INFINITE MULTIPLICITY FOR AN INHOMOGENEOUS
SUPERCRITICAL PROBLEM IN ENTIRE SPACE

JUNCHENG WEI AND LIPING WANG

ABSTRACT. Let K(z) be a positive function in RN, N > 3 and satisfy limg| 00 K(z) =

Ko where K, is a positive constant. When p > %—'LI,’,N > 4, we prove the

existence of infinitely many positive solutions to the following supercritical
problem:

Au(z) + K(z)uP? =0,u > 0in RY, lim wu(z) = 0.

|z] =00
If in addition we have, for instance, lim|;| o0 |2|* (K (2) — Koo) = Co # 0,0 <
u < N, then this result still holds provided that p > %

1. INTRODUCTION AND STATEMENT OF THE RESULTS

The purpose of this paper is to establish the existence of infinitely many pos-
itive solutions to the following inhomogeneous equation

{ Au+ K(z)uP =0, (1.1)
where N > 3,p > % and 0 < a < K(z) <b< +oc.

Semilinear elliptic equations like above seem to arise naturally in many applied
areas. We refer the interested readers to [2], [3] and [7] for a brief history and
background of (1.1).

In [6], Ding and Ni showed that for p > ¥42 if z - VK (z) > 0 and K(z) is
symmetric in z;,j = 1, ..., N, then equation (1.1) admits infinitely many solutions.
Using sub-super solution method, Gui [7]-[8] showed that there exists an exponent
pe (defined at (1.6) below) such that for p > p., N > 11, equation (1.1) has infinitely
many (well-separated) solutions in the case when K is radially symmetric. Recent
extensions can be found in Bae and Ni [3], and Bae [1]. However, in [1], [3], [7]
and [8], it is always assumed that p > p. and N > 11. The case of N < 10
and %1} < p < pc has left open. Note that in this case, the method of sub-
super solution breaks down. Other related results can be found in Wang-Wei [11],
Yanagida-Yotsutani [12].

In this paper, under reasonable conditions on K, we establish that when p >

%, equation (1.1) has a continuum of solutions. Our basic assumption is the
following
(H) K (z) is smooth, lim K(z) = Ky > 0.
|z|—00

Our main result is the following:
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Theorem 1.1. Assume that K (x) satisfies (H) andp > x% ,N > 4. Then problem
(1.1) has a continuum of solutions ux(x) (parameterized by \ < Ao) such that

;13%) uxr(z) =0

uniformly in RN . The same result holds when X2 < p < XEL provided that K is
symmetric with respect to N coordinate azis, namely

K(x1,...,%--.,zny) = K(x1,... ,—%4,-..,xn), foralli=1,... N.

The basic obstruction to extend the result to the whole supercritical range is
that the linearized operator around canonical approximation will no longer be onto
if 42 < p < ZEL. This problem can be overcome through a further condition on
( ) We have the validity of the following result.

Theorem 1.2. Assume that K (z) satisfies (H) and £33 < p < H if N > 4,
p> N+2 if N = 3. Then the result of Theorem 1.1 also holds true if
(a) there exists u > N, such that

[ (K@ -K) 0. K@) - Kul <Clal *, [o] 21
e

b) there exist a bounded function f : SV! - R and N — 2222 < ;s < N such
p—1 K
that

tim(Jal* (K (@) ~ Koo) - f<i>) =0,

where f(x) satisfies [ f |i)|;c| ”|x+w|7 7é 0 for anyw € 0B1(0) if u < N
and [gon_ s f#O0if p=N;
or

(c) there exist Cy # 0 and p € (0,N — 2”H] such that
lim |z|*(K(z) — Kx) = Co.

