CLASSIFICATION OF SOLUTIONS OF
HIGHER ORDER CONFORMALLY INVARIANT
EQUATIONS

JUNCHENG WEI AND XINGWANG XU

ABSTRACT. We study higher order conformally invariant equa-
tions involving the operator (—Awu)?,p > 1 which arises naturally
from conformal geometry and Sobolev embedding. We classify all
possible solutions without any condition on the lower order deriva-
tives of u. Our main idea is that we first derive a prior estimates
of (=A)iu,1 < j < p—1 and then use Kelvin transform as well as
moving plane method.

1. INTRODUCTION

Recently, there have been much analytic work on the conformally
invariant operators as well as its associated differential equations. A
well known second order conformally invariant operator comes from the
Yamabe problem or, more generally, the problem of prescribed scalar
curvature. Given a smooth positive function K defined on a compact
Riemannian manifold (M, go) of dimension n > 2, we ask whether there
exists a metric g conformal to gy such that K is the scalar curvature
of the new metric g. Let g = e*gy forn =2 or g = uﬁgo for n > 3,
then the problem is reduced to find solutions of the following nonlinear

elliptic equations:
Agu+ Ke*™ = kg (1.1)

forn =2, or

n—2

(1.2)
u>0on M

{ MDA gou+ Kun? = kou
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for n > 3, where Ay, denotes the Laplace-Beltrami operator of (3, go)
and kg is the scalar curvature of gg.
In studying equations (1.1) and (1.2) as well as other problems, it is

very important to understand the solution set of the following equations

Au +e? =0 in R?
{ [ € < 00 in R?, (1.3)
for n =2, or
Au+ ui=? =0 in R (1.4)
u>0in R", ’

for n > 3.

By employing the method of moving planes, Caffarelli-Gidas-Spruck
[4] was able to classify all solutions of (1.4) for n > 3, and Chen-Li [3]
did the same thing for both equations (1.3) and (1.4).

The natural generalizations of (1.3) and (1.4) are the following higher

order conformally invariant equations

(—=A)Pu = (n —1)!e™ on R", n = 2p, (1.5)
S €™ < 00,p>0,p €7, :
and
(—A)Pu = wn % in R"n>2p,p>0,p€Z, (1.6)
u > 0in R™. )

Equation (1.5) with p = 2 arises from the difference of log-determinants
of a conformally covariant operator with respect to two conformal met-
rics. For background material and other related problems, we refer [5]
and the references therein. Equation (1.6) can be derived from the
Sobolev’s embedding of H? into L%

Jrn |(=2) 5l
sup 7y -
ueH?(R) ([ ur=w)

As concerned with the classification of solutions of (1.5) and (1.6),

(1.7)

the method of moving planes being used to study equations (1.5) and
(1.6) naturally comes to one’s mind. However, the central difficulty
is that the Maximum Principle can not be directly appplied to u if
one does not know enough information about (—=A)u,i=1,....,p — 1.

There exist several works on this classification problem but up to our
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limit knowege, it seems that the said information was taken as granted
in most previous works as one will comment it later.

The main point of present paper is to show that the equations (1.5)
and (1.6) provided enough information for applying the maximum prin-
ciple. More precisely, one states it in the following theorem which is

one of main results in this article.

Theorem 1.1. Let u be a solution of (1.5) with
u(z) = o(|z|*) at oo (1.8)
or a solution of (1.6). Then necessarily we have

(—AYu>0,i=1,..,p—1. (1.9)

Remark: Condition (1.8) is needed in our proof and in the classifica-
tion of solutions of (1.5) which has been pointed out in [10].

Once we have (1.9), we can use Kelvin transform and moving planes
method to prove symmetric property of the solution. (Here we apply
moving plane method to the function (—A)Plu.)

We first have

Theorem 1.2. Suppose u is a solution of (1.5) satisfying (1.8). Then
u(zx) is symmetric w.r.t. some point To € R", and there exists some
A > 0 so that

2
u(z) = log 32 A for all x € R". (1.10)

+ ‘-’E — .To‘z
Next we consider equation (1.6). We prove that all solutions of (1.6)

are radial:

Theorem 1.3. Suppose u is a smooth positive solution of (1.6). Then
u 1s radially symmetric about some point vy € R" and u has the fol-

lowing form
2 e
14+ A2z — xo)?

u(z) = ( (1.11)

for some constant A > 0.

