rn. (1.8)

Our main result can be stated precisely as follows:

Theorem 1.1. Let Ω be any smooth bounded domain in Rn.
(1). For n = 4, there exists µ1 > 0 such that for 0 < µ < µ1, problem (1.6) has a nontrivial

solution
uµ = U

e
− c1

µ2 Λ,Qµ
+ O(µ−1e

− c1
µ2 ),

where c1 is some constant depending on the domain, to be determined later, Λ will be some
generic constant. The blow up point Q depends on the domain and parameter Λ.
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(2). For n = 6, there exists µ2 > 0 such that for 0 < µ < µ2, problem (1.6) has a nontrivial
solution

uµ = UµΛ,Qµ + O(µ),

where Λ → Λ0, and Λ0 > 0 is some generic constant. The blow up point Q depends on the
domain and parameter Λ.

We introduce several notations for late use. Set

Ωε := Ω/ε = {z|εz ∈ Ω}, (1.9)

and

µ =

{
( c1
− ln ε

)
1
2 , n = 4,

ε , n = 6.
(1.10)

Through the transformation u(x) 7−→ ε−
n−2

2 u(x/ε), (1.6) becomes

∆u− µε2u + n(n− 2)u
n+2
n−2 = 0, u > 0 in Ωε,

∂u

∂ν
= 0 on Ωε. (1.11)

We set

Sε[u] := −∆u + µε2u− n(n− 2)u
n+2
n−2

+ , u+ = max(u, 0), (1.12)

and introduce the following functional

Jε[u] :=
1

2

∫

Ωε

|∇u|2 +
1

2
µε2

∫

Ωε

u2 − (n− 2)2

2

∫

Ωε

|u| 2n
n−2 , u ∈ H1(Ωε). (1.13)

Depending on the dimensions, we have to overcome different difficulties. In dimension four,
the main problem is that the relation between µ and ε is only implicit. Dimension six is the
borderline case, since in the linearized operator the constant term −µu disappears. To remedy
this problem, we have to introduce an artificial parameter η (see (2.14)).

The paper is organized as follows: In Section 2, we construct suitable approximated bubble
solution W, and list their properties. In Section 3, we solve the linearized problem at W up
to a finite-dimensional space. Then, in Section 4, we are able to solve the nonlinear problem
in that space. In section 5, we study the remaining finite-dimensional problem and solve it in
Section 6, finding critical points of the reduced energy functional. Some numerical results may
be found in the last Section.

Acknowledgements: The research of Wei is supported by a NSERC of Canada. Part of the
paper was finished when the second author was visiting Chinese University of Hong Kong. He
would like to thank the institute for their warm hospitality.
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2. Approximate bubble solutions

In this section, we construct suitable approximate solution, in the neighborhood of which
solutions in Theorem 1.1 will be found. Depending on the dimensions, we shall make different
ansatz.

Let ε be as defined at (1.10). For any Q ∈ Ωε with d(Q, ∂Ωε) large, UΛ,Q in (1.7) provides an
approximate solution of (1.11). Because of the appearance of the additional linear term µε2u in
the equation (1.11), we need to add an extra term to obtain a better approximation. Now we
describe the next order terms in different dimensions.

When n = 4, we consider the following linear equation

∆Ψ̄ + U1,0 = 0 in R4, Ψ̄(0) = 1 (2.1)

which has a unique radial solution with the following asymptotic behavior

Ψ̄(|y|) = −1

2
ln |y|+ I + O

( 1

|y|
)
, Ψ̄

′
= − 1

2|y|
(
1 + O

( ln(1 + |y|)
|y|2

))
as |y| → ∞, (2.2)

where I is a generic constant. For Q ∈ Ωε, set

ΨΛ,Q =
Λ

2
ln

1

Λε
+ ΛΨ̄(

y −Q

Λ
) (2.3)

which satisfies

∆ΨΛ,Q + UΛ,Q = 0 in R4.

From (2.2) we derive that

|ΨΛ,Q(y)|, |∂ΛΨΛ,Q(y)| ≤ C
∣∣∣ ln

1

ε(1 + |y −Q|)
∣∣∣, |∂Qi

ΨΛ,Q(y)| ≤ C

1 + |y −Q| . (2.4)

Now we turn to the case of n = 6. Let Ψ(|y|) be the radial solution of

∆Ψ + U1,0 = 0 in R6, Ψ → 0 as |y| → +∞. (2.5)

Then, it is easy to check that

Ψ(y) =
1

4|y|2 (1 + O(
1

|y|2 )) as |y| → +∞. (2.6)

For Q ∈ Ωε, we set

ΨΛ,Q(y) = Λ−2Ψ(
y −Q

Λ
).

Then it satsfies

∆ΨΛ,Q(y) + UΛ,Q = 0 in R6.

It is easy to check that

|ΨΛ,Q(y)|, |∂ΛΨΛ,Q(y)| ≤ C

(1 + |y −Q|)2
, |∂Qi

ΨΛ,Q(y)| ≤ C

(1 + |y −Q|)3
. (2.7)
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The above considerations take care of the linear term µε2u in the equation but we still need
to obtain approximate solutions which satisfy the boundary boundary condition. To this end,
we need an extra correction term. For this purpose, we define

ÛΛ, Q
ε
(z) = −ΨΛ,Q/ε(z)− cnµ

−1εn−4Λ
n−2

2 H(εz,Q) + Rε,Λ,Q(z)χ(εz), (2.8)

where Rε,Λ,Q is the unique solution satisfying the following boundary value problem
{

∆Rε,Λ,Q − ε2Rε,Λ,Q = 0 in Ωε

µε2 ∂Rε,Λ,Q

∂ν
= − ∂

∂ν

[
UΛ,Q/ε − µε2ΨΛ,Q/ε − cnεn−2Λ

n−2
2 H(εz,Q)

]
on ∂Ωε.

(2.9)

Here χ(x) is a smooth cut-off function in Ω such that χ(x) = 1 for d(x, ∂Ω) < δ/4 and χ(x) =
0 for d(x, ∂Ω) > δ/2.

Observe that from (2.2) and (2.6), an expansion of UΛ,Q/ε and the definition of H imply that
the normal derivative of Rε,Q is of order εn−3 on the boundary of Ωε, from which we deduce
that

|Rε,Λ,Q|+ |ε−1∇zRε,Λ,Q|+ |ε−2∇2
zRε,Λ,Q| ≤

{
C, n = 4,

Cε2, n = 6.
(2.10)

Such an estimate also holds for the derivatives of Rε,Λ,Q with respect to Λ, Q.

Finally we are able to define the approximate bubble solutions. Depending on the dimensions
we shall use different ansatz. For n = 4, let

Λ4,1 ≤ Λ ≤ Λ4,2, Q ∈Mδ4 := {x ∈ Ω| d(x, ∂Ω) > δ4}, (2.11)

where Λ4,1 and Λ4,2 are constants may depending on the domain and δ4 is a small constant, to
be determined later. In viewing of the rescaling, we write

Q̄ =
1

ε
Q,

and we define our approximate solutions as

Wε,Λ,Q = UΛ,Q/ε + µε2ÛΛ,Q/ε +
c4Λ

|Ω| µ
−1ε2. (2.12)

For n = 6, let (Λ, Q, η) satisfy
√
|Ω|
c6

(
1

96
− Λ6ε

2
3 ) ≤Λ ≤

√
|Ω|
c6

(
1

96
+ Λ6ε

2
3 ),

Q ∈Mδ6 := {x ∈ Ω| d(x, ∂Ω) > δ6},
1

48
− η6ε

1
3 ≤η ≤ 1

48
+ η6ε

1
3 , (2.13)

where Λ6 and η6 are constants may depending on the domain, δ6 is a small constant, to be
determined later. Our approximate solution for n = 6 is the following

Wε,Λ,Q,η = UΛ,Q/ε + µε2ÛΛ,Q/ε + ηµ−1ε4. (2.14)
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We remark that unlike the case of n = 4, in the case of n = 6, an extra parameter η is
introduced. The main reason is that when n = 6 the linear term −µε2 is lost in linearized
outer problem. Actually this is one of the main difficulties. This seems to be quite new in the
Neumann boundary value problems.

