NONRADIAL SYMMETRIC BOUND STATES FOR A SYSTEM
OF COUPLED SCHRODINGER EQUATIONS

JUNCHENG WEI AND TOBIAS WETH

ABSTRACT. We consider bound state solutions of the coupled elliptic system
Au—u+u® + Bv’u=0in RY,
Av—v+v*+pu’v=0in RY,

u>0,v>0u,v€ IHII(]RN)

where N = 2,3. It is known ([13]) that when 3 < 0, there are no ground

states, i.e., no least energy solutions. We show that, for certain finite subgroups

of O(N) acting on H! (RY), least energy solutions can be found within the
associated subspaces of symmetric functions. For 8 < —1 these solutions are

nonradial. From this we deduce, for every 8 < —1, the existence of infinitely
many nonradial bound states of the system.

1. INTRODUCTION

In this paper, we study solitary wave solutions of time-dependent coupled non-
linear Schrodinger equations given by
—i 2B = Ay + 111|®12®1 + B|D22®; for y e RV, >0,
(1.1) ;"gz‘% =AD, + u2|f1>i|2<1>2 + B|®1>®, for y € RNt >0,
i=®i(y,t) €C, j= 1,2
®i(y,t) >0 as |y = +oo0,t>0,5=1,2
where p1, uo are positive constants, n < 3, and ( is a coupling constant.

The system (1.1) arises in applications of many physical problems, especially
in the study of incoherent solitons in nonlinear optics. We refer to [19, 20] for
experimental results, and [1, 6, 10, 11, 12] for a comprehensive list of references.
Physically, the solution ®; denotes the j-th component of the beam in Kerr-like
photorefractive media. The positive constant p; is for self-focusing in the j-th
component of the beam. The coupling constant 3 is the interaction between
the first and the second component of the beam. As 8 > 0, the interaction is
attractive, while the interaction is repulsive if 8 < 0.

Problem (1.1) also arises in the Hartree-Fock theory for a double condensate i.e.
a binary mixture of Bose-Einstein condensates in two different hyperfine states |1)
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and |2) ([8]). Physically, ®; and ®2 are the corresponding condensate amplitudes,
p; and B are the intraspecies and interspecies scattering lengths. The sign of the
scattering length 8 determines whether the interactions of states |1) and |2) are
repulsive or attractive. When 8 < 0, the interactions of states |1) and |2) are
repulsive ([24]). In contrast, when 3 > 0, the interactions of states |1) and |2)
are attractive. For atoms of the single state |j), when p; > 0, the interactions of
the single state |j) are attractive. To obtain solitary wave solutions of the system
(1.1), we set ®1(x,t) = it u(z), ®y(z,t) = ¢t v(z), and we may transform the
system (1.1) to a coupled elliptic system given by

{ Au— Mu~+ pud + BrPu= 0 in RV,

(1.2) Av — Agv + pov® + puv = 0 in RV,

An important class of solutions are bound states, namely, solution (u,v) satisfying

(1.2) and the following conditions
(1.3) u,v >0 in RY, u(y),v(y) = 0 as |y| = +oo.

In [2, 3, 4, 18, 22], the existence of bound states when 3 > 0 is proved. Notice that
in this case, all solutions of (1.2), (1.3) are radially symmetric up to translation
(see [25]), and thus one may restrict to the class of radially symmetric functions.

When § < 0, this is no longer true: a result in [16] says that when

(1.4) N =2, min(y/ ﬁ, \/ &) < sin~ for some k > 2,
AV M k

then, for 8 < 0,|4| sufficiently small, there are positive solutions to (1.2) with one
component concentrating at the center, and the other component concentrating
around a regular k—polygon.

