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ABSTRACT. We show that for € small, there are arbitrarily many nodal solutions
for the following nonlinear elliptic Neumann problem

ou
E—O on 0N

where Q is a bounded and smooth domain in R? and f grows superlinearly. (A
typical f(u) is f(u) = a1 — azu?,a1,a2 > 0,p,q > 1.) More precisely, for any
positive integer K, there exists ex > 0 such that for 0 < € < ek, the above problem
has a nodal solution with K positive local maximum points and K negative local
minimum points. This solution has at least K + 1 nodal domains. The locations
of the maximum and minimum points are related to the mean curvature on O).
The solutions are constructed as critical points of some finite dimensional reduced
energy functional. No assumption on the symmetry, nor the geometry, nor the
topology of the domain is needed.

E€Au—u+ f(u)=0 in Q,

1. INTRODUCTION

Of concern is the following nonlinear elliptic equation

(1.1) eAu—u+ f(u) =0in Q and %:OOD 09,
where 2 C R? is a smooth bounded domain, € > 0 is a small parameter, and f(u) =
fi(ug) — fo(u—) where uy = max(u,0),u_ = max(—wu,0) and both f; and fo satisfy
the following conditions:

(f1) fi, f2 € C*T(R) N CF,(0,400) with 0 < o < 1,£1(0) = f2(0) = f,(0) =
f2(0) =0 and f1(t) = fo(t) = 0 for t < 0.

(f2) For 7 = 1,2, the problem in the whole space

{ A_wi —w' + fi(w') =0,w" >0 in ]R?,

1.2 ; .
(1.2) w'(0) = maxyere w'(y), limy, 4. w'(y) =0,

has a radially symmetric solution w’, which is nondegenerate, i.e.
b ow' ow'
1.3 Kernel(A — 1+ f; (w")) = s an{—,—}.
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Note that fi(u) = fo(u) = uP with 1 < p < 400 is a special example. Note also
that we can allow different nonlinearities for the positive and negative part of f. For
example, we may have f(u) = aluﬂ — aou? for arbitrary p,q > 1 and a1,as > 0.

Problem (1.1) arises in the study of some mathematical models in chemotaxis
([15]) and pattern formation ([12]) and has been studied by numerous authors. In
[18], Ni and Takagi showed that, under some conditions on f(u), as € — 0, the least
energy solution for (1.1) has a unique maximum point, say P, on 02. Moreover,
H(P.) — maxpcpn H(P), where H is the mean curvature function on 0€2. Since
then, many papers further investigated the higher energy solutions of (1.1). These
solutions are called spike layer solutions. A general principle is that the interior spike
layer solutions are generated by distance functions. We refer the reader to the articles
[1], [6], [7], [8], [9], [11], [14], [19], [22], and the references therein. On the other hand,
the boundary peaked solutions are related to the boundary mean curvature function.
This aspect is discussed in the papers [2], [5], [10], [13], [23], [24], [25], and the
references therein.

All the above results are concerned with positive solutions. Concerning the exis-
tence and asymptotic behavior of nodal solutions, the first result was due to Noussair
and Wei [20]. In [20], it showed that for e sufficiently small, (1.1) has a least energy
nodal solution, which has two peaks-a positive maximum and a negative minimum.
Furthermore, these two peaks must approach the global maximum points of the mean
curvature. In [21], the corresponding result for the Dirichlet problem is established.
The effect of domain geometry on solutions with two nodal domains for the Dirichlet
problem is studied in [3] and the existence of three nodal solutions for the Dirichlet
problem is established in [4]. The nodal symmetry of two-peak solutions in a ball
is established in [26]. As far as the authors know, there are very few results on the
multiplicity of nodal solutions. The main purpose of this paper is to show the exis-
tence of arbitrarily many nodal solutions for (1.1) in a two-dimensional domain.
Moreover, we show the existence of nodal solutions having arbitrarily many nodal
domains.