For convenience, in the following, we write W, U, Û , R, and Ψ instead of Wε,Λ,Q, Uε,Q/ε,

ÛΛ,Q/ε, Rε,Λ,Q and ΨΛ,Q/ε respectively in the following. By construction, the normal derivative
of W vanishes on the boundary of Ωε, and W satisfies

−∆W + µε2W =

{
8U3 + µ2ε4Û − µε2∆(Rε,Λ,Qχ), n = 4,

24U2 + µ2ε4Û − µε2∆(Rε,Λ,Qχ) + ε6(η − c6Λ2

|Ω| ), n = 6.
(2.15)

We note that W depends smoothly on Λ and Q̄. Setting, for z ∈ Ωε,

〈z − Q̄〉 = (1 + |z − Q̄|2) 1
2 ,

a simple computation yields

|W (z)| ≤
{

C(ε2(− ln ε)
1
2 + 〈z − Q̄〉−2), n = 4,

C(ε3 + 〈z − Q̄〉−4), n = 6,
(2.16)

|DΛW (z)| ≤
{

C(ε2(− ln ε)
1
2 + 〈z − Q̄〉−2), n = 4,

C〈z − Q̄〉−4, n = 6,
(2.17)

and

|DQ̄W (z)| ≤
{

C(〈z − Q̄〉−3), n = 4,
C(〈z − Q̄〉−5), n = 6.

(2.18)

According to the choice of W, we have the following error and energy estimates, whose proof
will be given in Section 7.

Lemma 2.1. For n = 4, we have

|Sε[W ](z)| ≤ C
(
〈z − Q̄〉−4ε2(− ln ε)

1
2 + 〈z − Q̄〉−2ε4(− ln ε)

+
ε4

(− ln ε)
1
2

+
ε4

(− ln ε)
| ln(

1

ε(1 + |z − Q̄|))|
)
, (2.19)

|DΛSε[W ](z)| ≤ C
(
〈z − Q̄〉−4ε2(− ln ε)

1
2 + 〈z − Q̄〉−2ε4(− ln ε)

+
ε4

(− ln ε)
1
2

+
ε4

(− ln ε)
| ln(

1

ε(1 + |z − Q̄|))|
)
, (2.20)

|DQ̄Sε[W ](z)| ≤ C
(
〈z − Q̄〉−5ε2(− ln ε)

1
2 + 〈z − Q̄〉−3ε4(− ln ε)

+ 〈z − Q̄〉−1 ε4

(− ln ε)
1
2

)
, (2.21)
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and

Jε[W ] = 2

∫

R4

U4
1,0 +

Λ2

4
c4 ln

1

Λε
ε2(

c1

− ln ε
)

1
2 − c2

4Λ
2

2|Ω| ε
2(

c1

− ln ε
)−

1
2

+
1

2
c2
4Λ

2ε2H(Q,Q) + o(ε2). (2.22)

For n = 6, we have

Sε[W ](z) = −ε6(24η2 − η +
c6Λ

2

|Ω| ) + O(1)〈z − Q̄〉−4ε3, (2.23)

|DΛSε[W ](z)|, |DηSε[W ](z)| ≤ C〈z − Q̄〉−3 2
3 ε3, (2.24)

|DQ̄Sε[W ](z)| ≤ C〈z − Q̄〉−4 2
3 ε3, (2.25)

and

Jε[W ] =4

∫

R6

U3
1,0 + (

1

2
η2|Ω| − c6Λ

2η +
1

48
c6Λ

2 − 8η3|Ω|)ε3

+
1

2
c2
6Λ

4H(Q,Q)ε4 + o(ε4). (2.26)

3. Finite-Dimensional Reduction

We now apply finite-dimensional reduction procedure for critical exponent problems. The
original finite dimensional Liapunov-Schmidt reduction method was first introduced in a sem-
inal paper by Floer and Weinstein [24] in their construction of single bump solutions to one
dimensional nonlinear Schrodinger equations. Subsequently this method has been modified and
adapted to critical exponent problems. For critical exponents problems, we refer to Bahri-
Li-Rey [4], Del Pino-Felmer-Musso [7], Rey-Wei [20, 21] and Wei-Yan [27] and the references
therein. For the most updated references and optimal treatments of finite dimensional reduction
for critical problems, we refer to Li-Wei-Xu [13].

The general strategy of this method is as follows: the nonlinear equation (1.11) is solved in
two steps. In the first step, we solve it up to finite dimensional approximate kernels. In the
second step, we reduce the problem to finding critical points of a finite dimensional problems
in a suitable sets.

The new element in our proof is in the case of n = 6: an extra space (corresponding to η)
is introduced. Unlike the traditional critical exponent problems, in which the dimensional of
approximate kernels is n + 1, we now have n + 2 = 8 dimensions.

Equipping H1(Ωε) with the scalar product

(u, v)ε =

∫

Ωε

(∇u · ∇v + µε2uv). (3.1)
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For the case n = 4, orthogonality to the functions

Y0 =
∂W

∂Λ
, Yi =

∂W

∂Q̄i

, 1 ≤ i ≤ 4, (3.2)

in that space is equivalent to the orthogonality in L2(Ωε), equipped with the usual scalar product
〈·, ·〉, to the functions Zi, 0 ≤ i ≤ 4, defined as

{
Z0 = −∆∂W

∂Λ
+ µε2 ∂W

∂Λ
,

Zi = −∆ ∂W
∂Q̄i

+ µε2 ∂W
∂Q̄i

, 1 ≤ i ≤ 4.
(3.3)

Straightforward computations provide us with the estimate:

|Zi(z)| ≤ C(ε4(
1

− ln ε
)

1
2 + 〈z − Q̄〉−6). (3.4)

Then, we consider the following problem: given h, find a solution φ which satisfies




−∆φ + µε2φ− 24W 2φ = h + Σ4
i=0ciZi in Ωε,

∂φ
∂ν

= 0 on ∂Ωε,

〈Zi, φ〉 = 0, 0 ≤ i ≤ 4,

(3.5)

for some numbers ci.

While for the case n = 6, orthogonality to the functions

Y0 =
∂W

∂Λ
, Yi =

∂W

∂Q̄i

, 1 ≤ i ≤ 6, Y7 =
∂W

∂η
, (3.6)

in that space is equivalent to the orthogonality in L2(Ωε), equipped with the usual scalar product
〈·, ·〉, to the functions Zi, 0 ≤ i ≤ 7, defined as





Z0 = −∆∂W
∂Λ

+ µε2 ∂W
∂Λ

,

Zi = −∆ ∂W
∂Q̄i

+ µε2 ∂W
∂Q̄i

, 1 ≤ i ≤ 6,

Z7 = −∆∂W
∂η

+ µε2 ∂W
∂η

.

(3.7)

Direct computations provide us the following estimate:

|Zi(z)| ≤ C(ε7 + 〈z − Q̄〉−8), 0 ≤ i ≤ 6, Z7(z) = O(ε6). (3.8)

Then, we consider the following problem: given h, find a solution φ which satisfies




−∆φ + µε2φ− 48Wφ = h + Σ7
i=0diZi in Ωε,

∂φ
∂ν

= 0 on ∂Ωε,

〈Zi, φ〉 = 0, 0 ≤ i ≤ 7,

(3.9)

for some numbers di.
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Existence and uniqueness of φ will follow from an inversion procedure in suitable weighted
function space. To this end, we define{

‖φ‖∗ = ‖〈z − Q̄〉φ(z)‖∞, ‖f‖∗∗ = ε−3(− ln ε)
1
2 |f |+ ‖〈z − Q̄〉3f(z)‖∞, n = 4,

‖φ‖∗∗∗ = ‖〈z − Q̄〉2φ(z)‖∞, ‖f‖∗∗∗∗ = ‖〈z − Q̄〉4f(z)‖∞, n = 6,
(3.10)

where ‖f‖∞ = maxz∈Ωε |f(z)| and f = |Ωε|−1
∫
Ωε

f(z)dz denotes the average of f in Ωε.

Before stating an existence result for φ in (3.5) and (3.9), we need the following lemma:

Lemma 3.1. Let u and f satisfy

−∆u = f,
∂u

∂ν
= 0, ū = f̄ = 0.

Then

|u(x)| ≤ C

∫

Ωε

|f(y)|
|x− y|n−2

dy. (3.11)

Proof. The proof is similar to Lemma 3.1 in [20], we omit it here. ¤
As a consequence, we have

Corollary 3.2. For n = 4, suppose u and f satisfy

−∆u + µε2u = f in Ωε,
∂u

∂ν
= 0 on ∂Ωε.