— 00

Instead of using sub-super solution method (which limits the applicability on the
exponent p), we use asymptotic analysis and Liapunov-Schmidt reduction method
to prove Theorem 1.1 and Theorem 1.2. This is based on the construction of a
sufficiently good approximation solution. It is well known that the problem

AW +WP =0 in RV (1.2)

possesses a positive radially symmetric solution W (|z|) whenever p > ££2. We fix
in what follows the solution W of (1.2) such that

W) =1. (1.3)
Then all radial solutions to this problem can be expressed as
Wia(z) = A\r=1 W (\z). (1.4)
At main order one has

W(r) ~ Cp,NrfzJQTl as r — oo, (1.5)
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which implies that this behavior is actually common to all solutions Wy (z). In [10]
and [9], it is shown that if p = p.,

1
_ BT aplogr logr
=t Tl

w(r)

r — 00,
re-1

Whereﬂ:ﬁ(N—Q—ﬁ),al<0,u0>0andifp>pc

1
. ,BPTl ay 1
W(r) = 5 W+O(W), T = 00,
where
(N—=2)2—4N4+8y/N—1
pe = NN -10) N> 10, (1.6)
00, N < 10.

The idea is to consider Wy (z) as an approximation for a solution of (1.1), pro-
vided that A > 0 is chosen small enough. To this end, we need to study the solvabil-
ity of the operator A 4+ pWWP~! in suitable weighted Sobolev space. Recently, this
issue has been studied in Davila-del Pino-Musso [4] and Davila-del Pino-Musso-Wei
[5]. In particular, our method here is closely related to [5] where standing wave
solutions are constructed for nonlinear Schrédinger equations

Au—V(z)u+uP =0,u>0in RV, | |lim u(z) =0 (1.7)
T|—+00
with
1
V(z) = 0(@)7 V(z) > 0. (1.8)

Throughout the paper, the symbol C' denotes always a positive constant inde-
pendent of A\, which could be changed from one line to another. Denote A ~ B if
and only if there exist two positive numbers a, b such that a4 < B < bA.

Acknowledgments. The research of the first author is partially supported by an
Earmarked Grant from RGC of Hong Kong and a Direct Grant from CUHK. We
thank Professor W.-M. Ni for useful discussions.

2. THE SOLVABILITY OF LINEARIZED OPERATOR A + pW?P—1

Our main concern in this section is to study the existence of solution in certain
weighted spaces for

Ap+pWP lp=h in RV, (2.1)

where W is the radial solution to (1.2), (1.3) and h is a known function having a
specific decay at infinity.

We work in weighted L spaces adjusted to the nonlinear problem (1.1) and
in particular take into account the behavior of W at infinity. We are looking for
a solution ¢ to (2.1) that is small compared to W at infinity, thus it is natural

to require that it has a decay of the form O(|w|7%) as |x| = +oo. As a result
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we shall assume that h behaves like this but with two powers subtracted, that is,
2
h = O(|z|”»-17?) at infinity. These remarks motivate the definitions

lgll« = sup |z]7|(z)| + sup |z]|7~T[$(z)], (2.2)
|z[<1 |z|>1
and
|hllx = sup |z[**7|h(z)| + sup |z[»=11?|h(z)], (2.3)
lz|<1 |z|>1

where o > 0 will be fixed later as needed.
The following lemmas and remarks on the solvability are due to Davila-del Pino-
Musso [4] and Davila-del Pino-Musso-Wei [5]:

Lemma 2.1. Assume that p > %—E,N > 4. For 0 < 0 < N — 2 there exists a
constant C > 0 such that for any h with ||h||.. < oo, equation (2.1) has a solution

¢ =T(h) such that T defines a linear map and

IT(R)llx < CllAlx-

An obstruction arises if % <p< %—Jj;, which can be handled by considering

suitable orthogonality conditions with respect to translations of W. Let us define
ow
Z; =
K] 77 axz

(2.4)

and 7 € Cg°(RY), 0 <9 <1,
n(z) =1 for |z| < Ry, n(z)=0 for |z|> Ry+ 1.