We also prove a nonexistence result.
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Theorem 1.4. Suppose u is a nonnegative solution of

(—A)Pu =u? in R" (1.12)

f0r1<q<”+§z, then u =0 in R".

n—

Finally we prove a converse of Theorems 1.3 and 1.4.

Theorem 1.5. Let u be a solution of

{ (—A)Pu = f(u) in R", (1.13)

u>01in R"
where f(t) is locally Lipschitz satisfying
(f1) f(t) > 0 and is nondecreasing for t > 0,
(f2) t=9f(t) is nonincreasing for t >0 , and
(f3) imy_, oo t79f(t) = 1, where 1 < ¢ < ngg
Then n > 2p, f(t) = ctnz for 0 <t < maxgepn u(z).

We remark that the method of moving planes was first invented by
A.D. Alexandrov [1], and was shown to be a powerful tool in studying
equations (1.3) and (1.4) by Gidas-Ni-Nirenberg [8], Caffarelli-Gidas-
Spruck [4] and Chen-Li [3].

We note that for p = 2, similar results are obtained independently
by C. S. Lin [10] and the second author [21]. Lin uses the method
of moving planes for both equations (1.5) and (1.6) while the second
author uses the method of moving spheres, a variant of the method of
moving planes for equation (1.5). We remark that this second method
can also be applied to the equation(1.6) [22]. We also note that in [6],
Chang and Yang used the method of moving planes to prove Theorem
1.1 under the condition that u(z) = log ﬁ—kw@(m)) for some smooth
function w defined on S™ (in [6], they also consider the case when
p = n/2 for n odd). Here our condition is much weaker than theirs. We
also remark that in [20], Troy studied symmetry problems for system
in bounded domains. For equation (1.6), if u is the maximizer of the
energy (1.7) which was ensured to exist by Lions’ existence theorem
[11], then also by Lions’ Theorem [11], u is radially symmetric and has
property (1.9). Finally, u was shown to be of the form (1.11) in this
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case by C. Swanson [19]. Our Theorem 1.4 has been existed for several
years in different form but all with the assumption that u is radial and
inequality (1.9) holds true for u, see [12] and [16].

The organization of the paper is the following: In Section 2, we first
study the asymptotic behavior of solutions of (1.5) satisfying (1.8),
especially we establish Theorem 1.1 for equation (1.5). Then we go
on to prove Theorem 1.2 by applying the method of moving planes
to reduce the solution to the radially symmetric case. And finally, we
show that the radial solutions of (1.5) necessarily have form (1.11).
We prove Theorem 1.1 for equation (1.6) in Section 3 and then we
use moving planes method to prove Theorem 1.3 and Theorem 1.4 in
Section 4. Section 5 is devoted to the proof of Theorem 1.5.

Throughout this paper, the constant C' will denote various generic

constants. B = O(A) means |B| < CA.
Acknowledgement: The research of the first author is supported
by an Earmarked Grant from RGC of Hong Kong. This project was
initiated when the second author was visiting the Mathematical De-
partment of the Chinese University of Hong Kong. He would like to
thank them for hospitality and support.

2. ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF (1.5)

In this section, we study the asymptotic behavior for a solution u
of (1.5). First, we note that the fundamental solution of the operator
(=AY, n=2p,is

1 1
fBo(n) = |z =yl
where (y(n) = 2277 1pl(p — 1)lw,,w, is the volume of the unit ball in
R".

Let u be a solution of (1.5). Set

- !
o= (r—1) / e dy (2.1)

P(z,y) =
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and
(n—l)!/ 1% = Y| g
v(x) = lo W dy. 2.2
D= "m e 22
Obviously, v(x) satisfies
(=Av(z) = —(n — 1)!e™@) in R, (2.3)

We first have some preliminary analysis of u.
Lemma 2.1. Let u be a solution of (1.5) satisfying (1.8). Then we
have
(=A)u>0,i=1,..,p— 1. (2.4)
Proof: Let v; = (—A)u,i=1,...,p — 1. We first prove that
Vp1 > 0. (2.5)
Suppose not, there exists zo € R™ such that
vp—1(x0) < 0.