Then
‖u‖∗ ≤ C‖f‖∗∗. (3.12)

For n = 6, suppose u and f satisfy

−∆u + cµε2u = f in Ωε,
∂u

∂ν
= 0 on ∂Ωε, u = f = 0,

where c is an arbitrary constant. Then

‖u‖∗∗∗ ≤ C‖f‖∗∗∗∗. (3.13)

Proof. For n = 4, integrating the equation yields f̄ = µε2ū. We may rewrite the original equation
as

∆(u− ū) = µε2(u− ū)− (f − f̄).

With the help of Lemma 3.1, we get

|u(y)− ū| ≤ Cµε2

∫

Ωε

|u(x)− ū|
|x− y|2 dx + C

∫

Ωε

|f(x)− f̄ |
|x− y|2 dx.

Since

〈y − Q̄〉
∫

R4

1

|x− y|2 〈x− Q̄〉−3dx < ∞,

we obtain

‖〈y − Q̄〉|u− ū|‖∞ ≤ Cµε2‖〈y − Q̄〉3|u− ū|‖∞ + C‖〈y − Q̄〉3|f − f̄ |‖∞
≤ Cµ‖〈y − Q̄〉|u− ū|‖∞ + C‖〈y − Q̄〉3|f − f̄ |‖∞,
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which gives
‖〈y − Q̄〉|u− ū|‖∞ ≤ C‖〈y − Q̄〉3|f − f̄ |‖∞,

whence

‖〈y − Q̄〉u‖∞ ≤ C‖〈y − Q̄〉‖∞|ū|+ Cε−3|f̄ |+ ‖〈y − Q̄〉3f‖∞
≤ C‖f‖∗∗.

Hence we finish the proof of the case n = 4.
For n = 6, by the help of Lemma 3.1,

|〈y − Q̄〉2u| ≤C

∫

Ωε

〈y − Q̄〉2(|µε2u|+ |f |)
|x− y|4 dx

≤C(|µ ln ε|‖u‖∗∗∗ + ‖f‖∗∗∗∗),
where we used some similar estimates appeared in n = 4. From the above inequality, we obtain
‖u‖∗∗∗ ≤ ‖f‖∗∗∗∗. Hence we finish the proof. ¤

We now state the main result of this section

Proposition 3.3. There exists ε0 > 0 and a constant C > 0, independent of ε, Λ, Q̄ satisfying
(2.11) and independent of ε, η, Λ, Q̄, such that for all 0 < ε < ε0 and all h ∈ L∞(Ωε), problem
(3.5) and (3.9) has a unique solution φ = Lε(h). Furthermore

‖Lε(h)‖∗ ≤ C‖h‖∗∗, |ci| ≤ C‖h‖∗∗ for 0 ≤ i ≤ 4,

‖Lε(h)‖∗∗∗ ≤ C‖h‖∗∗∗∗, |di| ≤ C‖h‖∗∗∗∗ for 0 ≤ i ≤ 6, (3.14)

Moreover, the map Lε(h) is C1 with respect to Λ, Q̄ of the L∞∗ -norm in n = 4 and with respect
to Λ, Q̄, η of the L∞∗∗∗-norm in n = 6, i.e.,

‖D(Λ,Q̄)Lε(h)‖∗ ≤ C‖h‖∗∗ in n = 4, ‖D(η,Λ,Q̄)Lε(h)‖∗∗∗ ≤ C‖h‖∗∗∗∗ in n = 6. (3.15)

The argument goes the same as the Proposition 3.1 in [20], for the convenience of the reader,
we sketch the proof here. First, we need the following Lemma

Lemma 3.4. For n = 4, assume that φε solves (3.5) for h = hε. If ‖hε‖∗∗ goes to zero as ε
goes to zero, so does ‖φε‖∗. While for n = 6, assume that φε solves (3.9) for h = hε. If ‖hε‖∗∗∗∗
goes to zero as ε goes to zero, so does ‖φε‖∗∗∗.
Proof. We prove this lemma by contradiction and first consider n = 4. Assuming ‖φε‖∗ = 1.
Multiplying the first equation in (3.5) by Yj and integrating in Ωε we find

∑
i

ci〈Zi, Yj〉 = 〈−∆Yj + µε2Yj − 24W 2Yj, φε〉 − 〈hε, Yj〉.

We can easily get the following equalities from the definition of Zi, Yj

〈Z0, Y0〉 = ‖Y0‖2
ε = γ0 + o(1),

〈Zi, Yi〉 = ‖Yi‖2
ε = γ1 + o(1), 1 ≤ i ≤ 4, (3.16)

where γ0, γ1 are strictly positive constants, and

〈Zi, Yj〉 = o(1), i 6= j. (3.17)
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On the other hand, in view of the definition of Yj and W , straightforward computations yield

〈−∆Yj + µε2Yj − 24W 2Yj, φε〉 = o(‖φε‖∗)
and

〈hε, Yj〉 = O(‖hε‖∗∗).
Consequently, inverting the quasi diagonal linear system solved by the ci’s we find

ci = O(‖hε‖∗∗) + o(‖φε‖∗). (3.18)

In particular, ci = o(1) as ε goes to zero.
Since ‖φε‖∗ = 1, elliptic theory shows that along some subsequence, the functions φε,0 =

φε(y − Q̄) converge uniformly in any compact subset of R4 to a nontrivial solution of

−∆φ0 = 24U2
Λ,0φ0.

A bootstrap argument (see e.g.Proposition 2.2 of [24]) implies |φ0(y)| ≤ C(1 + |y|)−2. As conse-
quence, φ0 can be written as

φ0 = α0
∂UΛ,0

∂Λ
+

∑
i

αi
∂UΛ,0

∂yi

(see [19]). On the other hand, equalities 〈Zi, φε〉 = 0 yield
∫

R4

−∆
∂UΛ,0

∂Λ
φ0 =

∫

R4

U2
Λ,0

∂UΛ,0

∂Λ
φ0 = 0,

∫

R4

−∆
∂UΛ,0

∂yi

φ0 =

∫

R4

U2
Λ,0

∂UΛ,0

∂yi

φ0 = 0, 1 ≤ i ≤ 4.

As we also have ∫

R4

|∇∂UΛ,0

∂Λ
|2 = γ0 > 0,

∫

R4

|∇∂UΛ,0

∂yi

|2 = γ1 > 0, 1 ≤ i ≤ 4,

and ∫

R4

∇∂UΛ,0

∂Λ
∇∂UΛ,0

∂yi

=

∫

R4

∇∂UΛ,0

∂yi

∇∂UΛ,0

∂yj

= 0, i 6= j,

the α′is solve a homogeneous quasi diagonal linear system, yielding αi = 0, 0 ≤ i ≤ 4, and
φ0 = 0. So φε(z − Q̄) → 0 in C1

loc(Ωε). Next, we will show ‖φε‖∗ = o(1) by using the equation
(3.5).

Using (3.5) and Corollary 3.2, we have

‖φε‖∗ ≤ C(‖W 2φε‖∗∗ + ‖h‖∗∗ +
∑

i

|ci|‖Zi‖∗∗). (3.19)

Then we estimate the right hand side of (3.19) term by term. By the help of (2.16), we deduce
that

|〈z − Q̄〉3W 2φε| ≤ Cε4(− ln ε)〈z − Q̄〉2‖φε‖∗ + 〈z − Q̄〉−1|φε|. (3.20)

Since ‖φε‖∗ = 1, the first term on the right hand side of (3.20) is dominated by ε2(− ln ε). The
last term goes uniformly to zero in any ball BR(Q̄), and is dominated by 〈z − Q̄〉−2‖φε‖∗ =



ON LIN-NI’S CONJECTURE IN DIMENSIONS FOUR AND SIX 13

〈z − Q̄〉−2, which, through the choice of R, can be made as small as possible in Ωε\BR(Q̄).
Consequently,

|〈z − Q̄〉3W 2φε| = o(1) (3.21)

as ε goes to zero, uniformly in Ωε. On the other hand, we can also get

ε−3(− ln ε)
1
2 W 2φε ≤ Cε(− ln ε)

1
2

∫

Ωε

(〈z − Q̄〉−4 + ε4(− ln ε))|φε|

≤ Cε(− ln ε)−
1
2

∫

Ωε

(〈z − Q̄〉−5 + ε4(− ln ε)〈z − Q̄〉−1)‖φε‖∗
= o(1).

Finally, we obtain
‖W 2φε‖∗∗ = o(1).