We work with Ry > 0 fixed large enough.
Then we have

Lemma 2.2. Assume N > 3, % <p< x—fé and let 0 < 0 < N — 2. There is a

linear map ($,c1, ... ,cn) = T(h) defined whenever ||h||«« < co such that
N
Ap+pWP e =h+> ciZ inRY (2.5)
i=1
and

N
1l + > les| < Cllhllw.

i=1
Moreover, ¢; =0 for all 1 <i < N if and only if h satisfies
ow
h =0 V1i<i<N. 2.6
RN 6$z Sts ( )

Remark 2.3. Ifp = %—4_‘;, the conclusion of Lemma 2.2 still holds if one redefines
the norms as

_2
6]l = sup |z|7|¢(2)| + sup |z|7=7*|4(z)],
lz|<1 || >1

2
1Bl = sup |2|7*?|h(z)| + sup |«]7=7T*2|h(2))],
|lz[<1 |z|>1

where a > 0 1is fized small.
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The operator 7' in Lemmas 2.1-2.2, Remark 2.3 are constructed “by hand” by
decomposing h and ¢ into sums of spherical harmonics where the coefficients are
radial functions. The nice property is of course that since W is radial, the prob-
lem decouples into an infinite collection of ODEs. We omit the details for the
construction and refer to [4] and [5] for the details.

3. THE PROOF OF THEOREM 1.1

Let p > %—f; We prove Theorem 1.1 in this section. The main idea is to use
Lemma 2.1 and a contraction mapping principle.
1

By a change of variables KZ; )\_leu(f), equation(1.1) is equivalent to

Au+up+1_((;)u”:0 in RV, (3.1)
where
-z K(%)
LA _1 2
&)= (52

Note that by our assumption on K, for any fixed = # 0, we have K(%) = o(1).
We look for a solution of (3.1) of the form u = W + ¢, which yields the following
equation for ¢

Ap+pWP g = N(¢) — K(3)(W + ¢)7,

> 8

where
N(§) = —(W + ¢)? + WP + pWP 1o, (3.3)

Using the operator T' defined in Lemma, 2.1 we are led to solving the fixed point
problem

X

¢=T(N(¢)—K(A)(W+¢)”>- (34)

We use a fixed-point argument: Consider the set
F={¢:R" >R | ¢l <p},
where p € (0,1) is to be chosen (suitably small) and the operator A(¢) = T(N (¢)—

K($)(W + d))p). We now prove that A has a fixed point in F.

For any ¢ € I, by the arguments in [4]-[5], we know that for 0 < ¢ < % chosen
n (2.2), (2.3), it holds

IN(@)llex < CUIBIE + 1B1I2). (3.5)
Next we estimate || K(%)(W + ¢)P||.x. Let R > 0. Observe that
sup|, <1 [T K () (W + ¢)P| < Csup <t |27 K ()IUNWIE + [417)
< Csup<ar -+ CSupyp<ipi<1 (3.6)
But

Al 7 T [
| s‘gglel” IKSIUWIIE + [91) < COR)™ ™ + ClIgE, (3.7)
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sup |2+ K (S PIAWIE +167) < Ca(R)(1 + [14]12) < Ca(R),
AR<|z|<1 (38)

where

a(R) = sup |K(x)|, then lim a(R)=0. (3.9

|z|>R R—o0
On the other hand,

sup| g >1 [o[*T 5T [K($)(W + @)| < Ca(3)supjy s [2*F 71 (WP + [6I7)
<caD)A+GIR) < Cah): (319
Thus by (3.7), (3.8), (3.10), we get
1
IRGYW + 9P llex < C(a(B) +a(3) + AR+ IglI2).  (3.11)
By Lemma 2.1, (3.5) and (3.11), we have
[A@)Il < CUN@)ls + CNE ()W + ¢)7 ||
<C(IIgl2 + g1 + a(R) + a(%) + AR?)  (319)
<C(p? + 97 +a(R) +a(3) + (AR)*H).
Now we choose p small enough, such that C(p? + pP) < %p. Then choose R
large enough such that Ca( ) < 3 1y, Finally we choose A small enough such that
Ca(3) + C(AR)**? < 1p. All yield that A(F) C

It remains to prove that A is contractible.
Similar to arguments in [4], we see that V1, ¢2 € F,