Without loss of generality, we assume that zo = 0. We introduce the

average of a function

- 1
= — do.
#r) 0B, (0)| aBr(O)f ’

Then we have by Jensen’s inequality (see [14] in the case p = 1),
At + v =0,
Ay + ¥y = 0,

A’Dp_l + €ﬁ S 0.

Since 7,-1(0) < 0 and 17;71 < 0, we have

Op—1(r) < Up—1(0) < 0 for all . (2.6)
Then it is easy to see that
o (=2-1(0))
> .
Up_o - r

Hence

Up_o(r) > cor?, forr > 1y, (2.7)
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Same arguments shows that

vp—3(r) < —cgrt, forr >y > 1, (2.8)
and
(=1)%0,_i(r) > ¢V forr >rig,i=1,...,p. (2.9)
Hence
(=1)PLa(r) > cr®®™Y, forr > r,_;. (2.10)

Since p > 2, we have |u(r)| > Cr? for r > r, ;. This is in contradiction
with assumption that u(z) = o(|z|?).

Hence v,_; > 0.

Now we show that v,—_; > 0 for all 1 <7 < p — 1 by mathematical
induction. For 7 = 1, we have shown that v,_; > 0 above. Assume for
k <1, vp_p > 0 and vp_(;11) < 0 at some point zo. Without loss of
generality, we can assume that o = 0. Thus we can form the above
system again. Now since by assumption, v,_; > 0, we get Av,_(;11) < 0.
Integrate it to see that v,_(i11) < vp—(i+1)(0) < 0. Then it follows that
Up—(i+2) > Ccor? for some constant ¢,. Repeatedly integrate the system

to conclude that

(—1YTp(ing) = 07,04 j < p.
If j > 2, again we are done since then |u| > ¢r? at infinity and ¢ > 0.
If j =1, then i = p— 1. Then v;(r) < ©1(0) < 0. Clearly this implies
that @ > cr? which contradicts to assumption again. This finishes the

proof of Lemma 2.1.
O
We now study properties of v. We have

Lemma 2.2. Suppose v is given by (2.2) and Let « be defined by (2.1).
Then

v(z) < aloglz|+ C (2.11)
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and
‘ l‘im (=A)w(zr)=0,i=1,...,p—1. (2.12)
T|—0o0
Moreover,
| l‘im (—AYrv(z)|z** = ap, k=1,...,p (2.13)
T|—0oQ

where ay, s given by

a; = a2 —n), a1 = (2k)(2k — n + 2)ay.

Proof:

The proof of (2.11) is elementary, see Lemma 2.1 in [10].

To prove (2.12) and (2.13), we first note that if u is a solution of
(1.5) and satisfies (1.8), then u < C for some constant C > 0. In
fact, by Lemma 2.1, we know that —Au > 0. Assume that there
is a constant ¢y > 0 such that Au < —¢p, then it is easy to show
that @ < u(0) — €/2nr? which contradicts to the assumption that
u = o(|z?). Thus limy o Au = 0. Hence, Au > —C, ie., Au is
bounded. Similar argument shows that (A)u are also bounded for
1=2,3,---,p— 1. Therefore u has upper bound by the following the
proof of Theorem 1 of [21]. Hence we can differentiate the integral in
(2.2) to obtain

(—AYv() = % [ =82 o(le = gy
Thus
, nu(y)
| A toge — ylemay < ¢ [ ay,
n R» |~’U Z/|
Hence

(=A)v(z) = 0 as |z] — oo.
Observe that
(—A)*loglz —y| = cxlz — y|7**
where ¢; = (2 — n),ces1 = (2k)(2k — n + 2)c.  (2.13) follows by

elementary calculations and an observation that ay = acy.
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Lemma 2.3. We have
(=AY (u+v)=0,i=1,...,p— 1. (2.14)

Proof: We first prove it for 2 = p — 1.

Let w(z) = (—A)?"'(u+wv)(z). Then Aw(z) =0 and by Lemma 2.1
and Lemma 2.2, we have lim ;o w(z) > 0 and by maximum principle
w(z) > 0.

By Liouville’s Theorem, we have w(z) = C, for some nonnegative
constant Cj.

We claim that Cy = 0. In fact, suppose not. Then (—A)P~lw(z) >
Co. Let w be the average of w as in Lemma 2.1. Let w; = (—A)'w,i =

1,...,p — 2. Then as in Lemma 2.1, we will have
(=1)P~ L@ (z) > Cor2P=Y

forr > 7.