Now we can state the main theorem of the paper:

Theorem 1.1. Suppose that Q) is a two-dimensional bounded smooth domain and f
satisfies (f1) and (f2). Let K be any fized positive integer. Then there exists ex > 0
such that for € < eg, problem (1.1) admits a nodal solution u. with precisely K local
mazimum points Py, Ps, ..., Pog 1 € 02 and K local minimum points Py, Py, ..., Pog €
0N, where u (P;) > 0 for i odd and u.(P;) < 0 for i even. Moreover, u. has at least
K +1 nodal domains. Furthermore, as € — 0,

K — P, — P,
(1.4) Jixe) —jZZl(w%—'” LA )] R}
and
(1.5) H(P§) — max H(Q) for j=1,...,2K.

J Qe
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The novelty of Theorem 1.1 lies in the fact that no assumption on the symmetry,
nor the geometry, nor the topology of the domain is needed. By the results of [21],
the least energy nodal solutions can only have one local maximum point and one local
minimum point. Thus the solutions in Theorem 1.1 must have higher energy. It seems
difficult to use direct variational method to obtain such solutions. To capture higher
energy solutions, we use the so-called “localized energy method’-a combination of
Liapunov-Schmidt reduction method and variational techniques. Namely, we first use
Liapunov-Schmidt reduction method to reduce the problem to a finite dimensional one
with some reduced energy. Then the solutions in Theorem 1.1 are local minimizers
of the reduced energy functional. Such an idea has been successfully used in [§]
in the study of interior spike solutions of problem (1.1) and in [10] in the study of
existence of clustered spikes at a local minimum point of the mean curvature. We
shall follow the approaches used in [10]. To shorten the presentation, we shall state
without proof most of the reduction procedure. The reader may consult [10] for more
details. The assumption on the dimension is only used at the last step. We believe
that this assumption should be dropped, at least for a result which does not include
the estimate on the number of nodal domains. In fact, it is possible to generalize the
results of Theorem 1.1 to high-dimensional domains with symmetry.

The organization of this paper is as follows: In Section 2, we construct approximate
nodal solutions and study its properties. Then in Section 3 we state without proof
the reduction process. In Section 4 we complete the proof of the existence of a nodal
solution u. satisfying (1.4) and (1.5). Finally, in Section 5 we prove that u. has at
least K 4+ 1 nodal domains.

Throughout this paper, the letters C, ¢ will denote various constants independent
of € small.
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Grant from RGC of Hong Kong. The first author thanks Professor T. Bartsch for
useful discussions. The paper was written while the second author was visiting the
Department of Mathematics at the University of Minnesota, to which he is deeply
grateful for its hospitality. His research and the visit was supported by DFG Grant
WE 2821/2-1 (Germany).

2. APPROXIMATE NODAL SOLUTIONS

In this section, we construct approximate K —nodal solutions.

As in [10], we first need to project the ground state solutions w', w? to H'(Q) with
homogeneous Neumann boundary condition.

It is known that w' and w? are radially symmetric and have the following asymp-
totics:

(2.1) lim w(y)ly|7e = 4;

ly|—o0
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Here A;,i = 1,2 are two positive generic constants. The energies of w’ are defined as

@2 rwl=g [ (Vo)) - [ P, =12,

RZ

where F'(u) = [ fi(s)ds.
For any smooth bounded domain U C R? we set Pyw to be the unique solution of

(2.3) Au —u+ fi(w(y)) =0in T, % =0 on 9U.

Without loss of generality, we may assume that 0 € 9Q. We set
Q. = {z|ez € Q}.

We consider the energy functional
1 2, 1 2

(2.4) Jeul=- [ |[Vul*+ =z [ v — | F(u)
2 Ja, 2 Ja, Q.

where F(u) = [y’ f(s)ds. It is known that a critical point of J, is a solution of the
equation Au—u+ f(u) =0in Q,, g—z = 0 on 012, and thus corresponds to a solution
of (1.1) by rescaling. Next we define our configuration set

(25) A= {PZ (Pla---,P2K)

PeoQ, j=1,...2K,
wl(@)+w2(@)<e for i+#3j

QQK

Thus A is a relatively open subset of 0 , and we denote by A the relative closure

of A in 902K, B
Fix P = (Py,..., o) € A. We set

P:
(2.6) wiypi (z) = Po,w' (z — —Z> , wipi(z) = Po w? (z — —) .