The main purpose of the present paper is to study the existence of nonradial
solutions in the case where 8 < 0, and A\; = Ao, u; = pg. Note that in this case
(1.4) fails, so that the result of [16] does not apply. Without loss of generality,
we may assume that Ay = Ay = y; = py = 1. Namely we consider the following
system of elliptic equations

Au—u+ud+ Bv’u= 0 in RV,
(1.5) Av—v+v3+pu?v= 0 in RV,

u,v >0 in RV, u(y),v(y) = 0 as |y| = +oo.
Solutions of (1.5) are critical points of the energy functional E : (H! (RY))?2 — R
defined by

1 1 B
Elu,v] = §(||u||2 + [lol*) - 1 /RN (u' +v*) — 5/sz u?v?,
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where |[u]? := [pn (|Vu|? + v?) dz for u € H'(RY). All nontrivial solutions of
(1.5) belong to the Nehari set

N = {(u,'u) € (]HII(RN))2 cu,v > 0,u,v Z 0,

P = [t o), ol = [ 6+ et}

A solution (@, ) of (1.5) is called a ground state if E(u,?) = ¢y, where
(1.6) co = (u,iggNE[u,v].
In particular, E(u,v) < E(u,v) for any nontrivial solution (u,v) of (1.5). Con-
cerning the existence of ground states, it was proved in [14] that ¢ is attained for
B > 0 small, whereas ¢y is not attained for any 6 < 0. To explain this phenom-
enon, it is worth pointing out that FE fails to satisfy the Palais-Smale condition
since the embedding H' (RY) — L*(R") is not compact. Moreover, for 3 < 0 the
interaction of the two species is repulsive. Therefore a spatial separation of u and
v in RN is observed for (u,v) € N with energy close to ¢g. In fact, the repulsion
of u and v seems to be closely related to the repulsion of positive and negative
bumps in the study of sign changing solutions of the single equation —Au+u = u3
in RV, see e.g. [26].
For g > —1, (1.5) admits the scalar solutions

1

1+

(and its translations), where wy € H!(RY) is the unique solution of the scalar

(1.7) (u,0) = (wo,wo),

D

elliptic problem
—Aw+w=w’, w>0inRY,

(1.8) w(0) = 1161]1%)]5 w(y), weE H (RN)a
)

cf. [7,9]. Asremarked above, these solutions are not ground states for —1 < 8 < 0.
For g < —1, (1.5) does not admit any solutions with u = v. Indeed, for § < —1,

it is evident that
(1.9) u#v for every (u,v) € N.

In the present paper we prove, for any 8 < 0, the existence of ground states within
spaces of functions invariant under the action of a finite subgroup G of O(N).
In these spaces, F still fails to satisfy the Palais-Smale condition, but we recover
compactness of energy minimizing sequences by balancing the self-attraction of the
single species with the repulsion of different species and by applying concentration

compactness arguments. To state our main results, we recall some notation for
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a (nontrivial) finite subgroup G < O(N). We set Gz = {Az : A € G} C
RY and G :== {A € G : Ar =z} C G for z € RY, and we denote by |Gz|
resp. |G*| the number of elements in Gz, G*, respectively. Moreover, we set
Fix(G) = {x € RN : Gz = {z}} which is a subspace of R, and we write
Vg = Fix(G)* for the orthogonal complement of Fix(G) in RY. Finally, we set
1(G) = min{|Gy| : y € V5 \ {0}}. If u € H'(RY), we say that u is G-symmetric if
u(Az) = u(zx) for every A € G, and we put

Hg = {u e H'(RY) : u is G—symmetric}
We introduce the following definition.

Definition 1.1. Let B € O(N), and let G < O(N) be a finite subgroup of O(N).
We call the pair (B,G) admissible if

(a) B is contained in the normalizer of G, and B? € G;
(b) Bz =z for every = € Fix(G).
(c) there exists zg € Vg \ {0} with

(1) |Gzl = 1(9),

(c2) Aergirglmo |zo — Azl < 2gleng1|x0 — BAxy|.

Condition (c2) in particular implies that B ¢ G. Condition (a) ensures that
Gp = G U BG is a subgroup of O(N), and that an action * of Gg on (H!(R"))?
is well defined by A * (u,v) := (uo A L,vo A1) for A € G and B * (u,v) :=
(vo B~!,u o B71). The *-invariant elements of (H! (RY))? are precisely of the
form (u,u o B) with u € Hg. We define

N(B,G) :={u € Hg : (u,uo B) € N}
and

(1.10) ¢(B,G) :ueliII%JfB,g)E(u’UOB)'

Now we state our main result.