IN(81) = N(¢2)llex < Clp+ p"~ |1 = ]| (3.13)
Observe that
IK( (W + ¢1)P — (W + ¢2)?| < CIR(S PULZ S Gl (IW[P~1 + | [P + (4P ).
Simﬂarly we obtain

Sup g i< [P K ()W + 61)P — (W + ¢2)?|
Cllgr = dalls sup g <rr 2> ((WP~" + 61 [P~ + [¢2]P~")

<
< Clign = dalls (AR + 1), (3.14)

sup |$|2+”|K( MW + ¢1)P — (W + ¢2)"| < Ca(R)||$p1 — ¢2||«,
AR<|z|<1 (3.15)

sup o7 R (S DN +1)" = (W + )7 < Ca(;)llqﬁl = P2l
Je|> (3.16)

Hence by Lemma 2.1, (3.13)—(3.16), we have
1A(#1) = A6l
Cllgs = gal (p+ P + (AR)? + a(R) +a(}))

o1 — ¢als,
provided that p small enough, R large enough and A small enough.

IANIN TN

C((IN(B1) = N(@2)lluw + IR ()W + ¢1)? = (W + 62)?]ll.)

(3.17)
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By (3.12) and (3.17), A is a contraction mapping. By contraction-mapping

principle, it follows that A has a fixed point ¢, in F. Since W + ¢, is a solution of
Au+uP + K(3)uP =0,

{ >0 in RY,lim ;e u(z) = 0. (3.18)

For z such that |z| = 1,W + ¢, remains bounded because ¢x(z) < C. Then
uniform upper bound for W + ¢ follows from (3.18) by observing that ||(1 +
K(2))(W + ¢2)P||14(p,) remains bounded as A — 0 for ¢ > &'. In fact,

/ (14 BENIW + hp)P7 < c/ el +c/ PN c+c/ l2|~771 < C
B, A B, B B,

provided that ¢ > 0 small. Hence
W+ ¢x| <C forall |z <L (3.19)
It follows from then that
|pa(z)] < C for all z. (3.20)

1
Thus ux(z) = Keo?™! A>T (W (A\x) + ¢x(Az)) is a continuum solutions of (1.1) and
)1‘13%) ux(z) =0

uniformly in RV . This ends the proof of Theorem 1.1. O

Remark 3.1. We observe that the above proof actually applies with no changes to
the case & +2 <p< X +1 3 provided that K is symmetric with respect to N coordinate
axis, namely

K(x1,... ,24y...,2n) = K(21,... ,—Tiy...,2n), foralli=1,... N.

In this case the problem is invariant with respect to the above reflections, and we
can formulate the fized point problem in the space of functions with these even
symmetries with the linear operator defined in Lemma 2.2. Indeed, the orthogonality
conditions in Lemma 2.2 are automatically satisfied, so that the associated numbers
¢;’s are all zero.

4. THE PROOF OF THEOREM 1.2

In this section, we consider the case when p € (N_+§7 %] and prove Theorem
1.2. We need to use Lemma 2.2 and a Liapunov-Schmidt reduction argument.

By Lemma 2.2 and Remark 2.3, there is an obstruction in the solvability of the
linearized operator. To overcome the obstruction, we introduce a new parameter £

where W achieves its maximum. For this reason we make the change of variables
1

K& /\_z%u(%) and look for a solution of the form v = W + ¢, leading to the

following equation for ¢:

£

A

Ag+pWP™l g = N(g) — R(Z=2)(W + ¢)P,

where

N(¢) = —(W + ¢)” + WP + pW?'4.
We will change slightly the previous notations to make the dependence of the norms
on ¢ explicit. Hence we set

¢l = sup |z — &7 |g(x)| + wf|w—aplw<n

o—g<1 o
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and
BT, = sup |z —€|"*?h(@)| + sup o — &7 h(x)].
lz—€|<1 le—€[>1
In the rest of the section we assume that
N +2 N+1
N2 <P<N_3
The case p = %—;; can be handled similarly, with a slight modification of the norms

where it is more convenient to define

1612 = sup |z —€7|¢(@)| + sup |z — E|FTHg(x)|
lz—€|<1 |lz—¢g|>1

and

I = sup |o—€[°*2|h(z)| + sup |z —&FTHON2|n(z)]
T |e—gl<1 le—€|>1

for some small fixed a > 0. See Remark 2.3 and Remark 4.2.