In view of the formula (3.4), we have

〈z − Q̄〉3|Zi| ≤ C(〈z − Q̄〉3ε4(
1

− ln ε
) + 〈z − Q̄〉−3) = O(1).

and

ε−3(− ln ε)
1
2 Zi ≤ Cε(− ln ε)

1
2

∫

Ωε

|〈z − Q̄〉−6 + ε4(
1

− ln ε
)

1
2 |dx = o(1).

Hence, ‖Zi‖∗∗ = O(1). Therefore, we have

‖φε‖∗ ≤ C(‖W 2φε‖∗∗ + ‖h‖∗∗ +
∑

i

|ci|‖Zi‖∗∗) = o(1), (3.22)

which contradicts our assumption that ‖φε‖∗ = 1.

Finally we turn to case of n = 6. We still assume that ‖φε‖∗∗∗ = 1. Using the similar arguments
in previous case, we obtain the following

di = O(‖h‖∗∗∗∗) + o(‖φ‖∗∗∗) for 0 ≤ i ≤ 6, d7 = ε−2O(‖h‖∗∗∗∗) + (− ln ε)o(‖φ‖∗∗∗) (3.23)

and φε(z − Q̄) → 0 in C1
loc(Ωε). Then, we will show ‖φ‖∗∗∗ = o(1) by using the equation (3.9).

At first, we write the equation (3.9) into the following

−∆φ + µε2(1− 48η)φ = h +
∑

i

diZi + 48Uφ + 48ε3Ûφ. (3.24)

Using Corollary 3.2 again, we have

‖φε‖∗∗∗ ≤ C(‖(U + ε3Û)φ‖∗∗∗∗ + ‖h‖∗∗∗∗ +
∑

i

|di|‖Zi‖∗∗∗∗). (3.25)

From the formula of U and Û , it is not difficult to show

U + ε3Û ≤ C〈z − Q̄〉−4.

Similar to the case n = 4, we could show ‖〈z− Q̄〉−4φ‖∗∗∗∗ = o(1), ‖Zi‖∗∗∗∗ = O(1) for 0 ≤ i ≤ 6
and ‖Z7‖∗∗∗∗ = O(ε2). Therefore, by the above facts and (3.23), we conclude

‖φ‖∗∗∗ ≤ o(1) + C‖h‖∗∗∗∗ + o(1)‖φ‖∗∗∗ = o(1)
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which contradicts the previous assumption that ‖φε‖∗∗∗ = 1. Hence, we finish the proof. ¤
Proof of Proposition 3.3. Since the proof of the case n = 4 and n = 6 are almost the same, we
only give the proof for the former one. We set

H = {φ ∈ H1(Ωε) | 〈Zi, φ〉 = 0, 0 ≤ i ≤ 4},
equipped with the scalar product (·, ·)ε. Problem (3.5) is equivalent to find φ ∈ H such that

(φ, θ)ε = 〈24W 2φ + h, θ〉, ∀θ ∈ H,

that is

φ = Tε(φ) + h̃, (3.26)

where h̃ depends on h linearly, and Tε is a compact operator in H. Fredholm’s alternative
ensures the existence of a unique solution, provided that the kernel of Id− Tε is reduced to 0.
We notice that any φε ∈ Ker(Id − Tε) solves (3.5) with h = 0. Thus, we deduce from Lemma
3.4 that ‖φε‖∗ = o(1) as ε goes to zero. As Ker(Id − Tε) is a vector space and is {0}. The
inequalities (3.14) follows from Lemma 3.4 and (3.18). This completes the proof of the first part
of Proposition 3.3.

The smoothness of Lε with respect to Λ and Q̄ is a consequence of the smoothness of Tε and
h̃, which occur in the implicit definition (3.26) of φ ≡ Lε(h), with respect to these variables.
Inequality (3.15) is obtained by differentiating (3.5), writing the derivatives of φ with respect
Λ and Q̄ as linear combinations of the Zi’s and an orthogonal part, and estimating each term
using the first part of the proposition see [7],[12] for detailed computations. 2

4. Finite-dimensional reduction:a nonlinear problem

In this section, we turn our attention to the nonlinear problem, which we solve in the finite-
dimensional subspace orthogonal to the Zi. Let Sε[u] be as defined at (1.12). Then (1.11) is
equivalent to

Sε[u] = 0 in Ωε, u+ 6= 0,
∂u

∂ν
= 0 on ∂Ωε. (4.1)

Indeed, if u satisfies (4.1) the Maximal Principle ensures that u > 0 in Ωε and (1.12) is satisfied.
Observing that

Sε[W + φ] = −∆(W + φ) + µε2(W + φ)− n(n− 2)(W + φ)
n+2
n−2

may be written as

Sε[W + φ] = −∆φ + µε2φ− n(n + 2)W
4

n−2 φ + Rε − n(n− 2)Nε(φ) (4.2)

with

Nε(φ) = (W + φ)
n+2
n−2 −W

n+2
n−2 − n + 2

n− 2
W

4
n−2 φ (4.3)

and
Rε = Sε[W ] = −∆W + µε2W − n(n− 2)W

n+2
n−2 . (4.4)
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From Lemma 2.1 we get{ ‖Rε‖∗∗ + ‖D(Λ,Q̄)R
ε‖∗∗ ≤ Cε, n = 4,

‖Rε‖∗∗∗∗ + ‖D(Λ,Q̄,η)R
ε‖∗∗∗∗ ≤ Cε2 2

3 , n = 6.
(4.5)

We now consider the following nonlinear problem: find φ such that, for some numbers ci,



−∆(W + φ) + µε2(W + φ)− 8(W + φ)3 =
∑

i ciZi in Ωε,
∂φ
∂ν

= 0 on ∂Ωε,

〈Zi, φ〉 = 0, 0 ≤ i ≤ 4.

(4.6)

for n = 4, and find φ such that, for some numbers di,



−∆(W + φ) + µε2(W + φ)− 24(W + φ)2 =
∑

i diZi in Ωε,
∂φ
∂ν

= 0 on ∂Ωε,

〈Zi, φ〉 = 0, 0 ≤ i ≤ 7.

(4.7)

for n = 6. The first equation in (4.6) and (4.7) reads

−∆φ + µε2φ− 24W 2φ = 8Nε(φ) + Rε +
∑

i

ciZi,

−∆φ + µε2φ− 48Wφ = 24Nε(φ) + Rε +
∑

i

diZi. (4.8)

In order to employ the contraction mapping theorem to prove that (4.6) and (4.7) are uniquely
solvable in the set where ‖φ‖∗ and ‖φ‖∗∗∗ are small respectively, we need to estimate Nε in the
following lemma.

Lemma 4.1. There exists ε1 > 0, independent of Λ, Q̄, and C independent of ε, Λ, Q̄ such that
for ε ≤ ε1 and

‖φ‖∗ ≤ ε for n = 4, ‖φ‖∗∗∗ ≤ ε2 2
3 for n = 6.

Then,
‖Nε(φ)‖∗∗ ≤ Cε‖φ‖∗ for n = 4, ‖Nε(φ)‖∗∗∗∗ ≤ Cε‖φ‖∗∗∗ for n = 6. (4.9)

For

‖φi‖∗ ≤ ε for n = 4, ‖φi‖∗∗∗ ≤ ε2 2
3 for n = 6, i = 1, 2.

Then,

‖Nε(φ1)−Nε(φ2)‖∗∗ ≤ Cε‖φ1 − φ2‖∗ for n = 4,

‖Nε(φ1)−Nε(φ2)‖∗∗∗∗ ≤ Cε‖φ1 − φ2‖∗∗∗ for n = 6. (4.10)

Proof. Since the proof of these two cases are similar, we only consider n = 4 here. From (4.3),
we see

|Nε(φ)| ≤ C(Wφ2 + |φ|3). (4.11)

Using (2.15), we gain

ε−3(− ln ε)
1
2 Wφ2 + |φ|3 = ε(− ln ε)

1
2

∫

Ωε

(Wφ2 + |φ|3),
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where the integration term on the right hand side of the above equality can be estimated as

|Wφ2 + |φ|3| ≤C((〈z − Q̄〉−2 + ε2(− ln ε)
1
2 )|φ|2 + |φ|3)

≤C(〈z − Q̄〉−4 + ε2(− ln ε)
1
2 〈z − Q̄〉−2)‖φ‖2

∗ + 〈z − Q̄〉−3‖φ‖3
∗

≤C(ε〈z − Q̄〉−4 + ε3(− ln ε)
1
2 〈z − Q̄〉−2)‖φ‖∗.