Theorem 1.2. Let N = 2 or N = 3, let (B,G) be an admissible pair, and let
B < 0. Then:

(a) N(B,G) is nonempty and ¢(B,G) is attained. Moreover, every minimizer
u € N(B,G) for (1.10) gives rise to a G-symmetric solution (u,u o B) of (1.5)
with u > 0 everywhere on RN,

(b) If |B| < 1 is small, then ¢(B,G) = meOHQ, and this value is attained
only at the solutions (1.7) and its translations.
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From part (a) and (1.9), we directly deduce the following.

Corollary 1.3. Under the assumptions of Theorem 1.2, for B < —1, there exists
a G-symmetric solution (u,u o B) of (1.5) with u # uw o B. Hence u is not Gp-

symmetric and therefore nonradial.

We briefly comment on Definition 1.1. Part (a) of this Definition is clearly
related to the action * defined above. Part (b) ensures that N(B,G) and the
reduced energy u — E(u,u o B) are invariant under translations of the form
u +— u(- —y) for y € Fix(G). Part (c) will be crucial for estimating the value of
¢(B,G) and thus for finding a relatively compact energy minimizing sequence in
N(B,G). A classification of admissible pairs (B, G) in arbitrary dimension seems
out of reach. In dimensions N < 3 the finite subgroups of O(NN) and its properties
are well known (see e.g. [5]), and therefore we can determine all admissible pairs.
In combination with Corollary 1.3, the following list highlights the rich structure
of the solution set of (1.5) for g < —1.

Example 1.4. (i) Polygonal symmetry in R?: Let N = 2, fix k¥ € N and let
By, € O(2) denote the (counter-clockwise) rotation by 6y = 4, i.e.,

By(z) = (:1:1 cos O, — x9sin Oy, z1 sin Oy + x5 cos Hk) for z = (z1,29) € R2.

We set Gr = {Id, B}, B{,...,B2*"?}. Then the admissibility condition (a) is
clearly satisfied for the pair (By,Gx). Note also that Fix(Gg) = {0}. Moreover,
for every z € R? \ {0} we have |Grz| = [(Gx) = k and
0
min |z — Az| = |z — Biz| = 2sinf; < 4sin(?k) = 2|z — Brz| = 2}11éign |z — B Az|.
k

A€gy
A#Id

Hence the pair (B, Gx) is admissible.
(ii) Polygonal symmetry in R3: Let N = 3, fix k € N and let B, € O(3) denote
the rotation of (z1,z2) by 0y = 5, i.e.,

By(z) = (:vl cos 0 — o sin O, z1 sin O, + x5 cos Ok,O) for £ = (1,9, x3) € R.

With this choice of By we may define G as in (i), and again admissibility condition
(a) is satisfied for the pair (Bg,Gi). In contrast to (i) we now have a nontrivial
space of fixed points Fix(Gy) = {(0,0,¢) : & € R}. Nevertheless, for every
z € Vg, \ {0} we still have |Gyz| = 1(Gx) = k and
0
min |z — Az| = |z — Biz| = 2sin 6}, < 4sin(?k) = 2|z — Biz| = 2}1nign |z — B Az|.
S

A€gy
A#Id
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Hence the pair (B, Gx) is admissible.

(iii) Tetrahedral symmetry in R3: Let N = 3, and consider the group G < O(3)
generated by the coordinate permutations (z1,z2,z3) = (Zx,, Try,Txs) and F €
O(3) defined by F(z) = (1, —x2,—z3). Then |G| = 12. Let B € O(3) be defined
by B(z) = —z. Then B2 = Id € G, and since B commutes with permutations and
with F, the admissibility condition (a) is satisfied for the pair (B,G). We also
note that Fix(G) = {0}. For 2o = (1,1,1) we have

Gro={(1,1,1), (-1,-1,1), (1,-1,-1), (—-1,1,-1)},
so that |Gzo| =4 = I(G). Moreover, since
ngo = {(_15 _la _1)1 (la 11 _1)5 (_la 11 1)1 (17 _la 1)},

we have

min  |zg — Azo| = V2 < 2 = 2min |zy — BAz|.
Aeg\g®o Aeg

Hence the pair (B, G) is admissible. Note that the group G leaves the tetrahedron

with vertices (1,1,1), (-1,-1,1), (1,—1,—1) and (—1,1,—1) fixed.