The proof of Theorem 1.2 is through a Liapunov-Schmidt reduction procedure.
This will be achieved in two steps. In the first step, we solve (3.1) modulo Z;,
using Lemma 2.2. That is, we have the following lemma.

Lemma 4.1. Assume that N > 3,842 < p < ¥£& and K(z) satisfies (H) and

A > 0. Then there is Ag > 0 such that for |§] < A and X < Ao there exist
dr,c1(A), ... ,en(N) solution to

{ Ap+pWP 16 = N(@) — K(S5W +oP + SliaZiy (g
lim 400 ¢(x) = 0.
If K(z) also satisfies
|K(2) = Koo| < Cla| ™, |a| 21, (4.2)
for some p > 0, then for 0 <0 < N — 2,

N
1% + 3" e (V)] < CA™RE24) - for all 0.< X < Aq. (4.3)
=1

Proof: Similar to the proof of Theorem 1.1, we fix 0 < ¢ < min {2, 27} and define
for small p > 0

F={¢:R" >R | [I¢l7 <}
and the operator ¢; = A, (¢) to

{ A¢y +pWP™ ¢y = N(¢) — K(5E) (W + )P + XN, ¢iZi,
lim|z|—><>o ¢1(z) =0. (4.4)

By the same proof as in those of Theorem 1.1, we have for any ¢, 1,2 € F

IN@I'T, < CUIglI7)? + CIglI©7)7 < C (o> + p7), (4.5)
IN(#1) = N6 < Clo+p" Yl — 2117, (4.6)
z—¢

IR0 + 921D, < € (a(R) +a(5) + AR + (I6107),

A



SUPERCRITICAL PROBLEM 9

- ZL’—f » » - 1 2 —1 a
K2 (7 + 607 = (W +6)7) I < C(a(R) +a(5) + (AR) + 7 )||¢1—¢2(||4i.,§’)-

Using Lemma 2.2 and fixed point theorem we get a solution ¢x,c1(A),... ,cn(A)
of (4.1) provided p small enough, R large enough and A small enough.
As in the proof of (3.20), we can obtain

loall < C for all . (4.9)

Under the assumption of (4.2) and for 0 < § < N —2, we can estimate K (%)(W+
@ )? as follows: for R fixed large enough,

_r—
sup |:17—.£|2+0|K(T§)(W+¢>\)”| < sup ---+ sup
lo—g|<1 @—¢/<AR  AR<|z—g[<1

SUP|z—¢|<AR |z — §|2+0|K(T€)(W +oa)P| < CSUP|z £|<AR |z — §|2+0(|W|p + |pa[P)
< C(OR + 1161 sup g <an |z — €2)
< (R + oI 2AR)?), (410)

SUPAR<|z—¢|<1 |z — |2+9|K(T€)(W + )P <O SUPAR<|z—¢|<1 |z — &[>0 ”(|W|p + [$a[P)
< Caminln2 40 4 CAmn U gy (g

SUD |y g1 [ — EPFFTIR ()W +62)P < OV (1+ (I921)7) supjy_giz [ — €]
<oxe(1+(Ial0D?). (4.12)
Thus

IERCESE) + 6rPII0 < ONPn20) 4 oxminie) g, | )
(4.13)

o< < -2 according to (3.5), Lemma 2.2 yields

||¢>\||§=6) + z lei(V)] < O \min{p,2+0} (4.14)

provided p, A small enough.
Now consider 1% <f<N-2andlet0<o< 1%.
If p>2,then 0 < 0 <2 and