As a consequence,

ε−3(− ln ε)
1
2 Wφ2 + |φ|3 ≤ Cε2(− ln ε)

3
2‖φ‖∗ ≤ Cε‖φ‖∗.

On the other hand,
‖〈z − Q̄〉3(Wφ2 + |φ|3)‖∞ ≤ Cε‖φ‖∗.

and (4.9) follows. Concerning (4.10), we write

Nε(φ1)−Nε(φ2) = ∂ηNε(η)(φ1 − φ2)

for some η = xφ1 + (1− x)φ2, x ∈ [0, 1]. From

∂ηNε(η) = 3[(W + η)2 −W 2]

we deduce that
∂ηNε(η) ≤ C(|W ||η|+ η2) (4.12)

and the proof (4.10) is similar to the previous one. ¤
Proposition 4.2. For the case n = 4, there exists C, independent of ε and Λ, Q̄ satisfying
(2.11), such that for small ε problem (4.6) has a unique solution φ = φ(Λ, Q̄, ε) with

‖φ‖∗ ≤ Cε. (4.13)

Moreover, (Λ, Q̄) → φ(Λ, Q̄, ε) is C1 with respect to the ∗-norm, and

‖DΛ,Q̄φ‖∗ ≤ Cε. (4.14)

For the case n = 6, there exists C, independent of ε and Λ, η, Q̄ satisfying (2.13), such that
for small ε problem (4.7) has a unique solution φ = φ(Λ, η, Q̄, ε) with

‖φ‖∗∗∗ ≤ Cε2 2
3 . (4.15)

Moreover, (Λ, Q̄) → φ(Λ, η, Q̄, ε) is C1 with respect to the ∗ ∗ ∗-norm, and

‖DΛ,η,Q̄φ‖∗∗∗ ≤ Cε2 2
3 . (4.16)

Proof. We only give the proof of n = 4, the other case can be argued similarly. In the same
spirit of [7], we consider the map Aε from F={φ ∈ H1(Ωε)|‖φ‖∗ ≤ C

′
ε} to H1(Ωε) defined as

Aε(φ) = Lε(8Nε(φ) + Rε).

Here C
′

is a large number, to be determined later, and Lε is given by Proposition 3.3. We
remark that finding a solution φ to problem (4.6) is equivalent to finding a fixed point of Aε.
On the one hand, we have for φ ∈ F , using (4.5), Proposition 3.3 and Lemma 4.1,

‖Aε(φ)‖∗ ≤ ‖Lε(Nε(φ))||∗ + ‖Lε(R
ε)‖∗ ≤ C1(‖Nε(φ)‖∗∗ + ε)

≤ C2C
′
ε2 + C1ε ≤ C

′
ε
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for C
′
= 2C1 and ε small enough, implying that Aε sends F into itself. On the other hand, Aε

is a contraction. Indeed, for φ1 and φ2 in F , we write

‖Aε(φ1)− Aε(φ2)‖∗ ≤ C‖Nε(φ1)−Nε(φ2)‖∗∗ ≤ Cε‖φ1 − φ2‖∗ ≤ 1

2
‖φ1 − φ2‖∗

for ε small enough. The contraction Mapping Theorem implies that Aε has a unique fixed point
in F , that is, problem (4.6) has a unique solution φ such that ‖φ‖∗ ≤ C

′
ε.

In order to prove that (Λ, Q̄) → φ(Λ, Q̄) is C1, we remark that if we set for ψ ∈ F,

B(Λ, Q̄, ψ) ≡ ψ − Lε(8Nε(ψ) + Rε)

then φ is defined as
B(Λ, Q̄, φ) = 0. (4.17)

We have
∂ψB(Λ, Q̄, ψ)[θ] = θ − 8Lε(θ(∂ψNε)(ψ)).

Using Proposition 3.3 and (4.12) we write

‖Lε(θ(∂ψNε)(ψ))‖∗ ≤ C‖θ(∂ψNε)(ψ)‖∗∗ ≤ ‖〈z − Q̄〉−1(∂ψNε)(ψ)‖∗∗‖θ‖∗
≤ C‖〈z − Q̄〉−1(W+|ψ|+ |ψ|2)‖∗∗‖θ‖∗.

Using (2.16), (3.10) and ψ ∈ F , we obtain

‖Lε(θ(∂ψNε)(ψ))‖∗ ≤ ε‖θ‖∗.
Consequently, ∂ψB(Λ, Q̄, φ) is invertible with uniformly bounded inverse. Then the fact that
(Λ, Q̄) 7→ φ(Λ, Q̄) is C1 follows from the fact that (Λ, Q̄, ψ) 7→ Lε(Nε(ψ)) is C1 and the implicit
function theorem.

Finally, let’s consider (4.14). Differentiating (4.17) with respect to Λ, we find

∂Λφ = (∂ψB(Λ, ξ, φ))−1((∂ΛLε)(Nε(φ)) + Lε((∂ΛNε)(φ)) + Lε(∂ΛRε)),

Then by Proposition 3.3,

‖∂Λφ‖∗ ≤ C(‖Nε(φ)‖∗∗ + ‖(∂ΛNε)(φ)‖∗∗ + ‖∂ΛRε‖∗∗).
From Lemma 4.1 and (4.13), we know that ‖Nε(φ)‖∗∗ ≤ Cε2. Concerning the next term, we
notice that according to the definition of Nε,

|∂ΛNε(φ)| = 3φ2|∂ΛW |.
Note that

|DΛW (z)| ≤ C(〈z − Q̄〉−2 + ε2(− ln ε)
1
2 ),

we have
‖∂ΛNε(φ)‖∗∗ ≤ Cε.

Finally, using (4.5), we obtain
‖∂Λφ‖∗ ≤ Cε.

The derivative of φ with respect to Q̄ may be estimated in the same way. This concludes the
proof. ¤
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5. Finite-dimensional reduction:reduction energy

Let us define a reduced energy functional as

Iε(Λ, Q̄) ≡ Jε[WΛ,Q̄ + φε,Λ,Q̄] (5.1)

for n = 4 and

Iε(Λ, η, Q̄) ≡ Jε[WΛ,η,Q̄ + φε,Λ,η,Q̄] (5.2)

for n = 6. We have

Proposition 5.1. The function u = WΛ,Q̄ + φε,Λ,Q̄ is a solution to problem (1.6) for n = 4 if
and only if (Λ, Q̄) is a critical point of Iε. The function u = WΛ,η,Q̄ + φε,Λ,η,Q̄ is a solution to
problem (1.6) for n = 6 if and only if (Λ, η, Q̄) is a critical point of Iε.

Proof. Here we only give the proof for the case n = 6, the other case can be proved in the same
way. We notice that u = W + φ being a solution of (1.6) is equivalent to being a critical point
of Jε, which is also equivalent to the vanish of the di’s in (4.7) or, in view of

〈Z0, Y0〉 = ‖Y0‖2
ε = γ0 + o(1),

〈Zi, Yi〉 = ‖Yi‖2
ε = γ1 + o(1), 1 ≤ i ≤ 6,

〈Z7, Y7〉 = ‖Y7‖2
ε = γ2ε

3, (5.3)

where γ0, γ1, γ2 are strictly positive constants, and

〈Zi, Yj〉 = o(1), i 6= j, 0 ≤ i, j ≤ 6, 〈Zi, Yj〉 = o(ε3), i 6= j, i = 7 or j = 7. (5.4)

We have

J ′ε[W + φ][Yi] = 0, 0 ≤ i ≤ 7. (5.5)

On the other hand, we deduce from (5.2) that I ′ε(Λ, η, Q) = 0 is equivalent to the cancelation
of J ′ε(W + φ) applied to the derivative of W + φ with respect to Λ, η and Q̄. By the definition
of Yi’s and Proposition 4.2, we have

∂(W + φ)

∂Λ
= Y0 + y0,

∂(W + φ)

∂Q̄i

= Yi + yi, 1 ≤ i ≤ 6,
∂(W + φ)

∂η
= Y7 + y7

with ‖yi‖∗∗∗ = o(ε2), 0 ≤ i ≤ 7. We write

yi = y′i +
∑

j

aijYj, 〈y′i, Zj〉 = (y′i, Yj)ε = 0, 0 ≤ i, j ≤ 7,

and

J ′ε[W + φ][Yi] = αi,

where aij = 〈yi, Zj〉. It turns out that I ′ε(Λ, η, Q̄) = 0 is equivalent, since J ′ε[W + φ][θ] = 0 for
〈θ, Zi〉 = (θ, Yi)ε = 0, 0 ≤ i ≤ 7, to

([bij] + [aij])[αj] = 0,
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where bij = 〈Yi, Zj〉. Using the estimate ‖yi‖∗∗∗ = o(ε2) and the expression of Zi, Yi, 0 ≤ i ≤ 7,
we directly obtain

b00 = γ0 + o(1), bii = γ1 + o(1) for 1 ≤ i ≤ 6, b77 = γ2ε
3,

bij = o(1) for 0 ≤ i 6= j ≤ 6, bij = o(ε3) for i = 7 or j = 7, i 6= j,

aij = o(ε2) for 0 ≤ i ≤ 7, 0 ≤ j ≤ 6, ai7 = o(ε4) for 0 ≤ i ≤ 7.