By choosing k; = 27, j € N in Examples 1.4 (i) and (ii) above, Corollary 1.3
implies the existence of bound states (uj,v;) of (1.5) which are Gy,-symmetric but
not G, ,-symmetric. In particular, (u;,v;), j € N are pairwise different nonradial

solutions. Thus we conclude our last main result.

Corollary 1.5. For N = 2,3 and 8 < —1, the system (1.5) admits infinitely

many nonradial bound states.

The paper is organized as follows. In Section 2 we recall known facts and collect
preliminary results. In Section 3 we prove Theorem 1.2(a), and Section 4 contains
the proof of Theorem 1.2(b).
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an Earmarked Grant from RGC of Hong Kong. Part of the paper was written
while the second author was visiting the Chinese University of Hong Kong, to
which he is deeply grateful for its hospitality. The second author also likes to
thank T. Bartsch for helpful discussions.



BOUND STATES 7

2. PRELIMINARIES

Throughout the remainder of this paper, we assume that 8 < 0. We fix some

notation. As usual, we endow the Hilbert space H!(RY) with the scalar product
(u,v) = / (VuVv + uv) dz, u,v € H (RY),
RN

and we set [|u]|? := [pn(|Vul?> + u?) dz as before. Moreover, for 1 < p < oo and
u € LP(RY) we denote by |ul, the usual LP-norm of u. It is well known (see
[7]) that the (unique) solution wy of the scalar problem (1.8) is a radial and radi-
ally decreasing function which minimizes the Sobolev quotient of the embedding
H (RN) — L4(RY), i.e

fwol

wolf  wemr ®M)\(0} [uff

We recall the following asymptotic estimates for wy, see e.g. [9, 17]:

(2.11) [[wol| =

w =a 2 e || [0
012 o) =alyl e Marow) |

wh(Jy]) = —anlyl =T e W1+ o(1))
Here ay > 0 is a constant depending only on the dimension N. Similarly as in

[14, Lemma 2.6] we deduce some integral estimates.

Lemma 2.1. Asy — oo,

1 3
wy (z)wo(z —y) de — by > 0.
wO(y) AN 0( ) 0( y) N

where by = an fRN wg dz. Moreover, for 0 < § < 2,

(2.13)

1
2.14 / wi (z)wi(z —y) dz — 0 as y — oo.
( ) ’U)()((Sy) RN 0( ) 0( y) Yy
Proof. By (2.12),
(2.15) wolz ) —ayn as |y| - oo for every z € RY.
wo(y)
Moreover, there is ¢ > 1 such that
(2.16) ¢ ' min{1, |y|” = }e ly| <w0(y) <c mln{l ly|~ =N }e
for every y € RV. Let |y| > 1, and put ¢ = c 5% If |z| > ‘y| , then

wg(w)w < cs(@) Tef3lw|*|wfy\+|y\ < Gedelle-ultlyl < g2l
wo(y) |z
and for |z] < % we also have

N—
wg(x) wo(z —y) < c5< |yl ) e e 3 —lz—yl+lyl <« 5 o—2l7l
wo(y) |z — y| =
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Consequently,
wg’(ac)M < ce 2l for |y| > 1 and every .
wo(y)
Hence, by (2.15) and Lebesgue’s Theorem,
1
lim —/ wh (z)wo(z — y) dz = aN/ wi (z) dz = by.
ly| =00 wo(y) RN RN

Next we consider (2.14), and we may assume that § > 1. Using (2.16) we estimate,
for |y| > 1,

2 2
wO(‘T)w(O(S(‘T)_y) < c5(é|y|)%e—2|$|—2|$—y|+6|y| < 05(6|y|)%6—2\1\—¥|m—y|+6|y\
wo (0Y B B
< Sl e 2 T < f()e T

where f5(y) := c5(6|y|)%6_¥|y‘ — 0 as |y| — oo. Hence

1 / 2 2 / 228 |g|
—_ wi(z)wg (z —vy) dr < e 2 %dr—0
’U)()(éy) RN 0( ) 0( y) > f&(y) RN
as |y| — oo, as claimed. O