Clearly it contradicts to the fact that w(z) = o(|z[?).

Now that (—A)?~!(w(z)) = 0. Then we have (—A)w,_ = 0. Similar
arguments as before show that w,_o = 0. The rest of the proof follows
then.

O

Lemma 2.4. For any € > 0, there exists a constant C¢ > 0 such that
v(z) > (a—€)log|z| — C. (2.15)
for |z| large.

Proof: This follows exactly from the arguments of [10] (note that now
(—A)u < C,i=1,...,p—1 by Lemma 2.3). We omit the details. O

Next lemma is the key result in this section.

Lemma 2.5. Suppose |u(z)| = o(|x|?) at co. Then

ulz) = (n_l)‘ o ‘y‘ enu(y)
@ =T [ e e Wiy oy @a6)
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where Cy is a constant. Furthermore, we have

u(z)

im = —q, 2.17
|1|im (—=A)*u(z)|z* = a, k= 1,.... p, (2.18)
T|—0o0
(VFu(z)| = O(|z|%) for all 1 < k < 2p, (2.19)

where ay, s given by
a1 = a2 —n), a1 = ap(2k)(2k —n+2).

Proof: By Lemma 2.3, we have A(u+v) = 0in R". By the assumption
and Lemma 2.2 and Lemma 2.4, we have |u + v|(z) = o(|z|?). Since
u + v is a harmonic function, by the gradient estimates of harmonic
functions, we have u(z) + v(z) = >

j=14Tj + Qo for some constants
a; € R,0 < j <n. Thus

enu(x) — eao efnv(;v) eZ?:l a;jTj 2 C|m‘ 7naez‘?:1 a;jTj .

Since ™) € L'(R"), we have a; = 0 for 1 < j < n. Hence we have
proved (2.16).
The other claims follows from Lemma 2.2 and Lemma 2.3 and inte-
gral representation (2.16) of u.
O
Next we shall prove that o = 2. To this end, we need the following

Pohozaev’s identity.

Lemma 2.6. For any function u so that (—A)Pu = f(u) and F(u) =
[ f(t)dt, we have

/Q nF(u) — " _22% Fu)dz = — / By(wdo  (2.20)

N

where when p = 2m,

)Z(—A)Qm_kuia(_mklu —F(u) <z,v>

By(u) = (2 - -~
k=1
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2y Z[(_A)Mua(_?fl“ N

- i[(—A)pku]a <z, V(=A)ry >

k=1
when p=2m+ 1,

O((=A)"""u)

—By(u) = F(u) < z,v > 2;;[ A)P J“a—y
2y ) 2ERT Ay < gy >
+(1—n/2) ,é 3(?73”“
(1—4w?)é;( Ay%/%fé?m“
+k§m:1 <o, V(AW lu> ‘9(‘21’_'““
—kZm;[( apoty 2B VA T
+<%vaWu>mz§WQ

where v is outward normal vector along the boundary OS2.

Proof: Notice that
(_A)[< T, V(—A)Zu >] = 2(_A)u_|_ <z, V(_A)i-i—lu >

By repeatly using this fact and the second Green’s identity, we can get

above formula easily. O

Lemma 2.7. We have

a=2. (2.21)
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Proof: Let u be a solution of (1.5) with u(z) = o(|z|?).
Let
«
Up = 5%
where \
2
—log — 2
Yo(w) = log 33—

Note that by Lemma 2.4, choose A such that u(0) = 1,(0), then
u = ug + o(1), |z|*(A) (u — ug) = o(1). By pluging the asymptotic
formula of both u and ug, we have

By(u) = By(uo) + o(R'™").

Hence

/ (~A)ule, Vuyds = / (=AY uo(z, V)
= (50 [ (-APbula, Vi)ds

=2 [ - et v

_ %(n - 1)!(—/n o).