IN(¢2)] < CWP2|ga[* + [#alP).
Observe that

sup |z —EPTIN(g\)| < sup -+  sup
le—g]<1 o= <A A<|z—E|<1

Thanks to (4.9), we have

sup |z — €[N (¢2)] < ON*F
ja—€1<
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and
WS = EPINGL < ORISR sup o =g+
< Cleall)?  sup |z —gPe
A<|z—€|<1
< Ol < oammPero ),
sup [z = €75 N (9)] < C(I9al1.7)° < OnmintEbd2e,
Thus e
IN(82)II), < Camin{zH02@40203 3¢ > 9, (4.15)
Similarly, if 1 < p < 2, using |N(éx)| < C|pa|?, we can get
IN(@)[I%) < CAmin{Z+0.p(2+0)pu} (4.16)
After finite steps we get for any p > 1,
IN(@IDe < oAmin{z+0ul, (4.17)

According to (4.13),(4.17) we get
N
oAl + D" lei(W)] < Camintu2+0} (4.18)
=1

provided A small. O

In the second step, we need to vary & so that ¢; = 0,7 = 1,..., N, therefore
proving Theorem 1.2.

By Lemma 4.1, we have found a solution ¢y,c1(A),...,cn(A) to (4.1). By
Lemma 2.2 the solution constructed satisfies for all 1 < j < N:

L (V60 - REH 07+ 0r) 5 =0

if and only if ¢; = 0. We divide it into three cases.

Case (a): > N. In this case, we have

— X ow ow
—_K(Zywr=__ = _\N K(z)-K peY N
[ KGIWrS @ = -3 [ (K@)-Ka) WO T (©+0Y) 2 A0,
where the convergence is uniform with respect to || < .
Indeed, in the case p > 2, if we choose % <6< min{g,N — 2}, then we

obtain

ow
RN Tj Bi1(§) RN\B1(§)

[ NGOG S CURIR? [ o < cpemintron < gymintvizan,
B1(§) Zj B

1(¢

ow
[ NG, < olial [
RN\ B (¢) Zj RN\
Thus

|m_€|737ﬁ < C)\2min{2+9,u} < C)\min{N+2,2,u}‘
€)

By (

/R ) |N<¢A>§—Z| = o(AN), (4.19)
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Similarly, in the case 1 < p < 2, we get
/ |N (%)—I < oarmin{EHlnt = o(AN), (4.20)

since we can choose 6 such that pf = N —1, which is possible since then § = % <

(N-1)(N-2)
e <N-
Next we need the following important claim

Claim: 0 < ¢ < Uy < C in By(§), where Uy = W + ¢,.
The upper bound has been given by (4.9) and we only need to prove that U, has
a lower bound. Let x(r) = 7% (1 —r?), so that

Ax=-1, x=0 on 9IB;
and consider z = Uy + (Eil lei M) ||| Zilloo) x- Then z satisfies
Az <0.

By maximum principle we have

W1 .
Ux + ( |Cz M Zillso)x > Ux |aB, > wa) in Bi,
2

since the convergence ¢>\ — 0 as A — 0 is uniform on any compact set of RY \{0}.
Then Uy > @ > 0 in By since ¢;(A) = 0as A — 0 and x(r),Z;(1 <i < N) are
bounded. Thus we proved the claim. O

Define now F) (&) by

FO©): = fon —KEULEE (@ +6) + fon N(92)
~ WY fon (K@) = Koo) 32(€) + 0oAY)

and F\ = (F/{l),... ,F/{N)). Fix now 6 > 0 small. Then from (4.19)-(4.21), we
have for small A

(4.21)

(FA(£),6) #0 forall |¢] =4.
By degree theory we deduce that F)(£) has a zero point in Bs.