Next, we fix an admissible pair (B, G) in the sense of Definition 1.1. We consider

the reduced energy functional
1 1
Eg € C*(Hg,R),  Eg(u) = §||u||2 - Z|U|3 — B Q(u),

where the C2-functional Q : H! (RV) — R is defined by

Q) = 5 /R w(e?(Br) dz = glu- (uo B,

Lemma 2.2. For u € Hg, v € H'(RY) we have

(VQ(u),v) :/ uw?(Bx)u(z)v(z) dz

RN
Proof. For u,v € H'(RY) we find

(VQ(u),v) = % /R i (u2(m)u(B$)'u(B$) + u2(B$)u(:c)U($)) dz

= %/]RN (UQ(Bflx) + uQ(B:I;)>u(x)U(:1:) dx

For u € Hg we have uo B = UOB_l, since B2 € G and uo A = u for every A € G.
We thus conclude that

(2.17) (VQ(u),v) = /RN u?(Bx)u(z)v(z) dx for u € Hg, v € H' (RY).

O
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Corollary 2.3. If u € Hg is a nontrivial and nonnegative critical point of Eg,
then (u,u o B) is a solution of (1.5).

Proof. For v € H'(RY) we have by Lemma 2.2:
0= (VEg(u),v) = (o) - [ wbvds - H(YQu),v)
RN

= (u,v) —/ wdvde — [ (uo B)’uvdx
RN RN

Thus u is a weak solution of the equation —Au+u—u3 = B(uo B)?u. By standard
elliptic regularity, u is in fact a classical solution. Moreover, since u > 0 and u Z 0,

it follows from the strong maximum principle that u > 0 in RV . Now u o B solves
_A(uoB) + (uo B) — (wo B) = fuoc B)*(uo B) = ful(uo B),
since B2 € G. Hence (u,u o B) is a classical solution of (1.5). O

Next we put
Ng = {u € Hg:u#0,Eg(u)u =0} = {u € Hg : u # 0, |[ul® = |uli+B|u-(ueB) |3},

where the second equality follows from Lemma 2.2. We note that N(B,G) = {u €
Ng : u > 0}. We need the following lemma.

Lemma 2.4.

(i) |u|? > |ju|| > &k for some constant k > 0 (independent of 8 < 0) and every
u € Ng.
(i) Ng C Hg is a closed C*—manifold.
(iii) Eg(u) = 1L for u € Ng.
(iv) If u € Hg \ {0} satisfies |ulj > |B| |u- (uo B)|3, then \/t(u)u € Ng for

t(u) = (s > 0.
ulj + Blu - (uo B)|3

Proof. (i) By definition and Sobolev embeddings, we have |ju||> < |u|} < Kollu|*

for some ko > 0 and u € Ng, so that [u|? > |ju| > & for k = 1/, .

(ii) By (i), Ng is closed in Hg. Moreover, Ng is the zero set of the functional
(2.18) FeCl(HgR),  F(u)=|lul® - |uli - 48Q(u).
Since for u € Ng we have

(2.19) F'(wju = 2|[ul® = 4(luli + Blu - (uo B)[3) = =2|[ull* # 0,
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Ny is a C''-submanifold of Hg.
(iii) For u € N¢g we have
1

1 1
Bg(w) = 3 llul> = 3 (ul} + Blu- (wo B)R) = llull®.

(iv) This also follows by direct computation. O

3. EXISTENCE OF MINIMIZERS

In this section we prove part (a) of Theorem 1.2, which is an immediate conse-

quence of the following proposition. Here we set

(3.20) ¢:= inf Eg(u).
u€ENg
Proposition 3.1. (i) The value € is attained.

(ii) ¢ =¢(B,G), and if u € Ng is a minimizer for (3.20), then either (u,uoB)
or (—u,—u o B) is a solution of (1.5). In particular, either u € N(B,G)
or —u € N(B,G).