Similarly we have

(—A)Pu(z, Vu)de = —(n—1)! [ €™ = —[h(n)a.
J. J

n

Hence

So

0

Proof Of Theorem 1.2: By the proof of Theorem 1.2 in [6], since

u satisfies Lemma 2.5 and Lemma 2.7, u is radially symmetric with
respect to some point zy. Without loss of generality, we can assume
2o = 0. Thus u = u(r) where r = |z|. Choose A so that u(0) =
log(2/)X). And set uy(r) = log % It is well-known that wuy is a
solution of (1.5). Set ¢(r) = u(r) — ux(r). Then by our choice of A,
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#(0) = 0. And since ¢(r) is smooth at r = 0, we have ¢***1(0) = 0
for k=0,1,2---,p—1. Now since u and u, are both solution of (1.5),
we get
(=A)p=g(r)¢

where g(r) = n[(1 — )™ + e™|(n — 1)! for some 6 = 6(r) between
0 and 1. Lemma 2.5 and the implicit expression of u, imply that

lim sup r*?g(r) = 0.

T—00

This implies that ¢ cannot be oscillatory at oo. Thus by the theory

of ordinary differential equation, ¢ can only have at most finitely many
zeros on (0,00). If ¢ is not identically zero, then by simple counting
the zeros of (—A)¥¢, we can see that the number of zeros of ¢ must be
zero and similarly A¢ cannot have zero either on (0,00). But the fact
that ¢(0) = ¢(0c0) = 0 forces ¢ identically zero. The interesting reader
can find the details of this argument in [19]. Therefore the proof of

Theorem 1.2 is complete.
U

3. PROOF OF THEOREM 1.1 FOR EQUATION (1.6)

In this section, we prove Theorem 1.1 for equation (1.6). In fact, we

can prove more. Namely, we shall prove

Theorem 3.1. Let u be a solution of

(=A)Py = u? in R",
{ u>01m R"1<q. (3.1)
Then we have
(=A)u>0,i=1,2,...,p— L. (3.2)

Proof: Let v; = (—=A)u,i = 0,1,2,...,p — 1 with vy = u. We first

prove the following
Up—1 > 0. (33)
Suppose not, there exists zo € R™ such that

vp—1(x0) < 0.
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Without loss of generality, we assume that o = 0. As in the proof of

Lemma 2.3, we introduce the average of a function

) 1
= do.
1= 8,00 Jypo T

Then we have by Jensen’s inequality (see [14] in the case p = 1).
At + 7y =0,
Avy + v =0,
ATy_1 + (@)? <0.
Since 7,-1(0) < 0 and 171',_1 < 0, we have
Up—1(r) < vp,-1(0) < 0, for all r > 7 = 0. (3.4)
Then it is easy to see that
17;_2 > %r.
Hence
vy_o(r) > cor?, forr > 7y > 7. (3.5)
Same arguments shows that
Tp—s(r) < —cart, for r > 7y > 7y (3.6)
and
(=1)f5,_i(r) > cr® @V forr > Fii=1,...,p. (3.7)
Hence if p is odd, we have a contradiction with the fact that v > 0.
So p must be even and we have
a(r) > cer’®, 09 = 2(p — 1) (3.8)
and
(=), i >0
for r > 7y > 0.
Setting A = (2¢(p — 1) + n + 2p) and suppose now that

qk 43

a(r) > 0(14—(%, for r > ry. (3.9)
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Then we have

" pet) 7 ) () - [ (),

Tk

!

v

- L R TgUk-f-l
p—1 = 7 1q
bi(gox +n)

qk+1

Hence .
+
Cg frqak +1

!

< —
=1 = T Aae (gox +n)

1
for r > 299ty

Similarly

ket
<

o
Y=L = T A (qog + 1) (qos + 2)

11
for r > 299k +2 2905+ )

! frqak +2

Hence -
cl rioet?

A% 4(qoy, + n)?

Ep—l S

_2
for r > 24k tip,.

By induction, we have
gkt

%0 UL_H
(qoe + 1+ 2p)idagir | = 27T

1Tqak+2i

(=1)'p—i(r) >

Hence
gkt qo+2p 2
a(r) > 9 T 7> QaeFpy,
220 A% (qoy, + n + 2p)?P
Set

0y = 2(p - 1),7"0 = To,

Ok+1 = QO + 2p,

2p
Th+1 = 2905+ py

First of all, by mathematical induction, it is easy to see that

2% (qoy, +n + 2p)%P < AKFD
by noticing that

qoy, +n +2p < A(qok—1 +n + 2p).