Case (b.1): N — 2p+2 <pu<N.
Obviously

_x— ow
L RCESEwSs e [l W e+ 95 (@ + 6.
RN
By the above computation, for 01,65 € (0 ,N —2), we have

/ |N(¢A)Z7W| = O()\2 min{2+61,u} AP min{2+62,u}) )
RN j

If we choose 2601 = p— 2 and pfs = p which are possible since y < N and p > %Jrg,

then

[ G = o, (4.22)

_ T — ow
RN Zj RN\ B1(£) B1(§)\Bxr(£) Bxr(£)
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fBAR ¢ |K(—>\E)((W +oa)P — W”)—gw‘ Cme E (|oalP + |#a)
< Cligalls EIBAR(E) |z — §|

< Cllgall LR (4.23)
< C/\mm{2+z9,p}+N 0 — O(/\“)

fBl(E)\Bm(E |K(T§)((W+¢'\) - W) SZ <o fBl 2 Bir(£) lz — €]~ (|¢>\|p+ |¢/\|)

< O lpal| ) Bu©\Ban(o) o =€

< O [gall2AR)N 4
< CA;L+mm{2+9,;4}+N u—0 _ O()\”)

9 _3__4 _
fRN\Bl(g) |K(TE)((W + )P — W”)g—m < CA””‘Z&AH:E,% fRN\Bl(E) |z — ¢ M

(4.24)

S CAH+min{2+9aI‘} = O(AN)- (425)

Thus
Jan (N (@) =KD W + 0)P) 3L = — fon K(ESWPEL 4 o(A)

v fw le “f<|$|>Wp<x+o8W<w+ﬁ> + o))

Define now F' to be given by

FQ) = - [l W+ g

By Dominate Convergence Theorem we get
P+1

~ Nep— 2(p+1) i
Fe) = -l [ s

and

(|§|N y— 2(p+1)>

2(p+1) )

VF()-¢ = —ﬂ,,:‘; (N — p— 22Dy N=n= 528 o fal# F ()l + ]

_2(P+1)
(G )

Therefore VE(£) - € # 0 for all |¢] = R where R large. Using this and degree theory
we obtain the existence of £ such that ¢; = 0,1 < j < N provided A small enough.

Case (b.2): p=N.
In this case, we will have
Gj (é-) : fRN f%( )+ fRN ¢)\) z;
= Jev ~KUL G (2 +€) +0(AY)
uniformly for £ on compact sets of RN )
Similar to case (a), we derive that for small fixed p

(G(€),&) #0 forall [¢] = p. (4.28)
Indeed, for p > 0 small it holds
(VW (£),8) <0 forall (£ =p.
Thus, for 6 > 0 small and fixed

v=sup (VW (z+¢),€) <0 forall [{ =p. (4.29)
zEB;s

(4.27)
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We decompose

/RN REUW (= +8),) /B /RN\B&---

| fam g, —E)UR(VW (2 + €), )|

where

< CAZ Jiazs 27N a7
< O (4.30)

On the other hand, for R > 0 we may write

N _
. _K(X)U}‘(VW(Z- + 5)75) - és\BxR + /BAR

We have
[ —RGUTREWE 0.6 = 00, (@.31)
Bxr
Since, by Claim, we can get that
_x = I
[ ckGuiwe+o.9~ [ KE). (432
Bs\Bar Bs;\Bxr
But
fBJ\Bm K() = A fBg\Bm |m|_Nf(\§_\)
+AN fBg\B,\R |$|7N()\*N|a;|NK(§) _f(ﬁ_\)) (4.33)
and
)\N/ e N7 = AV log F+0(1) (4.34)
BJ\BAR |m| )\ SN-1

while given any € > 0 there is R > 0 such that
AN / |z|~N (A—N|x|Nfc(f) [ ))| <eAVlog 2 (4.35)
Bs\Bar A || A

From (4.30)—(4.35) we deduce the validity of (4.28). Applying again degree theory
we conclude that for some [£] < p we have G(£) = 0.