The remainder of this section is devoted to the proof of Proposition 3.1. The
proof consists of two steps; first we obtain an estimate for the value of ¢ in terms
of ||wol||, and then we analyze minimizing sequences for (3.20) via concentration

compactness arguments. The strict inequality in the following estimate is crucial.

Proposition 3.2. We have & < &|lwo||?, where k = 1(G) = |Gzo| and zy is given
by Definition 1.1.

Proof. Let Ay =1d € O(N), and let Ag,..., A C G\ G* be such that Gzy =
{Aiz0,...,Agzo}. We put

p = min|zg — Ajzo| = min|A;zo — Ajzg| > 0
i#1 i

and

v = min |zg — BAjzo| = min |A;z0 — A;Bxy|,
j 0,
so that g < 2v by Definition 1.1(c2). For r > 0 and j = 1,...,k we set wl =

k .
wo(- —rAjz0)), and we consider U, = Y wi € Hg. Asr — 00, (2.13) implies that
i=1

d, = Z /RN (wi)3wi dz = (by + o(1)) Z wo (r[Aszo — Ajmg)),
i#£j ]
hence

(b +0(1)(ur) "7 ™" < d, < k(kz;l)(bzv +o(1))(ur) " E e
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Moreover, (2.14) yields for 1 <4,j <k and § = £ < 2 the estimate

[ @) @wi(Ba))? do = o{un(br s — 4;Bo])

(3.21) = 0((51/7")_#6_51”) = o(d,)

as r — 0o. We also have

U |1? = Kllwol? + Z/ (VwiVw! + wiw!) dz = k|lwol® + Z/ )wi da
i#] i#]

(3-22) = kllwol® + dy.

and

kol

|Ur|i=/RN(Zw da:>Z/ (w) dw—l—4Z/ Yw! da

j=1 i#]
(3.23) = kjwo|] + 4d, = k|lwol|® + 4d,.

Furthermore we estimate

/RNUQ( )UZ(Bx) d / (Zw )(Zw (Bz) wJ(Bac)) dz

%]

<1/ (Zuwi)%x) v <w£)2<x>]) (%](@)%Bx) + (wl)(Ba)])) ds

%)

(3.24) <k22/ \2(Bz)dz = old,)

by (3.21). Let
U, |2
|Ur|3 + B|U(Ur o B) %

so that \/#,U, € Ng by Lemma 2.4(iv). Combining (3.22), (3.23) and (3.24), we
obtain

1 1 U |*
Eg(WtUy) = S IVEU? = 5 -
o(VtUr) = 7IVEU:" = 7 Ur |5 + B|U(Ur 0 B)|3

tr :=t(Uy) =

< 1 . (k||w0||2+d7")2 — ﬁ”w ”2 . k||w0||2+2dr+o(dr)
=4 k|wol®+4d, +o(dy) 47" T Kflwo|? + 4dy + o(dy)’
so that & < Eg(v/%Uy) < £|lwo||? for r large. O

Lemma 3.3. There exists a sequence (uy), C Ng with Eg(u,) — ¢ and Eg(uy,) —
0 in H}.
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Proof. Since Ng is a C'-manifold, we may invoke Ekeland’s variational princi-
ple (see e.g. [23]) to deduce the existence of a sequence (up)n, C Ng such that
Eg(uyp) — ¢ and

(3.25) o(1) = (Bglg) (un) = Ef(un) = AF'(ws)  in Hj

for a sequence (A,), C R, where F' is defined in (2.18). Since u,, € Ng, (2.19) and
(3.25) imply that

(3-26) o(1)[unl = AnF" (un) (un) = —2Xn]lunll?,

and therefore A, — 0 as n — oo by Lemma 2.4(i). Thus (3.25) yields Ej(uz) — 0

as n — 0o, as claimed. O

Proof of Proposition 3.1 (completed). (a) Let (u,), C Ng be a sequence as pro-
vided by Lemma 3.3, and let y,, € RY, n € N satisfy

/ ut dr = sup / ul dz.
Bi(yn) yeRN J Bi(y)

Since Ng and Eg are invariant and VEg is equivariant under translations u
u(- +y) with y € Fix(G) (cf. Definition 1.1(b)), we may assume that y, € Vg =
Fix(G)* for every n. We recall that u,, is bounded in H! (RY) and |u,|? >k > 0
for every n by Lemma 2.4, so a result of Lions [17, Lemma I.1] implies that

(3.27) lim inf / ut dz > 0.
n—eo Bl(yn)

We claim that

(3.28) (yn)n is bounded.