Then it is easy to see the matrix [bij+aij] is invertible by the above estimates of each components,
hence αi = 0. We see that I ′ε(Λ, η, Q̄) = 0 means exactly that (5.5) is satisfied. ¤

With Proposition 5.1, it remains to find critical points of Iε. First, we establish an expansion
of Iε.

Proposition 5.2. In the case n = 4, for ε sufficiently small, we have

Iε(Λ, η, Q) = Jε[W ] + ε2σε(Λ, Q) (5.6)

where σε = o(1) and DΛ(σε) = o(1) as ε goes to 0, uniformly with respect to Λ, Q satisfying
(2.11).

In the case n = 6, for ε sufficiently small, we have

Iε(Λ, η, Q) = Jε[W ] + ε4σε(Λ, η, Q) (5.7)

where σε = o(1) and DΛ(σε) = o(1) as ε goes to 0, uniformly with respect to Λ, η, Q satisfying
(2.13).

Proof. We only consider the case n = 6 here, the left case can be argued similarly with minor
changes. We first prove

Iε(Λ, Q)− Jε[W ] = o(ε4). (5.8)

Actually, in view of (5.2), a Taylor expansion and the fact that J ′ε[W + φ][φ] = 0 yield

Iε(Λ, η, Q)− Jε[W ] =Jε[W + φ]− Jε[W ] = −
∫ 1

0

J ′′ε (W + tφ)[φ, φ](t)dt

=−
∫ 1

0

(

∫

Ωε

(|∇φ|2 + µε2φ2 − 48(W + tφ)φ2))tdt,

whence

Iε(Λ, η, Q)− Jε[W ]

= −
∫ 1

0

(
24

∫

Ωε

(Nε(φ)φ + 2[W − (W + tφ)]φ2)
)
tdt−

∫

Ωε

Rεφ. (5.9)

The first term on the right hand side of (5.9) can be estimated as

|
∫

Ωε

Nε(φ)φ| ≤ C

∫

Ωε

|φ|3 = o(ε5).

Similarly, for the second term on the right hand side of (5.9), we obtain

|
∫

Ωε

[W − (W + tφ)]φ2| ≤ C

∫

Ωε

|φ|3 = o(ε5).
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Concerning the last one, recalling

|Rε| = |Sε[W ]| ≤ Cε3 2
3 〈z − Q̄〉−3,

uniformly in Ωε. A simple computation shows that

|
∫

Ωε

Rεφ| = o(ε4).

This concludes the proof of the first part of Proposition (5.7).
An estimate for the derivatives with respect to Λ is established exactly in the same way,

differentiating the right side in (5.9) and estimating each term separately, using (4.3), (4.5) and
Lemma 2.1. ¤

6. Proof of Theorem 1.1

In this section, we prove the existence of a critical point of Iε(Λ, Q) and Iε(Λ, η, Q), thereby
prove Theorem 1.1 by Proposition 5.1. According Proposition 5.2 and Lemma 2.1. Setting

Kε(Λ, Q) =
Iε(Λ, Q)− 2

∫
Rn U4

(− ln ε
c1

)
1
2 ε2

(6.1)

and

Kε(Λ, η, Q) =
Iε(Λ, η, Q)− 4

∫
Rn U3

ε3
(6.2)

Then, we have when n = 4,

Kε(Λ, Q) =
1

4
c4Λ

2 ln
1

Λε
(

c1

− ln ε
)− c2

4Λ
2

2|Ω| +
1

2
c2
4Λ

2H(Q,Q)(
c1

− ln ε
)

1
2

+ O(
c1

− ln ε
), (6.3)

and when n = 6,

Kε(Λ, η, Q) =(
1

2
η2|Ω| − c6Λ

2η +
1

48
c6Λ

2 − 8η3|Ω|) +
1

2
c2
6Λ

4H(Q,Q)ε + O(ε2). (6.4)

Then we begin to consider Kε(Λ, Q), find its critical points with respect to Λ, Q, and Kε(Λ, η, Q)
with its critical points with respect to the parameters Λ, η, Q.

First, we consider Kε(Λ, Q) for n = 4. For the setting of the parameters Λ, Q, we see that
Λ, Q are located on a compact set, we can obtain a maximal value of Kε(Λ, Q). We claim that:

Claim: The maximal point of Kε(Λ, Q) with respect to Λ, Q can not happen on the boundary
of the parameters.
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If we can prove this claim, then we could obtain an interior critical point of Kε(Λ, Q). Before
proving the claim, we first consider

Fε(Λ) =
1

4
c4Λ

2 ln
1

Λε
(

c1

− ln ε
)− c2

4Λ
2

2|Ω| .

Note that
∂

∂Λ
[FεΛ] =

1

2
c4Λ ln

1

Λε
(

c1

− ln ε
)− 1

4
c4Λ(

c1

− ln ε
)− c2

4Λ

|Ω| ,

Choosing c1 = 2c4
|Ω| , we could obtain that there exists

Λ∗ = 1 + o(1) ∈ (εβ, ε−β)

with some proper fixed constant β ∈ (0, 1
3
), such that

∂

∂Λ
[FεΛ

∗] = 0.

It can be also found that such Λ∗ provides the maximal value of Fε(Λ) in [Λ4,1, Λ4,2], where
Λ4,1 = εβ, Λ4,2 = ε−β. In order to prove the above claim, we need a more accurate formula of
the energy for Λ ∈ [εβ, ε−β], . In other words, here we need to take Λ into consideration of the
formula, go through the first part of the Appendix, we have

Kε(Λ, Q) =
1

4
c4Λ

2 ln
1

Λε
(

c1

− ln ε
)− c2

4Λ
2

2|Ω| +
1

2
c2
4Λ

2H(Q,Q)(
c1

− ln ε
)

1
2

+ O(Λ2 c1

− ln ε
).

Now, we come back to prove the claim, choosing Λ = Λ∗ and Q = p. (Here p refers to the
point where H(Q,Q) obtain its maximal value, it is possible to find such a point. Indeed, we
notice a fact H(Q,Q) → −∞ as d(Q, ∂Ωε) → 0 see [20] and references therein for a proof of
this fact. Therefore we could find such p.)

First, we prove that the maximal value can not happen ∂Mδ4 . We choose δ4 such that
d2 < max∂Mδ4

H < d1 for some proper constant d2, d1 sufficiently negative, then we fixed

Mδ4 . It is easy to see that Kε(Λ, Q) < Kε(Λ, p), where Q lies on the boundary of Mδ4 and
Λ ∈ (Λ4,1, Λ4,2). For Λ = Λ4,1 or Λ4,2, we go to the arguments stated below. Therefore, we prove
that the maximal point can not lie on the boundary of Mδ4 .

Next, we show Kε(Λ
∗, p) > Kε(Λ4,2, Q). It is easy to see that

Fε[Λ4,2] ≤ cε−2β,

where c < 0. Then we can find c1 < 0 such that Kε(Λ4,2, Q) ≤ c1ε
−2β for the other terms

compared to ε−2β are higher order term. On the other hand, for the choice of Λ∗, p, we see that
Kε(Λ

∗, p) ∼ 1. Therefore, we prove that Kε(Λ
∗, p) > Kε(Λ4,2, Q).

It remains to prove that the maximal value can not happen at Λ = Λ4,1. We choose Λ =
εβ/2, Q = p, and we show Kε(ε

β/2, p) > Kε(Λ4,1, Q). Direct computation yields.

Kε(ε
β/2, p) =

βc2
4ε

β

4|Ω| (1 + o(1)), Kε(Λ4,1, Q) =
βc2

4ε
2β

2|Ω| (1 + o(1)).
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Hence, we finish the proof of the claim. In other words, we could obtain an interior maximal
point in [Λ4,1, Λ4, 2]×Mδ4 . Therefore, we show the existence of the critical points of Kε(Λ, Q)
with respect to Λ, Q.