€
Our approximate nodal solution is
K
2.7 wep(®) =30 ik ) - ke, ()], s e

J=1

Then we have the following energy computations:
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Lemma 2.1. For any P € A and € sufficiently small

K
(2.8) Je(wep) = - (I'w'] + I*[w?))
2K
— ey Y H(P)
i=1
K
Poi_1 — Pa;_
Z v ’U)l( 21—1 2j 1)
z‘;éj,',j—l ¢
(PQZ P2]>
Z 2w
1#5,0,5=1
X Py — Py Py — Py
s [72 w! (M) oy w? (M)] + ole),
ij=1 ¢ ¢

where v > 0 is a generic constant, and

n= [ e dy >0, = [ fae)erdy > o

Let us explain the meanings of the five terms in the right hand side of (2.8). The
first term represents the total energy. The second term represents the boundary
effect. The third term gives the interaction of positive spikes while the fourth term
represents the interaction of negative spikes. The last term represents the interaction
between positive and negative spikes. The proof of Lemma 2.1 is similar to that of
Lemma 2.8 of [10]. Thus we omit the most of the details. The only difference is that
we use the following lemma in place of [10, Lemma 2.4].

Lemma 2.2. For any P € A, € sufficiently small we have

29) [ 5w - ZE)wi - B gt (BB o

3

210 [ p(e - 2)er - 2 = (BT o),
@) [ A(wt - P )ty - ) = () o),
212 [ p(ut - )wte - ) <ot (RS 4o

€

Proof: We only show (2.11), the proof of the other relations is similar. As e — 0,
we have w — 00, since P € A. Let RZ = {(y1,y2) : y2 > 0}. By straightening
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the boundary at Py;_1 we find
Py Py; Py; — P
/ fi(w'y - 20wy - —2) = [ i @)y - L2 (1 +o(1))
QE 3 R?i-

Py — Py
— (R 1 4o(1) [ A )
w
Py — Py 4 -, By =Py
« (w2l - Bm e,
Py — Py
(213) = w!(F =)W +o() [ Al @)™ dy
+
for some . .
b=lim 2 2L cR2  |p=1.

e—0 |P2] PQZ 1‘
Here we have used (2.1). Now if |Py; — P»—1| stays bounded away from zero, we
directly deduce from (2.1) and (2.13) that
Py — Py
1( 27 - 21 1)‘:0(8).

\ [ (= 2w - 2

Hence we may assume P,; — P»;_1 — 0, which implies b = (£+1,0). Consequently,

<Clw

Py, Py Py — Py, 4
Ay — =)y — L) = w*(——==) | filw! (y)e*? dy + ofe)
Q. € € € R%
= w2(7€7z) fi(w Hy))e™ dy + ofe)
Py Poi_1.1
= w’ (L= —)5 f1( H(y))e" dy + ofe)
In the last step we used that w! is radially symmetric. The proof is finished. O

3. REDUCTION PROCESS

In this section, we reduce problem (1.1) to finite dimensions by the Liapunov-
Schmidt method. Since this is similar to [10], we shall state all the results without
proofs. The reader may consult [10] for details.

We first introduce some notations.

Let H2(f2) be the Hilbert space defined by

H2(Q,) = {u € H*(Q,)

ou
E—OonBQE}.

Define
Selu] = Au—u+ f(u) for u € HZ(Q).

Then solving equation (1.1) is equivalent to solving

Sul=0  for ue H2(Q).
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Fix P € A. We define Z; € L?(Q.), i = 1,...,2K by

8“)61 P .
—_— for ¢ odd,
oTp,
Z; = 9
8we P;
1 o
—_— for 7 even,
oTp,

where 7p, represents the tangential derivative at the point F;.
We summarize the following results

Lemma 3.1. If ¢ > 0 is sufficiently small, then for every P € A there exists a unique
© = @ep € H2(Q) satisfying

(3.1) Se[wep + ¢] € span{Z1,..., Zok }, / wZ; =0, i=1,..,2K,
Qe

and ||pepl 20,y < Ce " . Moreover, the map P — ¢ p is C*.