Suppose this is false. Then we may pass to a subsequence with |y,| — oo and

g — y € Vg \ {0}. Since k :=1(G) < |Gy|, there are Ay,..., Ay € G such that

(3.29) the points A;y, j = 1,...,k, are pairwise different.
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Let @, = un(- +5). Up to a subsequence, @, — @ € H' (RY) weakly, where @ # 0
by (3.27). Since VEg(u,) — 0 in H (RY),

o(1) = (Vg un), (- ~ y0)
= G~ )~ [ e~ ) dz — Q). 6~ )
RN
= (Up,U) — 434 dr — w2 (Bx)up (z)d(z —
~ (i)~ [ a%ade =5 [ u(Bo)un(o)ia - v.)
= (i) = [ ide+ 1Bl [ (Bt p)in(@)ilo) da

> ||al* — |alz + 18] /RN up (B + yn) (itn (x) — 4(z))a(z) dz + o(1),
while

/ 2 (B + yn) (iin () — i(x))i(z) dz
RN

< (/IRN ut (Bz +yy,) da;) : (/RN(ﬂn(x) — () %a?(z) dw)% —0 as n — 0o.

We therefore conclude that 0 < ||4|? < |4f, and thus

. lal* _ [lwoll*
a]? > Al 2 ool o]
aly |wol
by (2.11). Using Proposition 3.2, we may choose R = R(e) > 0 such that
4G
(3.30) / (Va2 +i2) do > €
Br(0) k

By (3.29), the balls Br(A,y,), j = 1,...,k are disjoint for n large. Therefore

k
1 1
Eg(uy) = ~||ug|> > = / Vun|? + un?) dz
g(un) = 7 llunl _4]2::1 BR(Ajyn)ﬂ | )
k k
> —/ (|Vun[? 4+ up?) do = —/ (|Viiy|? + 42) dz.
4 JBr(yn) 4 JBr(0)

w

.30) yields

Since 1, — 4 weakly, (

lim inf Eg(uy,) > E/ (|Val* + 42) dz > ¢,
Br(0)

n—00 4

which contradicts the fact that (u,), is a minimizing sequence for (3.20).

Thus (3.28) holds. Consequently, we may pass to a subsequence such that u, — u
weakly in Hg, where u € Hg \ {0}. Since Ej; : Hg — H} is weak-to-weak
continuous, we conclude that w is a critical point of Eg, so that u € Ng. Moreover,

~ . 1 .. 1
¢= lim Bg(up) = lim [juy|* > ;Jull* = Eg(u),

n—oo
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so that u is a minimizer of (3.30). Hence ¢ is attained, and the proof of (a) is
finished.
(b) If u € Ng is a minimizer for (3.20), then

(3.31) 0 = (Eg|ng)' (u) = Eg(u) — AF'(u)
for some A\ C R, since Ng = F~1(0) is a C''-manifold. Hence
0 = Eg(u)u — AF' (u)u = —AF'(u)u = —2A|ul?

by (2.19), which yields A = 0 and therefore E;(u) = 0. We consider u™ =
max{u,0},u” = min{u,0} € Hg. Then

0= Bf(upu* = ]2 ~ Ju*]} — BQ/(w)u*
= e = e+ 18] [ Boula) (@) da
> et = it d 18] [ (Bl @) da
Hence, if 0 < [Ju™|| < ||u||, then t(u™) < 1 (cf. Lemma 2.4(iv)) and
Bo(V/Murut) < 7l < lul® = Bg(w)

contradicting the assumption that u is a minimizer for (3.20). Similarly, 0 <
lu™]] < |ju|| leads to a contradiction. We therefore conclude that u does not
change sign. By Lemma 2.3, either (u,uo B) or (—u, —uo B) is a solution of (1.5).
The proof is finished. O

4. PROOF OF (B) OF THEOREM 1.2

Here we prove part (b) of Theorem 1.2. For this we consider 3, < 0, n € N with
Brn — 0 and a sequence of corresponding minimizers (un,un © B)y of (1.10). We
only need to show that u,, = u, o B for large n, because then the uniqueness result
in [7] for solutions of —Au+u = (1+,)u?® implies that u,, = u,oB = \/%ﬁnwo up
to translation in Fix(G). So we assume by contradiction that, for a subsequence,

(4.1) Uy # Up o B for every n.