15

(3.10)

(3.11)
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Hence we also can set
bo = 0, bxr1 = qby, + 2p(/€ + 1).

Then we have
cgk+17"0k+l
a(r) > W’T > Thtl-
Notice that

Tk+1 < CTo
Eoo 2p
where ¢ can be chosen to be 27#=0 eoi+1 .
Also notice that, by using the iteration formulas above, we have

p(gtt —1)—g+1
qg—1

O'k=2

I

and

(¢—1)?
Hence, if we take M > 1 is large enough so that MA?/ (=1 > 2¢rg if
co > 1and M A%Vt > 2¢rgifcy < 1, and then take r;, = M A%/ (@)

or M A?(@=N¢;! depending on whether ¢, is greater than or less than

bk=2p

1, then we have
(ry) > [AVa-D7 200 =i+ 0 20k o6 a5 | — oo,

Since 71 is independent of £, a contradiction is reached.

Hence
Up—1 Z 0.
Next we claim that
Up—i > OaZ: 2a33"' P — L.

The proof is exactly the same as before except now that we need take
extra care about the case that p is odd if 7 is even. We omit the details.
U

Next we recall the following lemma.

Lemma 3.2. (i) Let u € C?(R™),p > 1 be a positive solution of
(8.1). Then q is necessarily greater than or equal to n/(n — 2p);
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(i) Let u € C?*(R™),p > 1 be radially symmetric satisfying the in-
equalities
(=A)f*u >0 in R" for 0 < k <p

where 2p < n. Then necessarilly we have

!

(ru (r) + (n — 2p)u(r)) < 0. (3.12)

Proof:

(i) The argument for this is standard. We refer interesting reader to
[22] for the proof of case p = 2. With help of Theorem 3.1, it is
not hard to generalize it to present case. We omit the detail here.

(ii) This is a well-known fact. There are several different forms for it.

The details can be found, for example, in [2]. O

Let u be a smooth positive solution of
(—A)Py =u?in R"

forl <¢< %. We define the Kelvin transform

ut(z) = |x|2p_”u(#). (3.13)
By a direction computation, u* satisfies
(—A)Pyu = |z|"u? in R"\{0} (3.14)

where 7 =n+ 2p — q(n — 2p) > 0.
Let v,_1 = (—A)P"tu. Then v has the following asymptotic behavior

at oo.

|z

vp-1(2) = colz [P + 300 P + O,

Up-10; = —(n — 2)colz| "7 + O(5) (3.15)
Up—1mz; = O(#)
where ¢g > 0 and a; € R. In particular, we have for large |z|,
vp—1(z) > 0. (3.16)

The key fact in using moving plane method is the following lemma.
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Lemma 3.3.
vp—1(x) > 0 in R"\{0}

Proof: We first prove that |z|~"(u*)? € L'(B

then we have

O0vp_1 / 0vp_1 / _
— — + x| T (u")? = 0.
/BBT or op, 0s By \Bs =7 ()

Take r = % Then we have

1 a’l)p_l 1— / _
— < —cr " z| 77 (u*)?
|0B,| Jop, OF B1\B, 27w

which implies

%). In fact, suppose not,

Tp1(r) < —Cor?
for0 < r <rg.

Similar as in the proof of Theorem 3.1, we have by induction

(=)0, 4(r) > ™™ 0 <1 <1y
If p is odd, then vy = u(r) < 0 which is a contradiction. Hence p must
be even. In this case, we have
v1(r) < 0 for r < 7p_;.
Namely
—Au*(r) < 0.

This implies that (@*)' (r) < 0 for 7 small otherwise @*(r) is increasing
for r small and hence @*(r) < C which is impossible by noticing Lemma
3.2(i) and assumption that |z|~"(u*)? is not in L' (B 2).

On the other hand, if we let 4(s) = s "u*(%). Then

(=A)Pa(s) > s"a!(s).
By the argument in the proof of Theorem 3.1, we have

(=A)a(s) > 0,i=1,...,p.

By Lemma 3.2,
(@ (s) + (n = 2p)i(s)) <0,
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1.e.

12 _2 ].I
i+ TP s <o
S

Note that an easy computation shows that

2p—2 ’

(@) (r) <0

n—2 +1~/
773“(8)]4_

A** — 2p—n—4 ~ 1
u*(r)=r @ + . .