For n = 6. We set η = 1
48

+ aε
1
3 , c6Λ2

|Ω| = 1
96

+ bε
2
3 , then

Kε(a, b, Q) := Kε(Λ, η, Q) =
[
|Ω|( 1

6912
− 8a3 − ab) +

1

18432
|Ω|2H(Q,Q)

]
ε + o(ε), (6.5)

where −η6 ≤ a ≤ η6,−Λ6 ≤ b ≤ Λ6. Setting C0 = H(p, p), p refers to the point where H(p, p)
obtains its maximal value. Let us introduce another five constants Ci, i = 1, 2, 3, 4, 5, with
C2 < C1 < C0, 0 < C3 < C4 < η6 and 0 < C3 < C5 < Λ6, the value of these five constants will
be determined later.

We set

Σ0 =
{
− C4 ≤ a ≤ C4, −C5 ≤ b ≤ C5, Q ∈ NC2

}
, (6.6)

where NC2 = {q : H(q, q) > C2}
We also define

B = {(a, b, Q) | (a, b) ∈ BC3(0), Q ∈ NC1}, B0 = {(a, b) | (a, b) ∈ BC3(0)} × ∂NC1 , (6.7)

where Bc(0) := {0 ≤ a2 + b2 ≤ c}.
It is trivial to see that B0 ⊂ B ⊂ Σ0, B are compact and B0 is connected. Let Γ be the

class of continuous functions ϕ : B → Σ0 with the property that ϕ(y) = y, y = (a, b, Q) for all
y ∈ B0. Define the min-max value c as

c = min
ϕ∈Γ

max
y∈B

Kε(ϕ(y)).

We now show that c defines a critical value. To this end, we just have to verify the following
conditions

T1 maxy∈B0 Kε(ϕ(y)) < c, ∀ϕ ∈ Γ,
T2 For all y ∈ ∂Σ0 such that Kε(y) = c, there exists a vector τy tangent to ∂Σ0 at y such

that

∂τyKε(y) 6= 0.

Suppose T1 and T2 hold. Then standard deformation argument ensures that the min-max
value c is a (topologically nontrivial) critical value for Kε(Λ, η, Q) in Σ0. (Similar notion has
been introduced in [8]) for degenerate critical points of mean curvature.)

To check T1 and T2, we define ϕ(y) = ϕ(a, b, Q) = (ϕa, ϕb, ϕQ) where (ϕa, ϕb) ∈ [−C4, C4]×
[−C5, C5] and ϕQ ∈ NC2 .

For any ϕ ∈ Γ and Q ∈ NC2 , the map Q → ϕQ(a, b, Q) is a continuous function from NC1 to
NC2 such that ϕQ(a, b, Q) = Q for Q ∈ ∂NC1 . Let D be the smallest ball which contain NC1 , we
extend ϕQ to a continuous function ϕ̃Q from D to D where ϕ̃(Q) is defined as follows:

ϕ̃Q(x) = ϕ(x), x ∈ NC1 , ϕ̃Q(x) = Id, x ∈ D \ NC1 .

Then we claim there exists Q′ ∈ D such that ϕ̃(Q′) = p. (p stands for the point where H(p, p)

obtain its maximal value). Otherwise ϕ̃(Q)−p
|ϕ̃Q−p| provides a continuous map from D to S5, which
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is impossible in algebraic topology. Hence, there exists Q′ ∈ D such that ϕ̃(Q′) = p. By the
definition of ϕ̃, we can further conclude Q′ ∈ NC1 . Whence

max
y∈B

Kε(ϕ(y)) ≥Kε(ϕa(a, b, Q′), ϕb(a, b,Q′), p)

≥(
1

18432
|Ω|2C0 +

1

6912
|Ω| − C6|Ω|)ε + o(ε), (6.8)

where C6 = 8C3
4 +C4C5 which stands for the maximal value of 8a3 +ab in [−C4, C4]× [−C5, C5].

As a consequence

c ≥ (
1

18432
|Ω|2C0 +

1

6912
|Ω| − C6|Ω|)ε + o(ε). (6.9)

For (a, b, Q) ∈ B0, we have H(ϕQ(a, b, Q), ϕQ(a, b,Q)) = C1. So we have

Kε(a, b,Q) ≤ (
1

18432
|Ω|2C1 +

1

6912
|Ω|+ C7|Ω|)ε + o(ε), (6.10)

where C7 = max(a,b)∈BC3
(0) 8a3 + ab < 8C3

3 + C2
3 .

If we choose 1
18432

|Ω|(C0−C1) > C6+C7 = 8C3
4 +C4C5+8C3

3 +C2
3 . Then maxy∈B0 Kε(ϕ(y)) < c

holds. So T1 is verified.
To verify T2, we observe that

∂Σ0 =: {a, b,Q | a = −C4 or a = C4 or b = −C5 or b = C5 or Q ∈ ∂NC2}.
Since C4, C5 are arbitrary, we choose 0 < 24C2

4 < C5. Then on a = −C4 or a = C4, we choose
τy = ∂

∂b
, on b = −C5 or b = C5, we choose τy = ∂

∂a
. By our setting, we could show ∂τyKε(y) 6= 0.

It only remains to consider the case Q ∈ ∂NC2 . If Q ∈ ∂NC2 , then

Kε(a, b,Q) ≤ (
1

18432
|Ω|2C2 +

1

6912
|Ω|+ C7|Ω|)ε + o(ε), (6.11)

which is obviously less than c for C2 < C1. So T2 is also verified.
In conclusion, we proved that for ε sufficiently small, c is a critical value, i.e., a critical point

(a, b,Q) ∈ Σ0 of Kε exists. Which means Kε indeed has critical points respect to Λ, η, Q in
(2.13).

Proof of Theorem 1.1 completed. For n = 4, we proved that for ε small enough, Iε has a critical
point (Λε, Qε). Let uε = WΛε,Q̄ε,ε. Then uε is a nontrivial solution to problem (1.12). The strong
maximal principle shows uε > 0 in Ωε. Let uµ = ε−1uε(x/ε). By our construction, uµ has all
the properties stated in Theorem 1.1.

For n = 6, we proved that for ε small enough, Iε has a critical point (Λε, ηε, Qε). Let uε =
WΛε,ηε,Q̄ε,ε. Then uε is a nontrivial solution to problem (1.12). The strong maximal principle
shows uε > 0 in Ωε. Let uµ = ε−2uε(x/ε). By our construction, uµ has all the properties stated
in Theorem 1.1. ¤



24 JUNCHENG WEI, BIN XU, AND WEN YANG

7. Appendix A: Proof of Lemma 2.1

We divide the proof into two parts.
First, we study the case n = 4. From the definition (2.12) of W, (2.10) and (2.15), we know

that

Sε[W ] =−∆W + µε2 − 8W 3

=8U3 + ε4(
c1

− ln ε
)Û − ε2(

c1

− ln ε
)

1
2 ∆(Rε,Λ,Qχ)− 8W 3

=O
(
〈z − Q̄〉−2ε4(− ln ε) + 〈z − Q̄〉−4ε2(− ln ε)

1
2 +

ε4

− ln ε
| ln 1

ε〈z − Q̄〉|

+
ε4

(− ln ε)
1
2

)
.

Estimates for DΛSε[W ] and DQ̄Sε[W ] are obtained in the same way.
We now turn to the proof of the energy estimate (2.22). From (2.15) and (2.16) we deduce

that ∫

Ωε

|∇W |2 + ε2(
c1

− ln ε
)

1
2

∫

Ωε

W 2 =8

∫

Ωε

U3W + ε4(
c1

− ln ε
)

∫

Ωε

ÛW

− ε2(
c1

− ln ε
)

1
2 ∆(Rχ)W. (7.1)

Concerning the first term on the right hand side of (7.1), we have∫

Ωε

U3W =

∫

Ωε

U4 + ε2(
c1

− ln ε
)

1
2

∫

Ωε

ÛU3 + ηε2(
c1

− ln ε
)−

1
2

∫

Ωε

U3. (7.2)

We note that ∫

Ωε

U4 =

∫

R4

U4
1,0 + o(ε2),

∫

Ωε

U3 =
c4Λ

8
+ O(ε2).