Proof: See the proof of Lemma 3.4 and Lemma 3.6 of [10]. O
The next lemma is our main tool. The proof is similar to that of Lemma 3.5 of
[10].

Lemma 3.2. Let ¢, p be defined by Lemma 3.1. Then we have
Je(we,p + @e,p) = Je(we,p) + 0(€).
Moreover, if we define the map M, : A — R by
(3.2) M (P) = J(we,p + ¢e,p),

then a critical point of M, in A gives rise to a critical point of J. and thus a solution
to (1.1).

4. EXISTENCE OF A K-NODAL SOLUTION

By Lemma 3.2, we just need to prove that the reduced energy functional
M, : A — R has a critical point in the open set A C 9Q*K. Here we will exploit
the two dimensional character of our problem. Let I' C 092 be a connected com-
ponent of 02 where the curvature H attains its maximum. This component I" can
be parametrized by a homeomorphism A : S' — T, where S' C C is the unit cir-
cle. Without loss of generality, we may assume that h preserves the arc length. In
the following we say that Pi, Py, P3... € ' are in cyclic order whenever the points
h=Y(P1),h"Y(P),h~(Ps),... € S* are in cyclic order on S'. We now consider the
following subset of A:

(4.1)
Py, Py, ..., Py are in cyclic order
A ={P=(P,..., Py) ek P - ’
{ (P 2k) wl(—Pq‘GPJ) +w2(—P”‘€PJ) <e for i#j
Thus A* is a relatively open subset of Q2% and we denote by A* the relative closure

of A* in 9Q*%. We shall prove
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Lemma 4.1. There is ex > 0 such that for 0 < € < ex the minimization problem
(4.2) min{ M (P) : P € A*}
has a solution P¢ € A*. Moreover, as ¢ — 0,
(4.3) H(Pf) — gggg{) H(Q) fori=1,...,2K.

An important observation central to the proof of Lemma 4.1 is the following simple
lemma, whose proof is easy and thus omitted.

Lemma 4.2. There exist two constants cy > 0 and 6y > 0 such that if Q1,Q2,Q3 € T
are in cyclic order with |Q1 — Q2| + |Q2 — Q3| < do, then

(4.4) Q1 — Q3] > (1 + co) min(|Q1 — Qa/,[Q2 — Q3)).

Lemma 4.2 implies that for P = (Py, ..., Pox) € A* and i, j with |i — j| > 2 we have
(4.5) [P, = P;| > min{ (1 + co) min| P, — . }
Combining this with (2.1), we obtain the estimate
(4.6) w'((P;—Pj)/e) < Ce't,  w?((P,—Pj)/e) < Ce'te  if i —j| > 2.
From Lemma 2.1, Lemma 3.2 and (4.6), we deduce that

K 2K
4 M) = (I + ) —en AP

o (o () B ()

(g
(ZK: (|P2Z Py 1‘>+K 1w (pm PQZ+1>)+O(6)’

i=1
hence in particular

(4.8) M(P) > (I Hw'] + PPlw?]) — ey ZH +o(e).

We are now ready to prove Lemma, 4.1.

Proof of Lemma 4.1: Since J(wep + @ep) is continuous in P, the minimizing
problem has a solution in A*. Let M, (P¢) be the minimum value, where P¢ € A*.
We claim that P€ € A*. Suppose not. We assume that P¢ € OA* = A*\ A* to obtain
a contradiction. To this end, we first obtain an upper bound for M(P€). In fact, let
Qo € T be such that H(Qp) = Crgré%)éH(Q) Welet P; €T, j =1,...,2K be defined by

W () = MeRT(Qo) € 5.
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For £ small we then have Z=£1 L > 5o fori # j, and therefore wl(@)-l-w?(@) =
o(e) by (2.1). Consequently, P = (P -, Poic) € T'*. We compute

g

(4.9 M(P) = T (I"fw'] + P°[u?]) — 2K 30 H(Qo)e + (e
which implies that
(4.10) M (P) < o (I'fw'] + P2)) — 2K 30 H(Qo)e + (o).
Note that, if P€ € 9A , we have
o (BPE) o (B
€ €

for some k # I. By (4.6) we must have |k —[| = 1. Without loss of generality, we
may assume that £ = 2¢ and [ = 24 — 1 for some ¢ € {1,..., K}. Then from (4.7) we
deduce that

M(P€) >

Pt — PE P PS.
+ww(ii?ﬂi)+mw(ii?ﬂi>+dq
K 11 21, 2
> E(I [w'] 4+ I*[w?]) — 2Ky H(Qo)e + (mmw)e—i— o(e).