(since (@*)'(r) < 0 and p > 1).

Thus we get the desired contradiction.

Hence |z|~"u? € L'(B;). Then we can prove that v > 0 in the
distribution sense. The proof is standard, we include it here for the
sake of completeness.

In fact, let ¢ € C§°(B
prove that

1 ) be a nonnegative function. We want to

/ Apvdz < 0. (3.17)

Let 7, € C{)’O(B%) satisfy n.(x) = 1 for |z| > 2¢, and 7(xz) = 0 for
|z| < e. We also assume that

, C
Dino) < =

for 1 < j < n. Multiplying (3.14) by ¢(z)n., we have

0 < /(pne(x)\x\Tuq(a:)dx (3.18)
- / (= A) (0 (@)e(2)) (= A u(x)da (3.19)

= [ v}~ 2)p@nla) - 2Ve(x) V. - (@) An}do(3.20)

Let ¥(z) = 2Vo(2)Vn. + o(x)An.(z). We have 1(x) = 0 for |z] < e
and for |z| > 2¢, and |Av¢i(x)| < Ce 2.
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Since%+%=%+n>nwhere%

I/(—A)p‘lv(x)lﬁ(x)dffl
< /U(w)l(—A)”‘llﬁ(w)ldfﬂ

< CG_"(/ \:E|_Tuq(ac)dac)ée%+5
e<|z|<2e

< CesTa™™ 50

=1—%,We have

as € — 0. Therefore, by (3.18), we have

[ =87 tula)(=A)p(a)dn = ting [ @) (-2 ula) (~A)p(a)da

= /go(x)|x|_7up(ac)dx > 0.

Thus v > 0 in B%(O).
U

4. PROOF OF THEOREMS 1.3 AND 1.4: MOVING PLANE METHOD

In this section, we apply the well-known method of moving plane to
prove Theorem 1.3 and Theorem 1.4. Since the method is standard,
we shall only sketch the proof. For more details, please see [6] and [10].
The key point is that we apply moving plane method to the function
(—A)P Ly,

Let u be a solution of (1.12). Let u*(z) = \x\Qp_”u(#). Let

vi_i(z) = (—A)P'u*(z). By Lemma 3.3, v;_; > 0 in R"\{0} and
vy, (x) satisfies for any r > 0,

; > inf v} fi B,(0). 4.1

Up—l(x) - 63}(0) Up—l(l‘) > Oa orr € (0) ( )

Since u*(x) is a superharmonic function in B, (0)\{0} (by the proof of

Lemma 3.3) and u* > 0, then we have

> inf >0, for z € B,(0). 4.2
u(e) > inf u(z) >0, for & € By(0) (4.2
Following conventional notations, for any A, and z = (21,29, - - , Z,),

we let T)\ = {x € Rn|$1 = /\}’E)\ = {$|.T1 < /\} and :C)‘ = (2)\ —

x1, X2, ---, Tn,) be the reflection point of z with respect to Ty. To start the
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process of moving planes along the x; —direction, we need two lemmas

below.

Lemma 4.1. Let v be a positive function defined in a neighborhood at
infinity satisfying the asymptotic expansion (3.15). then there exists \
and R > 0 such that the inequality

v(z) > v(zt)

holds true for A > A, x| > R and x € X,.

Lemma 4.2. Suppose v satisfies the assumption of Lemma 4.1, and
v(z) > v(z),) forz € Ty,. Assume that v(x) —v(z°) is superharmonic
in Xy,. Then there ezists € and S > 0 such that the following hold true.

(i) vz <0 dn |xy — Ao| < € and |z] > S.

(ii) v(z) > v(z?) inx1 > N+ €/2 > X and |z| > S

for all x € Xy, A\ < X with |A — Ao| < €.

The proofs of both lemmas are contained in [4].

Now let wy(x) = u*(z) — u*(2*) in E,. Since v}_,(z) = (=A)P~'u*
has a harmonic expansion (3.15) at infinity, by Lemma 4.1 and (4.1),
there exists a Ay > 0 such that

(—A)p_lw)\ > 01in Xy
for all A > )y. By the maximum principle, we have
wx(z) > 0in 3,

for all A > . ( There is a subtle estimate, please see [6] and [10] for
similar arguments.)