The minimization property and (2.11) imply that

1 2_f||u||2 HIRN 0} - 2 _ 4 B2
g lunll” = infy == u € HE(RT)A {0} =l = [uls + Balu - (uo B)l;

ull2
= inf{% cuw € HY(RM)\ {0} : |jul®> = |u|i}+0(1)
@2) = glhwolP +o(0).

4
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Hence (uy,)y, is bounded in H!' (RY), and |u,|? > & > 0 by Lemma 2.4(i). Similarly
as in the proof of Proposition 3.1, we may assume that

(4.3) / up dz = sup / up dz > ¢ > 0
Bi(yn) yERN J Bi(y)

for points y,, € Vg, n € N and a constant ¢ > 0. Setting 4, = u(- + y,), we have

U, — 4 # 0 (after passing to a subsequence), where 4 is a solution of the scalar

problem
L s a3 1 (N
(4.4) At + 4 =1a°, ueH (RY), u>0,
so that 4 equals wgy up to translation. By (4.2) we thus have ||4|| = |Jwo|| =
lim |luy| = lim |4y, hence 4, — @ strongly in H'(RY). Since u, € Hg,
n—oo n—oo

Un () = up(x+yn) = un(Az+ Ayy) = Un(Az+ (Ayn—1yn)) for Ac G, z e RV,

so that the relative compactness of (i), in H!(R") implies the boundedness of
the sequence (Ay, — yn)n C RY for every A € G. Recalling that (y,), C Vg =
Fix(G)*, we conclude that (yy,), is bounded. Since ¥, is bounded, we infer that
up — u in Hg, where u € Hg is a nontrivial solution of (4.4). This then implies
that u = wo(- — zo) for some zp € Fix(G). Since supyegy [ Bi(y) w§ dr is attained
precisely at y = 0, we deduce from (4.3) that zp = 0, so that u, — wy in Hg.
Combining this information with elliptic estimates similarly as in [26, Sec. 2], we
find that

(4.5) Up —> Wo uniformly on RV .

We set ¢, = u, — u, 0 B € Hg and note that ¢,, satisfies

(4.6) A = pn + 3wipn + ca(a)pn =0,

where

(4.7) ¢ = u2 + (uy © B)? 4 up(uy © B) — 3wi — Bptn(up o B) = 0 as n — oo

uniformly in RV . By (4.1), we may choose z,, € RY such that ¢, (z,) = max,cgs |, (z)| >
0. Using (4.6) and (4.7), we deduce that (z,,), C RV is a bounded sequence. We

consider ¢, = Iwﬁig)\ which satisfies
n n

(4.8) A@p — @p + 3wiPn + cn(z)pn =0,  Pp(zn) = 1.

Using elliptic estimates we derive that, for a subsequence, z,, — o € RY and
$n — ¢o in CL (RY) as n — oo, where ¢9 € Hg N C*RY) is a solution of
Agy — @o + 3wiPe = 0 with @g(z¢) = 1. It follows from Appendix C of [21] that

0
(4.9) Yo = % for some vector 7 € RV
T
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Since wy is radial, the G-symmetry of % = ¢o € Hg implies that 7 € Fix(G).
But then BT = 7 = B~!7 by Definition 1.1(b), and therefore

o Bwo

0
¢o(Bz) = B =20

(Bz) = W(x) = @o(x) for all z € RV.

On the other hand, by definition we have ¢,,0c B = —,, and therefore ¢go B = —@y.

We conclude that ¢g = 0, contradicting @o(xg) = 1. We conclude that u, = u, 0B

for n large, as required. The proof of Theorem 1.2(b) is finished.
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