K 1 27, 2
5(] [w'] + I*[w?]) _2K70c5nax H(Q)e

For e > 0 sufficiently small, this contradicts (4.10). Consequently there is ex > 0
such that P¢ € A* for 0 < € < eg.

To prove (4.3), we now suppose by contradiction that for a sequence €, — 0 and some
i, 1 <1 < 2K we have

(4.11) H(P) < g H(Q) — ¢ = H(Qo) —c.

where ¢ > 0 is a constant. Then (4.8) implies
€ K 11 27, 2
M., (P) > 7(I [w'] + I*[w?]) — 2K~v0H (Qo)€n + cen + 0(€n)
which contradicts (4.10) for n large. The proof is finished. O
Remark 4.1. By a slightly more careful argument one can construct solutions of this
type concentrating at any strict local mazimum of the curvature H on 0.

5. A LOWER ESTIMATE FOR THE NUMBER OF NODAL DOMAINS

Let w. be a solution as constructed in Section 4, with maximum points
P, P, ..., Pog_1 and minimum points P, Py, ..., Pox. To estimate the number of
nodal domains of u. from below, we consider the graph G formed by the 2K vertices
Py, ..., P under the only defining rule that F; is adjacent to P; if and only if F;
and Pj lie in the same nodal domain of u.. Then G has at most as many connected
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components as u; has nodal domains. We remark that in general G is not a planar
graph. We claim:

(5.1) The graph G has at least K + 1 connected components.

Indeed, note first that the properties of u. (i.e. the special character of our problem)
lead to the following observations.
(I) P; is adjacent to P; iff i = j mod 2.
(IT) If P; is adjacent to P; for some numbers ¢ < j, then no vertex in {P;, : i <
k < j} is adjacent to a vertex in {Py : k <iork > j}.
(IIT) If P; is adjacent to P; and P; is adjacent to Py, then P; is adjacent to Pj.

We now prove the more general statement that any graph G, formed by n vertices
Pi,...,P,, n € N and obeying the rules (I)-(III) has at least [2] + 1 connected
components. We proceed by induction. For n = 1 the statement is trivial. Now let
n > 1, and consider a graph G, with vertices P, ..., P, satisfying (I)—(III). Suppose
first that the vortex P, is isolated in G,. Then the subgraph formed by removing P,
from G,, has at least ["771] + 1 connected components by induction. Hence G,, has at
least [”T_l] +2 > [%] + 1 connected components, as claimed. Suppose next that P, is
adjacent to some Pj, j < n, and let j be minimal with this property. We distinguish
the following cases.

Case I: j = 1. Then n must be odd. The graph G’ arising by reducing P; and P,
to one point has n — 1 vertices Pi,..., P,_1 and still obeys the rules (I)- (III). By
induction, G’ has at least ["Tfl] +1= "Tfl = [%] + 1 connected components, and so
does G,,.

Case II: j > 1. As a consequence of (II), none of the points P, ..., Pj_; is adjacent
to any of the points Pj,..., P,. Hence G, splits into two disjoint and disconnected
subgraphs G; resp. Go formed by the vertices P,..., P;_1 and P, ..., P, respectively.
By induction, G; has at least [7%1] + 1 connected components, and Gy has at least
[%ﬂ] + 1 connected components. Hence G,, has at least []%1] + [%ﬂ] +2 >
[%] + 1 connected components, as claimed.

The induction is complete, and we in particular conclude (5.1). Consequently, u. has
at least K + 1 connected components.

Remark 5.1. A somewhat similar argument is used in [17] in a different context.
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