We consider the case g < % first. Let
Ao =inf {\ > 0|(=A)Y " 'w,(z) < 0in X, for p > A}

Although u* may be singular at 0, by (4.1) and (4.2), we still can apply
the same arguments as in Theorem 1.2 to prove wy,(z) = 0 in X,,.
Since 7 < 0, we must have A\g = 0. Since we can move the hyperplane
along any direction in R",u*(z) is radially symmetric w.r.t. 0. Since

we can take any point in R" as the origin, we conclude that if u is a



22 JUNCHENG WEI AND XINGWANG XU

positive smooth solution of R", then u = constant in R"™ which implies
u = 0 in R". Thus, Theorem 1.4 is proved.

The proof of the case ¢ = % is similar. So the solutions to equation

(1.12) with ¢ = Z“_Lgﬁ are radial. Theorem 1.3 is proved by the following

lemma.
Lemma 4.3. Let u = u(r) be a radial solution of (—A)Pu = n=
Then

u(r) = UAO,O(T)

for some Ay > 0 where
uro(r) = (

Proof: Notice that uyo(r) is a solution of equation (1.6). It is not
hard to see that if y(r) > 0 satisfies

1
M+ﬁ7—y+ﬂwgo,T>o

2N no
14+ \2p2

with ¢ non-negative and non-increasing, and %' bounded for r near 0,
then

y(r) > er?g(r)
where ¢ is a dimensional constant. The interesting reader can find the
proof for it in [17].

From this, we can easily get that u?(r) < cr—(+2p)/2,

Since u is
smooth on R", v € L*(R"). Hence the Liouville’s theorem will imply

that u has the integral representation

( ) / 7uq d
u(z) =c )
"P J g |z — y|n=2P Y

Therefore, u(r) = O(r*™™) at oo.
Let u(r) be a solution of equation (1.6). Let Ag be such that u(0) =
Ux,0(0). We now claim that u(r) = uyyo(r). In fact, let ¢(r) = u(r) —

Uxy,0(7)- First we have the equation

(—A)¢ =g(r)d
where g(r) = q[(1 — 0)u+ uy, 0]9*. According to our estimates above

and the implicit expression of u,, o, we clearly have g(r) = o(r=?7).
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Therefore we can argue exactly as in the proof of Theorem 1.2 to con-
clude that ¢ is identically zero. Thus we finish the proof of Lemma 4.3
and hence the proof of Theorem 1.3.

O

5. PROOF OF THEOREM 1.5

In this section, we prove Theorem 1.5.
Let g be defined by (f2) and (f3). By condition (f2) and (£3), we have

at? < ft) < Ctl.

Then the argument in the proof of Theorem 3.1 can be adopted to

show that u satisfies
(—AYu > cu?, (~A)Yu>0,i=1,..,p— L.

From this, by taking the spherical average, it is standard that n > 2p

n

and ¢ > -

If we set v(z) = [z[* "u(;7), then v satisfies

(A0 = G(a,v)
in R™\{0} where G(2,v) = e f(|2[""*v). And it is clear that

: n—2p _
xlggo |z|"~Pv(z) = u(0).

According to our assumption (f2) and (£3), G(z,t1) < G(y, t2) holds
when ¢; < t5 and |y| < |z|, hence the moving planes method can apply
to (—A)P~! again. Therefore we conclude that u is radial symmetric
about some point zy. Again, we assume that zy = 0.

Now the same argument in Lemma 4.3 shows that f(u) € L*(R"),
hence u = O(r*™") at co.

By using the integral representation of u, we have
(~A)u=v; <O,
P (—AY ) (—A) | < CrfP 2092 < s < om - 1,
P (ARY) (A%u)'| < Opfp2tst)=lon g < p s < 2m — 1,

|,r,n(Amu)2| S CT4p—4m—n7
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" ARy APRy| < Crir=2p=k)=2k=n 1 < | < 9m — 1.

This clearly implies that

/ B,do — 0 asr — oo.
8B,

Applying the above inequality to the Pahozaev identity (see Lemma

2.5), we have

| nF - "5 ) o

Since nF(u) — “5?2uf(u) never changes sign by condition (f2), we

have
n—2p
2

[nF(u) — uf(u)](z) =0 for all z € R".

Hence

ft) = ct%, for 0 <t < maxu(z).
TERM
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