Then, we get∫

Ωε

U3W =

∫

R4

U4
1,0 +

c2
4Λ

2

8|Ω| ε
2(

c1

− ln ε
)−

1
2 + ε2(

c1

− ln ε
)

1
2

∫

Ωε

ÛU3 + o(ε2),

where for the third term on the right hand side, we have∫

Ωε

ÛU3 =−
∫

Ωε

ΨU3 − c4(
c1

− ln ε
)−

1
2 Λ

∫

Ωε

H(x, Q)U3 + O(1)

=− Λ2

16
ln

1

Λε
c4 − c2

4Λ
2

8
(

c1

− ln ε
)−

1
2 H(Q,Q) + O(1).

Hence, we have∫

Ωε

U3W =

∫

R4

U4
1,0 +

c2
4Λ

2

8|Ω| ε
2(

c1

− ln ε
)−

1
2 − c4Λ

2

16
ln

1

Λε
ε2(

c1

− ln ε
)− c2

4Λ
2

8|Ω| ε
2H(Q,Q)

+ O(ε2(
1

− ln ε
)). (7.3)



ON LIN-NI’S CONJECTURE IN DIMENSIONS FOUR AND SIX 25

For the second term on the right hand side of (7.1)

∫

Ωε

ÛW =

∫

Ωε

ÛU + ε2(
c1

− ln ε
)

1
2

∫

Ωε

Û2 + ηε2(
c1

− ln ε
)−

1
2

∫

Ωε

Û .

By noting that

∫

Ωε

ÛU = O(ε−2),

∫

Ωε

Û2 = O(ε−4(
c1

− ln ε
)−1),

∫

Ωε

Û = −ε−4(
c1

− ln ε
)−

1
2

∫

Ω

Λ

|x−Q|2 + O(ε−4),

we obtain

ε4(
c1

− ln ε
)

∫

Ωε

ÛW = −ε2(
c1

− ln ε
)−

1
2

∫

Ω

c4Λ
2

|x−Q|2|Ω| . (7.4)

For the last term on the right hand side of (7.1),

∫

Ωε

∆(Rχ)W =ε2(
c1

− ln ε
)−

1
2 η

∫

Ωε

∆(Rχ) + O(1)

=ε2(
c1

− ln ε
)−

1
2 η

∫

∂Ωε

∂(Rχ)

∂ν

=ε2(
c1

− ln ε
)−

1
2 η

∫

∂Ωε

∂(U − ε2( c1
− ln ε

)
1
2 Ψ− c4Λε2H)

∂ν

=ε2(
c1

− ln ε
)−

1
2 η

∫

Ωε

∆(U − ε2(
c1

− ln ε
)

1
2 Ψ− c4Λε2H)

=ε2(
c1

− ln ε
)−

1
2 η

∫

Ωε

(−8U3 + ε2(
c1

− ln ε
)

1
2 U + c4Λε4 1

|Ω|)

=(
c1

− ln ε
)−

1
2

∫

Ω

c4Λ
2

(ε2Λ2 + |x−Q|2)|Ω| . (7.5)

(7.3)-(7.5) implies

1

2

∫

Ωε

(
|∇W |2 + ε2(

c1

− ln ε
)

1
2 W 2

)
=4

∫

R4

U4
1,0 + ε2(

c1

− ln ε
)−

1
2
c2
4Λ

2

2|Ω| −
c2
4Λ

2

2
H(p, p)ε2

− c4Λ
2

4
ln

1

Λε
ε2(

c1

− ln ε
)

1
2 + O(ε2(

c1

− ln ε
)

1
2 ). (7.6)
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At last, we compute the term
∫
Ωε

W 4.

∫

Ωε

W 4 =4

∫

Ωε

U4 + 4ε2(
c1

− ln ε
)

1
2

∫

Ωε

U3Û + 4ε2(
c1

− ln ε
)−

1
2 η

∫

Ωε

U3

+ O(ε2(
c1

− ln ε
)

1
2 )

=

∫

R4

U4
1,0 −

c4Λ
2

4
ε2 ln

1

Λε
(

c1

− ln ε
)

1
2 − c2

4Λ
2

2
ε2H(Q,Q)

+
c2
4Λ

2

2|Ω| ε
2(

c1

− ln ε
)−

1
2 + O(ε2(

c1

− ln ε
)

1
2 ). (7.7)

Combining (7.6) and (7.7), we obtain

Jε[W ] =
1

2

∫

Ωε

|∇W |2 +
µε2

2

∫

Ωε

W 2 − 2

∫

Ωε

W 4

=2

∫

R4

U4
1,0 +

c4Λ
2

4
ε2 ln

1

Λε
(

c1

− ln ε
)

1
2 − c2

4Λ
2

2|Ω| ε
2(

c1

− ln ε
)−

1
2

+
1

2
c2
4Λ

2ε2H(Q,Q) + O(ε2(
c1

− ln ε
)

1
2 ). (7.8)

In the end of this section, we prove (2.23)-(2.26). From the definition (2.14), of W, (2.10) and
(2.15), we know that

Sε[W ] =−∆W + ε3W − 24W 2

=24U2 + ε6Û − ε3∆(Rχ) + ε6(η − c6Λ
2

|Ω| )− 24U2 − 24ηε2 + O(ε3〈z − Q̄〉−4)

=− ε6(24η2 − η +
c6Λ

2

|Ω| ) + O(ε3〈z − Q̄〉−4)

=O(〈z − Q̄〉−3 2
3 ε3).

Estimates for DΛSε[W ], DQ̄Sε[W ] and DηSε[W ] are derived in the same way. Now we are in
the position to compute the energy. From (2.15) and (2.16), we deduce that

∫

Ωε

|∇W |2 +

∫

Ωε

ε3W 2 =

∫

Ωε

(−∆W + ε3W )W

=

∫

Ωε

(
24U2 + ε6Û − ε3∆(Rχ) + ε6(η − c6Λ

2

|Ω| )
)
W. (7.9)
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Concerning the first term on the right hand side of (7.9), we have
∫

Ωε

U2W =

∫

Ωε

U3 + ε3

∫

Ωε

ÛU2 + ηε3

∫

Ωε

U2

=

∫

R6

U3
1,0 +

1

24
c6ηΛ2ε3 − ε3

∫

Ωε

U2Ψ− c6Λ
2ε4

∫

Ωε

U2H + O(ε5)

=

∫

R6

U3
1,0 +

1

24
c6ηΛ2ε3 − 1

24
c2
6Λ

4ε4H(Q, Q)− 1

576
c6Λ

2ε3 + O(ε5). (7.10)

For the second, third and fourth term on the right hand side of (7.9), following a similar as
we did in case n = 4.

ε6

∫

Ωε

ÛW = ε6

∫

Ωε

Û(U + ε3Û + ηε3) = −ηΛ2ε4

∫

Ω

1

|x−Q|4 + O(ε5), (7.11)

−ε3

∫

Ωε

∆(Rχ)W = ε3η

∫

Ωε

∆(U − ε3Ψ− c6ε
4Λ2H) + O(ε5) = ε6η

∫

Ω

U + O(ε5), (7.12)

and

ε6

∫

Ωε

W = (η2|Ω| − c6Λ
2η)ε3 + O(ε5). (7.13)

(7.10)-(7.13) implies

1

2

∫

Ωε

|∇W |2 +
ε3

2

∫

Ωε

W 2 =12

∫

R6

U3
1,0 + (

1

2
η2|Ω| − 1

48
c6Λ

2)ε3 − c2
6Λ

4

2
H(Q,Q)ε4

+ O(ε5). (7.14)

Then,
∫

Ωε

W 3 =

∫

R6

U3
1,0 + 3ε3

∫

Ωε

U2Û + 3ε3

∫

Ωε

U2η + 3ε6

∫

Ωε

Uη2 + 3ε9

∫

Ωε

Ûη2

+ ε9

∫

Ωε

η3 + O(ε5)

=

∫

R6

U3
1,0 +

1

8
c6ηΛ2ε3 − 1

192
c6Λ

2ε3 + η3|Ω|ε3 − 1

8
c2
6Λ

4H(Q,Q)ε4 + O(ε5). (7.15)

Combining (7.14)-(7.15), we gain the energy

Jε[W ] =4

∫

R6

U3
1,0 +

(1

2
η2|Ω| − c6Λ

2η +
1

48
c6Λ

2 − 8η3|Ω|
)
ε3

+
1

2
c2
6Λ

4H(Q,Q) + O(ε5). (7.16)

Hence, we finish the whole proof of Lemma 2.1. ¤
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