Case (c): 0< u <N - 2;’_+12. For simplicity we assume that Cy > 0.
As in the proof of part (b), we get that

[N @G = o). (4.36)

Observe that

_ 1 — ow
RN Zj RN\B1(¢) B1(§)\Bxr(£) Bir(£)

Obviously,

/B (E)u‘{(“’ §)UP8—W|<0(AR) = o(AM). (4.37)

A

In RV\Byg(€), K(£5) doesn’t change the sign provided R fixed large enough.
Thus [5 e\Bamie)" " 204 Jam g, (e - have the same sign.
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By the condition in Theorem 1.2 and the claim,

"= £\ pOW ow u
5 J,

ALY W o —gn,
/31(5)\3/\12(5) X TN O HEO\Bar(e) OF; (4.38)

where fBl(ﬁ)\Bm(ﬁ) |z —&|~* = O(1) since g < N.
In RV\ By (6), AR (358)| < Clz— €|+, |z — € T*UY 5% € L' (RV\By (€)) since
Ul S W +|¢2] < Clz — €771

By Dominated Convergence Theorem we get that

lim A~ * / =S gy — . (4.39)
A—0 RN\ By (€) A 6 Z
Define now F) (&) by
. ow oW
B [ KU ero+ [ Neogs
RN RN J

and Fy = (F",...,F")). Fix now § > 0 small. Then from (4.36)—(4.39), we
have for small A

(Fx(£),8) #0 forall |¢ =4.
By degree theory we deduce that F)(£) has a zero point in Bs. O

Remark 4.2. The proof of Theorem 1.2 in the case p = NH follows exactly the
same lines with the modified norms as defined in Remark 2.3. The argument works
because we assume that K(x) — Ko has decay, which implies that even the modified

norms, the error | K(W + ¢)p||£i?§ converges to 0. Indeed, we have

sup Jo = g R (T —5\w + g < oM sup fo gl = 0N

provided that o < p.

REFERENCES

[1] S. Bae, Infinite multiplicity and separation structure of positive solutions for a semilinear
elliptic equation in R™, J. Diff. Eqns. 200(2004), 274-311.

[2] G. Bernard, An inhomogeneneous semilinear equation in entire space, J. Differential equa-
tions 125(1996), 184-214.

[3] S. Bae and W.-M. Ni, Ezistence and infinite multiplicity for an inhomogeneous semilinear
elliptic equation R™, Math. Ann. 320(2001), no. 1, 191-210.

[4] J. Davila, M. del Pino, M. Musso The supercritical Lane-Emden-Fowler equation in ezterior
domains. Commun. Part. Diff. Equations, to appear.

[5] J. Dévila, M. Del Pino, M. Musso, J. Wei, Standing waves for supercritical nonlinear

Schrédinger equations, J. Diff. Eqns., to appear.
N+2
[6] Ding W.-Y., Ni W.-M., On the elliptic equation Au+ KuN-2 = 0 and related topics, Duke

Math. J. 52 (1985), 485-506.

[7] Gui C.-F., Positive entire solutions of equation Au + f(z,u) = 0, J. Diff. Eqns. 99 (1992),
245-280.

[8] Gui C.-F., On positive entire solutions of the elliptic equation Au + K(z)u? = 0 and its
applications to Riemannian geometry, Proc. Roy. Soc. Edinburgh Sect. A 126 (1996), no. 2,
225-237.

[9] Gui, C.-F., Ni W.-M., Wang X., On the stability and instability of positive steady states of
a semilinear heat eugation in RY, Comm. Pure Appl. Math. 45 (1992), 1153-1181.




SUPERCRITICAL PROBLEM 15

[10] Y. Li, Asymptotic behavior of positive solutions of equation Au + K(z)u? = 0 in R™, J.
Differential Equations 95(1992), 304-330.

[11] Wang X.-F., Wei J.-C., On the equation Au + Ku%ig = 0 in R™, Rend. Circ. Mat.
Palermo (2) 44 (1995), no. 3, 365-400.

[12] E. Yanagida, S. Yotsutani, Classification of the structure of positive radial solutions to
Au+ K(|z|)u? = 0 in R™, Arch. Rational Mech. Anal. 124(1993), 239-259.

J. WEI - DEPARTMENT OF MATHEMATICS, CHINESE UNIVERSITY OF HONG KONG, SHATIN, HONG
Konag
E-mail address: wei@math.cuhk.edu.hk

L. WANG - DEPARTMENT OF MATHEMATICS, CHINESE UNIVERSITY OF HONG KONG, SHATIN,
HonG KonG

E-mail address: 1pwang@math.cuhk.edu.hk



